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Abstract

Dynamically triggered earthquakes and tremor generate weak seismic signals whose detection, identification, and authentication

call for a laborious analysis. Citizen science project Earthquake Detective leverages the eyes and ears of volunteers to detect and

classify weak signals in seismograms from potentially dynamically triggered (PDT) events. Here, we present the Earthquake

Detective data set - A crowd-sourced set of labels on PDT earthquakes and tremor. We apply Machine Learning to classify these

PDT seismic events and explore the challenges faced in segregating such weak signals. The algorithm confirms that machine

learning can detect signals from small earthquakes, and newly demonstrates that this specific algorithm can also detect signals

from PDT tremor. The data set and code are available online.
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Key Points:7

• The data set is a crowd-sourced set of labels of weak seismic signals from poten-8
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• We successfully applied Machine Learning to the detection of seismic signals from10
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Abstract14

Dynamically triggered earthquakes and tremor generate weak seismic signals whose de-15

tection, identification, and authentication call for a laborious analysis. Citizen science16

project Earthquake Detective leverages the eyes and ears of volunteers to detect and clas-17

sify weak signals in seismograms from potentially dynamically triggered (PDT) events.18

Here, we present the Earthquake Detective data set - A crowd-sourced set of labels on19

PDT earthquakes and tremor. We apply Machine Learning to classify these PDT seis-20

mic events and explore the challenges faced in segregating such weak signals. The algo-21

rithm confirms that machine learning can detect signals from small earthquakes, and newly22

demonstrates that this specific algorithm can also detect signals from PDT tremor. The23

data set and code are available online.24

Plain Language Summary25

Dynamically triggered earthquakes and tremor are seismic events that were trig-26

gered by surface waves from large magnitude and often distant earthquakes. These events27

generate weaker ground motion than earthquakes in agency catalogs and are hard to de-28

tect. Project Earthquake Detective has invited volunteers to help detect these events by29

viewing and listening to seismograms (recordings of ground motion). We applied a machine-30

learning algorithm to the same data. The algorithm was able to detect signals from small31

earthquakes and also for the first time, from triggered tremor.32

1 Introduction33

Over the past five years, Machine Learning (ML) has progressively grown to be a34

popular tool in geophysical analyses, as evidenced by three dozen papers published dur-35

ing that time in Geophysical Research Letters (GRL) and containing the term in their36

title or keywords. Much of this research demonstrates the impressive efficiencies that can37

be achieved by applying ML to tasks that are overwhelming for researchers from a data38

volume or dimensionality perspective while relatively straightforward in complexity or39

signal strength (Chmiel et al. (2021); Zhao et al. (2019); Lee et al. (2020); Mousavi and40

Beroza (2020); Z. Li et al. (2018)). Few papers demonstrate ML’s success in recogniz-41

ing of low-amplitude signals in seismology (Rouet-Leduc et al., 2017). Here we leverage42

a crowd-sourced data set of weak seismic signals classified by citizen scientists (Tang, Rösler,43

et al., 2020) in combination with a data set analyzed and labeled by experts (the authors)44

to establish a baseline for detecting different types of weak seismic signals. The ultimate45

goal of this work is to incorporate the ML algorithm in winnowing the data stream pre-46

sented to citizen scientists and experts.47

One class of weak seismic signals are seismograms from earthquakes with magni-48

tudes below the magnitude of completion for typical earthquake catalogs. Yet these low-49

magnitude earthquakes belong to the same Gutenberg-Richter distribution (Gutenberg50

& Richter, 1954) as widely recorded earthquakes, including those that cause injuries, dam-51

age, and worse. Gutenberg and Richter’s law (1954) states that for every magnitude (M)52

8 earthquake that occurs, about 1 million M2 earthquakes occur. Therefore, if we can53

detect the abundant low-magnitude earthquakes of the kind whose signals are often buried54

in background seismic noise, their analyses could provide insights into the occurrence,55

distribution, and physics of these and the much sparser damaging earthquakes.56

Likewise, more recently investigated low-frequency earthquakes exist that repre-57

sent slower slip between two blocks of rock than that during classical earthquakes, but58

nevertheless generate weak seismic signals that are often labeled as ”tremor” (Obara,59

2002), especially when many of such events occur quasi-simultaneously.60
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Weak signals from tremor and from low-magnitude local earthquakes are both abun-61

dant (Rouet-Leduc et al. (2018); Hill and Prejean (2015)) and somewhat under-reported62

because they have been hard to detect. Past barriers to detection have included a sparse63

spatial distribution of seismic stations (instrumented with buried seismometers), and cur-64

rent barriers include the weakness and limited bandwidth of these weak seismic signals.65

These detection challenges have inspired the application of machine-learning algorithms66

to large sets of seismic waveform data. Several of these ML algorithms have successfully67

been trained to detect signals from local earthquakes (e.g. Ross et al. (2018); Tang, Seethara-68

man, et al. (2020)) while others (Liu et al., 2019) used ML to detect tremor signals. Us-69

ing ML in the detection of signals from seismic activity is a rapidly growing field (e.g.70

Bergen et al. (2019); Meier et al. (2019); Huang, 2019; W. Li et al. (2018); Riggelsen and71

Ohrnberger (2014); Ruano et al. (2014); Reynen and Audet (2017); Wiszniowski et al.72

(2021)).73

Weak waveforms from abundant minor seismic events do not only add constraints74

to estimates of seismic risk, which are based on regional variations in the rate at and mode75

in which earthquakes occur, but also provide important information on where, when, and76

how they strike, allowing us to learn about the conditions under which earthquakes nu-77

cleate, occur, and interact. Therefore, the more we detect weak signals from minor seis-78

mic events, the more we learn about the physics and potential hazards of seismic slip.79

For example, we can learn about the dynamics of earthquake triggering by first detect-80

ing seismic events that occurred simultaneously with transient strain events, then de-81

termining the likelihood that these seismic events were triggered by the strain events,82

followed by examining the conditions under which such triggering does and does not oc-83

cur. (Tang et al., 2021)84

Here, our interests lie in detecting a special sub-class of the multitude of minor seis-85

mic events, namely local earthquakes and tremor that could have been triggered by slowly-86

oscillating large-amplitude seismic surface waves from large-magnitude teleseismic earth-87

quakes. Reporting and learning more about such Potentially Dynamically Triggered (PDT)88

events extends the spectrum of seismic slip data available for study and adds informa-89

tion about how fast and slow-slip earthquakes might nucleate. Traditional ways for de-90

tecting signals form PDT events are 1) seismologists interactively examining seismograms91

and labeling detections after a range of signal inspections (Gomberg et al., 2008), and92

2) seismologists developing and applying an automated detection algorithm to seismic93

waveform data while controlling the quality of the detections by tweaking the algorithm’s94

parameters and handling outliers separately (e.g. Velasco et al. (2008); Yun et al. (2021)).95

In our quest to detect PDT seismic events we face a number of additional challenges:96

1. The magnitudes (M) of PDT earthquakes are typically below the M of complete-97

ness of earthquake catalogs, hence their signals are weak and often buried in am-98

bient seismic noise signals. Therefore, the database of template waveforms avail-99

able for such low-M events is small at best. Signals from low-M events are not only100

lower in amplitude than those from higher-M events but also have narrower band-101

widths, diminishing the efficacy of template matching methods.102

2. Unlike signals from dynamically triggered earthquakes, signals from dynamically103

triggered tremor have different waveforms than those from typical tremor on ac-104

count of the former signals being modulated by the teleseismic surface waves that105

triggered them (Chao et al., 2012)). Therefore, a database of template signals is106

not available for training or other purposes, although a catalog has been started107

(Kano et al., 2018).108

3. A signal from a PDT event can arrive at any time during the time window of sur-109

face wave passage, which is much longer in duration than the PDT event signal.110

We have been considering up to 33 minutes of surface wave duration in labeling111

whether or not at least one local earthquake or tremor signal was recorded.112
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Figure 1. Example data plots shown to users on Earthquake Detective platform

4. Non-stationary noise signals often exceed or are comparable in amplitude and du-113

ration to the relatively weak signals of the PDT events we are interested in.114

5. Optimal and accurate detection of signals from PDT events requires a multi-scale,115

multi-band, multi-component interactive analysis that is labor-intensive. The for-116

mation of a large, labeled data set for training purposes is hence not straightfor-117

ward.118

2 Earthquake Detective119

Earthquake Detective is a crowdsourcing platform where volunteers are shown a120

seismogram of vertical ground velocity vs. time (Figure 1), along with a sonification of121

the signal, and are asked to classify the data as Earthquake/Tremor/Noise/None of the122

above. The platform currently has over 6000 volunteer scientists and over 130k classi-123

fications. Tang, Rösler, et al. (2020) present an analysis of how the volunteers and seis-124

mologists engage with the data.125

All raw input data are time series of recorded ground motion with durations of 2000126

s, which are long enough to contain the time window needed by teleseismic surface waves127

to pass through. The raw data is demeaned, deconvolved with the instrument response128

to convert digital counts to physical units of ground velocity, band-pass filtered between129

2-8 Hz with a 2-pole Butterworth filter, and resampled at 20 samples per second.130

3 Approach131

3.1 Wavelet Scattering Transform132

The wavelet scattering transform decomposes a signal using a family of wavelets.133

This new representation is stable against deformations and is translation invariant. This134

family of wavelets does not need to be learned and hence, the features can be extracted135

without training which can then be passed on further to Machine Learning models (Oyallon136

et al., 2013). The Scattering Transform has been successfully used by Seydoux et al. (2020)137

for clustering earthquakes in an unsupervised fashion. The scattering transform works138

by successively convolving wavelets with the signal and applying modulus non-linearity139

at each step. This can be shown as follows:140

Sx(t) = ||x ∗ ψλ1| ∗ ψλ2|...| ∗ ψλm| ∗ φ (1)

where Sx(t) is the set of scattering coefficients obtained at step m, x(t) is the signal, ψλm
(t)141

denotes the set of wavelets at step m and φ(t) is a low-pass filter.142

In our experiments, we use the Kymatio library (Andreux et al., 2020) to perform143

the scattering transform and get a set of features which are passed on further to our su-144

pervised neural network model.145
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Figure 2. WavImg Model Architecture

3.2 Convolution over 3-channel plots146

As the volunteers classify the data based on plots and associated audio records of147

vertical ground motion, we decided to try out a similar approach with our model. Along148

with the wavelet coefficients, we additionally provide the model with 3-channel plots (BHZ,149

BHE, BHN) as input. Image convolution is applied over the 3-channel plots and the re-150

sultant features are concatenated with the wavelet coefficients and then passed through151

a fully connected neural network (FCN).152

4 Experiments153

For all experiments, we use the following hyper parameters: learning rate = 1e-5,154

batch size = 100, epochs = 300. We perform a 3-way classification between Earthquakes/Tremors/Noise.155

As the number of tremor samples is considerably less, we apply a weighted cross-entropy156

loss where the weights are calculated as follows:157

wi = Nlargest/Ni (2)

where wi is the weight assigned to class i, Nlargest is the number of samples of the largest158

class and Ni is the number of samples of class i. For all experiments, we perform a 80-159

20 stratified train/test split of the data. We test two models:160

1. WavNet: In this model, we perform a wavelet scattering transform on 3-channel161

seismic data (BHZ, BHN, BHE) and extract relevant features from it. These fea-162

tures (wavelet coefficients) are then passed on to a 2-layer fully connected network.163

2. WavImg: This model combines the Wavelet Scattering Transform with 3-channel164

convolution over the image plots. The combined features are then passed on through165

a 2-layer fully connected network. (Figure 2)166

4.1 Training the Machine Learning model167

Training on clean data: To test the efficacy of wavelet transform, we first run168

a simple experiment with WavNet. As an upper baseline, we first ran the experiment169

on clean data (data cleaned and filtered by our seismologists, refer Appendix A). The170

model converges to 95.2% training and a 94.4% testing accuracy.171

Training on clean + gold users data: Compared to the clean data, the data172

from the Earthquake Detective is difficult to segregate due to its low amplitude signals173

and larger time window (∼33 mins). For this experiment, we consider data from gold174

users (Earthquake Detective data labeled by our experts) and combine it with the clean175
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Figure 3. Model comparison chart. (C = Clean, CG = Clean+Gold, All =

Clean+Gold+Volunteer)

Table 1. Comparison of model reliability with volunteers

Metric ML Model∗ Volunteers Volunteers (top 35%)

F1-Score (Earthquake) 0.909 0.785 1.0
F1-Score (Noise) 0.914 0.738 0.975
F1-Score (Tremor) 0.888 0.415 0.924

∗Here model refers to WavImg All (Clean + Gold + Volunteer)

dataset from the previous experiment. When this data was trained on the WavNet, it176

gave a train accuracy of 75.4% and a test accuracy of 74.9%. Next, we trained the same177

data using the WavImg model. This model produces a 91.4% train and 89.6% test ac-178

curacy.179

Training on clean + gold + volunteer’s data: Finally, we combine the pre-180

vious data with data from two volunteers. For each volunteer, we calculated a reliabil-181

ity score which includes a precision, recall and f1 score for each class. These scores were182

calculated by comparing volunteer’s classification with gold-set labeled by our experts.183

To handle the unreliability introduced in labels, we add an additional gold-test set which184

consists of samples labeled from our gold users that were not used for training. WavImg185

produces a 80.1% train accuracy, 83.6% test accuracy and 90.4% gold-test accuracy. (Fig-186

ure 3)187

4.2 Results and Analysis188

The WavNet model was able to perform extremely well on the clean data (95% ac-189

curacy) which proves that wavelet scattering transform extracts relevant features which190

can then be trained using a simple 2-layer FCN. However, due to the greater complex-191

ity of Earthquake Detective data, WavNet by itself is insufficient. The WavImg model192

overcomes this problem by using information from 3-channel plots. One interesting case193

was the last experiment in which there was variance in training due to label uncertainty194

(80% accuracy) but the model still performed well on the gold-test set (90.4% accuracy).195

(Figure 3) This shows that the model still ends up learning useful representations de-196

spite the uncertainty of the labels. For more in-depth analysis over select misclassified197

samples refer to Appendix B.198
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4.3 Model Comparison with Volunteers199

To see how reliable our model is in comparison to volunteers, we calculated the f1-200

score (reliability score) of the model using the gold-test for each class separately. The201

f1-score is calculated as follows:202

F1 = (2 ∗ precision ∗ recall)/(precision+ recall) (3)

where precision is TP/(TP+FP ) and recall is TP/(TP+FN), where TP is true pos-203

itive, FP is false positive and FN is false negative.204

From table 1 we can see that the model is much more reliable for all classes when205

compared to all volunteers. However, we found that the volunteers become more reli-206

able than the model in all cases, when top 35% of them are selected. So this implies that207

while the model is better than an average volunteer, it is still not as good as the top vol-208

unteers.209

5 Conclusions210

The Earthquake Detective dataset is the first crowdsourced dataset for potentially211

dynamically triggered local earthquake and tremor signals. This is also the first time that212

potentially dynamically triggered tremor signals were used in and detected by ML. Our213

experiments provide ML baselines for the data. We have only trained our models on a214

small subset of the 130k+ samples available. Also, from section 4.3 we saw that the top215

volunteers are better than the ML model. Therefore, when all of the data is considered,216

better techniques to incorporate reliability scores into the model will be required.217

We encourage researchers to 1) use this dataset as a catalog for potentially dynam-218

ically triggered seismic events, 2) augment the data and algorithms beyond the baseline,219

and 3) stream their data through Earthquake Detective for accelerating labeling of their220

data sets and/or for validating previously unlabeled ML results, by connecting with Earth-221

quake Detective developers.222

Appendix A Data223

A1 Clean Data224

The clean data used in the experiments was created as follows:225

1. A set of 1000 s-long waveforms with confirmed PT tremor signals, labeled by the226

seismologists among us. The waveforms were resampled at 20 samples per second227

and band-pass filtered between 2 and 5 Hz. This data set is subdivided as follows:228

(a) Waveforms recorded by seismic stations in Taiwan or Japan, trimmed around229

surface waves from 6 large-M earthquakes in the eastern hemisphere (the Great230

Tohoku Earthquake, 1 more earthquake from Hokkaido, Japan, 1 from Qing-231

hai, China, and 4 from Sumatra, Indonesia). These are the positive examples.232

(b) Waveforms recorded by seismic stations in Taiwan, Malaysia, Australia, and of233

the Global Seismographic Network (GSN), selected for having no significant sig-234

nals from earthquakes or otherwise. These are the negative examples.235

2. A set of 1000 s-long waveforms with confirmed PT local earthquake signals, la-236

beled by the seismologists among us. All data was band-pass filtered between 2237

and 8 Hz.238

(a) Waveforms recorded by seismic stations from USArray in the USA and the Hi-239

CLIMB array in Tibet, trimmed around surface waves from the 2010 M8.8 Maule240

Earthquake and 7 additional large-M earthquakes in the eastern hemisphere (1241

–7–
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Figure A1. Amplitude spectra for four 200-s subsets of a 2000-s wave train labeled as tremor

and misclassified as noise. Two subsets (red and magenta) represent noise and two (blue and

green) contain a tremor-like signal.

from China, 1 from Japan, and 5 from Sumatra, Indonesia). Waveforms that242

showed signals from local earthquakes were labeled as positive.243

(b) The waveforms from this set (2a) that were not labeled positive - they were la-244

beled as negative examples.245

(c) Additional waveforms recorded by the Hi-CLIMB array from 10 random local246

earthquakes with M<3.6. This auxiliary data set was used to expand the set247

of positive examples. An corresponding number of negative examples recorded248

by the same array was added to the negative examples.249

A2 Data Distribution250

• In the first experiment we used 551 earthquake samples, 570 noise samples and251

39 tremor samples from the clean data.252

• In the second experiment (clean + gold users data), we had the following data dis-253

tribution: 1031 earthquake samples, 1014 noise samples and 48 tremor samples.254

• In the final experiment (which additionally includes the chosen volunteer’s data)255

had the following data distribution: 3013 earthquake samples, 2436 noise samples,256

203 tremor samples.257

Appendix B Model Analysis258

To gain further insights into how the WavImg model classifies, we looked at select259

examples. One example is where the ML algorithm classified a wave train with tremor260

as a noise wave train. This could be the result of261

• There being two separate bursts of tremor,262

• Both tremor signals being relatively short in duration,263

• The tremor signals being weak,264

• The tremor signals sounding different from more typical tremor signals265

• The presence of non-stationary noise signals.266
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Extracting two 200-s tremor signals and two 200-s stationary noise signals from the267

2000-s wave train reveals that the the weak tremor signals have some additional power268

between 3 and 6 Hz, compared to the noise (Figure A1). This is not entirely character-269

istic but still consistent for tremor signals. Although the wave train was likely labeled270

correctly, the wave train is not a role model for its class and hence may have confused271

the ML algorithm. In one other case labeled as tremor and classified as earthquake, the272

tremor signal was so brief that is easy to mistake for an earthquake signal. In another273

case, strongly peaked signals elsewhere in the wave train might have distracted the ML274

from the tremor signal.275

The type of waveform data used in our study contains a wild variety of noise sig-276

nals, for which we did not designate a single class. However such noise signals can in-277

terfere with the ability of volunteers, and sometimes experts to correctly label wave trains.278

In at least 5 cases, wave trains with noise signals, labeled as noise, were misclassified as279

earthquakes.280

Several other cases of misclassification by the ML algorithm can be traced to a mis-281

labeling of the original data. In three cases of wave trains with noise signals mislabeled282

as tremor, the ML algorithm classified the wave trains as earthquakes. The ML algorithm283

also classified a case of mislabeled tremor correctly as noise. In at least 4 cases, the ML284

algorithm correctly classified wave trains as noise, while they were labeled as earthquakes.285

In these four cases, listening to and viewing spectral properties of the wave trains con-286

firmed in hindsight that these signals should have indeed been labeled as noise.287
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