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Abstract

The 2019/2020 Australian wildfires emitted large quantities of atmospheric pollutant gases and aerosols. Using state-of-the-art

near-real-time satellite measurements of tropospheric composition, we present an analysis of several emitted trace gases and

their long-range transport, and compare to the previous (2018/2019) fire season. Observations of carbon monoxide (CO) show

that fire emissions were so intense that the distinct Australian fire plume managed to circumnavigate the Southern Hemisphere

(SH) within a few weeks, with eastward propagation over the South Pacific, South America, the South Atlantic, Africa and the

Indian Ocean. Elevated atmospheric methane levels were also detected in January 2020 fire plumes over the Pacific, defined

using CO as a plume tracer, even though sampling was restricted spatially by aerosols and clouds. Observations also show

significant enhancements of methanol from the fires, where CH3OH:CO enhancement ratios increased within the aged plume

downwind over the South Pacific indicating secondary in-plume CH3OH formation.
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Key Points 16 

 Satellite-retrieved carbon monoxide (CO) plumes from the Australian fires circumvent the 17 

Southern Hemisphere. 18 

 Satellite-retrieved methanol (CH3OH) shows downwind enhancement of CH3OH:CO ratio 19 

suggesting in-plume secondary CH3OH production as well as direct emission. 20 

 21 
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Abstract: 24 

The 2019/2020 Australian wildfires emitted large quantities of atmospheric pollutant gases and 25 

aerosols. Using state-of-the-art near-real-time satellite measurements of tropospheric composition, 26 

we present an analysis of several emitted trace gases and their long-range transport, and compare 27 

to the previous (2018/2019) fire season. Observations of carbon monoxide (CO) show that fire 28 

emissions were so intense that the distinct Australian fire plume managed to circumnavigate the 29 

Southern Hemisphere (SH) within a few weeks, with eastward propagation over the South Pacific, 30 
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South America, the South Atlantic, Africa and the Indian Ocean. Elevated atmospheric methane 31 

levels were also detected in January 2020 fire plumes over the Pacific, defined using CO as a plume 32 

tracer, even though sampling was restricted spatially by aerosols and clouds. Observations also show 33 

significant enhancements of methanol from the fires, where CH3OH:CO enhancement ratios 34 

increased within the aged plume downwind over the South Pacific indicating secondary in-plume 35 

CH3OH formation. 36 

1. Introduction  37 

Vegetation fires occur regularly in Australia between the months of August and December (Giglio et 38 

al., 2013; van der Werf et al., 2017). Burning activity predominantly occurs in northern Australia, but 39 

is widespread across the continent (Andela et al., 2017). Giglio et al., (2013) suggested that the 40 

majority of vegetation fires take place on savanna and shrubland, but in south-eastern Australia 41 

forest fires are most prevalent (Bradstock et al., 2012; van der Werf et al., 2010). Over recent 42 

decades, there have been large-scale decreases in Australian fire activity (Andela et al., 2017; Rabin 43 

et al., 2015). However, with present and future climate and land-use change, conditions in Australia 44 

are predicted to yield more frequent large-scale fire events (Pitman et al., 2007; Clarke et al., 2011; 45 

Di Virgilio et al., 2019). According to the Australian Bureau of Meteorology (2020), the 2019 summer 46 

was the warmest (1.52°C above the national average, 1961-1990) and driest (rainfall 40% lower than 47 

average) season on record. This provided suitable conditions for wildfires to ignite and spread.  48 

The Australian wildfires of the 2019/2020 fire season, colloquially known as the “black summer“, 49 

represented some of the largest events in recent decades. The fires burned over 110,000 km2 of 50 

bush, forest and parks (BBC, 2020). The majority of the fire activity occurred in south-eastern 51 

Australia (New South Wales and Victoria), which is predominantly eucalyptus forest and woodland 52 

(SOTE, 2016). The fires caused 33 deaths (BBC, 2020) and killed over approximately 1 billion animals 53 

(UoS, 2020). In comparison, the Black Saturday fires (February 2009) in Victoria burned 54 

approximately 4500 km2 and killed 173 people (Siddaway and Petelina, 2011). Though the 55 

2019/2020 fire death toll was lower, the burned area was much larger producing substantial 56 

quantities of smoke and pollutants. 57 

Vegetation fires emit large quantities of smoke/aerosols and trace gases, which have important 58 

impacts on climate and the atmospheric radiation balance (Li et al., 2017, Rowlinson et al., 2019) 59 

and surface air quality (AQ, Bowman and Johnston, 2005; Haikerwal et al., 2016; Reisen et al., 2005; 60 

Kiely et al., 2019). The 2019/2020 Australian fires emitted approximately 250 million tonnes of 61 

carbon dioxide (CO2), equivalent to nearly half the country’s annual anthropogenic emissions (Hope, 62 

2020).This combination of fuel type, fire intensity and coverage, yielded large-scale fire plumes 63 

causing intense local pollution as well as long-range pollution transport. Wildfire-driven pyro-64 

convection propagated vertically up into the stratosphere, reaching approximately 30 km (Ohneiser 65 

et al., 2020) over the South Pacific. In comparison, the Black Saturday fire plume reached 22 km 66 

(Siddaway and Petelina, 2011). 67 

In this study, we use state-of-the-art satellite retrievals to provide detailed analysis of the spatial and 68 

temporal evolution of several trace gas distributions sourced from the 2019/2020 Australian fires. 69 

While available for the stratosphere, such capabilities were in their infancy when previous major 70 

burning events occurred in Australia (e.g. February 2009).  71 

 72 

 73 
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2. Observations 74 

2.1 Fire Data Sets 75 

We use two different satellite-derived fire activity datasets: fire radiative power (FRP) from the 76 

Global Fire Assimilation System (GFAS vn1.2; Kaiser et al., 2012) and burned area (BA) from the Fire 77 

INventory from NCAR (FINN near-real-time (NRT) vn1.0; Wiedinmyer et al., 2011). Both products are 78 

provided at a daily temporal resolution and are based on direct Moderate Resolution Imaging 79 

Spectroradiometer (MODIS) measurements (e.g. FRP and thermal anomalies). These quantities are 80 

merged with secondary information (including land surface type and emission factors) to derive top-81 

down emissions for trace gases and aerosols (Kiely et al., 2019; Wooster et al., 2018). 82 

2.2 Trace Gas Data Sets 83 

In this study we use trace gas retrievals from the Infrared Atmospheric Sounding Interferometer 84 

(IASI). IASI is a Michelson interferometer which observes the spectral range 645 to 2760 cm-1 with 85 

spectral sampling of 0.25 cm-1 (Illingworth et al., 2011). It measures simultaneously in four fields of 86 

view (FOV, each circular at nadir with a diameter of 12 km) which are scanned across track to sample 87 

a 2200 km-wide swath (Clerbaux et al., 2009). IASI is one of a suite of nadir-sounders flying on 88 

Eumetsat’s MetOp-A, -B and -C satellites in sun-synchronous polar orbits with equator crossing times 89 

of 9.30 (day) and 21.30 (night). Here we use CO, methanol (CH3OH) and methane (CH4) data from 90 

MetOp-B produced by NRT processing systems developed by the Rutherford Appleton Laboratory 91 

(RAL). CO profiles are co-retrieved with column amounts of CH3OH, other trace gases and dust in an 92 

extended version of RAL’s Infrared-Microwave-Sounding (IMS) scheme, which is described in the 93 

supplementary material (SM-2). IMS was developed originally to retrieve temperature, water 94 

vapour, ozone, surface spectral emissivity and cloud jointly from co-located measurements by IASI, 95 

the Microwave Humidity Sounder (MHS) and the Advanced Microwave Sounding Unit (AMSU-A) on 96 

MetOp. CH4 data are retrieved by an improved version of the IASI scheme reported by RAL Space 97 

(2015), which is detailed by Siddans et al. (2017). Data are available from the Centre of 98 

Environmental Data Analysis (CEDA, Siddans et al., 2020). CO and CH3OH have been quality filtered 99 

for a geometric cloud fraction of 0.5 or less (0.1 or less for CH4 given the greater sensitivity to 100 

interference from cloud/aerosol) and a cost value of 1000.0 or less (120 or less for CH4 plus a 101 

convergence flag equally 1.0). For CO and CH3OH, we experimented with a stricter geometric cloud 102 

fraction threshold of <0.2. We found this had negligible impact on the scientific results, but did 103 

reduce the spatial coverage, making the fire signals noisier. Hence we used the <0.5 cloud fraction 104 

threshold. We have also investigated more localised enhancements in tropospheric column nitrogen 105 

dioxide (TCNO2) from the Tropospheric Monitoring Instrument (TROPOMI) on-board ESA’s Sentinel 5 106 

– Precursor (S5P) satellite, which is discussed in the SM (see SM-1). 107 

3. Results 108 

3.1 Fire Activity 109 

During the 2019/2020 fire season (November-December-January, NDJ), satellite observations 110 

detected substantially larger fire activity on the Australian south-eastern coastline around highly 111 

populated regions such as Sydney compared to the average of the previous 10 seasons (NDJ 2009-112 

2019 climatology). GFAS FRP suggests that on average (NDJ climatology) (Figure 1a) there was 113 

limited fire activity over south-eastern Australia (i.e. 10-20 mW/m2). The peak activity was more 114 

widespread across the north-western territories with FRP typically between 20 and 30 mW/m2. 115 

However, in NDJ 2019/2020 the entire Australian south-eastern coastline experienced large-scale 116 

fires with intensities well above 50 mW/m2 (Figure 1b). This is supported by the FINN BA (Figure 1c & 117 

d) with fire events peaking above 10 km2 widespread across the south-east coast. In contrast, the 118 
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fire events in the NDJ climatology predominantly occurred over the north-western territories and 119 

northern coastlines, with lower BA between 3.0 and 7.0 km2. Figure 1e shows the time-series of the 120 

total daily Australian FRP and BA for the climatological (median daily totals, 2009-2019) and 121 

2019/2020 fire seasons. Between 1st November and 31st January, the climatological FRP has a small 122 

range (i.e. 25th-75th percentiles) between approximately 0 and 10 GW. Climatological BA ranges 123 

between approximately near-zero and 1700 km2. However, the 2019/2020 FRP (BA) is typically 124 

between 20 (100) and 150 (1700) GW (km2), but with peaks in late December (FRP=~320 GW, 125 

BA=~2200 km2) and early January (FRP=~580 GW, BA=~3000 km2). The peak FRP and BA values sit 126 

well outside the variability of the climatologies, highlighting the extreme fire activity experienced in 127 

the 2019/2020 fire season.  128 

3.2 Carbon Monoxide 129 

The 2019/2020 Australian fire season produced extensive quantities of emitted CO, as observed by 130 

IASI. Figure 2c shows a large total-column CO (TCCO) plume originating over south-eastern Australia 131 

and propagating across the entire Pacific, reaching South America. Here, the TCCO ranges between 132 

approximately 16-21 ×1017 molecules/cm2, peaking over the Australian coastline and midway 133 

between continents in the NDJ period 2019/2020. In the previous burning season (NDJ 2018/2019), 134 

TCCO was considerably lower and ranged between 10-13 ×1017 molecules/cm2, with no obvious fire 135 

signal over Australia (Figure 2a). Figure 2e shows the difference between fire seasons to be 136 

widespread and large (1.5-7.5 ×1017 molecules/cm2) across the Pacific. Peak inter-year differences of 137 

over 5.0 ×1017 molecules/cm2 occur over south-eastern Australia and the mid-Pacific, as the plume 138 

propagates eastwards. The inter-year differences are significant over large areas (99% confidence 139 

level based on the student t-test and where absolute mean differences are greater than 1.0 ×1017 140 

molecules/cm2)  as shown by the green polygon-outlined regions. 141 

During the 2018/2019 season, fire plumes of limited extent were detected, with moderate CO 142 

outflow from the east coast in November 2018 peaking at approximately 19.0 ×1017 molecules/cm2 143 

(Figures 2b & d). In NDJ 2019/2020, there is large and frequent CO outflow throughout the entire 144 

season. TCCO peaks at more than 30.0 ×1017 molecules/cm2 and persists across the 20°-40°S band. 145 

Figure 2f shows that the inter-year difference exceeds 15.0 ×1017 molecules/cm2 and the larger 146 

quantities of CO propagating out into the Pacific (Figure 2c). CO outflow from the peak fire activity 147 

(Figure 1e) in late December 2019/early January 2020 went on to circumnavigate the entire SH 148 

(Figure 3). Between 27th December 2019 and 9th January 2020, the fire emissions led to large 149 

quantities of CO (>25 ×1017 molecules/cm2), which formed large-scale plumes propagating towards 150 

South America. Pyroconvection during this period uplifted plumes to altitudes where CO and other 151 

trace gases could more easily be detected by IASI (i.e. colder temperatures and above clouds). In the 152 

following fortnight, 10th – 23rd January 2020, these plumes reached South America (peak TCCO 153 

>20.0×1017 molecules/cm2) and started propagating into the South Atlantic (15-18×1017 154 

molecules/cm2). A week later, the TCCO plume reached southern Africa (no local fire sources 155 

apparent there, unlike e.g. 15th-28th November 2019) with values still between 15-18×1017 156 

molecules/cm2. The TCCO quantities were also enhanced to 14-16×1017 molecules/cm2 over the 157 

Indian Ocean, reaching the Australian west coastline and fully encircling the SH. Over south-eastern 158 

Australia (black box in Figure S1c), the 2019/2020 fires (NDJ) emitted 9.06 Tg of CO (1.73 times 159 

larger than the 2018/2019 annual total anthropogenic Australian CO emissions; NPI, 2020) in 160 

comparison to 0.33 Tg in NDJ 2018/2019, based on FINN emissions. 161 

 162 

 163 
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3.3. Methanol and Methane 164 

Focusing on the 3rd – 16th of January 2020, when the fire plumes were most spatially extensive (see 165 

TCCO in Figure 3, Figure 4a), CH3OH and CH4 both showed substantial increases from the fires 166 

(Figures 4b & c). Total column CH3OH (TCCH3OH), relative to the 3rd – 16th January 2019, show peak 167 

enhancements of over 10×1015 molecules/cm2 co-locating with TCCO enhancements of over 15×1017 168 

molecules/cm2 (Figure 4a). Though CH3OH infrared absorption features are much weaker than those 169 

of CO and low background CH3OH abundances (e.g. over the ocean) are difficult to detect in 170 

individual soundings (i.e. large estimated errors; see SM-3, Figure S6), robust signals are detected in 171 

large sources such as the Australian fire plume (i.e. >15×1015 molecules/cm2, Figure 5b, SM-3, Figure 172 

S7).  173 

CH4, on spatial and temporal scales observable by satellite fluctuates by only a few % of its global 174 

mean value, unlike the order of magnitude of variability in CO and methanol. To retrieve CH4 175 

perturbations at the % level requires careful handling of cloud and, in the case of the Australian 176 

wildfire plumes, also smoke (and dust). As shown in SM-4 and Figure SM8, IASI detects daily CO 177 

plumes, but the corresponding CH4 distribution is less well sampled due to stringent filtering 178 

necessary for cloud. However, the column average CH4 (CACH4) anomaly for the 3rd-16thJanuary 179 

2020, with reference to the de-trended and de-seasonalised multi-annual mean for January (2007-180 

17, MetOp-A & B offline version) (Figure 4c) is positive over much of the region (e.g. ~0.01 ppmv), 181 

and some features (e.g. 0.015-0.03 ppmv) cohere with prominent structure (e.g. over the central 182 

South Pacific) in the CO and CH3OH plumes (see Figure 4a & b). Therefore, we use CO as an in-plume 183 

tracer to quantify the much lower amplitude CH4 signals from the fires. Figure 4d shows the time 184 

evolution of in-plume column average CO (CACO) and CACH4 averaged over 150°E-90°W, 50-20°S 185 

(black box in Figure S8). The in-plume thresholds for CACO and CACH4were set at 0.07 ppmv and 186 

1.75 ppmv. Both thresholds had to be met, along with stringent cloud screening and other quality 187 

control for CH4, in order for the pair of CO and CH4 soundings at a given location to be sampled. 188 

In the first two weeks of January 2020, the in-plume domain-averaged daily CACO ranges between 189 

0.09 and 0.12 ppmv, and the standard deviation indicates large spatial variability. In the second two 190 

weeks of January, the spatially-averaged CACO is substantially lower, ranging between 0.07 and 0.08 191 

ppmv, with much smaller spatial variability, consistent with mixing with neighbouring CO-poor 192 

airmasses in the east and less intense incoming plumes in the west. In contrast, for CACH4 the 193 

spatially averaged value drops only slightly and spatial variability is unchanged in the second two 194 

weeks, attributable to mixing with high CH4 tropical airmasses in the east. The peak average 195 

CACH4values (1.78-1.79 ppmv) occur in the first few weeks and then 27th-29th January. Temporal 196 

correlation of the spatially averaged CO and CH4 time series is 0.63 for the whole month and 0.86 197 

between 1st and 20thJanuary. The daily spatial correlation in this period is between 0.2 and 0.5, 198 

indicative of a substantial fire-induced component of CH4. In the latter period of January (21st-31st) 199 

the correlation drops below 0.0 indicating the fire-induced component to be less significant for CH4 200 

in comparison to other processes. Overall, the relationship between CO and CH4 in data produced 201 

from IASI on MetOp-B demonstrates that the plumes emitted from the Australian fires contained 202 

CH4 as well as CO. Emission factors of CH4 from vegetation fires have been shown to be similar in 203 

magnitude to those of methanol on a mass emitted per mass of dry matter consumed basis (Agaki et 204 

al., 2011). It is worth noting that given the long CH4 lifetime against hydroxyl radical (OH) oxidation 205 

(~9 years (McNorton et al., 2016)), any enhancement in methane due to OH suppression in the 206 

plume on the transport timescale of a few days would be minimal (~0.1% over 3 days under 207 

complete suppression of OH oxidation).  208 

 209 
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 210 

3.4. Enhancement Ratios 211 

We investigate how the TCCH3OH:TCCO enhancement ratio changes as the fire plume traverses the 212 

Pacific across the four regional boxes defined in Figure 5a between the 1st and 17th January 2020 (i.e. 213 

period of large fire plume). Box 1 covers the primary fire region and Boxes 2-4 cover the downwind 214 

outflow. In all cases, we see TCCO-TCCH3OH correlation values (R in Figure 5c-f) above 0.63, peaking 215 

at 0.92 in Box 3, indicative of common origins. The in-plume TCCO and TCCH3OH values are defined 216 

based on a subjectively chosen threshold (TCCO = 18.0×1017 molecules/cm2 and TCCH3OH = 5.0×1015 217 

molecules/cm2
, where both criteria have to be met for the two species to be co-sampled), but 218 

sensitivity analysis of these thresholds (Figure SM5, Table S1), and the time period in which the 219 

plume(s) are sampled, show that our results are robust and relatively insensitive to our choices of 220 

these parameters.  221 

In Box 1, the TCCH3OH:TCCO enhancement ratio (M), based on a simple linear least-squares fit, is 222 

0.0036±5.98%, which is similar to the FINN CH3OH:CO fire emissions ratio (0.0031±0.04%). This 223 

suggests that the satellite observations of atmospheric enhancements close to the fires are 224 

consistent with freshly emitted fire pollution. As the plume propagates eastwards over the Pacific, 225 

there is an increase in the TCCH3OH:TCCO enhancement ratio. In Boxes 2, 3 and 4 M is 226 

0.0059±3.13%, 0.0091±1.28% and 0.0081±1.94%, respectively. When using the full range of the IASI 227 

TCCH3OH retrievals (i.e. the retrieval values ± the random errors) and recalculating the enhancement 228 

ratios, we find that M is perturbed by approximately 10%, which is relatively small, and the regional 229 

ratios follow the same tendency. This increase of TCCH3OH with distance, and therefore time, from 230 

the fires is suggestive of in-plume chemical production of CH3OH. This is similar to Holzinger et al., 231 

(2005) and Coheur et al., (2009), who used aircraft and satellite data respectively, to investigate fire 232 

plume CH3OH:CO enhancement ratios suggesting signs of secondary CH3OH production when 233 

studying southern European fire plumes. The magnitude of the CH3OH/CO enhancement ratios 234 

derived here are consistent with other studies (e.g. Yokelson et al., 1999; Christian et al., 2003; 235 

Holzinger et al., 2004; Singh et al., 2004; Karl et al., 2007). Our results imply that IASI detected such 236 

secondary formation of CH3OH within the fire plume, but with a robust enhancement across the 237 

large portion of the Pacific, on a scale previously not discussed in the literature, to the best of our 238 

knowledge. Mixing with background air would likely dilute the plume counteracting some of the 239 

downwind increase in CH3OH enhancement relative to CO. This suggests that the in-plume 240 

production of CH3OH is likely larger than that suggested by the observed increase in the CH3OH:CO 241 

ratio alone. Such large-scale enhancements in CH3OH may have an important influence on the 242 

CH3OH budget, impact the oxidative capacity of the remote atmosphere, and potentially the CH4 243 

lifetime (Read et al., 2012). Such secondary methanol production could be driven by the self-244 

reaction of methylperoxy (CH3O2), the reaction of CH3O2 with higher order peroxy (RO2) radicals 245 

(Jacob et al., 2005) and OH (Müller et al., 2016), or possibly by less well-established oxidation of 246 

organics in the fire plume (Holzinger et al., 2005).  247 

4. Conclusions 248 

The 2019/2020 Australian fires (“black summer”) constituted some of the largest regional wildfires 249 

in recent decades and produced large quantities of smoke, aerosols and trace gases. Peak fire 250 

activity occurred on eucalyptus forest vegetation in south-eastern Australia during December and 251 

January. Data from the MetOp-B satellite produced by RAL’s NRT processing system show that 252 

carbon monoxide (CO) emitted from the fires circumnavigated the entire Southern Hemisphere. 253 

Compared with the 2018/2019 fire season, CO levels from the fire-plumes were substantially (and 254 
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significantly, 99% confidence level) larger by approximately 30-70% over the South Pacific in the 255 

November-December-January average. 256 

Methanol (CH3OH), which is difficult to detect in normal circumstances due to its weak absorption 257 

signature, was in sufficient abundance to retrieve in-plume column amounts with a good precision. 258 

Satellite-observed enhancements in total column CH3OH relative total column CO show a substantial 259 

increase downwind from the fires, over the Pacific Ocean. This is strongly suggestive of CH3OH 260 

production within the plume, on a scale not previously reported, as far as we are aware, with 261 

potentially important implications for the methanol budget and oxidative capacity of the remote 262 

atmosphere. Elevated levels of CH4 were also detected in association with the fire-plumes during 263 

peak activity in early-mid January 2020, even though the CH4 emission rate is considerably lower 264 

than for CO and perturbations from uniform mixing less than 2%.  265 

With future climate and land-use change it is expected that wildfires are going to become more 266 

frequent and intense. Therefore, Earth observation (EO), as presented here, is going to be a vital 267 

resource to help monitor and understand future wildfire events globally. These EO capabilities will 268 

improve with the planned launches of advanced infrared and shortwave spectrometers such as IASI 269 

Next Generation and Sentinel 5 on the MetOp Second Generation in polar orbit (ESA, 2020) and the 270 

Infrared Sounder and Sentinel 4 on Meteosat Third Generation in geostationary orbit.  271 
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Figures 466 

 467 

Figure 1: Global Fire Assimilation (GFAS) fire radiative power (FRP, mW/m2) for a) November-468 

December-January (NDJ) climatology (2009-2019) and b) NDJ 2019/2020. Panels c) and d) show Fire 469 

INventory from NCAR (FINN) burned area (km2) for c) NDJ climatology and d) NDJ 2019/2020. Panel 470 

e) shows daily time series of accumulated FRP (GW, blue solid line) and BA (km2, red line) across 471 

Australian for NDJ 2019/2020. The orange and light blue shading represent the 25th-75th percentile 472 

spread in the climatology for FRP and BA, respectively. 473 

 474 
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 475 

Figure 2: Infrared Atmospheric Sounding Interferometer (IASI) NDJ total-column carbon monoxide 476 

(TCCO, 1017molecules/cm2) for a) 2018/2019, c) 2019/2020 and e) 2019/2020-2018/2019 difference. 477 

Green polygon-outlined regions in panel e) represent statistically significant differences between the 478 

fire seasons at the 99% confidence level (CL, based on the Student t-Test) and where absolute 479 

differences are greater than 1.0×1017 molecules/cm2. Panels b), d) and f) represent Hovmöller 480 

diagrams of IASI TCCO from November – January at 155°E, between 70°S-0°S (white dashed line in 481 

panel a)), for 2018/2019, 2019/2020 and 2019/2020-2018/2019 difference, respectively. 482 
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 483 

Figure 3: Temporal evolution of the IASI mean TCCO (1017molecules/cm2) between the 15th 484 

November 2019 and 13th February 2020. Each panel represents a 2-week average with a weekly step 485 

between the first day of each map. The arrows show 500 hPa winds from the National Centers for 486 

Environmental Prediction (NCEP) reanalysis. 487 

  488 
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 489 

Figure 4: a) IASI two-week (3rd– 16th January) 2020 - 2019 difference a) TCCO (1017molecules/cm2) 490 

and b) total column methanol (TCCH3OH, 1015molecules/cm2). Grey regions represent missing 491 

satellite data (i.e. average values with error terms >15.0×1015 molecules/cm2). c) Two-week (3rd– 16th 492 

January 2020) column average methane (CH4, ppmv) anomaly with respect to the de-seasonalised 493 

and de-trended multi-annual mean for January (2007-2017). d) Daily time series of spatially 494 

averaged in-plume (150°E-90°W, 50-20°S; black box in Figure S4) IASI-observed CO (red) and CH4 495 

(blue) column average mixing ratios for January 2020. In-plume data are defined where CO and CH4 496 

values are both larger than the corresponding thresholds of 0.07 ppmv and 1.75 ppmv. Dashed lines 497 

represent the uncertainty range (average ± standard deviation). The black line represents daily 498 

spatial correlations between in-plume CO and CH4. R_all, R_1-20 and R_21-31 are the CO-CH4 time 499 

series correlations for all of January, 1st-20th January and 21st-31st January, respectively. 500 

  501 
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 502 

Figure 5: a) TCCO and b) TCCH3OH (1017 molecules/cm2) for 1st-17th January 2020. White regions 503 

represent missing satellite data (i.e. average values with error terms >15.0×1015 molecules/cm2). 504 

Panels c) – f) show scatter plots of TCCH3OH versus TCCO within Boxes 1-4 outlined in panel a) with 505 

values of correlation (R) and gradient (enhancement ratio, M) indicated. 506 
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Supplementary Material (SM)-1: Satellite Observed Nitrogen Dioxide (NO2)  6 

We use tropospheric column NO2 (TCNO2) data from the TROPOspheric Monitoring Instrument 7 

(TROPOMI) on-board the ESA’s Sentinel-5 Precursor (S5P) satellite (Veefkind et al., 2012). S5P was 8 

launched in October 2017 into a sun-synchronous polar orbit with a local overpass time of 9 

approximately 13.30. TROPOMI is a nadir-viewing instrument with spectral ranges of 270-500 nm 10 

(UV-Vis), 675-775 nm (near-infrared, NIR) and 2305-2385 nm (shortwave-infrared, SWIR). The 11 

TROPOMI retrievals represent the highest resolution of any current tropospheric trace gases sensor 12 

with a nadir horizontal resolution of 3.5 km × 7.0 km in the UV-Vis-NIR and 7.0 km × 7.0 km in the 13 

SWIR. 14 

The response of TCNO2 to the NDJ 2019/2020 Australian fires is less pronounced relative to the 15 

other trace gases investigated here due to the relatively short NO2 lifetime of a few hours (Logan 16 

1983; Alvarado et al., 2010). In December 2018 (Figure S1a), there are clear TCNO2 hotspots (0.5-1.5 17 

×1015molecules/cm2) in the north-western territories which clearly overlap with GFAS FRP (Figure 1a 18 

of the main manuscript). Similar relationships are seen near the coast in Queensland. Clear urban 19 

signals exist such as Sydney (over 4.0 ×1015 molecules/cm2), Melbourne (over 4.0 ×1015 20 

molecules/cm2) and Brisbane/Adelaide (1.0-2.0 ×1015 molecules/cm2). However, in December 2019 21 

(Figure S1b), there was a large spatial increase in TCNO2 values > 4.0 ×1015 molecules/cm2 around 22 

Sydney. Again, these TCNO2 hotspots are spatially correlated with fire activity (Figure 1) suggesting 23 

that fires have degraded the air quality in urban regions. Figure S1c shows the difference between 24 

December 2019 and 2018, where there are mixed TCNO2 differences across the northern states, 25 

with enhancements (0.0-1.0 ×1015 molecules/cm2) in the Western Australia territory and along the 26 

south-eastern coastline (2.0 ×1015 molecules/cm2). To rule out other sources (e.g. urban) driving the 27 

TCNO2 enhancement along the south-eastern coastline, TCNO2 values have been weighted by FRP 28 

over the region (black box, Figure S1c) for the 2018/2019 (Figure S1d, red line) and 2019/2020 29 

(Figure S1d, blue line). The FRP-weighted TCNO2 signal for both seasons highlights sizeable 30 

variability, but 2019/2020 TCNO2 values are larger in the first 20 days of November (3.0-6.0 ×1015 31 

molecules/cm2), peak in early December (>7.5 ×1015 molecules/cm2) and remain larger for most of 32 

December. Overall, the time period average 2018/2019 and 2019/2020 FRP-weighted TCNO2 values 33 

are approximately 2.2 ×1015 molecules/cm2 and 3.3 ×1015 molecules/cm2, respectively. To reduce the 34 

likelihood of this fire-TCNO2 signal being dominated by other sources, Figure S1e shows time-series 35 

where the 2019/2020 TCNO2 has been weighted by the 2018/2019 FRP and the 2018/2019 TCNO2 36 

has been weighted by the 2019/2020 FRP. The 2018/2019 TCNO2 time-series (red lines in Figures 37 

S1d & e) are generally similar suggesting the NO2 signal is not overly dependent on fire activity. 38 

However, in the 2019/2020 season (blue lines in Figure S1e & d), the time-series are substantially 39 

different where the 2019/2020 TCNO2 series weighted by the 2018/2019 FRP is lower (0-3 ×1015 40 

molecules/cm2). Therefore, the large 2019/2020 TCNO2 values are highly likely to be driven primarily 41 

by fire activity along the south-east coastline, especially around Sydney. 42 
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SM-2: Infrared and Microwave Sounding Extended Scheme  43 

The original Infrared and Microwave Sounding (IMS) scheme was developed to retrieve water 44 

vapour, temperature and stratospheric ozone profiles from the Infrared Atmospheric Sounding 45 

Interferometer (IASI), Microwave Humidity Sounder (MHS) and Advanced Microwave Sounding Unit 46 

(AMSU) on the MetOp-A satellite (Siddans et al., 2015). This was used to produce a Version 1 data 47 

set from the MetOp-A mission 2007-16 (Siddans et al., 2018), which was delivered to the ESA 48 

Climate Change Initiative (http://cci.esa.int/watervapour). 49 

The IMS scheme uses RTTOV as the radiative transfer model (forward model, FM). The optimal 50 

estimation method (OEM) is used to infer the atmosphere / surface state which best matches the 51 

observations, taking into account prior knowledge of the state. This is achieved by minimising the 52 

cost function: 53 

    𝜒2 =  (𝒚 − 𝐹 (𝒙))
𝑇

 𝑺𝒚
−1

(𝒚 − 𝐹 (𝒙)) + (𝒂 − 𝒙)𝑇 𝑺𝒂
−1

(𝒂 − 𝒙 )   

Equation 1 54 

𝒚 is a vector containing each measurement used by the retrieval (a subset of all the channels 55 

available); 𝑺𝒚 is a covariance matrix describing the errors on the measurements; 𝑭(𝒙) represents 56 

the FM (RTTOV); 𝑺𝒂 is the a priori error covariance matrix, which describes the assumed errors on 57 

the a priori estimate of the state, 𝒂. The solution state which minimises the cost function is found 58 

via the Levenberg Marquardt approach (Rodgers, 2000), using the weighting function matrix, 𝑲. This 59 

contains the derivatives of the measurements with respect to each element in the state vector 60 

(evaluated by the FM at a particular estimate of the state).  61 

The IMS scheme has now been extended to retrieve tropospheric ozone, CO profiles and column 62 

amounts of additional trace gases, dust and volcanic sulphuric acid aerosol. Retrieval of those 63 

constituents benefit from accurate, co-located temperature, humidity and spectral emissivity which 64 

are co-retrieved by the IMS extended scheme. The IMS extension builds on new capabilities of 65 

RTTOV12 to model atmospheric scattering. Cloud and aerosol are modelled as scattering layers and 66 

each are retrieved in terms of an optical depth and layer height. Spectral absorption features of 67 

methanol, ammonia, formic acid, sulphur dioxide and nitric acid are optically thin. Therefore, these 68 

gases are retrieved by adopting a fixed reference profile shape for each and including in the state 69 

vector a scale factor for that profile with an extremely large a priori uncertainty. The reference 70 

profile for each gas is a constant i.e. height independent volume mixing ratio of 1 ppbv. The 71 

retrieved scale factors correspond, therefore, to column-averaged mixing ratios in ppbv which would 72 

pertain if the assumed flat profile shape was correct.  73 

Most variables in the IMS extended state vector can be modelled directly by RTTOV12 (temperature, 74 

water vapour, ozone and carbon monoxide profiles, surface spectral emissivity and mass mixing ratio 75 

profiles of aerosol components). RTTOV12 can simulate variations in these quantities and returns 76 

the weighting functions needed for their optimal estimation. Although RTTOV12 does not explicitly 77 

model other minor gases, including methanol, it can compute the derivatives of simulated spectral 78 

radiances with respect to changes in the total absorption coefficient profile. Since their absorption 79 

features are optically thin, the radiance perturbation due to each gas can be calculated and added to 80 

the directly calculated RTTOV12 radiance as follows: 81 

𝑅′(𝒙) =  𝑅(𝒙) + 𝑥𝑔𝑎𝑠 ∑
𝑑𝑅(𝑥)

𝑑𝑘𝑖

𝑁
𝑖=1 𝐶𝑔𝑎𝑠𝑛𝑖    82 

Equation 2 83 

http://cci.esa.int/watervapour
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Where 𝑅(𝒙) is the RTTOV12 model simulation excluding minor gases. For a given gas in layer 𝑖 of the 84 

𝑁 (=101) layers in the RTTOV12 model atmosphere, 𝑘𝑖 is the (total) volume absorption coefficient 85 

(cm-1), 𝐶𝑔𝑎𝑠 is the absorption cross section (cm2); 𝑛𝑖 is the number density (molecules cm-3) at level i 86 

and 𝑥𝑔𝑎𝑠 is the scale factor for the gas (as included in state vector 𝒙). Vertical sensitivity (e.g. 87 

air/surface temperature contrast, presence of cloud, optical thickness of other gases) is accounted 88 

for through the modelling of 
𝑑𝑅(𝑥)

𝑑𝑘𝑖
  by RTTOV12.  89 

In total 119 IASI channels are used. Channels selected in the CO and methanol spectral ranges are 90 

indicated in Figure S2a and b. The measurement error covariance for IASI is assumed to be diagonal 91 

with variances as defined in the L1 file.   92 

CO vertical profiles are retrieved in the extended IMS scheme in an analogous way to temperature, 93 

water vapour and ozone profiles in the original IMS scheme. Profiles are defined by the retrieval 94 

state vector (see below) on the 101 pressure levels on which the RTTOV12 coefficients for IASI are 95 

given. Surface temperature and surface emissivity are also defined by the state vector. Values for 2m 96 

temperature and 2m water vapour (also input parameters to RTTOV12) are defined by interpolating 97 

the profiles defined by the state vector. Surface pressure is defined from European Centre for 98 

Medium-Range Weather Forecasting (ECMWF) analysis (ERA-Interim) , adjusted to the mean altitude 99 

within the IASI footprint assuming the logarithm of the surface pressure varies linearly with the 100 

difference between the IASI altitude and that of the ECMWF model. This is the only parameter 101 

defined directly from NWP data in the IMS version 1 data. 102 

The IMS state-vector x is defined such that there are no correlations between different retrieved 103 

product so corresponding off-diagonal elements in the prior covariance matrix are all zero.  104 

Temperature (including surface temperature), water vapour, ozone and CO profiles are internally 105 

represented using basis functions, 𝐌𝐱, which are the Eigenvectors of a covariance matrix which 106 

represents the prior variability of the profile on the 101 RTTOV pressure levels. 28 vectors are fitted 107 

for water vapour, 18 for water vapour, 10 for ozone and CO. Covariance matrices were computed 108 

using analyses for the three days 17 April, 17 July, 17 October 2013 from ECMWF for temperature 109 

and water vapour and the Copernicus Atmosphere Monitoring Service (CAMS) for ozone and CO. The 110 

zonal mean over all three days was computed and the covariance matrix used to define the state 111 

vector was calculated from the differences between all the individual profiles and their zonal mean. 112 

Global variability in CO during those days included that due to wild fires, the eigenvectors are 113 

therefore capable of representing plumes from such sources. The zonal mean and covariances were 114 

computed in K for temperature and ln(vmr) for water vapour, ozone and CO. The state vector 115 

comprises the coefficients of the Eigenvectors of the covariance matrix. Temperature profiles in (K) 116 

on the 101 RTTOV pressure levels are defined from the corresponding 28 elements of the state 117 

vector as follows: 118 

𝑻 =  𝒎𝑻(𝜆) + 𝑴𝑻𝒙𝑻   119 

Equation 3 120 
Where 𝒎𝑻 is the zonal mean (interpolated to the latitude of observation); 𝑴𝑻 is the matrix of 121 

Eigenvectors and 𝒙𝑻 the temperature sub-set of the state vector. 122 

Water vapour, ozone profiles and CO (in ppmv) are defined similarly (now with exponent): 123 

𝒘 =  𝑒𝒎𝑾(𝜆)+𝑴𝑾𝒙𝑾    124 

Equation 4 125 
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In terms of the state vector representation used in the OEM, the a priori state vector elements for 126 

temperature, water vapour, ozone and CO are all zero (the zonal mean profile is added in the FM). 127 

The prior covariance is diagonal with variances given by the Eigenvalues of the covariance matrix. 128 

In order to speed up convergence, coefficients in the first guess state are estimated from ERA-129 

Interim analyses using the above equations. Surface spectral emissivity is represented in the state-130 

vector by a set of eigenvectors derived from the RTTOV emissivity atlas whose eigenvalues are co-131 

retrieved with other variables (Siddans et al., 2015). 132 

For column average CO, agreement with CAMS re-analysis in multi-year time-series is generally 133 

within ± ~10 ppbv (Figure S3). Vertical sensitivity of the CO retrieval is illustrated in Figure S4 which 134 

shows example averaging kernels as applied to the CAMS profiles for tropical land and mid-latitude 135 

sea.  136 

In initial fits to IASI observations with the IMS extended scheme, systematic spectral residuals were 137 

found (below 2000 cm-1) which are significant compared to the instrument noise. These are 138 

accounted for in the retrieval by fitting two “spectral residual patterns”, vectors 𝒃𝟎 and 𝒃𝟏 which 139 

were derived by averaging the differences between observed and simulated spectra over sea in the 140 

latitude range 60°S to 60°N (for 3 selected days in each season). These simulations adopted ECMWF 141 

analyses for temperature and water vapour and CAMS analyses for ozone and assumed no methanol 142 

to be present. The difference spectra were analysed to obtain the mean residual spectrum (𝒃𝟎) and 143 

the spectrum of an additional component which varies linearly with off-nadir scan-angle (𝒃𝟏). These 144 

two fixed patterns were then added into the forward model for use in subsequent analyses: 145 

𝐹(𝒙) =  𝑅′(𝒙) − 𝑥𝑏0𝒃𝟎 − 𝑥𝑏1𝒃𝟏   146 

Equation 5 147 
Where 𝑥𝑏0 and 𝑥𝑏1 are retrieved parameters (included in the state vector, with negligible prior 148 

constraint). Vectors 𝒃𝟎 and 𝒃𝟏 are both fixed to zero in the CO fit window. 149 

From Equation 2, it is straightforward to derive weighting function profiles, 𝑲𝒈𝒂𝒔, for each minor gas 150 

(derivative of 𝐹(𝒙) with respect to the number density at each level). Example weighting functions 151 

for the methanol spectral feature at 1034cm-1 are shown in Figure S5.  152 

It is important to note that infrared sensitivity to methanol varies greatly with height. Above the 153 

surface, the weighting function is negative because methanol absorbs radiation emitted from the 154 

warmer surface. However, sensitivity is low near to the ground due to the very small difference 155 

between the atmospheric temperature and that of the surface. If the surface temperature is lower 156 

than the atmospheric layer above, the methanol weighting function in that layer will be positive. 157 

Because the top-of-atmosphere spectral signature of methanol is strongly dependent on the 158 

temperature profile and surface-air temperature contrast, the shape of the methanol reference 159 

profile adopted in the fit is critical to the retrieved scale factor and hence column average mixing 160 

ratio. Adopting a constant mixing ratio with height as reference profile will result in a smaller column 161 

average being retrieved than would be the case if the reference profile contained more methanol 162 

near the surface. If methanol is assumed to be near the surface, where sensitivity is weak, then a 163 

larger amount is needed to explain a given observed spectral signature than would be the case if the 164 

methanol is assumed to be at a higher, colder altitude, where the sensitivity is stronger. In order to 165 

look at geographical and temporal variations consistently it is desirable to apply a retrieval scheme 166 

uniformly across the globe. Rather than tailor the shape of the reference profile according to 167 

expectations from an emission inventory, the flat profile shape has therefore been adopted 168 

everywhere. Over emission sources, however, methanol is usually located close to the surface, so it 169 
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is to be expected that this reference profile will lead to a lower column average being retrieved than 170 

a realistic model would predict. This can be accounted for in model comparisons by applying 171 

averaging kernels which characterise the sensitivity of the retrieved methanol column average to 172 

perturbations in the true methanol profile:  173 

𝑨𝒈𝒂𝒔 = 𝑮𝒙𝑔𝑎𝑠
 𝑲𝒈𝒂𝒔   174 

Equation 6 175 
Where the matrix 𝑲𝒈𝒂𝒔 contains the derivatives of the measurements with respect to methanol 176 

profile perturbations at each of the vertical levels in the FM and 𝑮𝒙𝒈𝒂𝒔
is the derivative of the 177 

retrieved methanol scale factor with respect to perturbations in the measurement vector. 𝑮𝒙𝒈𝒂𝒔
 is 178 

one row of the retrieval gain matrix (containing the derivatives of each state vector element with 179 

respect to perturbations in each measurement), given by the standard equation (Rodgers, 2000): 180 

𝑮 =  〈𝑲𝒕𝑺𝒚
−𝟏𝑲 + 𝑺𝒂

−𝟏〉−𝟏𝑲𝒕𝑺𝒚
−𝟏   181 

Equation 7 182 
Where 𝑲  is the weighting function matrix giving the derivative of the forward model with respect to 183 

all elements of the state vector (including the methanol scale factor). Figure S5 shows that because 184 

𝑮𝒙𝑔𝑎𝑠
 is a vector (same dimension as the measurement vector), the methanol averaging kernel 𝑨𝒈𝒂𝒔 185 

(dimension FM levels) has practically identical shape to the methanol weighting function, 𝑲𝒈𝒂𝒔 186 

(though usually with reversed sign). Magnitudes of the elements of 𝑨𝒈𝒂𝒔 depend on the assumed 187 

reference profile shape (because the elements of 𝑲 corresponding to the methanol scale factor 188 

depend on the profile shape).  189 

𝑨𝒈𝒂𝒔 can be used to estimate the column amount, 𝒙𝒊𝒔𝒐:𝒎, that the retrieval is expected to return 190 

given a model methanol concentration profile, 𝒏𝒎:1 191 

𝒙𝒎𝒆𝒕𝒉:𝒎 =  𝑨𝒈𝒂𝒔 𝒏𝒎 

Equation 8 192 
This accounts for the effects of varying vertical sensitivity and the profile shape assumed in the 193 

retrieval. Because the reference profile shape is implicit to 𝑨𝒈𝒂𝒔, changing that will change 𝒙𝒎𝒆𝒕𝒉:𝒎 194 

as well as the retrieved column average, but it will not change the relative agreement between the 195 

two. (Changing the assumed profile shape simply scales both quantities.) 196 

The solution error covariance matrix for  an optimal estimation retrieval is given by: 197 

𝑺𝒙 =   (𝑺𝒂
−1 + 𝑲𝑻𝑺𝒚

−1𝑲)
−1

  198 

Equation 9  199 
The estimated error on the retrieved methanol column average is given by the square-root of the 200 

diagonal element of 𝑺𝒙 which corresponds to 𝒙𝒈𝒂𝒔.  201 

The IMS extended scheme is applied to all scenes, irrespective of cloud, however the presence of 202 

extensive, thick cloud limits retrieval quality and of course no information on minor gases such as CO 203 

or methanol is available below optically thick cloud. A simple test is used here: the difference in 204 

brightness temperature between the IASI observed spectral radiance at 950 cm-1 and that simulated 205 

on the basis of temperature and humidity profiles and surface temperature interpolated from 206 

                                                            

1
 The prior constraint for the retrieved methanol scale factor is negligible so can be neglected in Equation 8.   
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ECMWF analyses is calculated. If this difference (observation – simulation) is outside the range of -5 207 

to 15 K, the scene is flagged as cloudy. These scenes are not used at all in the analysis reported here.  208 

The scheme applied here therefore differs in a number of key respects from that applied to global 209 

methanol retrieval from IASI reported by Razavi et al. (2011). Their scheme used brightness 210 

temperature differences between three channels near the methanol Q branch peak near 1034 cm-1 211 

and six neighbouring channels where methanol absorption is low and conversions factors to 212 

methanol column derived from optimal estimation retrievals using online line-by-line modelling. 213 

Methanol is retrieved in four layers adopting a terrestrial and a marine profile as prior with 214 

variability from a chemical-transport model as covariance matrix diagonals and a long correlation 215 

length for off-diagonals. It is also radically different from the neural net scheme employed by Franco 216 

et al. (2018).    217 

SM-3:  Satellite Observed Methanol (CH3OH) 218 

Methanol (CH3OH) infrared absorption features are much weaker than those of CO and background 219 

levels of CH3OH over ocean outside fire plumes are too low to be detectable in individual soundings 220 

above IASI’s level of noise-equivalent spectral radiance (NESR), so retrieved values there are zero ± 221 

NESR. At locations of temperature inversion, where methanol spectral features appear in emission 222 

above a baseline of colder surface emission, retrieved scaling factors for the methanol reference 223 

profile are negative (see SM-1). Systematic errors, due for example to insufficiently accurate 224 

handling of interference from neighbouring spectral lines, can also result in averaged CH3OH being 225 

negative in these marine regions, though not significantly so in comparison to their estimated errors 226 

(see SM-2, Figure S6). The white region in Figure S6 shows where we have filtered out retrievals 227 

with large errors (i.e. >15.0×1015 molecules/cm2). In the multi-month average (November-December 228 

2019, January 2020) there still appears to be a negative offset in the IASI retrievals. For this work, we 229 

subtracted a negative background value of -3.68 ×1015 molecules cm-2 from individual retrievals used 230 

in Figure 4 and Figure 5 of the main manuscript. This background value was based on data between 231 

the 1st and 17th January 2020 covering part of the North Pacific (135°E-115°W, 0-30°N). 232 

Intercomparing the fire seasons (November-December-January, NDJ), IASI detects clear 233 

enhancements in TCCH3OH during 2019/2020. Over Australia and South America (Figure S7a & c), 234 

TCCH3OH ranges between 8.0-15.0 ×1015 molecules cm-2 and 6.0-10/0 ×1015 molecules cm-2, in both 235 

NDJ 2018/2019 and 2019/2020. In the 2018/2019 fire season, background values (i.e. over the 236 

central South Pacific) between 0.0 and 3.0 ×1015 molecules cm-2. The Hovmöller diagram (Figure S7b) 237 

shows peak TCCH3OH between 8.0 and 12.0 ×1015 molecules cm-2
, which generally co-locate with 238 

total-column carbon monoxide (TCCO) (Figure 2b of the main manuscript) for the 2018/2019 fire 239 

season. However, in the 2019/2020 fire season, while continental values remain similar, mean 240 

outflow TCCH3OH ranges between 3.0 and 8.0 ×1015 molecules cm-2 (Figure S7c), while peaking 241 

above 15.0×1015 molecules cm-2 in the Hovmöller diagram (Figure S7d), highlighting substantial 242 

variability. In both cases, the difference plots (Figure S7e & f) show large-scale enhancements in 243 

TCCH3OH (1.5-5.0 ×1015 molecules/cm2 and 5.0-10.0 ×1015 molecules/cm2 in the seasonal and daily 244 

differences, respectively) over the South Pacific propagating as far as South America (differences 245 

statistically significant at the 99% confidence level – see Figure S7e).  246 

SM-4: Satellite Observed Methane (CH4) 247 

Figure S8 shows example daily IASI maps of column average CO and methane mixing ratios for 2nd 248 

and 10th January 2020. On both days, there are pronounced CO plumes substantially larger than the 249 
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background values. For CH4 the spatial coverage is sparser due to the stringent cloud filtering and 250 

other quality control needed for reliable retrieval of methane perturbations at the ~1% level. 251 

Furthermore, CH4 in airmasses arriving from tropical latitudes is elevated to levels comparable to 252 

that in the fire plumes. These factors make it difficult to discriminate CH4 enhancements due to the 253 

Australian fires. Although certain CH4 features are co-located with the main CO plumes, their spatial 254 

extent is restricted by the stringent cloud filtering, as evident in Figure S8c & d where the CO plume 255 

offshoot (150-180°E, 60-40°S) is not sampled in the case of CH4. In the main manuscript (i.e. Figure 256 

4) we have therefore limited attention to the daily time-series of a spatially averaged domain and 257 

the 2-week anomaly with reference to the deseasonalised, detrended decadal January mean.  258 

SM-5: Enhancement Ratio Uncertainties 259 

To test the robustness of the TCCH3OH:TCCO enhancement ratios, we moderately perturbed some 260 

of the subjective parameters used to derive these ratios. The key parameters were time length used 261 

to study the fire period, the in-plume threshold for TCCO and the in-plume threshold for TCCH3OH. 262 

The results are shown in Table S1, but overall we find that the derived enhancement ratios are 263 

relatively insensitive to moderate perturbations to these parameters. 264 
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Figures 289 

290 
  291 

Figure S1: TROPOspheric Monitoring Instrument (TROPOMI) tropospheric column NO2 (TCNO2, 1015 292 

molecules/cm2) for a) December 2018, b) December 2019 and c) difference December 2019-2018. 293 

The black box in panel c) represents the region used in panels d) and e). Panel d) shows time series 294 

of regional NDJ TCNO2 for 2018/2019 (red) and 2019/2020 (blue) weighted by regional FRP. Dashed 295 

lines represent the 3-month average. Panel e) represents regional 2018/2019 and 2019/2020 TCNO2 296 

weighted by 2019/2020 and 2018/2019 FRP, respectively. 297 
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 298 

Figure S2: Optical depth spectra in the intervals used by the IMS extended scheme to target a) CO 299 

and b) CH3OH. The black bars are IASI spectral channels used by the retrieval scheme. 300 

 301 

a) 

b) 
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Figure S3: Column average CO volume mixing ratio retrieved from MetOp-A by the extended IMS 302 

scheme in comparison with CAMS analyses. The plots show monthly mean values in 10° latitude bins 303 

from retrievals sampled 1 day in 10. The CAMS analyses have been sampled at locations of individual 304 

MetOp soundings. Panels a) represents the retrieval, b) is the CAMS with averaging kernel and prior 305 

term applied (CAMS x AK) and c) is the retrieval – CAMS x AK difference. 306 

 307 

 308 

 309 

 310 

 311 

 312 

 313 

 314 

 315 

 316 

 317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 

a) 

b) 

c) 
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 325 

Figure S4: Vertical sensitivity for CO retrieval: averaging kernels are shown for the surface – 450 hPa 326 

(0-6 km) and 450-170 hPa (~6-12 km) layers and column average for (left) tropical land and (right) 327 

mid-latitude ocean. These are presented as the change in retrieved layer amount for a perturbation 328 

in layer amount at each vertical level. The degrees of freedom of signal are also shown above each 329 

panel, indicating the number of independent pieces of information on the vertical profile.  330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 

 345 
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 346 

Figure S5: Vertical sensitivity of the CH3OH retrieval: the figure shows temperature profiles for 347 

tropical land and mid-latitude sea (left); CH3OH weighting functions at 1034 cm-1 (centre) and 348 

averaging kernels for the scale factor for the CH3OH reference profile (constant 1 ppbv at all 349 

altitudes). These are presented as the change in total column amount for a perturbation in layer 350 

amount at each vertical level.  351 

 352 

 353 
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 354 

Figure S6: IASI TCCH3OH errors (1015 molecules/cm2) for NDJ 2019/2020. 355 

 356 



14 
 

 357 

Figure S7: IASI NDJ total-column methanol (TCCH3OH, 1015 molecules/cm2) for a) 2018/2019, c) 358 

2019/2020 and e) difference 2019/2020-2018/2019. Green polygon-outlined regions in panel e) 359 

represent statistically significant differences between the fire seasons at the 99% confidence level 360 

(CL, based on the Student t-Test) and where absolute differences are greater than 1.0×1015 361 

molecules/cm2. Panels b), d) and e) represent Hovmöller diagrams of IASI TCCH3OH from November 362 

– January at 155°E, between 70°S-0°S (black dashed line in panel a)), for 2018/2019, 2019/2020 and 363 

the 2019/2020-2018/2019 difference, respectively. White (panels a-d) and grey (panels e & f) regions 364 

represent missing data in the satellite record (i.e. average values with error terms > 15.0×1015 365 

molecules/cm2). 366 
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367 
Figure S8: Daily maps of IASI column average carbon monoxide (ppmv) for 2nd and 10th January 2020 368 

shown in panels a) & c). Corresponding column average methane (ppmv) maps are shown in panels 369 

b) and d). The black box in panel d) represents the region used to derived daily average CO and CH4 370 

time series in Figure 4 of the main manuscript. 371 

  372 
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Date TCCO 

Threshold 

(molecules/cm2) 

TCCH3OH 

Threshold 

(molecules/cm2) 

Box 1 Box 2 Box 3 Box 4 

1-17 Jan 2020 18 x1017 5 x1015  0.0036 

±5.98% 

0.0059 

±3.13% 

0.0091 

±1.28% 

0.0081 

±1.94% 

25 Dec 2019- 

20 Jan 2020 

18 x1017  5 x1015  0.0050 

±4.41% 

0.0053 

±3.55% 

0.0096 

±1.29% 

0.0083 

±2.11% 

1-17 Jan 2020 16 x1017  5 x1015  0.0029 

±6.15% 

0.0051 

±3.96% 

0. 0096 

±1.29% 

0.0082 

±2.07% 

1-17 Jan 2020 20 x1017  5 x1015  0.0029 

±8.00% 

0.0051 

±4.04% 

0.0096 

±1.34% 

0.0084 

±2.27% 

1-17 Jan 2020 18 x1017  4x1015  0.0030 

±7.11% 

0.0052 

±3.61% 

0.0097 

±1.23% 

0.0085 

±1.94% 

1-17 Jan 2020 18 x1017  6 x1015  0.0028 

±7.10% 

0.0049 

±4.41% 

0.0094 

±1.39% 

0.0081 

±2.32% 

Table S1: IASI TCCH3OH:TCCO enhancement ratios for the boxes in Figure 5a of main text with 373 

perturbations to time period and TCCH3OH:TCCO in-plume thresholds. 374 

 375 


