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Abstract

Observational records are more often than not influenced by residual non-climatic factors which must be detected and adjusted
for prior to their usage. Moreover, measurement uncertainties should be properly quantified and validated. In this work we
present a novel approach, named RHARM (Radiosounding HARMonization), to provide a homogenized dataset of temperature,
humidity and wind profiles along with an estimation of the measurement uncertainties for 700 radiosounding stations globally.
The RHARM method has been used to adjust twice daily (0000 and 1200 UTC) radiosonde data holdings at 16 pressure levels
from 1000 to 10 hPa from 1978 to the present from the Integrated Global Radiosonde Archive (IGRA). Relative humidity (RH)
data are limited to 250 hPa. The applied adjustments are interpolated to all reported significant levels. RHARM is the first
dataset to provide homogenized time series of temperature, relative humidity and wind profiles alongside an estimation of the
observational uncertainty for each observation at each pressure level.

The comparison of RHARM and unadjusted profiles highlights a median temperature warmer by 0.6 K in the boreal hemisphere,
while in the tropics RHARM is cooler by 0.1 K. For RH, the difference is -2.1%, while in the tropics it is reduced to 0.3%. For
wind speed, adjustments largely improve the data homogeneity locally. Analysis of decadal trends for temperature, RH and
winds highlights increased the geographical coherency of trends.

In a companion paper, the performances of the RHARM dataset are assessed through comparison with the reanalysis, satellite

and other homogenized radiosonde datasets.
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Abstract 
Observational records are more often than not influenced by residual non-climatic factors which 
must be detected and adjusted for prior to their usage. Moreover, measurement uncertainties 
should be properly quantified and validated. In this work we present a novel approach, named 
RHARM (Radiosounding HARMonization), to provide a homogenized dataset of temperature, 
humidity and wind profiles along with an estimation of the measurement uncertainties for 700 
radiosounding stations globally. The RHARM method has been used to adjust twice daily (0000 and 
1200 UTC) radiosonde data holdings at 16 pressure levels from 1000 to 10 hPa from 1978 to the 
present from the Integrated Global Radiosonde Archive (IGRA). Relative humidity (RH) data are 
limited to 250 hPa. The applied adjustments are interpolated to all reported significant levels. 
RHARM is the first dataset to provide homogenized time series of temperature, relative humidity 
and wind profiles alongside an estimation of the observational uncertainty for each observation at 
each pressure level.  
The comparison of RHARM and unadjusted profiles highlights a median temperature warmer by 0.6 
K in the boreal hemisphere, while in the tropics RHARM is cooler by 0.1 K. For RH, the difference is 
-2.1%, while in the tropics it is reduced to 0.3%. For wind speed, adjustments largely improve the 
data homogeneity locally. Analysis of decadal trends for temperature, RH and winds highlights 
increased the geographical coherency of trends. 
In a companion paper, the performances of the RHARM dataset are assessed through comparison 
with the reanalysis, satellite and other homogenized radiosonde datasets. 
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1. Introduction 

Long-term homogeneous climate data records (CDRs) are essential to diagnose changes in our 
climate, understand its variability, and assess and contextualize future climate projections (Cramer 
et al. 2018). Use of CDRs influenced by residual non-climatic factors may lead to incorrect 
conclusions about the changing state of the climate (Kivinen et al. 2017). Therefore, when CDRs are 
used it is highly desirable to: 

• Detect and adjust for all the known and quantifiable systematic inhomogeneities in the 
observational record, arising from a variety of causes (changes in station location, 
instrumentation, calibration or drift issues, different instrument sensitivity across different 
networks, changes in the measurement procedures, etc.); 

• Establish measurement traceability ideally to an absolute reference (Système international, 
SI, or community acknowledged) “standard” through an unbroken chain of calibrations, each 
contributing to the measurement uncertainty; 

• Quantify measurement uncertainties in any data where traceability was not properly 
established; in such cases, uncertainties must be inferred from the available metadata, 
results of sensors' intercomparisons, or information about the measurement process. 

In practice, for historical in-situ observations it is often not easy to fulfil the above list of 
requirements, especially for global baseline or comprehensive networks (Thorne et al., 2017). 
Where commonly the metadata and original pre-processed data (e.g. digital sensor counts) are 
either missing or retained solely by individual station PIs (if at all) and not routinely shared or stored 
in their data archives. 

This is the case for radiosounding measurements of temperature (T), relative humidity (RH) and 
wind which still represent anchor information for many meteorological applications, despite the 
advent of GNSS-RO (Global Navigation Satellite System - Radio Occultation) measurements which 
have proven valuable for data assimilation purposes (Bauer et al. 2013).  Radiosounding 
measurements are the only available data source continuously available to study climate variability 
and change in the troposphere and lowermost stratosphere since the mid-20th century. They also 
constitute a valuable source of information for satellite cal/val activities (Calbet et al., 2016, Loew 
et al., 2017, Finazzi et al., 2019). In the ERA-Interim European Centre for Medium-Range Weather 
Forecasts (ECMWF) reanalysis (Dee et al., 2011), the conventional observing system which includes 
radiosoundings, despite proportionately low data volumes, still represents an indispensable 
constraint (Haimberger et al., 2012). A similar situation exists for the latest ECMWF ERA5 reanalysis 
(Hersbach et al., 2020) as well as for other recent global reanalyses (e.g. Kobayashi et al., 2015; 
Gelaro et al., 2017).  

Quality and biases of radiosounding observations strongly varies with sensor type, altitude level, 
and through time. Many previous works described the adjustment of historical radiosounding 
temperature measurements to construct CDRs (e.g. Free et al. 2004; Thorne et al., 2005a; McCarthy 
et al., 2008; Sherwood et al. 2008; Dai et al., 2011; Haimberger et al., 2012, Zhou et al., 2020). These 
works have used a broad range of approaches enabling an exploration of structural uncertainty 
(Thorne et al., 2005b). Several products additionally include ensemble approaches to explore 
parametric uncertainty (Haimberger et al., 2012; Thorne et al., 2011, Sherwood and Nishant, 2015). 
Application of innovative statistical approaches has been recently proposed for the production of 
future datasets (Fassò et al., 2018).  

Intercomparison datasets made available by various research organizations, institutions and 
manufacturers represent an invaluable source of information which improves the interpretation of 
effects, drifts and inhomogeneities in the recorded time series. Most notable are the periodic 
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intercomparison campaigns that have been organized by the World Meteorological 
Organization/Commission for Instruments and Methods of Observation (WMO/CIMO), involving the 
vast majority of commercial manufacturers (e.g. Nash et al., 2006, Nash et al., 2011) and providing 
a thorough periodical assessment of inter-sensor differences. These intercomparison exercises 
involve the flying of multiple sonde models on the same rig, enabling an evaluation of the relative 
performance of various sensors under the full range of conditions experienced at the location and 
time of the comparison. 

To address the need of providing homogeneous and fully traceable upper-air measurements with 
quantified uncertainties, the Global Climate Observing System (GCOS) Reference Upper-Air 
Network (GRUAN) was established in 2006 (Bodeker et al., 2018). GRUAN aims to provide reference-
quality observations of Essential Climate Variables (ECVs, Bojinski et al., 2014) above the Earth's 
surface. GRUAN is providing long-term, high-quality radiosounding data at 30 sites (12 sites are 
certified) around the world with characterized uncertainties, ensuring the traceability to SI units or 
accepted standards, providing extensive metadata and comprehensive documentation of 
measurements and algorithms. Such reference-observing networks can provide metrologically 
traceable observations, with quantified uncertainty, at a small number of stations. Whereas 
baseline-observing networks provide long-term records that are capable of catching regional, 
hemispheric and global-scale features, though they lack absolute traceability (Thorne et al., 2017). 
As a reference network, GRUAN provides a potential basis for enhanced interpretation of broader 
radiosonde networks, for example through the provision of instrumental corrections which can be 
extended to non-GRUAN stations to adjust quantifiable systematic effects (JCGM100, 2008) 
compromising the quality of operationally processed radiosoundings.   

Under the Copernicus Climate Change Service (C3S) activities, we have designed and applied a novel 
algorithm for homogenizing historical radiosounding data records available since 1978 (earlier 
records are not assessed due to various reasons and mainly the more heterogeneous data 
availability at mandatory levels and the use of more heterogeneous instrumentation before 1978). 
This new approach discussed herein is named RHARM (Radiosounding HARMonization), and it is a 
hybrid method based on two main steps: 
 

a. Adjustment of systematic effects and quantification of uncertainties by adjusting the 
radiosounding observations of temperature, humidity and wind from 2004 to present using 
the GRUAN data and algorithms as well as the 2010 WMO/CIMO radiosonde 
intercomparison dataset (hereinafter ID2010, Nash et al. 2011); 

 
b. Identification of change-points in the earlier portions of the time series (before 2004) and 

adjustment of non-climatic (systematic) effects using statistical methods with related 
quantification of uncertainties. 

 
The present paper provides an analytical description of the RHARM algorithm and an assessment of 
key characteristics of the dataset, via comparisons with the ‘raw’ data and GRUAN, for a subset of 
700 radiosounding stations available from the Integrated Global Radiosonde Archive (IGRA - Durre 
et al., 2006; Durre et al., 2018). In a companion paper, the performance of the RHARM dataset is 
evaluated through comparisons with the ECMWF reanalysis products, pre-existing homogenized 
datasets and satellite observations.  
 
RHARM provides another option within the limited number of existing datasets, such as:  
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● homogenized radiosounding temperature measurements, e.g. Radiosonde Atmospheric 
Temperature Products for Assessing Climate (RATPAC) by NOAA (Free et al., 2004), 
RAdiosonde OBservation COrrection using REanalyses (RAOBCORE), Radiosonde Innovation 
Composite Homogenization (RICH) by the University of Wien (Haimberger et al., 2012), 
Hadley Centre's radiosonde temperature product v2 (HadAT2) by Met Office (Thorne et al., 
2005), Iterative Universal Kriging v2 (IUKv2) by University of New South Wales (Sherwood 
and Nishant et al., 2015), the State University of New York Albany dataset (Zhou et al., 2020);  

● homogenized radiosounding humidity measurements, e.g. the Homogenized RS92 
radiosounding humidity measurements (HomoRS92) by State University of New York Albany 
(Dai et al., 2011) and the Hadley Centre's radiosonde temperature and humidity product 
(HadTH) (McCarthy et al., 2009); and  

● homogenized radiosounding wind datasets, e.g. IUKv2 and GRASPA (Ramella-Pralungo et al., 
2014a,b). 

 
Distinct from previous efforts, RHARM is the first dataset to provide homogenized time series of 
temperature, relative humidity and wind in the same package. Moreover, RHARM is based on the 
use of "reference measurements" to calculate and adjust for systematic effects, instead of using 
background information provided by meteorological reanalysis, autoregressive models or 
neighboring stations. In addition, each harmonized data series is provided with an estimation of the 
measurement uncertainty. RHARM is also valuable in providing adjustments for each individual 
radiosounding profile. 
 
The remainder of this paper is organized as follows. In section 2, the data sources used in the paper 
are outlined. In section 3, a detailed overview of the RHARM data processing for the observations 
post-2004 is provided followed by a description of the detection of breakpoints and the adjustment 
of the time series for the period before 2004. Section 3 is corroborated by the information provided 
in Appendix A. In section 4, statistics of adjustments applied by RHARM in comparison with IGRA 
and GRUAN data are discussed. In section 5, statistics on the correlation of the identified 
breakpoints at different pressure levels is presented.  Discussion and conclusions are provided in 
Section 6.  
 

2. Data sources used 

The RHARM approach is applied to the IGRA database which is the most comprehensive global 
collection of original ‘raw’ historical and near-real-time radiosonde and pilot balloon observations. 
RHARM is applied to IGRA Version 2 (Durre et al., 2018) which incorporates data from a considerably 
greater number of data sources with an increased data volume by 30% compared to Version 1. 
RHARM is applied to a subset of 700 radiosounding stations and radiosoundings from ships. We 
selected only the records with documented metadata (i.e. including the radiosonde code according 
to WMO table 3685, describing the radiosonde type) since 2000 (for most of the stations) and for 
fewer stations since 1978. For these stations, depending on the radiosonde type, adjustments based 
on the application of GRUAN-like data processing or on the comparison between GRUAN data and 
ID2010 can be applied to the post-2004 period, for which several instrumental effects are already 
corrected (e.g. the well-known solar radiation dry-bias).  

The IGRA data v2 are the result of improved quality assurance procedures developed for the IGRA 
data v1 (Durre et al. 2006; Durre et al. 2008), which can be grouped into eight categories: 
fundamental “sanity” checks, checks on the plausibility and temporal consistency of surface 
elevation, internal consistency checks, checks for the repetition of values, checks for gross position 
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errors in ship tracks, climatology-based checks, checks on the vertical and temporal consistency of 
temperature, and data completeness checks. The RHARM dataset thus inherits the IGRA quality 
assurance procedures, and additional quality checks are then applied. We perform tests on the 
metadata availability; physical plausibility; data completeness check; accuracy of the bias 
adjustment; removal of outliers; vertical correlation between structural breaks at the same station; 
coherency check for the adjustments applied at the significant levels.  

As noted, the RHARM approach is applied on a subset of IGRA records, depending on the availability 
of the required metadata (Durre et al. 2008; Ferreira et al., 2019). For these stations, a quality-
enhanced dataset with a sufficient number of radiosoundings available since 2004 to present can 
be provided directly post-processing the profiles to account for several instrumental effects (e.g. 
the well-known solar radiation dry-bias). The post-processed profiles are then used as reference 
information to adjust the systematic effects in the historical data before 2004. For those stations 
where the number of post-processed radiosoundings profiles is not sufficient for the purposes of 
the homogenization algorithm before 2004, the post-processed profiles since 2004 are provided 
only. For the selected 700 IGRA stations, only measurements with the highest data quality according 
to the IGRA data quality system at each pressure level have been processed with the RHARM 
algorithm.  

 
Figure 1 shows the locations of the stations processed herein and number of launches available. In 
addition, the 1156 IGRA stations reporting data since 1978 to present are also shown. The coverage 
of RHARM is reasonably homogeneous, except for Siberia where a smaller number of launches is 
available. This is due to the limited information available on the main radiosonde type used in the 
region since 2004 on (AVZ), which cannot be adjusted using RHARM to achieve the same quality as 
for other radiosonde types. The station density in Canada, North East Asia, and East Africa is lower 
than in Europe, U.S and South America, but this is common to all datasets and reflects the 
inadequacies of the historical observing system. Table 1 confirms the low number of measurements 
available in the southern hemisphere (SH), although the quantity of measurements alone cannot 
address the value of the dataset for a specific study without considering representativeness 
(Weatherhead et al., 2017). 
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Figure 1: Global distribution and quantity of RHARM homogenized profiles. The scale in the bottom left corner denotes 
the available radiosoundings at each station (in millions of ascents) from 1978 to present. The + symbol indicates IGRA 
stations (1156) reporting data since 1978 to present (last access to IGRA 31-12-2020). 
 
 
 

Region Latitude range Number 
of launches (thousands) Percentage 

Arctic 70N-90N 316.1 2.5 
Northern Hemisphere mid-

latitudes 25N-70N 8203.7 65.4 

Tropics 25N-25S 2979.3 23.8 
Southern Hemisphere mid-

latitudes 25S-70S 974.0 7.8 

Antarctica 70S-90S 64.2 0.5 
Total   12537.3 100 

 
Table 1: Number and percentage of launches in different latitude bands for the stations shown in Figure 1. 

 

3. Methodology 

The RHARM homogenization of global radiosounding temperature, humidity and wind profiles is 
applied to per-ascent (generally 00:00 and/or 12:00 UTC) data on 16 mandatory pressure levels (10, 
20, 30, 50, 70, 100, 150, 200, 250, 300, 400, 500, 700, 850, 925, 1000 hPa), because the frequency 
of reports from the stations is typically per ascent, whereas significant level reports vary by 
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definition per profile. Relative humidity (RH) adjustments are limited to 250 hPa owing to pervasive 
sensor performance issues at greater altitudes in almost all commercial sondes (Miloshevic et al., 
2004). Profiles are adjusted at these mandatory pressure levels. The applied adjustments are then 
interpolated to the reported significant levels. Uncertainties are estimated for each processing step 
and propagated to estimate the total uncertainty.  

 
For the sake of clarity, the RHARM-adjusted time series since 2004 (with starting time station-
dependent) obtained by post-processing of each single radiosounding profile using a GRUAN-like 
algorithm is labelled PPTS (Post-Processed Time Series). The PPTS is then used as a constraint for 
adjusting the preceding radiosounding time series, hereinafter HST (Homogenized Time Series). The 
concatenation of HTS and PPTS records provides the entire time series for each station, and only 
those stations satisfying the requirements for the production of a PPTS are considered for the HTS 
calculations. An overall scheme of the RHARM approach is shown in Figure 2.  
 
The PPTS produced as step A1 for each station is merged with the prior part of the record (step A2). 
The resulting time series (step B) are firstly divided in two sub-series to separate the nominal 00 
UTC and 12 UTC launches, which are the two most frequent launch times in IGRA. Local nighttime 
and daytime conditions for each radiosounding launch are identified by calculating the solar zenith 
angle using the LOWTRAN module (available at 
http://ethangutmann.com/pages/idl/Utilities/zensun.pro, last access on 31-12-2020), using as 
inputs each radiosonde launching time and the corresponding station geographical coordinates. The 
small number of radiosonde launches available at other synoptic hours have not been considered 
in the current RHARM data version. Such a step is critical mainly for temperature and humidity 
where radiation-heating effects can have substantive impacts on instrument performance 
(Miloshevic et al., 2004; Wang et al., 2013; Dirksen et al., 2014). It is less likely that there will be 
effects on the uncertainties for winds either using GNSS or precursor radar tracking techniques, but 
the same separation is made for cross-variable processing consistency and because in many regions 
of the globe there exist marked diurnal and semi-diurnal components in the variability of winds 
(e.g., Harris et al., 1962).  

 
Figure 2: Schematic diagram describing the steps of the RHARM approach. 
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In section 3.1 and 3.2, the approach applied to obtain the PPTS (Step A1 in Figure 2) is outlined. The 
remaining sections describe the adjustment of the HTS (Step A2) and subsequent adjustments to 
the significant levels in the radiosounding profiles (Steps B-F).  
 

3.1 Adjustment of Vaisala temperature, humidity and wind profiles since 2004 

During daytime, the sensor boom of any radiosonde type is heated by solar radiation which 
introduces biases in temperature and humidity (Wang et al., 2013). The net heating of the 
temperature sensor and the resulting dry-bias affecting the relative humidity sensors depends on 
the amount of absorbed radiation and, therefore, the solar elevation angle (α), as well as on the 
cooling by thermal emission and ventilation by air flowing around the sensor (Dirksen et al., 2014). 

To adjust this effect in the measured profiles of temperature and RH, the first step of the RHARM 
algorithm, involving only the Vaisala RS92 sondes, is to apply a solar radiation correction to the T 
vertical profiles (both for mandatory and significant levels) similarly to the metrologically traceable 
GRUAN Data Processing (GDP). This is performed in two steps:   

1. first, the radiation correction, ∆𝑇!"#$"%", applied by the manufacturer to the temperature 
profiles is removed; 

2. second, a GRUAN-like radiation correction, ∆𝑇&'(") is applied using the values of the actinic 
flux modelled with the Streamer RTM (Key and Schweiger, 1998) following the approach 
documented in Dirksen et al (2014). Where GRUAN-like corrections cannot be applied, the 
manufacturer correction is left unchanged. 

∆𝑇!"#$"%" is derived from the tables provided by the manufacturer and accounts for changes in the 
RS92 data processing during the sonde model’s production lifetime (see 
https://www.vaisala.com/en/sounding-data-continuity).  

The GRUAN correction, ∆𝑇&'("), is defined as: 
 

∆𝑇&'(")(𝐼* , 𝑝, 𝑣) = 𝑎𝑥+ [Eq.1] 
 

𝑥 = !!
"#!

 [Eq.2] 

 
where 𝐼* is the actinic flux at the solar zenith angle of the balloon release time, calculated using the 
LOWTRAN v7 solar position data (taken from 
https://code.arm.gov/vap/mfrsrod1barnmich/blob/ed71a3666e8e1781ed8d753e859b284f3b7dcc
2e/src/zensun.pro, last access on 31-12-2020); p is the pressure level; and ua is the ascent speed in 
m s-1. The ascent speed cannot be directly ascertained from IGRA data as times of individual 
observations are, in general, not archived. For this reason, an average ascent speed of 5 m s-1 is 
assumed, based on the recommended ascent speed from WMO guidance, which corresponds well 
to typical measured ascent speeds (e.g. Madonna et al., 2020b). The coefficients a and b in Eq.1 are 
fit parameters arising from laboratory experiments (Dirksen et al., 2014) yielding a = 0.18(±0.03) 
and b = 0.55(±0.06). 

Once ∆𝑇&'(") is calculated, the final correction following  Dirksen et al. (2014) is to derive a best 
estimate between the two approaches:  

 
∆𝑇 = (∆.!"#$%/∆.&$'($)$)

1
  [Eq.3] 
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Within RHARM, the final adjustment added to IGRA temperature profiles is correspondingly: 

 

∆𝑇'2"'3,'$51 = ∆𝑇!"#$"%" − ∆𝑇 + ∆𝑇6  [Eq.4] 

 

where ∆𝑇6  is a residual calibration bias calculated from the mean difference of GRUAN and IGRA 
nighttime temperature profiles at mandatory pressure levels for the six GRUAN sites reported in 
Table 2. To calculate ∆𝑇6, outliers are filtered using a robust Z-score method. ∆𝑇6  is added to both 
night and daytime profiles. If the value of Ia in equation 2 is equal to zero (i.e. ∆𝑇=0), the 
manufacturer radiation correction applied to IGRA profiles is not modified and Eq.4 reduces to 
∆𝑇'2"'3,'$51 = ∆𝑇6. Eq. 4 removes the solar radiation correction applied by the manufacturer and 
adjusts the data using the GRUAN correction plus an additional term reducing, on average, the gap 
with the GDP.  
 

GRUAN code Station name and country Latitude Longitude Altitude WMO index 
CAB Cabauw, Netherlands 51.97° 4.92° 1 m 06260 
LIN Lindenberg, Germany 52.21° 14.12° 98 m 10393 
NYA Ny-Ålesund, Norway 78.92° 11.92° 5 m 01004 
SGP Lamont, OK, USA 36.60° -97.49° 320 m 74646 
SOD Sodankylä, Finland 67.37° 26.63° 179 m 02836 
TAT Tateno, Japan 36.06° 140.13° 25 m 47646 

 
Table 2: List of the GRUAN stations used to calculate the additional calibration bias applied in the RHARM approach to 
adjust the Vaisala RS92 radiosoundings available from IGRA. 

 

The standard uncertainty (k=1) on 𝑇'2"'3,'$51, 𝜀0𝑇'2"'3,'$511, is calculated according to the 
following equation:  

𝜀0𝑇'2"'3,'$511 = 	0∑7 𝜀898:;<*:7=7 (∆𝑇)1 + 𝜀'(∆𝑇)	11
*
+ = 0𝜀=,#,(∆𝑇)

1 +

𝜀=,'-(∆𝑇)
1	+𝜀>;?:(∆𝑇)1 + 𝜀6(∆𝑇)1 + 𝜀'(∆𝑇)11

*
+ [Eq.5] 

In Eq. 5, 𝜀898:;<*:7=7 (∆𝑇) indicates a systematic uncertainty contribution;𝜀=,#,(∆𝑇) is the uncertainty 
due to the estimation of the solar actinic flux; 𝜀=,'-(∆𝑇) is the uncertainty due to parameters 
estimated in the radiation correction model reported in Eq. 1. Formulas to calculate 𝜀=,#,(∆𝑇)	and 
𝜀=,'-(∆𝑇) are fully documented in Dirksen et al. (2014). 𝜀>;?: is the uncertainty due to the 
ventilation rate (including the effect of the pendulum motion of the radiosonde assumed as in 
GRUAN to be about 0.2 m s-1); 𝜀6  indicates the comparison uncertainties estimated from the 
standard deviation of ∆𝑇6. In RHARM, 𝜀'  is the random uncertainty with a fixed value of 0.15 K 
chosen in agreement with the GDP approach (Dirksen et al., 2014). When the radiation correction 
of the manufacturer is left unchanged, 𝜀0𝑇'2"'3,'$511 is assumed to be the same as the closest 
temperature profile in time measured under the same meteorological conditions (i.e. clear sky or 
cloudy, when RH>95% at least on one level). 

Following the application of temperature adjustments, the measured value of the relative humidity, 
𝑅𝐻'2"'3,'$51, is adjusted for the solar radiation dry-bias, estimated by the effect of the T warm 
bias on the saturation vapor pressure, using a correction factor: 
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𝑅𝐻'2"'3,'$51 = 𝑐𝑓	𝑅𝐻#&'",'$51 8
@.A."/$"0,"(2+/B∆."/$"0,"(2+C

@.A."/$"0,"(2+C
9 [Eq.6] 

 

where 𝑐𝑓 is a scalar factor accounting for the temperature dependency of the sensor calibration 
estimated at night by a comparison with GRUAN measurements (see Table 2); 𝑝8 is the saturation 
vapor pressure and g is a factor determined experimentally to weight the applied correction on 
different radiosonde batches (Dirksen et., 2014). The factor cf may embed a residual contribution 
from the sensors’ time-lag which is typically small for the RH values up to 250 hPa. Known issues in 
radiosonde humidity data, such as humidity values under dry conditions (RH < 20%) for U.S. stations 
which were set to a dewpoint depression of 30°C (or RH = 19%), have been properly managed 
(McCarthy et al., 2009). For the sake of clarity, a flow diagram describing the application of the 
RHARM adjustments to both T and RH profiles from Vaisala RS92 instruments is shown in Figure 3. 

 

 
Figure 3: Flow diagram summarizing the post-processing steps of the RHARM algorithm to adjust temperature and 
relative humidity profiles measured by the RS92 sondes from 2004. In the diagram, cf is a calibration factor, 𝑝3 is the 
saturation vapor pressure, g is a factor determined experimentally to weight the applied correction on different 
radiosonde batches used over the years. ∆T indicates the adjustments applied to temperature, ∆RH to relative humidity. 
The subscripts refer to the GRUAN adjustments, IGRA adjustments (manufacturer based plus IGRA quality control), 
RHARM adjustments and to RS92 Vaisala sondes. The subscript “r” refers to a residual correction derived from the 
nighttime comparison between GRUAN and IGRA data at six GRUAN sites, reported in Table 2. 
 

Similarly to Eq.5 for temperature, the combined standard uncertainty for relative humidity is 
calculated as:  

𝜀0𝑅𝐻'2"'3,'$511 = 	 :𝜀'D4(∆𝑅𝐻)
1 + 𝜀'D5(∆𝑅𝐻)

1 + 𝜀=E(∆𝑅𝐻)1 + 𝜀'(∆𝑅𝐻)1;
*
+  [Eq.7] 

where 𝜀'D4(∆𝑅𝐻) is the uncertainty of dry bias correction; 𝜀'D5(∆𝑅𝐻) is the uncertainty of the 
radiation sensitivity factor g in Eq. 5; 𝜀=E is the uncertainty due to calibration factor cf; 𝜀'  is an 
additional random uncertainty of 2% RH. In analogy with temperature, when the radiation 
correction of the manufacturer is left unchanged, 𝜀0𝑅𝐻'2"'3,'$511 is assumed to be the same as 
the closest RH profile in time measured under the same meteorological conditions. 

At the end of 2010, Vaisala processing software underwent a major change with the inclusion of 
humidity time-lag correction and an improved dry-bias correction for RH, but its uptake was 
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heterogeneous across stations. For example, Germany and the UK started using it only in 2015, but 
this was not the case for other countries, due to choices by National Meteorological Services. In this 
version of RHARM it is very difficult to take into account such changes at each individual station, 
given the grossly insufficient metadata available. Nevertheless, this may be possible in future, for 
any such subsequent changes, using native BUFR reports which include the processing software 
version in their extra metadata. Storing of these files on a routine basis has been undertaken by 
ECMWF starting from 2016. Collaboration with Vaisala will also be undertaken to identify when 
individual stations switched, in order to improve future updates of the RHARM dataset. 

The GDP on wind profiles is more basic and does not apply as many corrections to the raw data. The 
manufacturer software retrieves the magnitudes of u and v from the Doppler shift in the GNSS 
carrier signal. In the GRUAN processing, these vectors are smoothed and converted into wind speed 
and direction. The noise in the raw zonal and meridional (u and v) data, due to the radiosonde’s 
pendulum motion and the noise of the GNSS data, is reduced by using a low-pass digital filter 
(Dirksen et al., 2014). This smoothing reduces the effective temporal resolution of the wind data to 
40 s. Using statistical uncertainties calculated for u and v, the uncertainty of the wind direction 𝜙 is 
given by: 
 

𝜀(𝜙) = FGH
I

JK6+/K7+

LF/M67N
+
O|>|

 [Eq. 8] 

 
and the uncertainty of the wind speed 𝑤	by 
  

𝜀(𝑤) = >(QK6)
+/(>K7)+

Q+/>+
 [Eq. 9] 

 

Typical values are between 0.4 and 1 ms-1 for 𝜀(𝑤)	and about 1° for 𝜀(𝜙). In the case of negligible 
wind, when u and v approach 0, the value of 𝜀(𝜙)	becomes very large. For such cases, the absolute 
value of 𝜀(𝜙) is limited to 180° (Dirksen et al., 2014). The same limitation is applied to uncertainties 
estimated with RHARM. 

The RHARM algorithm converts wind direction and speed reported in IGRA data files into the 
vectorial components u and v. At time instant t and at a pressure level p, these variables are related 
as follows: 
 

𝑢(𝑝, 𝑡) = 𝑤(𝑝, 𝑡)	𝑠𝑖𝑛 8 I
FGH

𝜙(𝑝, 𝑡)9		[Eq. 10] 

 

𝑣(𝑝, 𝑡) = 𝑤(𝑝, 𝑡)	𝑐𝑜𝑠 8 I
FGH

𝜙(𝑝, 𝑡)9	 [Eq. 11] 

 

 
The conversion into u and v components avoids issues of interpretation over averages or differences 
associated with the use of the discontinuous wind direction scale. Nevertheless, to facilitate user 
applications preferring the use of wind speed and direction, vectors are converted back into wind 
speed and direction. Eqs. 8 and 9 are then used also in RHARM to estimate the final uncertainty on 
w and 𝜙. 
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To adjust the IGRA wind profiles, the daytime and nighttime differences for u and v between the 
GRUAN processed and the IGRA radiosounding wind profiles have been calculated using the stations 
in Table 1. The approach is the same as for temperature (Eq.4), although it is reduced to 
∆𝑢'2"'3,'$51 = ∆𝑢6  and to ∆𝑣'2"'3,'$51 = ∆𝑣6, for each of the wind vectorial components. The 
standard deviation of the ∆𝑢'2"'3,'$51 and ∆𝑣'2"'3,'$51 are then used as the estimation of the 
combined standard uncertainties, which are expressed as 𝜀0∆𝑢'2"'3,'$511 = 	(𝜀6(∆𝑢)1 +

𝜀'(∆𝑢)1)
*
+ and 𝜀0∆𝑣'2"'3,'$511 = 	(𝜀6(∆𝑣)1 + 𝜀'(∆𝑣)1)

*
+. 𝜀'  is a random uncertainty of 0.15 m s-

1 for both u and v (https://www.vaisala.com/sites/default/files/documents/RS92SGP-Datasheet-
B210358EN-F-LOW.pdf, last access 23/04/2021).  

 
This adjustment can only partly reconcile the difference between GDP and manufacturer data 
processing due to the differences in the low-pass filtering applied to reduce the effect of the 
radiosonde’s pendulum motion.  
 
In the final step of RHARM, the adjustments applied to temperature, humidity and wind profiles at 
the mandatory levels as well as the corresponding uncertainties are interpolated to the significant 
levels available in the IGRA files, which vary from profile-to-profile and are used to mark key 
geophysical points in the profile, such as temperature or humidity profile inflections. The 
interpolation is performed using a linear function for temperature, while a cubic spline interpolation 
has been applied to RH and wind component profiles. The resulting interpolation uncertainty has 
been evaluated using the comparison of the effect of the interpolation at GRUAN stations where 
high-resolution profiles are available. This interpolation uncertainty has been added to the final 
uncertainty budget (for T, 𝜎=0.25 K, for RH, 𝜎=0.5 %, for both u and v, 𝜎=0.05 ms-1). 

At present, there are only two GRUAN data products, for the Vaisala RS92 and for Meisei RG11 
sondes. RHARM applies adjustments to RS92 Vaisala sondes only, which represents a substantive 
portion of the global data. For the Meisei RG11 GDP, its recent introduction (Kobayashi et al., 2019) 
precluded its implementation within RHARM so far, but an update of the data processing will be 
implemented in the near future for any other radiosonde GDP which might become available.  
 

3.2 Adjustment of other radiosonde types 
 
For non-Vaisala radiosonde types, the adjustment estimation requires the adoption of a different 
approach due to the unavailability of GRUAN reference products. To harmonize these records, 
RHARM makes primary recourse to the ID2010, from which estimations of the relative performance 
of operational radiosondes in 2010 were evaluated through a joint effort between the scientific 
community and the radiosonde manufacturers. ID2010 allows us to assess the systematic 
component of the inter-sensor differences, and does not contain strong outliers, but the post-
processing applied may come at the cost of under-representing sonde-to-sonde random uncertainty 
effects (Nash et al., 2011). Furthermore, the use of complex multi-sonde rigs may alter the sonde 
characteristics compared to standard single-payload flights in important vis-a-vis aspects such as 
ventilation, thermal effects and the magnitude and periodicity of pendulum motion effects. 
 

Abbrev. Name WMO radiosonde code 
RS92 VAISALA RS92 SGP 80 
Graw DMF-09 Graw 17 
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Modem M10, Modem 57 
LM LMS6 11 (01/01/2008), 82 (07/11/2012) 

Meisei Meisei 30 (01/01/2010) 
JinYang JinYang 21 

IntermSA iMet-2 InterMet 97, 98, 99 
Daqiao Nanjing GTS1-2/GFE(L) 33 (03/11/2011) 
Huayun Taiyuan GTS1-1/GFE(L) 31 (03/11/2011) 
Changf Beijing Changfeng CF-06 45 (07/05/2014) 

ML Meteolabor 26 
 
Table 3: List of the operational radiosondes involved in the 2010 WMO/CIMO radiosonde intercomparison used to 
calculate the RHARM adjustments. Dates in brackets refer to the date of assignment for the WMO radiosonde code. 
Note that also RS92 is included in the list. Adjustments have been calculated using the RS92-SGP sondes as the 
comparator, in order to be physically consistent with the GRUAN product. For consistency, RS92-SGP sondes launched 
during the intercomparison have been reprocessed using the RHARM approach. 
 
Among the radiosonde types involved in the intercomparison, only those routinely employed at a 
sufficient number of stations have been considered for calculating the adjustments for RHARM. The 
Vaisala RS92-SGP (WMO radiosonde code=80) was used as one of the common models during 
(almost) all flights, allowing us to tie each sonde to the RS92 (at least for the particular location, 
RS92 model version, the RS92 Vaisala data processing in operation at the time, and the season of 
the campaign). The Vaisala RS92 sondes available in ID2010 have been adjusted using the RHARM 
algorithm described in the prior sub-section. The list of the selected radiosonde types is given in 
Table 3.  
 
Due to the launch setup adopted during the WMO intercomparison, a few radiosonde types were 
compared less frequently than others on the same payload. Specifically some models did not have 
a sufficient sample of coincident Vaisala RS92 sondes associated with them. In these cases, the Graw 
radiosondes, which flew on rigs both with RS92 sondes and the under-sampled sondes, have been 
used to make the bridge with the RS92 and to calculate statistics for a larger number of comparisons. 
Standard deviations have been recalculated accordingly to consider the additional contribution of 
the Graw radiosonde uncertainties and the two steps required to quantify the comparison. The 
mean difference over N ascents between RS92 temperature profiles and the profiles measured by 
each of the sondes listed in Table 3 (hereinafter named as “NORS92”) has been quantified as (Figure 
4):  
 

∆𝑇)R'$51 =
F
)
∑)7SF 𝑇7)R'$51 − 	𝑇7

'2"'3,	'$51 [Eq. 12], 
 
and the standard deviation 𝜎.%8"(2+  is calculated from the spread of pairwise estimates of ∆𝑇)R'$51 

arising from the RHS term of equation 12. 𝜎.%8"(2+ = >𝜎.%8"(2+1 + 𝜀0𝑇'2"'3,'$511
1
 is used as the 

best estimate of the uncertainty for ∆𝑇)R'$51 . If the Graw radiosonde is considered as the link with 
the Vaisala RS92 (with M ascents in common), Eq.12 becomes: 
 

∆𝑇)R'$51 = :F
)
∑)7SF 𝑇7)R'$51 − 	𝑇7&'"U; − :

F
3
∑3VSF 𝑇V&'"U − 	𝑇V

'2"'3,	'$51;	 [Eq. 13], 
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and the standard deviation 𝜎.%8"(2+  is derived assuming independence of the two components so 
the individual estimates are combined in quadrature.  
 
Although the ID2010 have already been filtered for the presence of outliers, ∆𝑇)R'$51 and 𝜎.%8"(2+ 
have been calculated using an outlier resistant algorithm where the mean trims away outliers using 
the median and the median absolute deviation (see also 
https://idlastro.gsfc.nasa.gov/ftp/pro/robust/resistant_mean.pro, last access on 31-21-2020). This 
allows us to ensure that the most typical differences between any two radiosonde types are caught 
in the calculated differences, enabling their application as an average adjustment on a wide range 
of radiosondes. Eqs. 12 and 13, with the related considerations, are applied also to wind profiles.  

 
Figure 4: Flow diagram summarizing the post-processing steps of the RHARM algorithm to adjust the temperature and 
relative humidity profiles measured for all radiosonde types other than RS92 reported in Table 3 in the period from 
2004 onward. In the diagram, “X” stands for T, u or v. The subscript RHARM refers to the output adjusted variable and 
the subscripts RS92/NORS92 refer to the input radiosonde type: RS92 Vaisala or other. 
 
For relative humidity, also in order to be consistent with the RHARM post-processing of RS92 
sondes, instead of Eq. 12 the following is used: 
 
 

𝑐𝑓(𝑅𝐻))R'$51 =
F
)
	 ∑)7SF

'29
"/$"0,"(2+

'29
%8"(2+  [Eq. 14], 

 
where 𝑐𝑓(𝑅𝐻))R'$51 is a scalar calibration factor to remove systematic effects on the NORS92 
radiosondes; the related standard deviation, 𝜎=E('2)%8"(2+, is calculated via error propagation. If the 
Graw radiosonde is considered as the link with the Vaisala RS92, Eq.14 becomes: 
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𝑐𝑓(𝑅𝐻))R'$51 =
F
)
	 ∑)7SF

=E('2)!"$:	'29
"/$"0,!"$:

'29
%8"(2+  [Eq. 15], 

 
To facilitate the application of the adjustments for all significant pressure levels available in the IGRA 
dataset, the profiles obtained from the Eqs. 12, 13, 14 and 15, including all the available (mandatory 
and significant) levels, have been first smoothed to an effective resolution of 100 m (Iarlori et al., 
2015), to reduce the uncertainties due to the limited sample size, and then interpolated at 0.1 hPa 
resolution. Interpolation has been performed to allow the processing chain to always get an exact 
match with any of the mandatory and significant levels available in the IGRA files. As for the RS92 
case, the interpolation has been performed using a linear function for temperature, while a cubic 
spline interpolation has been applied to RH and wind component profiles. The interpolation 
uncertainty has been finally added to the final uncertainty budget (for T, 𝜎=0.25 K, for RH, 𝜎=0.5 %, 
for both u and v, 𝜎=0.05 ms-1). All the profiles derived from the ID2010 with the corresponding 
standard deviations are shown in detail in Appendix A. 
 
Table 4, gives the number and percentage of radiosonde launches adjusted by RHARM since 2004 
with the PPTS approach and shows that more than 85 % of RHARM adjusted radiosondes are 
manufactured by Vaisala. This increases the homogeneity of the dataset globally, but on the other 
hand it makes the dataset more prone to the impacts of unquantified random and systematic effects 
unique to the Vaisala sondes. The radiosoundings reported in Table 4 include about 40,000 launches 
from 37 ships (mostly travelling in the Atlantic Ocean). 

 
Radiosonde type Launches Percentage 

LMS6 29148 1.3 
DMF-09 Graw 16736 0.8 
VIZ/JinYang 33721 1.5 
Taiyuan GTS1-1/GFE(L)  13409 0.6 
Nanjing GTS1-2/GFE(L) 17406 0.8 
Meteolabor 436 0.0 
Meisei 16179 0.7 
Beijing Changfeng CF-06  36393 1.7 
M10, Modem 121446 5.5 
Vaisala RS92/RS41 1893805 85.9 
Intermet 26505 1.2 
Total 2205183 100 

Table 4: Number and percentage of the radiosonde launches available from 2004 and adjusted using the RHARM 
approach.  The total number of soundings available within IGRA from 2004 for the stations adjusted using RHARM is 
4,785,543. These include 55,325 balloon launches with a Vaisala RS41 sonde, currently not adjusted within RHARM. 
 
Considering that the wind data collected with the radiosonde types reported in Table 3 are 
processed with proprietary software routines from the respective manufacturers which apply 
distinct smoothing to the data, the RHARM wind profile may have a different effective vertical 
resolution (Iarlori et la., 2015). The unavailability of the raw data inhibits reprocessing of the data 
to provide data at a common resolution or even at a known resolution, which could be controlled 
in the RHARM software in order to remove spurious effects on the wind measurement between the 
radiosondes.  
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3.3 Detection of early period breakpoints using the CUSUM method 
The detection of breakpoints in the IGRA radiosonde times series is carried out at each single station 
and is limited to the historical record HTS (i.e. does not affect the post-2004 PPTS at the same 
station). Time series are used at their full-time resolution (1-2 launches per day on average), i.e. 
data are not monthly or annually aggregated. 
 
Before homogenizing the time series, a few checks are applied to the data. The IGRA dataset is 
provided after the application of a comprehensive set of quality control procedures to remove gross 
errors without removing jumps and other discontinuities caused by changes in instrumentation, 
observing practice, or station location (Durre et al., 2008 and Durré et al 2018). The IGRA flagging 
system is exploited by RHARM to filter out data which are considered not quality assured. IGRA 
quality checks (QC) have been also tested before the production of the RHARM dataset and revealed 
their robustness in detecting outliers and unphysical values, and this is one of the most important 
features which gives IGRA an added value compared to other radiosounding data sources for the 
different users’ applications. 
 
In addition to the IGRA QCs applied by IGRA, RHARM preliminarily verifies the physical plausibility 
of the values reported at each pressure level, i.e. temperature values 170 K < T < 350 K, relative 
humidity 0.01%<RH<100%, wind speed 0 m/s< w <250 m/s, and wind direction 0°<	𝜙 <360°.  
 
Once diurnal variability has been accounted for, data are processed through the homogenization 
module (Step C in Figure 2). After filtering out unphysical values, each time series can be described 
using an additive model, assuming that the profiles for each ECV arise at each pressure level from a 
normal distribution: 
 

𝑥(𝑝, 𝑡) = 𝑇𝑟(𝑝, 𝑡) + 𝑆(𝑝, 𝑡) + 𝐵(𝑝, 𝑡) + 𝜀(𝑝, 𝑡) [Eq. 16] 
 
where x is the time series of temperature, relative humidity or wind components, Tr is the unknown 
climate trend, S is the climate variability, B is an instrumental bias component and 𝜀~𝑁(0, 𝜎1) 
represent the residuals which depends on the local meteorological variability and on the 
measurement uncertainties. Although classified as a systematic component, the term B is a function 
of time because it changes for different periods of a time series characterized by the use of different 
sensors. 
 
Within the RHARM algorithm, the detection of breakpoints in the time series is based on the 
Cumulative Summing test (CUSUM test). The CUSUM test (Aue and Horváth, 2013) looks for a 
change in the mean of a stationary time series. It has been already used in the past to determine 
the homogeneity of a station for different ECVs (Rhoades and Salinger, 1993; Peterson et al., 1997). 
Within RHARM, the CUSUM test is applied to temperature, humidity and wind components (i.e. u 
and v) at each pressure level, separately for day and night time data. For the CUSUM test we define 
two variables: 
 

𝑆7 = ∑ 𝑥V$ − 𝜇 − 𝑘	F
VS7 [Eq. 17] 

 
𝑆7W = ∑ 𝜇 − 𝑘 − 𝑥V$	F

VS7 [Eq. 18] 
 
where 𝑥V$ is representative of time series of the ECV (𝑥) to homogenize at the instant i, while 𝜇 is 
the mean of the process when this is considered “under control” (i.e. with a change of the mean 
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within an acceptable tolerance). In our case, this corresponds to the mean and standard deviation 
of the entire time series (i.e. merging HTS and PTTS). k is the so-called “allowance” and represents 
the maximum allowed change for 𝑥7$. In our setup: 
 

𝑘 = 0.1𝜎$(𝑝, 𝑡) [Eq. 19] 
 
k is typically related to the minimum detectable shift 𝛿 to the mean, expressed in terms of standard 
deviation units by the equation 𝑘 = 0.5𝛿𝜎$(𝑝, 𝑡) and 𝜎X is the standard deviation of the process 
“under control”. Therefore, in our setup 𝛿 = 0.2. This choice has been optimised for detecting 
breakpoints in the time series by investigating manually selected stations where comprehensive 
metadata were available since 1978 to present (e.g. Lindenberg WMO index=10393, and Sodankyla 
WMO index=2836). Synthetic time series with artificial systematic effects (i.e step functions) have 
also been used to tune the CUSUM parameters. 
 
The use of two variables 𝑆7  and 𝑆7W allows us to detect both positive and negative changes in the 
cumulative sum (two-sided CUSUM). In order to identify breaks in the time series, the two following 
CUSUMs are calculated: 
 

𝑆Y7(𝑖) = 𝑚𝑎𝑥(0, 𝑆Y7(𝑖 − 1) + 𝑥7$ − 𝜇 − 𝑘) [Eq. 20] 
 

𝑆Z[(𝑖) = 00, 𝑆Z[(𝑖 − 1) + 𝜇 − 𝑘 − 𝑥7$1	 [Eq. 21] 
 
where 𝑆Y7(0) and 𝑆Z[(0) are equal to 0 at the time instant t=0. When either 𝑆Y7(𝑖) and 𝑆Z[(𝑖) 
exceeds a certain threshold value h, a break is detected. According to several applications available 
in the literature, a good threshold value is h=4k (Woodall and Adams, 1993).  
 
In general, it is possible to design the standard CUSUM test in order to be highly robust to non-
normality and it is very effective at detecting shifts of all sizes, even for highly skewed and extremely 
heavy-tailed process distributions (Stoumbos and Reynolds, 2004). Nevertheless, the CUSUM is 
typically more efficient in cases of normally distributed variables and stationary phenomena. The 
non-stationarity of temperature time series, the non-normality of the RH time series, and the large 
variability of winds over time including a significant number of “extreme” events may affect the 
CUSUM break detection and increase the number of false positives. For this reason and considering 
that RHARM works to detect systematic effects generating “step-changes” in the time series, the 
CUSUM is not applied on the raw time series 𝑥(𝑝, 𝑡) of Eq.[16], but rather is applied to the non-
linear trend component 𝑇𝑟(𝑝, 𝑡), estimated by applying a locally weighted smoothing (LOESS) with 
a smoothing window equal to the 30% of the overall length of the time series (for both night and 
day). Due to its nature, LOESS enables an efficient propagation into the smoothed times series of 
any systematic effect present in the original times series, removing the seasonality if applied over 
an appropriate smoothing window.  
 
Figure 5 shows an example of the breakpoints detected for the night time relative humidity (over 
liquid water) measured at 300 hPa in Sodankyla from 1978 to present: RHARM approach is able to 
identify the main documented breakpoints in Sodankyla time series.  
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Figure 5: left panel, relative humidity monthly time series for the station of Sondakyla (WMO index=2836, 67.3667N   
26.6289E, 179 m asl) as available from IGRA, reporting the types of radiosondes utilized at stations (name and picture 
of the sonde) in different time periods denoted in between of the blue lines. Right panel, adjustments applied by the 
RHARM algorithm (IGRA minus RHARM) with blue lines indicating sensor changes over the time. 
 
Breakpoints in the HTS for each station are found only if the following two conditions are met:  
- The minimum amount of available data (in years) to estimate adjustments and homogenize the 
times series at each station (PPTS must have a minimum length of 5 years); 
- The minimum amount of data available per year to estimate adjustments (60 measurements per 
years); 
 
Detection of breakpoints is limited to the time interval of a year, i.e. only if in between of two 
breakpoints there is a time interval longer than one year.  If a breakpoint is found at a temporal 
distance shorter than 1 years this is skipped and treated with the previous breakpoint as a single 
break in the time series.  
 
Once the structural breaks are identified in each time series, outliers are removed: for temperature 
the values exceeding 6 standard deviations of the data distribution in between of two breaks are 
rejected; for RH, the values exceeding 3 times the interquartile range of the data distribution in 
between of two breaks are rejected; for wind data, no outliers removal criteria are applied because 
the tested criteria resulted in filtering also plausible values.  
 
After removal of outliers, at each mandatory pressure level, the corresponding adjustments are 
quantified and applied (step D in Figure 2). Given a time period ∆t between two consecutive breaks, 
where ∆t=ti-tj (i>j>0), the homogenized value of the generic variable x at the pressure levels p in the 
temporal window ∆t, 𝑥2(𝑝, ∆𝑡), is calculated as: 
 

𝑥2(𝑝, ∆𝑡) = 𝑥(𝑝, ∆𝑡) − :	𝑒𝑥𝑝𝑇𝑟(𝑝, ∆𝑡) −	𝑒𝑥𝑝𝑇2(𝑝, ∆𝑡)	;	[Eq. 22] 
 
whereat a certain pressure level p: 
• 𝑒𝑥𝑝𝑇𝑟(𝑝, ∆𝑡) is the exponential trend calculated in the time interval ∆𝑡, and 
• 𝑒𝑥𝑝𝑇2(𝑝, ∆𝑡′) is the predicted exponential trend extrapolated assuming the same exponential 

trend fitted to the homogenized portion of the time series at the step i and time instant ti. The 
homogenization algorithm is recursive backward in time from present to the beginning of the 
time series. 
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If the two exponential trends, 𝑒𝑥𝑝𝑇𝑟(𝑝, ∆𝑡) and 𝑒𝑥𝑝𝑇2(𝑝, ∆𝑡′) have opposite signs, the intercept of 
𝑒𝑥𝑝𝑇𝑟(𝑝, ∆𝑡) is suitably replaced by the intercept of 𝑒𝑥𝑝𝑇2(𝑝, ∆𝑡′), while the slope of the regression 
in the time interval ∆t is not adjusted. This condition is mainly related to the presence of 
instrumental calibration drifts in the time series.  
 
The exponential trend calculation is implemented by linearizing the exponential relationship and 
using a robust linear parametric fitting method, known as LADFIT (Barrodale and Roberts, 1974), 
which also uses a threshold on the accuracy of the fit residuals.  

Exceptions due to stations (about 30) where the PPTS has more than one type of sonde post-
processed by RHARM (see Table 4) are handled with an ad-hoc application of the RHARM algorithm. 

For the significant pressure levels, their extreme heterogeneity over time (both the number of levels 
and what constitutes a significant level, as well as their vertical randomness) prevents the 
application of any sequential approach for the detection of the breaks in the time series.  Within 
RHARM, adjustments at each significant pressure level (𝑝W) are calculated as the interpolated values 
between the two closest mandatory levels, above (𝑝") and below (𝑝\) the considered pressure level 
(step E in Figure 2).  

 

3.4 Estimation of uncertainties 
As for the PPTS record, an uncertainty is attributed to each value of the HTS using the following 
formula: 
 

𝜀2(𝑝, 𝑡) = >(𝜀(𝑋]].$)	)1 + 0𝜀(𝑋2.$)1
1
 [Eq. 23] 

 
In Eq. 23 (under the square root, dependencies on p and t are omitted), 𝜀2(𝑝, 𝑡)	is the total 
uncertainty for the homogenized IGRA time series calculated at the pressure level p and the time 
instant t, 𝜀(𝑋]].$) is the average uncertainty of the PPTS at the selected station, and 𝜀(𝑋2.$) is 
estimated using the residuals of each time series with respect to a predictor model, obtained by 
applying a LOESS smoother:  

𝜀(𝑋2.$) = 𝑥:- 𝑞:					𝑡 = 1, 2, …… , 𝑇 [Eq. 24] 
 
 
where xt is the measurement for the variable x at the instant t, qt is the LOESS modelled value and 
T is time length of the time series. 
 
In order to tune the statistical model and obtain a reliable estimation of the uncertainty, the LOESS 
smoothing parameter is optimized, at each individual station, to match the residuals to the average 
values of 𝜀0𝑋'2"'3,'$51/)R'$511, in the time period when this is available (approximately after 
2004, depending on the station). The obtained smoothing parameter is then assumed to be optimal 
for the entire time series and the final value of the uncertainty is obtained by averaging the residuals 
on a monthly time scale. The uncertainty is not estimated for months with fewer than 15 radiosonde 
launches. The PPTS series portions are built upon the most recent radiosounding instruments which 
should logically be better performing or, at least, better characterized through the outcome of the 
intercomparison experiments and it is therefore assumed to be a good constraint to the estimation 
of the uncertainties in the historical measurements. 
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At each significant pressure level (𝑝W), similarly to the adjustment, the uncertainty is estimated as 
the interpolated value between the two closest mandatory levels, above (𝑝") and below (𝑝\) the 
considered pressure level.  An additional term, 𝜀7?:(𝑝W, 𝑡), due to the interpolation (for T, 𝜎=0.25 K, 
for RH, 𝜎=0.5 %, for both u and v, 𝜎=0.05 ms-1,, 
(https://www.vaisala.com/sites/default/files/documents/RS92SGP-Datasheet-B210358EN-F-
LOW.pdf, last access 23/04/2021) is added to the interpolated uncertainty values (𝜀#(𝑝", 𝑝\ , 𝑡)). For 
temperature the interpolation is linear, while cubic splines are used for relative humidity and wind 
components. 

For these levels indicated with p’, Eq.8 becomes: 
 

𝜀2(𝑝′, 𝑡) = >0𝜀#(𝑝", 𝑝\ , 𝑡)1
1 + (𝜀7?:(𝑝′, 𝑡)1) [Eq.	25] 

After interpolation of adjustments and uncertainties at the significant levels, nighttime and daytime 
time series are merged to provide the final homogenized time series (step F in Figure 2).   
 
For wind, the formula to obtain the harmonized time series of wind speed (w) and direction (𝜑) (i.e. 
intensity and direction of the wind vector) once the u and v component have been homogenized. 
The following formulas are applied: 

 
𝑊 = √𝑢1 + 𝑣1 [Eq. 9] 

 
𝜑 = 𝑎𝑡𝑎𝑛2(−𝑢;	−𝑣) FGH

I
= 180 + 𝑎𝑡𝑎𝑛2(𝑣; 	𝑢) FGH

I
  [Eq. 26] 

 
The definition of atan2 can be found on Wikipedia (https://en.wikipedia.org/wiki/Atan2, last 
accessed on 31-12-2020). The second equation also enables the conversion of the wind vector to 
the meteorological convention of the direction the wind is coming from.  
 
The estimated u and v uncertainties are then propagated to obtain the w and 𝜑 uncertainties using 
the following formulas (based on the trigonometric definition of the partial derivatives of the 
function atan2): 
 

𝜎U = 2> Q+

Q+/>+
𝜎Q1 +	

>+

Q+/>+
𝜎>1 + 2

Q>
(Q+/>+)+

𝜎Q> [Eq.	27]	

 
 

𝜎_ =	
FGH
I
b>:− Q>

Q+/>+
;
1
𝜎Q1 +	:

>Q
Q+/>+

;
1
𝜎>1 − 2:

Q>
Q+/>+

;
1
𝜎Q>c [Eq.	28] 

In Figure 6, it is shown an example of a wind time series (for the both the u and v components) 
reporting also the uncertainties calculated according to the approach discussed in this section. In 
RHARM any type of correlation between the uncertainties has been neglected. Were correlation to 
exist, the uncertainties would have need to be inflated commensurately. 
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Figure 6: Top panel, zonal wind component (u) time series at 300 hPa (only night time) for the Sodankyla station with 
the uncertainties calculated using RHARM for the period from 01/01/1981 to 01/07/1981. Bottom panel, same as top 
panel but for meridional component (v). The vertical bars show the random uncertainties quantified using the statistical 
method, and their plotting has been reduced to one value each two of the time series. 
 
The RHARM dataset is calculated assuming that adjustments of systematic effects do not affect the 
total uncertainty budget and, therefore, when false positives are detected, the uncertainty might 
be underestimated. The autocorrelation between the data, at night and day separately, of each time 
series has been estimated and found to be generally small at all pressure levels (<0.35). Therefore, 
autocorrelation has not been included in estimation of trends. 

The CUSUM test is extremely efficient in the detection of changes in a time series. However, the use 
of smoothed time series may affect the exact identification of the break occurrence (in terms of 
days, before or after the real occurrence). RHARM has been designed to find a balance among the 
appropriate allowance value of the CUSUM, the LOESS smoothing window, and the timing ambiguity 
in the identification of breaks in the time series. Section 4.3 provides an assessment of the 
discrepancy between the breakpoints detected in the RHARM time series and the incomplete 
metadata available since 2000.  
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Finally, the RHARM algorithm cannot distinguish two consecutive systematic effects generating a 
monotonic increase of the CUSUM functions: these situations are adjusted as one single period 
affected by the mean of the real systematic errors. RHARM is currently run independently for each 
pressure level: correlations in breakpoint detection at different levels are discussed in section 4.3. 
 

4. Results 

4.1 Overall adjustments 

Comparisons for the adjustments applied to the entire time series, i.e. merged PPTS and HTS (Figure 
7), show that RHARM is warmer than the IGRA in the NH, by 0.6 K on average (difference of median 
values), while in the tropics RHARM is slightly cooler than IGRA by 0.1 K. For the more recent 
observations (since 2004), the magnitude of the RHARM adjustments for temperature is typically 
small, which is expected due to the enhanced quality of recent radiosonde data compared to 
historical observations (Thorne et al., 2012). This result is also consistent with existing comparisons 
(e.g. Dirksen et al. 2014).  

For RH, RHARM is drier by 2.1% than IGRA in the NH, while in the tropics the profiles are moister by 
0.3%. The adjustments are most noticeable for RH values below 20-30% and above 52%, both in the 
NH and at the tropics. For wind speed, as anticipated, the systematic effects have a smaller 
magnitude than for temperature and RH. Tables 5 and 6 further summarise the main characteristics 
of adjustments. The 1st and 3rd quartiles for RHARM temperatures are 0.9 K and 0.3 K higher than 
IGRA, respectively, revealing the predominance of cold biases in the IGRA data since 1978; for RH, 
the 1st and 3rd quartiles of the RHARM probability density function (pdf) are 1.9% RH and 2.5% RH 
smaller than IGRA, respectively, corresponding to the predominance of a moist bias in IGRA.  
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Figure 7: probability density functions (pdfs) calculated in the northern hemisphere (NH) and in the tropics (±25° 
latitude) at 300 hPa for the IGRA and RHARM datasets of temperature (top panels), RH (middle panels), wind speed 
(bottom panel) using the stations shown in Figure 1. RHARM data refers to the merged time series (PPTS + HTS). The 
median, the first and third quartiles of the pdfs are reported in Tables 5 and 6 for convenience. 
 
 

NH 1st Quartile (Q1) Median 3rd Quartile (Q3) 
T IGRA (K) 223.2 228.4 234.1 

T RHARM (K) 224.1 229.0 234.4 
RH IGRA (%) 19.6 35.1 53.5 

RH RHARM (%) 18.0 33.0 51.0 
w IGRA (m s-1) 13.4 22.0 33.3 

w RHARM (m s-1) 13.6 22.6 34.1 
 

Table 5: first, second (median) and third quartiles of the Northern Hemisphere pdfs shown in Figure 7. 
 
 

Tropics 1st Quartile (Q1) Median 3rd Quartile (Q3) 
T IGRA (K) 240.2 242.1 243.4 

T RHARM (K) 240.2 242.0 243.2 
RH IGRA (%) 15.5 28.9 50.7 

RH RHARM (%) 13.9 29.2 52.4 
w IGRA (m s-1) 6.0 10.2 17.6 

w RHARM (m s-1) 6.0 10.2 17.6 
 
Table 6: first, second (median) and third quartiles of the tropics pdfs shown in Figure 7. 
 

The pdfs shown in Figure 7 are representative of the overall dataset in the NH and the tropics and, 
although useful to show the effect of the RHARM adjustment on the original data distribution, they 
cannot show alone the effect of the applied adjustment in terms of reducing the instrumental 
effects on the anomalies and climate trends. 

To this purpose, Figures 8-10 show global maps of trends of temperature, relative humidity and 
wind speed at three pressure levels (850 hPa, 300 hPa and 100 hPa, no relative humidity for the 
latter) estimated from IGRA and RHARM. 

In term of the results at 850 hPa (Figure 8) covering roughly to top of the planetary boundary layer 
except in regions of high topography, the comparison of temperature trends  shows enhanced 
homogeneity for RHARM, especially in northern Europe and Siberia, with additionally the removal 
of a few isolated and obviously spurious large station trends. The general tendency is for a cooling 
in North America, a moderate cooling in the SH, and a moderate warming in Europe, Middle East 
and Asia. For relative humidity, the variability of the trends is larger than for temperature: the 
adjustments applied by RHARM reduces heterogeneity in Siberia, South America and Northern 
Europe. The overall tendencies show a positive trend in the NH and a negative trend in the SH. For 
wind speed,  RHARM improves the homogeneity of the trends globally, in particular in Siberia, 
Southern Asia and Central-South America, adjusting some of the most negative and positive values 
in both the hemispheres. An overall neutrality of the trends is obtained with most values ranging 
within -0.4 to 0.4 m/s.  

At 300 hPa (Figure 9), improvements in the homogeneity of temperature trends are mainly visible 
in Siberia and Central-South America. For RH, improvements are observed mainly in Siberia, South 
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America, and South Africa. For both temperature and RH, overall trends in the NH and SH observed 
at 300 hPa agree with trends at 850 hPa. In the most recent decades, a positive trend in RH was also 
identified by Madonna et al. (2020c, 2020d) in Europe, in the SH and the tropics. Wind speed shows 
results similar to trends at 850 hPa. 

Finally at 100 hPa (Figure 10), temperature trends appear more homogeneous globally with the 
adjustment in various regions of a number of spurious values, above all in Siberia and Northern 
America. For wind speed, the regions where RHARM adjustments bring the major improvement are 
again Siberia and Central-Southern America with an overall positive trend in the NH and a neutrality 
in the SH. The lack of values of trends at stations in the southeast regions and at the poles is related 
to the small number of ascents reaching 100 hPa at the stations selected by RHARM. RH trends are 
not reported because these are not available from RHARM (limited at 250 hPa). 
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Figure 8: global maps of the decadal trends at 850 hPa of temperature (top), relative humidity (middle) and wind speed 
(bottom) estimated from IGRA (left panels) and RHARM (right panels) common stations. Decadal trends have been 
estimated over the entire time series for each station in the period 1979-2019. 
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Figure 9: same as Figure 8 at 300 hPa. 
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Figure 10: same as Figure 8 at 100 hPa for temperature and wind speed only.  
 
 
Figures 11-13 provide the comparison of the time series of the monthly anomalies in the NH for the 
IGRA and RHARM temperature, relative humidity and wind measurements at 300, 400, 500, 850 
hPa. In Figure 11, temperature monthly anomalies for RHARM are significantly reduced in the period 
from 1985 to 2005 on all levels.   
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Figure 11: temperature monthly anomalies at 300, 400, 500, 850 hPa in the NH for IGRA (black line) and RHARM (red 
line) radiosounding measurements from 1978 to 2020. 

 
 
In Figure 12, the RH monthly anomalies for RHARM are significantly adjusted before 1987 with a 
reduction from more than 10% RH to less than 6% RH at 300 hPa. Similar adjustments are applied 
at 400 hPa. In both the time series, the anomaly reduction is related to the wet bias, affecting the 
sonde used in the corresponding period: The RS18 and RS21 used at Sodankyla station (Figure 5) 
provide two examples of this wet bias. The RKS and MARZ Russian sondes were affected by a similar 
issue, and they were widely used at eastern Germany stations in the 1980s.  
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Figure 12: same as Figure 11 for relative humidity. 
 
 

In Figure 13, the wind speed monthly anomalies show, as expected, smaller adjustments to the 
anomalies than temperature and relative humidity, which anyhow allows reduction of the number 
of stations affected by an anomalous bias, as shown in the map in Figure 10. 
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Figure 13: same as Figure 11 for wind speed. 
 
 

4.2 RHARM consistency with GRUAN 
 
Although built to mimic the GDP procedures, the RHARM approach is not applied to the raw 
radiosonde data. This may generate discrepancies between the RHARM and the GDP which must be 
quantified. By construction, the RHARM approach is expected to be similar on average to the GDP.  
For temperature at night, the difference GRUAN-IGRA is almost constant from the surface up to 300 
hPa with a value of 0.12-0.13 K, while at lower pressure it is a slightly smaller with values of 0.1 K 
(Figure 14). In this comparison data from stations in Table 2 only in the GRUAN era (since 2008) have 
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been considered. Conversely, the GRUAN-RHARM difference is close to zero at all levels, with values 
smaller than 0.07 K up to 250 hPa and close to zero at higher altitudes. During the day, the RHARM-
GRUAN difference is near zero at all levels, while the GRUAN-IGRA difference is nearly constant at 
all the pressure levels at c.0.12 K. The standard deviations for both the differences are very similar 
and for both night and day show increasing values towards lower pressures from 0.2 to 0.3 K.  

For RH at night, the GRUAN-IGRA difference increases with height from less than 0.5% to 2.0%  and, 
during the day, from 0.7%  to 1.8% RH (Figure 14). The RHARM adjustments are able to reduce these 
differences on average near zero, both during night and day. The standard deviation of the RH 
difference is similar for both the difference profile at night and day with values ranging between 
1.5% and 5.0 % RH, increasing with decreasing pressures. 

In contrast to temperature and RH, the wind speed mean differences have been composited for 
night and daytime observations, because there is no difference in the data processing applied in the 
products. Both the GRUAN-IGRA and GRUAN-RHARM difference profiles, shown in Figure 15, are 
very close to zero from 1000 to 300 hPa. Above this altitude, the RHARM-GRUAN difference is 
smaller than IGRA-GRUAN difference and below 0.05 m/s, while IGRA shows differences with 
GRUAN within about ±0.3 m/s.  

Summarizing, the discussed consistency check confirms the overall reduction of the bias with 
GRUAN if RHARM data are used, as expected by construction, with small residual differences with 
GRUAN, likely due to rounding problems or differences in the smoothing window used in the 
manufacturers’ and GRUAN data processing. 
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Figure 14: Mean difference profiles of temperature (top panels) and relative humidity (bottom panels) with the 
corresponding standard deviations (horizontal bar) calculated from the comparison of the nighttime (panels a and c) 
and daytime (panels b and d) difference “GRUAN minus IGRA” (black lines) and “GRUAN minus RHARM” (red lines) for 
the profiles available at all GRUAN stations, in the period 2008-2018.  
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Figure 15: Same as panels in Figure 14 but for wind speed including both night and daytime observations. 
 
To further show the effect of the adjustments using the RHARM approach, we show a comparison 
between GRUAN, IGRA and RHARM RH values for all the GRUAN stations over 2008-2018 (Figure 
16). The RHARM RH values become considerably more similar to GRUAN, especially for values higher 
than 55% RH. These results imply that manufacturer data processing applied to the RH 
radiosounding profiles measured by Vaisala RS92 radiosondes is not adequate to compensate for 
instrumental effects, as it is inducing an apparent dry-bias compared to the metrologically traceable 
GRUAN processing. The RHARM procedures are able to mimic, at the aggregated level, the GRUAN 
processing adjustments.  
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Figure 16: top panel, comparison between GRUAN (black) and IGRA (grey) RH measurements at 300 hPa for the profiles 
available at all GRUAN stations (only RS92 sondes), in the period 2008-2018 The comparison comprises all the night and 
daytime observations on 00:00 and 12:00 UTC. Bottom panel, same as top panel but for GRUAN (black) and RHARM 
(grey). 
 

4.3 Statistics of breakpoints and vertical correlation 
In the previous sections, we have clarified how the RHARM algorithm applies a post-processing of 
the data, and not a pure statistical homogenization of the IGRA data approximately since 2004, i.e. 
in the PTTS portion of each time series. The homogenization of HTS portion of each time series, i.e. 
data typically before 2004 on average, is applied at each mandatory pressure level separately. 
Therefore, it is informative to study the distribution per year of the breakpoints detected in the HTS 
for the measured ECVs as well as the correlation of the percentage of breakpoints per variable at 
different pressure levels. For the latter purpose, the 100 hPa, 300 hPa, and 500 hPa levels have been 
selected as representative of different atmospheric regions (lower stratosphere, upper 
troposphere, free troposphere, respectively) where different types of biases and resulting 
adjustments, either height-dependent (solar radiation correction, time-lag correction) or correlated 
with the entire vertical profile (e.g., factory calibration), are applied in the data processing. 
 
In Figure 17, the comparison between the percentage of breakpoints identified by RHARM from 
1980 to 2010 for all homogenized series and at all mandatory pressure levels is shown; the detail 
for the three selected pressures is provided in Figure 18. In Figure 17, the percentage decrease after 
2004 is due to the progressive introduction of the most recent radiosonde types for which the 
GRUAN-like component of RHARM can be applied. Furthermore, the percentage of breakpoints 
decreases going towards the past and this may be overall compatible with the use of the same type 
of radiosondes and data processing for longer periods at the selected stations. Figure 17 also reveals 
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the good agreement in the percentage of breakpoints identified across the different ECVs. For RH, 
we remark that the RHARM algorithm homogenizes only the levels at pressures higher than 250 
hPa, thus determining a lower absolute number of breakpoints. 
 

 
 
Figure 17: Percentage of breakpoints per year detected by the RHARM approach for each of temperature, relative 
humidity, meridional and zonal wind speed, cumulated for all the homogenized time series and at all mandatory 
pressure levels 
 
 
Comparisons of breakpoint percentages (Figure 18) show a similar distribution for RH, u and v, while 
for temperature the correlation is larger at 300 hPa and 500 hPa. At 100 hPa, instead, in the period 
1990-1997 there is a higher occurrence of breakpoints than at other levels indicating either a larger 
effect of the radiation bias for the sonde models operated in this period, or a larger number of false 
positives than other levels. This can be linked to the much smaller number of observations available 
at 100 hPa within IGRA, due to balloon burst which can also impart sampling effects (McCarthy et 
al., 2008; Sy et al. 2020). 
 
To assess the coherence of breaks within individual stations between significant levels, an analysis 
was carried out on the correlation between occurrence dates at 300 hPa with respect to the dates 
at 100 hPa and 500 hPa. Within a window of 2 months, correlation for temperature and RH 
breakpoints at 500 hPa - 300 hPa is about 0.2, while it rises to 0.36 within 6 months and to 0.6 within 
a year. For wind vectorial components, within a time difference of 2 months, correlation for 
temperature breakpoints at 500 hPa - 300 hPa is 0.26, while correlation is 0.52 within 6 months and 
0.81 within 1 year. Very similar values are obtained for 300 hPa - 100 hPa, except they were 
somewhat smaller for temperature. These results may indicate a temporal mismatch in the 
detection of the same breakpoint at different pressure levels. Besides, depending on the nature of 
the systematic effect, more or less significant biases may be present in different atmospheric ranges 
and, therefore, correlation in breakpoint detection among the selected levels would not be 
guaranteed. There are homogenization methods assigning a breakpoint to all pressure levels 
irrespective of whether a break is detected at a given level, assuming biases due to instrumental 
effects are vertically correlated. This choice was not preferred for RHARM because even though it 
has a high potential to capture all the true breakpoints in a time series, it may also increase the 
number of false positives and over-adjust the original data.  
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Figure 18: Percentage of breakpoints per year detected by the RHARM approach for temperature (upper left panel), 
relative humidity (upper right panel), meridional (bottom left panel) and zonal wind speed components (bottom right 
panel). Each panel reports the frequency of occurrence per year at three pressure levels, 100 hPa (except for RH), 300 
hPa, 500 hPa.  

5. Quantification and presentation of uncertainties 
 
A unique value of RHARM compared to other harmonized datasets is that, for the first time, an 
estimation of the uncertainty is provided for each single observation (i.e. at each pressure level). In 
this section, statistics on the estimated uncertainties are provided.  
 
Considering data at the six stations shown in Table 1 only in the GRUAN era, the uncertainty for 
RHARM is generally larger than the uncertainties obtainable using the GDP as expected given the 
methodological considerations outlined in section 3 (Figure 19). In particular, for temperature 
(Figure 19, left panel), the median value of the GRUAN uncertainty is 0.16 K compared to 0.22 K of 
RHARM (median values are considered for the analysis, given the shape of the pdf). The interquartile 
range (IQR) for GRUAN is 0.20 K while for RHARM it is 0.26 K. These numbers confirm that on average 
the uncertainty estimation obtained for RHARM is somewhat greater than the GRUAN uncertainty. 
Nevertheless, due to the nature of the assumptions made within RHARM, in some cases its 
uncertainty may underestimate compared to that of GRUAN, as seen for values below 0.1 K. These 
values are mainly related to nighttime measurements.  
 
For RH (Figure 19, right panel), the median value of the GRUAN pdf is about 1.1% versus 3.6% for 
RHARM, with an IQR for GRUAN of 0.1 % and 3.0 % for RHARM. Maximum values observed with 
GRUAN are less than 8 % while RHARM has values larger than 10 % and a very few values larger than 
20 %. 
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Figure 19: Comparison of pdfs of the uncertainty calculated using the GRUAN data processing (GDP) and the RHARM 
approach at the six stations shown in Table 1. Pdfs are relative to temperature (panel a) and relative humidity (panel b) 
 
In Figure 20, the density function of the uncertainties estimated for the RHARM data are shown for 
the NH and the tropics. The comparison for the temperature uncertainties shows that the density 
function in the NH is bimodal with modes centered around 0.5 K and 1.0 K, with most values smaller 
than 2.0 K. In the tropics, values are smaller than 1.5 K. A large fraction of the values in both regions 
is around 0.25 K and these values are referring to the values of the PPTS. For the relative humidity, 
both the distributions are bimodal with values of the uncertainties larger in the tropics than in the 
NH. A large fraction of the RH uncertainty values is smaller than 10 %, while the second distribution 
mode is 14-15% RH uncertainty. Finally, for the wind speed uncertainty the distributions overlap in 
the selected latitude belts. A more comprehensive validation of the uncertainty estimates for T and 
RH is provided in the companion paper. 

 
Figure 20: Comparison of the density function of the total uncertainties estimated for all the RHARM temperature (T), 
relative humidity (RH) and wind speed (w) data since 1978 for the stations in the tropics and in the Northern Hemisphere 
(NH). 
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6. Discussion and conclusions 

The RHARM dataset provides a new homogenization option, complementary to existing datasets of 
homogenized radiosounding temperature measurements and to the handful of existing products 
for RH and wind. RHARM differs from these previous efforts due to the use of reference 
measurements to calculate and adjust for systematic effects in the most recent portion of records 
when possible. A significant benefit is that each harmonized data series is provided with an 
estimation of the uncertainty for each observation. The novel approach enables a more 
comprehensive exploration of uncertainties in historical records. 

Results from the analyses in this paper show that: 
• RHARM temperature data distribution is warmer than IGRA in the NH, due to the predominance in 

cold biases affecting the IGRA time series since 1978, while RHARM is slightly cooler than IGRA in the 
tropics. For RH, RHARM successfully adjusts IGRA data affected by dry bias, in particular below 20-
30 % RH and above 52% RH, both in the NH and at the tropics. For wind speed the systematic effects 
have a smaller magnitude than for temperature and RH, and IGRA and RHARM data distributions are 
fairly similar. 

• RHARM is able to increase the homogeneity of decadal trends compared to IGRA (examples are 
provided at 850 hPa, 300hPa and 100 hPa) with the largest effect for all ECVS on Siberian stations, 
historically affected by significant biases, and specifically for temperature in the NH and Central-
Southern America. The largest effects for relative humidity are in Siberia, South America and 
Northern Europe. For wind speed, RHARM also improves the homogeneity of the trends in Siberia 
and Central-Southern America. 

• The RHARM-GRUAN temperature difference is much reduced compared to the GRUAN-IGRA 
difference at all levels and for all the ECVS, as expected due the RHARM methodology. 

• The study of the vertical correlation of the breakpoints identified by RHARM at three mandatory 
pressure levels (100, 300, 500 hPa) shows that 60% of the changepoints are correlated within 1 year 
for T and RH, while this value increases to 81% for wind. RHARM uncertainties are generally larger 
than GRUAN. 

The assessment of the RHARM data quality and the related improvements compared to IGRA using 
several comparison datasets, such as the ERA5 reanalysis, existing homogenized datasets and 
satellite observations is presented in a companion paper (Madonna et al., 2021). 

In an ideal world, the collection and preservation of raw data by all radiosounding stations would 
allow to build the highest possible quality dataset of radiosounding measurements by reprocessing 
all the data consistently to metrologically traceable standards. In the real world, save for GRUAN 
sites and intercomparison campaigns, we do not have such an option. There is an action currently 
under discussion in GCOS in its most recent Implementation Plan (personal communication by GCOS 
secretariat) to explore the possibility to collect and reprocess data from those sites who usually hold 
the original raw count data locally, although the timeline and the resources to start the action are 
still uncertain. The final goal of RHARM is to calculate average adjustments which should result in 
an improved estimation of the climatological variability for temperature, humidity and wind 
profiles. This means that on an individual station basis, the benefit of applying the proposed 
adjustment could be limited or could even increase the difference with the “true” value for 
individual values or not properly estimate the uncertainty. This is different from the solar radiation 
correction discussed in Section 3 which, though not exactly the same as GDP, adjusts the data 
distribution, being applied as post-processing of the data and not only as an average correction.  

The RHARM dataset is based on a hybrid approach which, by implementing a GRUAN-like data 
processing for the adjustment of most recent radiosounding ascents, represents an innovative 
solution that is closer to a ‘traceable’ estimate. For historical upper-air data before 2004, when only 
statistically based breakpoint detection and adjustment is possible, it is an alternative option to the 
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few existing homogenized datasets, but with the added value of providing an estimation of the 
measurement uncertainty. 

Any future availability of new WMO/CIMO intercomparison data will enhance the capability of the 
RHARM approach to improve the quality of both near-real time and historical radiosoundings data. 
Moreover, the availability of the enhanced BUFR data reports (BTEM/BTEF files replacing TEMP and 
previous BUFR version), for radiosounding measurement submitted to the WMO Information 
System (WIS), to foster the reporting of high-resolution vertical profiles with improved metadata, 
will help reduce the gap between files reported by reference and baseline networks. These files are 
made available upon request by ECMWF (P.I. Bruce Ingleby) and their metadata are already 
incorporated in the latest version of RHARM. The availability of metadata from 2016 onwards, when 
enhanced BUFR files start to be available, will also improve near real-time data availability. New 
GRUAN data products, such as for the Meisei iMS-100 sonde (Kobayashi et al., 2019) will be 
incorporated into subsequent versions of RHARM. This is in line with the design of the RHARM 
algorithm which allows continuous improvements exploiting new improved radiosonde sensors 
technology and processing algorithms as they become available in the future  

7. Data availability 
A copy of the RHARM dataset is stored in the Copernicus Climate Data Store (CDS) although not 
publicly available yet. For review purposes only, a subset has been made available at 
http://doi.org/10.5281/zenodo.3973353 (Madonna et al., 2020a). The current version of the 
RHARM dataset is provided in textual format (comma-separated values). 
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9. Appendix A: WMO/CIMO 2010 radiosonde intercomparison data  
In section 3.2, an outline of the adjustment estimation of all the radiosonde types involved in 
WMO/CIMO 2010 radiosonde intercomparison, reported in Table 1 was provided. The description 
of the temperature and humidity vertical profiles obtained from Eqs. 12, 13, 14, 15 reported in 
Section 3 are shown in this appendix. 
 
In Figure 21, ∆𝑇'$51,)R'$51 is shown with the corresponding standard deviations 𝜎∆."(2+,%8"(2+  for 
ten radiosonde types during night (upper panels) and day (lower panels) up to 50 hPa. ∆𝑇'$51,)R'$51 
ranges between -0.2 K and 0.3 K up to 200 hPa, both at night and day. At higher altitudes, 
∆𝑇'$51,)R'$51 increases with values between -0.3 K and 0.6 K. For a few radiosonde types, the 
ID2010 provides only a few profiles to calculate the adjustments up to 50 hPa and beyond. This may 
bias the value of ∆𝑇'$51,)R'$51 and inflate the standard deviation.  

 
Figure 21: Left panels, nighttime and daytime profiles of the mean differences between RS92 temperature profiles and 
the profiles measured by all the other radiosonde types listed in Table 4; right panels, profiles of the standard deviation 
of the mean difference, reported in the corresponding left panels. 
 
For this reason, the profiles in Figure 21 have been cut at tailored pressure levels pt (ranging 
between 30 hPa and 100 hPa) and at pressures lower than pt the adjustment applied in RHARM is 
equal to the value of ∆𝑇'$51,)R'$51 at pt. 𝜎∆."(2+,%8"(2+  is within 0.2 K at night up to 200 hPa and 
increases to 0.3-0.4 K at 100 hPa. A couple of radiosonde types show a larger standard deviation 
(e.g. JinYang). During daytime 𝜎∆."(2+,%8"(2+  is larger than at night but is still less than 0.3K up to 200 
hPa, while values above this level are very similar to nighttime. The Meisei comparison profiles 
appear to be generally noisier than the other types, particularly during the day. Some portion of the 
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apparent periodicity in the left panels of Figure 21 likely relates to manufacturer-to-manufacturer 
differences in accounting for the effect of the pendulum motion of the radiosondes. 
In Figure 22, the mean difference ∆𝑅𝐻)R'$51 =

F
)
∑)7SF 𝑅𝐻7

'2"'3,	'$51 − 	𝑅𝐻7)R'$51 is shown 
with the corresponding standard deviation. The values of ∆𝑅𝐻)R'$51 are shown instead of 
𝑐𝑓(𝑅𝐻))R'$51, which is the factor calculated in Eq.15, to give a clearer quantitative representation 
of the difference among the various radiosonde types for the ID2010. The plots in Figure 22 are 
shown up to 250 hPa which is the maximum altitude at which the RHARM approach performs the 
post-processing. ∆𝑅𝐻)R'$51 ranges within about ±10% from the surface up to 500 hPa, both at night 
and day, although it is mostly positive for all radiosonde types during the day. This indicates that 
the adjustments applied to correct the effect of solar radiation by most of the manufacturers 
underestimates the RH profiles compared to the RHARM processed Vaisala RS92 profiles. At 
pressure levels above 500 hPa, ∆𝑅𝐻)R'$51 generally increases with altitude and is positive during 
the day. The only exception is the Modem radiosondes which at night exhibit negative values of 
∆𝑅𝐻)R'$51, smaller than -15%, and Daqiao and Meteolabor for some levels at pressures higher than 
300 hPa. 𝜎∆'2%8"(2+  is smaller than 10% at night and day, except for a few larger values at levels 
below 400 hPa reported for the Daqiao, Huayun and Meteolabor radiosondes.  
 

 
Figure 22: Same as Figure 21 but for RH. 
 

In analogy with Figures 21 and 22, Figure 23 shows the profiles of ∆𝑢'$51,)R'$51 with the 
corresponding standard deviations 𝜎∆Q"(2+,%8"(2+. The ID2010, apart from the Daqiao sondes, 
includes only winds measurements based on GNSS tracking of the radiosonde. Moreover, in the 
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ID2010 daytime and nighttime measurements were treated together as no significant difference 
could be found between the two categories. Nevertheless, considering that a different approach to 
the processing of the ID2010 is adopted by RHARM (i.e. decomposition into vectorial wind 
components u and v) and that here only one radiosonde model (e.g. RS92) is assumed as the 
reference for the calculation of adjustment profiles for all other sonde types of the ID2010, we 
treated daytime and nighttime data separately in order to check the robustness of the estimated 
adjustments. At night, ∆𝑢'$51,)R'$51 is predominantly negative throughout the profile for all 
manufacturers but is smaller than -0.5 ms-1 up to 400 hPa, then increases up to -2.0 ms-1 at 100 hPa 
reaching its maximum value. During the day, the same behavior is observed although the values 
from the surface to 400 hPa show greater spread. 𝜎∆Q"(2+,%8"(2+  is lower than 2.0 ms-1 for both day 
and night, except for Graw and Modem radiosondes above 100 hPa and 50 hPa heights, respectively. 
Figure 24 shows the same as Figure 23 but for ∆𝑣'$51,)R'$51. Both at night and day, ∆𝑣'$51,)R'$51 
is negative and smaller than -0.5 ms-1 up to 400 hPa while it is positive at lower pressure levels with 
values lower than 1.0 ms-1. The small sample size for the comparison clearly affects the values of 
∆𝑣'$51,)R'$51 at levels above 100 hPa. The same is true for 𝜎∆>"(2+,%8"(2+  for Graw and Modem 
sondes at night. 𝜎∆Q"(2+,%8"(2+  is generally lower than 1.0 ms-1 both at night and day.  

     

 
Figure 23: Same as Figure 21 but for the zonal wind component (u). 
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Figure 24: Same as Figure 21 but for meridional wind component (v). 
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