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Abstract

Several techniques have been developed in the last two decades to forecast the occurrence of Solar Proton Events (SPEs), mainly

based on the statistical association between the $>$10 MeV proton flux and precursor parameters. The Empirical model for

Solar Proton Events Real Time Alert (ESPERTA, Laurenza et al., 2009) provides a quite good and timely prediction of SPEs

after the occurrence of $\geq$M2 X-ray bursts, by using as input parameters the flare heliolongitude, the soft X-ray and the

$\sim$1 MHz radio fluence. Here, we reinterpret the ESPERTA model in the framework of machine learning and perform

a cross validation, leading to a comparable performance. Moreover, we find that, by applying a cut-off on the $\geq$M2

flares heliolongitude, the False Alarm Rate (FAR) is reduced. The cut-off is set to E20Â° where the cumulative distribution

of $\geq$M2 flares associated with SPEs shows a break which reflects the poor magnetic connection between the Earth and

eastern hemisphere flares. The best performance is obtained by using the SMOTE algorithm, leading to probability of detection

of 0.83 and a FAR of 0.39. Nevertheless, we demonstrate that a relevant FAR on the predictions is a natural consequence of the

sample base rates. From a Bayesian point of view, we find that the FAR explicitly contains the prior knowledge about the class

distributions. This is a critical issue of any statistical approach, which requires to perform the model validation by preserving

the class distributions within the training and test datasets.
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Abstract14

Several techniques have been developed in the last two decades to forecast the occurrence15

of Solar Proton Events (SPEs), mainly based on the statistical association between the16

>10 MeV proton flux and precursor parameters. The Empirical model for Solar Proton17

Events Real Time Alert (ESPERTA, Laurenza et al., 2009) provides a quite good and18

timely prediction of SPEs after the occurrence of ≥M2 X-ray bursts, by using as input19

parameters the flare heliolongitude, the soft X-ray and the ∼1 MHz radio fluence. Here,20

we reinterpret the ESPERTA model in the framework of machine learning and perform21

a cross validation, leading to a comparable performance. Moreover, we find that, by ap-22

plying a cut-off on the ≥M2 flares heliolongitude, the False Alarm Rate (FAR) is reduced.23

The cut-off is set to E20 where the cumulative distribution of ≥M2 flares associated with24

SPEs shows a break which reflects the poor magnetic connection between the Earth and25

eastern hemisphere flares. The best performance is obtained by using the SMOTE al-26

gorithm, leading to probability of detection of 0.83 and a FAR of 0.39. Nevertheless, we27

demonstrate that a relevant FAR on the predictions is a natural consequence of the sam-28

ple base rates. From a Bayesian point of view, we find that the FAR explicitly contains29

the prior knowledge about the class distributions. This is a critical issue of any statis-30

tical approach, which requires to perform the model validation by preserving the class31

distributions within the training and test datasets.32

1 Introduction33

Solar proton events (SPEs) constitute a major Space Weather hazard in the inter-34

planetary and near-Earth space, as they can hamper spacecraft operations, damage satel-35

lites instruments and disrupt radio communications in the Earth atmosphere, as well as36

pose a radiation threat for astronauts and crews and passengers of airlines in polar routes.37

Hence, a warning system is required in order to predict SPEs occurrence and mitigate38

their effects.39

Several empirical SPE forecasting models have been developed, which are mainly40

based on statistical association between the > 10 MeV proton flux and precursor so-41

lar parameters or measurements of fast-arriving particles at 1 AU. The first quasi-operational42

SPE forecasting technique was the proton prediction system (PPS76, developed and im-43

proved by Smart and Shea (1979, 1989) and validated by Kahler et al. (2007), which is44

driven by solar flare parameters (either microwave or X-ray) and flare location, and gives45

as output an SPE time-intensity profile. Another long-standing model is Protons, cur-46

rently in use at NOAA SWPC (although including a forecaster in the loop), that uses47

the time-integrated soft X-ray flux, peak soft X-ray flux, and the location of the asso-48

ciated flare as input parameters, and additionally, the occurrence or non-occurrence of49

metric radio type II and type IV bursts, indicating the presence of a CME driven shock.50

The Protons model predicts the probability of a ≥ 10 MeV proton event, the delay time51

until onset, and the time of the maximum, all with respect to the maximum of the X-52

ray flare. Other models rely on CME and shock related parameters, such as Winter and53

Ledbetter (2015) or FORSPEF (Papaioannou et al., 2016), St. Cyr et al. (2017).54

Other forecasting schemes such are REleASE and UMASEP esploit, respectively,55

the early arrival at 1AU of relativistic electrons and protons with respect to lower en-56

ergy protons at the Earth. Originally, REleASE relied on realtime data from the Solar57

and Heliospheric Observatory, and more recently has been adapted for use with the Ad-58

vanced Composition Explorer (Malandraki & Crosby, 2018; Núñez, 2018). UMASEP is59

based on the correlation between the first derivative of the soft X-ray flux and the first60

derivative of at least one of the GOES differential proton flux channels. The algorithm61

looks for the onset of high-energy particles, after an X-ray burst and it makes a predic-62

tion about the subsequent evolution of the event based on an empirical relationship be-63

tween the GOES X-ray flux and the GOES energetic proton flux channels.64
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The Empirical model for Solar Proton Events Real Time Alert (ESPERTA) model65

(Laurenza et al., 2009; Alberti et al., 2017) is based on the logistic regression analysis66

on three solar parameters, viz., the flare location, 1-8 Å soft X-rays (SXR) and 1 MHz67

Type III fluences (SXR fluences are a measure of flare size/energy and Type III solar68

radio bursts are the signatures of fast electron beams streaming outward, along the open69

or quasi open field lines). A prime focus of the ESPERTA model was to provide a timely70

warning within 10 minutes following the SXR peak for ≥ M2 flares. Moreover, the ES-71

PERTA model had been adjusted (Laurenza et al., 2018) to provide early forecasts of72

the largest radiation storms which are produced by ≥ 100 pfu SPE events, once the >1073

MeV proton flux crosses the 10 pfu threshold at the Earth. It is worthwhile to note that74

this is the only model tested to predict ≥ 100 pfu (from moderate to extreme) SPE events75

(with a median warning time of about 2hr) over an extended dataset covering the pe-76

riod 1995-2014.77

In recent years, the machine learning (ML) approach has become popular in find-78

ing patterns in several scientific contexts (Butler et al., 2018; Carleo et al., 2019; Cam-79

poreale et al., 2018). In this framework, few studies have been attempted for SPE fore-80

casting. For instance, a decision tree (DT) model was proposed by Boubrahimi et al. (2017)81

to predict > 100 MeV SPEs by using the GOES soft X-ray (SXR) and high energy pro-82

ton observations. More recently, Núñez and Paul-Pena (2020) applied the DT model to83

two of the ESPERTA parameters, i.e., SXR and radio fluence, and claimed a compara-84

ble performance with respect to ESPERTA. ML could represent a powerful way to im-85

prove our forecasting capabilities, but the potential application to SPE prediction needs86

to be assessed. On the other hand, it should be kept in mind that correlations found by87

ML model should not be confused with causation between input and output variables.88

ML models try to learn the past instead of uncovering the real/causal relationships be-89

tween variables that will hold over time. As far as SPEs are concerned, a major limita-90

tion is represented by the paucity of SPE associated flares with respect to the not as-91

sociated ones, being their ratio less than 20% (Laurenza et al., 2007). In ML, prediction92

of rare events is closely related to the problem of imbalancing, which in principle can be93

overcome for instance through oversampling techniques to balance properly the ratio of94

class cardinalities to a fixed value.95

In this paper we perform a machine learning approach to SPE forecasting and rein-96

terpret the ESPERTA model, by using the logistic regression. We also apply rare-events97

corrections to possibly address the problem of the SPE associated flare dataset imbal-98

ancing with respect to non SPE associated flares one. We also perform a suitable cross99

validation and find the conditions to obtain the best performance of the method, i.e. for100

intermediate and well connected flare longitudes (greater than E20◦).101

Section 2 presents the basics of the ML approach as well as a description of the lo-102

gistic regression technique and cross validation method. In Section 3 we perform the ap-103

plication to SPE forecasting and validate the method. We also discuss the effects of im-104

balancing by interpreting the natural distribution of the SPE events from a Bayesian point105

of view. Finally, section 4 discusses the comparison with competing techniques and draws106

the conclusions.107

2 The Supervised Learning Approach108

In the framework of supervised learning paradigm, the problem to be solved is: given109

a series of examples of the target variable t associated to a set of certain input variables110

(features) X , we want to train a model M which is able to predict the value of t for any111

out-of-sample data point. Roughly speaking, suppose to have an object described by its112

nf features, and suppose to have its status (target, e.g. 1 or 0) such that each set of fea-113

tures are associated to a given status of the object. The objective of ML approach is to114

find a pattern, into the nf dimensional space of the features, which characterize the sta-115
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tus of the object. The target variable t can be either continuous or categorical, being re-116

spectively the cases of regression and classification problems. In the latter case, the pos-117

sible status assumed by the target variable are called classes. Since SPE forecasting is118

recast in a classification problem, from now on we will cover only this case study.119

In order to fit a model, the ML algorithm takes, as input, a model whose weights
w = (w1, w2, ..., wnf

) are optimized with respect to the training set, so that learning
the optimal set of weights w(opt) to be put into the final model. Roughly speaking, the
weight wi can be associated to the importance of the i-th feature. From a mathemat-
ical point of view, ML is an nf -dimensional optimization problem and the model M can
be either a function f(w,x) mapping the feature vector x = (x1, x2, ..., xnf

) in its class
object t ∈ N = {0, 1, 2, . . . , N} or a probability distribution function P (Ci|x,w) rep-
resenting the probability of observing the i-th class Ci given the feature and weight vec-
tors. The optimization problem is solved with respect to an error function L(f, t) (or L(P, t)
if using probabilistic model), called loss function, measuring the distance between the
estimations given by the model f and the optimal target t ((Friedman et al., 2001)), i.e.

f (opt) = argmin
f∈F

L(f, t), (1)

where F is a function space instead of a parameter space. But, if the model is fixed, i.e.
for instance f = f(x,w), the problem is recast in parameters optimization which is much
easier to solve:

f (opt) → w(opt) = argmin
w∈Dw

L(fw,x, t), (2)

where now Dw is the space of parameters. There are two different approaches to the clas-
sification problem (Bishop, 2006). The simplest involves the construction of a discrim-
inant function that directly assigns each input vector xi to a specific class. A more pow-
erful approach models the conditional probability distribution P (Ck|xi,w), i.e. the prob-
ability of observing the k-th class given the input vector and the weight vector. In the
first case our model is the discriminant function f(xi,w) mapping the input vector in
its class, while in probabilistic classification the model is a probability function P (Ck|xi,w).
Both deterministic and probabilistic approaches are associated to a decision rule; whereas
for deterministic approach the decision rule is given by f itself, for the probabilistic ap-
proach we associate a probability threshold ǫ which, in the simple case of binary clas-
sification, maps the target variable as follow:

t(xi) =

{

1 if P (C1|xi,w) ≥ ǫ

0 if P (C1|xi,w) < ǫ
. (3)

The part in which we fit the model by solving eqs. 1 or 2 is called training phase.120

After having learned the model, it is tested on out-of-sample dataset; this part is called121

test phase. In literature can be found a lot of algorithms (e.g. random forest (Breiman,122

2001), decision tree (Quinlan, 1996), logistic regression (Cox, 1958; Cramer, 2002), k-123

th nearest neighbour classificator (Fix, 1985), support vector machines (Boser et al., 1992),124

etc.) which implement both their own learning and prediction rules. Generally, the prob-125

abilistic approach is more powerful in respect to the direct classification algorithms be-126

cause it allows to interpret the risk associated to our decision. The decision function of127

the machine learning algorithms can be recast into probabilities but they are known to128

not be well calibrated (Collett, 2002; Niculescu-Mizil & Caruana, 2005). On the other129

hand, the estimation given by the logistic regression is a true probability mapping (Lichtenstein130

et al., 1977), being not just pseudo-probability as produced by many machine learning131

algorithms. This fact, together with the mathematical properties of the logistic function,132

represents the major advantage of probabilistic modeling with logistic regression (Maalouf,133

2011; King & Zeng, 2001), thus in this work we will use this approach, which will be dis-134

cussed in the next section.135
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2.1 The Logistic Regression136

In order to fit the best model, the logistic regression algorithm uses the discrim-137

inative approach (Bishop, 2006; Hosmer Jr et al., 2013), i.e. we assume that138

P (C1|x,w) =
1

1 + e−(w0+w
T
x)

(4)

from which we obtain directly139

P (C0|x,w) = 1− P (C1|x,w) =
1

1 + ew0+w
T
x

, (5)

where w0 is a constant of the model. From now on, we set w = (w0, w1, ..., wnf
) and

x = (1, x1, ..., xnf
). In order to optimize the weights w, we use the maximum likelihood

estimation (MLE) (McCullagh & Nelder, 1989). The likelihood function L(X|P ) is es-
sentially the probability associated with the observed dataset once the model P = P (C1|x,w)
is given. Thus, maximizing the likelihood function corresponds to finding those weights
maximizing the probability of the observed dataset. It is expressed as the product of the
probabilities of N individual observations (Bernoulli trials), where N is the total num-
ber of training data points i.e.

L(X|P ) =
∏

ti=1

P (C1|xi,w)
∏

ti=0

(1− P (C1|xi,w)), (6)

where: 1) ti ∈ {0, 1} is a variable such that ti = 1 if xi ∈ C1 and ti = 0 if xi ∈ C0;
2) X is the whole (training) dataset, i.e. a (N×nf) matrix whose rows correspond to
each observation vector xi. Note that the first column of X is a vector of ones. Since the
logarithm is a monotonic function preserving the position of maxima, in order to han-
dle the products we prefer to maximize the log-likelihood function, which gives the neg-
ative cross-entropy error function

L(X|P ) =
∑

ti=1

logPi +
∑

ti=0

log (1− Pi). (7)

Now, the gradient with respect to the weights w, by keeping constant xi, results
in the system of equations

∇L(X|P ) =

N
∑

i=1

[ti(1− Pi)− (1 − ti)Pi]xi =

N
∑

i=1

(ti − Pi)xi = 0, (8)

where we kept together summation for ti = 0 and ti = 1. The last equation can be
rewritten in matrix form, i.e.

∇L(X|P ) = XT (t−P) = 0, (9)

where P is the probability vector associated to each observation.140

Thus, the optimization problem is recast in solving a system of nf equations with
respect to the weights w. For logistic regression there is not a closed-form solution due
to non-linearity of the logistic sigmoid function but this is not a real problem since it can
be proved that the negative cross-entropy is a convex function having a unique maxi-
mum (Bishop, 2006). Furthermore, the solution can be found by means of the Newton-
Raphson method, yielding the following iterative set of equations

w(new) = w(old) +H−1∇L(X|P ), (10)

where H is the Hessian matrix of L whose elements are the second derivatives of Equa-
tion (7) with respect to w. Performing calculations it can be proved that the iterative
equations can be rewritten as

w(new) = w(old) − (XTRX)−1XT (P− t), (11)

–5–
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where R is the diagonal matrix such that Rii = Pi(1 − Pi). Henceforth, we will call141

the method yielded by eq 11 the basic MLE.142

2.2 Rare events and imbalanced datasets143

In the framework of rare events, the class frequencies are imbalanced, i.e. n0/N =144

p(C0) ≫ p(C1) = n1/N , leading their classification to be quite challenging. In this par-145

ticular case study the limitation has its root cause in the process generating the event146

itself, causing the predictive model to be biased toward the majority class (King & Zeng,147

2001; Gao & Shen, 2007). The problem is amplified when we have a small dataset; in-148

deed it is known that the MLE method, used for weights optimization in the previous149

section, is an asymptotically consistent estimator, i.e. it is unbiased only when applied150

to large datasets (Collett, 2002).151

In this work we applied and compared the following methods in order to reduce the152

bias induced by the imbalancing:153

1. Weighted MLE : The error induced by the misclassification of minority class is in-
creased operating directly on the loss function (Manski & Lerman, 1977). In other
words, if the original loss function is L = L0+L1, where L0 and L1 are the loss
functions associated respectively to the class C0 and C1, then the class weighted
loss will be L = K0 · L0 +K1 · L1, so that the Equation (7) is rewritten as

LK(X|P ) = K0 ·





N
∑

i=1,ti=1

logPi



+K1 ·





N
∑

i=1,ti=0

log (1 − Pi)



 (12)

and the Newton-Raphson algorithm is applied to the gradient function

∇LK(X|P ) =

N
∑

i=1

[(f · ti − Pi) + tiPi(1− f)]xi, (13)

where f = K1/K0. Note that if f = 1, this equation yields Equation (9). In154

order to balance the classes, the weights Ci are chosen to be inversely proportional155

to the class frequencies in the dataset. By applying this correction to the loss func-156

tion the errors induced by the misclassification of both classes are balanced;157

2. SMOTE MLE : We create a synthetic set of events with the Synthetic Minority
Oversampling Technique (SMOTE), which works by selecting two nearby points
in the feature space and generating a new point between them (Chawla et al., 2002).
Let xi ∈ C1 and xj ∈ C1 be two feature vectors, then the synthetic data vector
xs is given by

xs = xi + λ (xj − xi) , (14)

where λ is a random number sampled from a uniform distribution U(0, 1). This158

method is an improvement of the Random Oversampling Technique which sim-159

ply creates duplicated copies of original data points. We emphasize that the over-160

sampling technique must be used only over the training set in order to avoid op-161

timistic evaluations. Indeed, the synthetic points are similar to the original ones162

so that resulting too simple to predict. It means that, before applying oversam-163

pling, the original dataset must be split in training and test datasets. Then a fixed164

number of minority class data n
(train)
1 is randomly put into the training set and165

used to generate synthetic data, while the remaining part is conserved into the test166

set. Thus all the synthetic data are kept into the training dataset and not used167

for testing. Once the training dataset has been filled with synthetic samples, the168

model is obtained, in the particular case of logistic regression, by means of basic169

MLE in eq 11.170
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2.3 Testing the model171

Once the optimal weights have been learned from data solving the eqs. 1 or 2, we172

have to test the ability of the model to make predictions. Clearly, it cannot be done with173

respect to the same sample used for the training phase because it will results in a too174

optimistic evaluation. Thus the basic idea in applications is to split up the original dataset175

into a training and testing datasets; then the prediction power of the model is referred176

to its ability to generalize what it has learned during the training phase; the error in-177

duced by the inability of the model to generalize the prediction power is known as over-178

fitting (Dietterich, 1995). In this framework, the goodness of the model is always a trade-179

off between the optimization of the loss function and the optimization of the scores com-180

puted during the test phase.181

The ability of the model to make predictions is measured by the confusion matrix

C =

(

TN FN
FP TP

)

, (15)

whose elements are: the total number of true negatives (TN, i.e. the correct nulls), true
positives (TP, i.e. the hits), false negatives (FN, i.e. the misses) and false positives (FP,
i.e. the false alarms) computed with respect to the test set. From these numbers we com-
pute the Probability Of Detection (POD) and the False Alarm Rate (FAR), which are
defined as

POD =
TP

TP + FN
, (16)

FAR =
FP

FP + TP
. (17)

In our application, POD and FAR must be optimized simultaneously, thus we will re-
fer the decision rule with respect to the F1 and the Critical Success Index (CSI) defined
respectively as

F1 = 2 ·
POD · (1− FAR)

POD+ FAR
, (18)

CSI =
POD · (1− FAR)

1− FAR · (1 + POD)
. (19)

Since the performance of the model can depend upon the particular portion of the182

dataset used for training and testing (e.g. we could have selected, as a test set, a por-183

tion too simple to predict), especially when the dataset is poor, then the process of train-184

ing and testing phases must be re-iterated in order to have a better idea of the perfor-185

mances on different portions of the dataset. The basic approach to get an unbiased es-186

timation of the model performance is the so-called k-fold cross validation (Browne, 2000;187

Stone, 1978). In this framework, training and test phases are re-iterated k times, so that188

the model is tested on different portions of the dataset for each iteration, being the test189

sets non-overlapping and independent for each fold. Each fold is selected randomly from190

the original dataset.191

However, this approach is critical when the classes are not balanced. Indeed, in this192

case, as we will show later, it is extremely important to preserve the original class dis-193

tributions within the test and training datasets in each fold.194

3 Application to SPE forecasting195

In order to set up the ML based scheme for SPE prediction, we first selected a proper196

feature space to be associated with our target variable, which is the occurence of SPE.197

Thus, our target variable t is naturally binary, having status 1 if a SPE occur, whereas198

status 0 if it does not. The ESPERTA forecasting model, designed to work in real time,199

rely on the ≥ M2 SXR bursts and type III radio emission, which have proven to be good200

–7–
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indicators of an impending SPE (Laurenza et al., 2009; Alberti et al., 2017), as they are201

proxies of the flare importance and duration of the particle escape, respectively. In more202

detail, the time integrated SXR and 1 MHz flux were computed in such a way to be timely203

available 10 minutes after the flare peak time, in order to maximize the warning time.204

Moreover, three different longitude ranges for the flare location were considered to take205

into account the particle propagation from the solar source. Hence, we assumed the three206

ESPERTA inputs as the set of features (nf = 3) associated to the SPE occurrence.207

3.1 Description of the dataset208

In this study we started from the list of ≥ S1 SPEs already published in (Laurenza209

et al., 2009) for the period 1995-2005 and in (Alberti et al., 2017) for the period 2006-210

2014. We updated the dataset by considering a few corrections to the latter as reported211

in (Laurenza et al., 2018) and then by extending the event list until June 2017 to cover212

almost entirely the solar cycle 24. The 5 minute averaged proton flux gathered on board213

the Geostationary Operational Environmental Satellite (GOES) spacecraft series is used214

in the classification of SPE events. The requirement for the identification of a ≥ S1 event215

is to observe a ≥ 10 MeV ≥ 10 pfu flux for at least three data points. In compiling the216

dataset we took into account the NOAA SPE event list although it was corrected for sev-217

eral events. In particular, we included as separate events subsequent SPEs when the in-218

tensity lies above 10 pfu.219

We obtained 92 SPE associated with ≥ M2 flares, 21 SPE associated with < M2220

flares over the period January 1995 - April 2017. All SPE events are listed in Appendix221

A.222

In order to apply the ML approach to the SPE forecasting, we also considered all223

the 989 ≥ M2 flares occurred during the same time period, as they have been shown to224

be well associated with the occurrence of a SPE. In particular, we described each ≥ M2225

by the three features (nf = 3) used in the ESPERTA model.226

The SXR time integrated flux (I) is calculated from the 1/3 power point before the227

peak to the 1/3 power point after. If the X-ray intensity drops by a factor 3 within 10228

minutes of the peak, the integration stops, otherwise an exponential fit of the flare is used229

to extrapolate the intensity curve to the 1/3 power point. The fit is based on the inten-230

sity values from 6 to 10 minutes after the peak and it is a reasonable tool to take into231

account the flare profile. The radio time integrated flux (J) is computed by integrating232

the 1MHz flux from 20 minutes before the time of the 1/3 X-ray peak until 10 minutes233

after the X-ray peak.234

Out of the 989 flares, 933 do not contain data gaps. The final dataset contains a235

total of n
(total)
1 = 92 SPE-associated flares herafter referred to as SPE class and 842236

non-associated flares herafter referred to as NO SPE class, corresponding to an imbal-237

ancing between the two classes of 1 : 9.238

Normalized probability densities of the three features are displayed in Figure 1 for239

both SPE and NO SPE classes. Some differences can be highlighted, meaning that our240

input variables are correlated to the occurrence of SPEs:241

1. SPE events privilege western longitude (Figure 1, left panel) of the observed flare,242

while NO-SPE events are uniformly distributed. As we will show later, this be-243

haviour is due to the fact that eastern SPE events are not magnetically well con-244

nected to the Earth;245

2. X-rays Fluence (Figure 1, central panel) for SPE events shows a shift toward greater246

values meaning that in general a SPE event is associated to greater values of the247

X-rays Fluence. Nevertheless, the probability of observing a NO-SPE events with248

an high values of the X-rays fluence is not negligible;249

–8–
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Figure 1. Density plot of the input variables separated by SPE-associated (blue) and non-

SPE-associated events (red).

3. Radio-waves Fluence (Figure 1, right panel) shows similar behaviour as that of250

X-rays Fluence. In particular, the distribution of NO-SPE events, displays an high251

tail toward higher values comparable to those of SPE events.252

In general, the misclassification rates of the events depend upon the overlap between the253

distribution, being the events lying in the tail of the distributions much more difficult254

to predict. This effect is amplified by the imbalancing: a false positive in this case af-255

fects greatly the goodness of our predictions.256

The eastern region of the Sun (negative longitude) produces few SPE-associated
events. This fact can be highlighted by computing the cumulative distribution function
of the longitude values L for SPE and non-SPE events, defined by

P (L̃ < L) =

∫ L

−∞

p(L̃)dL̃, (20)

where the variable L maps the longitude of the associated flare. In this case, L < 0◦257

and L > 0◦ stands for the eastern and western region of the Sun respectively. As can258

be seen in Figure 2, the probability of observing a SPE in a flare with longitude < L259

(left panel) is quasi-flatten for L < −20◦, while the distribution of non-SPE events (right260

panel) is essentially uniform. In particular, the distribution associated to SPE events has261

a transition at L = −20◦ longitude value, where a steeper rise of P (L̃ < L) begins.262

This effect can be due to the fact that eastern SPE are not labeled correctly (even if there263

is effectively an acceleration phenomenon) because it is a region not magnetically well264

connected to the Earth, so that SPE events are less easily detected. It is extremely im-265

portant to take into account this aspect properly since eastern flares mislead the model266

producing a lot of false positives (and, as we will show later, the challenge of SPE fore-267

casting is driven mainly by the problem of false positives).268

Out of a total of 933 flares in our dataset, 332 have a longitude L ≤ −20◦. For269

these flares we can compute the anti-cumulative distribution functions associated to SXR270

fluence and radio time integrated flux, i.e. the probabilities P (Ĩ > I) = 1− P (Ĩ < I)271

and P (J̃ > J) = 1 − P (J̃ < J). In other words, our idea is to compare the (right)272

tails of the distributions of non-SPE events. As it is shown in Figure 3, the X-rays flu-273

ence of NO SPE flares in the region L ≤ −20◦ has an higher tail with respect to that274

for L > −20◦. Roughly speaking, L ≤ −20◦ non-SPE events present many points with275

X-rays fluence comparable to that of SPE associated events. Viceversa, for the radio flu-276

ence J we have that the central region of the distribution when L ≤ −20◦ is lower than277
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Figure 2. Longitudinal cumulative distribution of SPE-associated flare (left) and non SPE-

associated flare (right). Red vertical line selects the longitude for which we have a sharp transi-

tion of the probability of observing a SPE event.

Figure 3. Anti-cumulative distributions of non-SPE events fluxes filtered by longitude.

that corresponding to L > −20◦, while the tails (i.e. the events which can produce false278

positives) are essentially equal.279

In order to deepen the differences induced by the evidences described above, we280

will compare the forecasting performances of our model when either the filter to L >281

−20◦ is applied or not. In the first case we end up with a total of 601 events correspond-282

ing to an imbalancing of 1.3 : 8.7; in the second case we end up with a total of 933 events283

and an imbalancing of 1 : 9.284

3.2 The effects of imbalancing285

In order to show the effects of class distributions on inducing biased evaluations,286

firstly we create training and test datasets such that: 1) the fraction τ between SPE and287

non-SPE events in the test set spawns from 0.1 to 0.5 and 2) the fraction of training sam-288

ples with respect the total spawns from 0.7 to 0.9. Then the POD and FAR scores have289

been averaged (over 10 iteration) for each pair of τ and Ñ . For these purposes, we kept290

the decision threshold ǫ in Equation (3) to be equal to 0.5, we used the weighted MLE291

and the filtering in longitude is not applied.292

Let n
(total)
1 and n

(train)
1 be the total number of SPE events and those kept into the293

training dataset respectively and let N be the number of samples in the training dataset.294
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By means of the analysis described above we get, for POD and FAR scores, the results295

in Figure 4. In particular, the Probability of Detection (right panel) shows only random296

fluctuations with respect to N as expected, whereas it becomes larger as n
(train)
1 grows,297

meaning that the model distinguishes better a SPE event when more examples are given.298

The False Alarm Rate has a regular pattern with respect to N and n
(train)
1 , showing that299

FAR is almost constant along its contours. In particular we note that, if n
(train)
1 is fixed,

Figure 4. POD (left panel) and FAR (right panel) scores with respect to the number of sam-

ples N used for training and the number of SPE events kept into the training dataset. The black

dotted lines represent Equation (23) for different values of τ .
300

the FAR decreases with N . By increasing n
(train)
1 we note a worsening of the FAR score301

and the contours become more flatten.302

Now we demonstrate that the worsening of the FAR score with respect to these pa-
rameters is due to the bias induced by the class distributions. Being Ñ the total num-
ber of testing samples, we can define the fraction τ of SPE events in the test dataset as

n
(total)
1 − n

(train)
1

Ñ
= τ, (21)

from which we get

n
(train)
1 = −Ñτ + n

(total)
1 = −(Ntot −N)τ + n

(total)
1 , (22)

where Ntot = N+Ñ . Keeping n
(train)
1 constant while growing N and, viceversa, keep-

ing constant N while lowering n
(train)
1 , means that τ → 0.5 in the test dataset. Indeed,

we found that the contours follow exactly the Equation (22), i.e. the contours are given
by

n
(train)
1 = N · τ + n

(total)
1 − τ ·Ntot. (23)

In other words the FAR is constant along the lines which describe a fixed fraction τ be-303

tween SPE and non-SPE events in the test dataset and it is minimum when τ = 0.5,304

but clearly this does not correspond to the real situation, since τ = 0.5 corresponds to305

how the model would perform if there was a probability of 1/2 that a flare had a SPE-306

associated event. Therefore, in this case τ must always be set equal to the evidence of307

SPE events, i.e. τ = p(Csep), which in our dataset correspond to τ = 0.15 when the308

filter L > −20◦ is applied and τ = 0.1 when the filter is not applied. Setting τ 6= p(Csep)309

will results in biased POD and FAR.310

Hence, in our application, it is extremely important to preserve the class distribu-311

tions within the test and training datasets. Therefore, if the model has been trained on312
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Figure 5. Confusion matrices for unbalanced test (left) and balanced (right) test datasets. In

the first case we note that, even if the model predicted 9/10 SPE events (i.e. POD = 90%), and

67/78 NO-SPE events, the FAR score is greater than 0.5. The matrices given in these examples

are referred to a particular realization during the cross-validation for two different values of τ .
a balanced dataset, e.g. SMOTE MLE and weighted MLE, the eqs. 16 and 17 must be313

referred to a test dataset preserving the original class distributions in order to get an un-314

biased estimation of the model performance. For this reason, in order to cross-validate315

the model, we constrain each fold to preserve the class distributions between the test and316

training datasets.317

So far we have derived the results in Figure 4 with respect to the logistic regres-318

sion, but we emphasize that the reasoning which yielded the Equation (22) is also valid319

for any statistical forecasting tool.320

3.3 Model optimization and validation321

So far we have considered the default 1/2 threshold in Equation (3), meaning that322

the model classifies an event as a SPE if P (Csep|x,w) > P (Cno−sep|x,w). As we noted323

previously, there is no reason to keep the threshold ǫ fixed to 1/2 since it defines the de-324

cision rule which is separated from the probability inference. Indeed, the estimation given325

by the logistic regression is true probability mapping, being not just pseudo-probability326

(or direct classification) as produced by many machine learning algorithms (e.g. deci-327

sion tree): on the other hand this is the major advantage of probabilistic modeling with328

logistic regression (Maalouf, 2011; King & Zeng, 2001).329

We are interested in minimizing the errors induced by both false positives and false330

negatives; we reject models with: 1) high POD and high FAR; 2) low POD and low FAR.331

For instance, the confusion matrix in the left panel of Figure 5 is saying that when a SPE332

is occurring, it is detected by the model with a probability of 0.9 but, on the other hand,333

according to the number of false positives, given the model predicted a SPE, there is a334

probability of 0.55 that is actually a false alarm. This is quite paradoxically but, as we335

will show later, this can be interpreted from a Bayesian point of view.336

In order to choose that ǫ representing the best trade-off between POD and FAR337

scores as measured by the F1 and CSI indices in eqs. 18 and 19, we have applied the strat-338

ified cross validation method with k = 10 folds; the score indices have been averaged339

over the k folds for each threshold value ǫ. With reference to Figure 6, we found that340

balancing the class distributions of the training dataset (by weighting or SMOTE) be-341

fore performing MLE given in Equation (11), corresponds essentially to a translation of342

the optimal threshold ǫ. In our case of SPE forecasting/classification, the approaches ex-343
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Figure 6. Averaged cross-validated scores with respect to the decision threshold ǫ computed

by applying the L > −20◦ filtering to the flare events. The results are referred to the valida-

tion/test set, i.e. the performances on the training set have not been considered.

plore the optimal region, thus there are little differences in terms of prediction power.344

The scores evaluated at the maximum of the F1 are reported in Table 2.345

By re-introducing the events filtered out, i.e. those events whose flare-associated346

longitude is L < −20◦, we are able to test the importance of the hypothesis concern-347

ing the longitudinal distribution of SPE events. Using the stratified cross-validation method348

we get the results shown in Figure 7. Thus, this case highlights a worsening of the pre-

Figure 7. Averaged cross-validated score with respect to the decision threshold ǫ without

filtering the events. The results are referred to the validation/test set, i.e. the performances on

the training set have not been considered.

349

diction performances of our model: the optimal results for basic, weighted and SMOTE350

MLE are reported in Table 2.351

By means of those findings and by means of what we have found previously (see352

figs. 2 and 3) this could be due to the differences in the distributions of non-SPE events353

for L ≤ −20◦ and L > −20◦. Finally, it could be an hint that SPE events are labeled354

wrongly a priori in the region not well magnetically connected to the Earth because they355

are more difficult to detect.356
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Table 2. POD and FAR scores of the model by considering the whole dataset and the fil-

tered dataset (L > −20◦). Model scores are computed for basic, weighted and SMOTE MLE

respectively.

POD FAR F1 CSI

Whole dataset Basic MLE 0.76 0.42 0.65 0.49
Weighted MLE 0.75 0.44 0.64 0.48
SMOTE MLE 0.80 0.45 0.65 0.49

L > −20◦ Basic MLE 0.78 0.39 0.68 0.52
Weighted MLE 0.81 0.40 0.69 0.53
SMOTE MLE 0.83 0.39 0.70 0.55

3.4 Bayesian interpretation of the False Alarm Rate357

From a Bayesian point of view, we can interpret the POD score as the probabil-358

ity that, given a SPE event, it is labeled as a SPE event by the model, i.e. POD = p(1̂|Cspe).359

On the other hand, the FAR is the probability that a non-SPE event is labeled as a SPE360

event, i.e. FAR = p(Cno−spe|1̂), so that the probability of being correct in predicting361

a SPE event is 1 − FAR = p(Cspe|1̂). Whereas the latter equation represents the pos-362

terior probability of being correct with respect to the prior knowledge about the SPE363

distributions, the POD score represents the ability of the model to distinguish a SPE event364

independently from any prior knowledge.365

Using the Bayes’ theorem (Grinstead & Snell, 2012) we know that, given the model
has predicted a SPE event, the posterior probability that it is actually a SPE event can
be written as

p(Cspe|1̂) =
p(1̂|Cspe) · p(Cspe)

p(1̂)
(24)

The overall probability p(1̂) of labeling an event as a SPE event can also be obtained from
the law of the total probability or, equivalently, from the confusion matrix in 15, i.e.

p(1̂) = p(1̂|Cspe) · p(Cspe) + p(1̂|Cno−spe) · p(Cno−spe) =
FP + TP

FP + TP + FN + TN
, (25)

where the probability p(0̂|Cno−spe) = 1−p(1̂|Cno−spe) represents the ability of the model
to distinguish a non-SPE event, i.e.

p(1̂|Cno−spe) =
FP

FP + TN
(26)

and

p(0̂|Cno−spe) =
TN

FP + TN
. (27)

The probabilities p(Ci) are our prior knowledge of SPE and non-SPE distributions, i.e.
their fraction in our sample (test) data being, respectively, τ and 1−τ . Hence, the Equa-
tion (24) allows to interpret the FAR as a posterior probability with respect the POD
and the ratio τ :

FAR = 1−
POD · τ

POD · τ + FP
FP+TN · (1− τ)

. (28)

or, equivalently,

FAR = 1− POD ·
τ

p(1̂)
, (29)
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showing that the FAR score 1) depends explicitly upon τ ; 2) has a dependence upon the366

POD, resulting in the need of a trade-off in order to optimize the model.367

Now the importance of the properties of the test samples, as given by τ , in deter-
mining the performance of the model become clearer: differently from the POD, the False
Alarm Rate is a posterior probability containing the prior knowledge about the class dis-
tributions, thus the dependence upon τ arises naturally from the Bayes’ theorem. This
is also in agreement with our discussion in sec. 3.2 where we found that whereas the FAR
contours follow exactly the Equation (23), the POD is essentially independent from τ .
In fact, by rewriting the POD as

POD =
TP

(n
(total)
1 − n

(train)
1 )

(30)

and the Equation (26) as

FP

FP + TN
=

FP

(Ñ − n
(total)
1 + n

(train)
1 )

, (31)

the Equation (28) yields the contours found in Equation (22).368

We remark that in the logistic probability, the prior knowledge about the sample
is contained into the constant of the model w0, being the other coefficients not affected.
In order to adjust the model with respect the new prior probability of the occurrence
of a SPE associated event, the following correction (King & Zeng, 2001) could be intro-
duced without retraining the model:

w̃0 = w0 + log

[

p(Cspe)

p(Cno−spe)

]

. (32)

4 Discussion and Conclusion369

In this work we apply the machine learning approach to SPE forecasting and anal-370

yse the effects induced by small-sample size and class imbalancing. Following the ES-371

PERTA technique, we used the logistic regression model with three input parameters,372

the flare heliolongitude, the 1− 8 Å SXR fluence and the ∼ 1 MHz radio fluence. We373

optimize the model weights through basic, weighted and SMOTE MLE. When using the374

whole dataset of ≥ M2 flare over the period 1995-2017, we obtained a POD = 0.76375

and a FAR = 0.42 for the basic MLE, whereas no substantial improvement is found by376

using the weighted and SMOTE MLE. Note that the POD is computed without taking377

into account the < M2 flares associated SPEs, as the goodness of a ML alogrithm, i.e.378

its ability to learn, has to be evaluated over the ingested dataset. For comparison, we379

recomputed the ESPERTA scores over the period 1995-2017 in a similar manner from380

results of Alberti et al., 2017, 2019 and by also considering the corrections of Laurenza381

et al. 2018 (see their footnotes number 9). The resulting ESPERTA scores are quite com-382

parable with a POD = 78% (73/94) and a FAR = 38% (44/117), although they are383

derived by including the training sample (covering the 1995-2005 period, Laurenza et al.,384

2009) in the validation. On the contrary our validation provides scores that are indepen-385

dent on the training and test sample choices.386

The present approach is found to be more performant, with POD = 0.83 and FAR =387

0.39, for longitudes of the associated flare > −20◦, i.e., for central meridian and well-388

connected SPEs, which are the most hazardous, having the fastest SPE proton onsets,389

rise times and peak intensities (Kallenrode, 1993; Posner, 2007; Richardson et al., 2014;390

Papaioannou et al., 2016). On the contrary, SPEs that are not well magnetically con-391

nected tend to rise slowly to reduced storm levels and lead to larger advance warning392

times. Thus, for such events, the radiation risk reduction from any SPE warning system393

is rather limited, whereas it is most relevant to focus on SPEs that are magnetically well394

connected (Posner & Strauss, 2020).395
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We demonstrate that the major drawback in predicting the occurrence of a SPE396

event in the framework of statistical forecasting, is driven by the optimization of the FAR397

which, according to Equation (22), depends on the fraction of the events into the sam-398

ple (i.e., imbalancing) to be predicted. In particular, the greater the imbalancing, the399

greater the FAR is affected by the presence of a false positive. As a matter of fact, all400

the SPE forecasting methods present a quite high FAR, generally comprised between 30−401

55% (Anastasiadis et al., 2017). We explain the high FAR from a Bayesian point of view402

and show that the FAR explicitly contains the prior knowledge about the class distri-403

butions. We point out that this is a critical issue of any statistical approach, and thus404

the model validation must be done by preserving the class distributions within the train-405

ing and test datasets.406

Recently Núñez and Paul-Pena (2020) obtained POD = 85.3% and FAR = 54.6%407

using a ML decision tree algorithm validated with the 20-fold method. By comparing408

their results with POD = 80% and FAR = 45% obtained here through the cross-validated409

SMOTE MLE over the whole dataset, we observe a quite better FAR despite the fact410

that we have a greater imbalancing (1 : 9) with respect to Núñez and Paul-Pena (2020)411

(1.5 : 8.5). This indicates that the logistic model is more suitable than the DT one, given412

the binary nature of the SPE occurrence forecasting. Moreover, our cross validation is413

less biased than that in Núñez and Paul-Pena (2020) since it has been performed by: 1)414

preserving the ratio between SPE and NO SPE events in each fold; 2) using k = 5 in415

order to have a proper statistically significant number of SPE events in each fold.416

To sum up, the ML application to SPE forecasting is limited by the small size of417

the SPE sample with respect to the non SPE associated flares, naturally leading to a greater418

FAR. We remark the importance of performing the cross validation by preserving the419

class distributions within the training and test datasets. In order to reduce the high FAR420

inherent to SPEs forecasting, it should be used features more directly linked to the phys-421

ical cause of SPE acceleration, supposedly more effective in class separation, instead of422

associated parameters like those used in this work.423

Appendix A SPE catalog 1995 - 2017424

In this section we report the complete SPE catalog of events used in the construc-425

tion of the model. The events are listed in Table A1. All the flares listed here are asso-426

ciated to a SPE observed at the Earth with flux ≥ 10 pfu at > 10 MeV. The features427

used in the model are the flare longitude, here reported as Hα location, the SXR fluence428

in J m−2 and the Radio fluence in sfu×min computed according to Laurenza et al. (2009).429

Each SXR fluence value has a correspondent flag in the range 1−7 that indicates ex-430

trapolations as well as ad hoc adjustments involved in the SXR flux integration. We re-431

port also the dates of flare SXR peaks and their class. The ∼ 1 MHz Radio frequency432

is listed in the last column .433
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Table A1. SPE Flare List (1995-2017).

Event SXR SXR SXR Hα SXR SXR Radio Radio
Number Date Time Class Location Fluence Flag Fluence Frequency

(hh:mm) (J/m2) (sfu x min) (kHz)

1 1995 Oct 20 06:06 M 1.7 S11W53 3.28×10−2 5 5.99×105 940
2 1997 Nov 04 05:58 X 2.1 S15W34 5.86×10−2 7 1.20×107 940
3 1997 Nov 06 11:55 X 9.4 S18W63 3.61×10−1 7 1.87×107 940
4 1998 May 02 13:42 X 1.2 S15W15 7.37×10−2 5 2.14×107 940
5 1998 May 06 08:09 X 2.8 S11W65 2.35×10−1 5 8.85×106 940
6 1998 May 09 03:40 M 7.7 W100 1.08×10−1 5 2.69×106 940
7 1998 Aug 24 22:12 X 1.1 N35E09 1.88×10−1 5 1.79×107 940
8 1998 Sep 30 13:48 M 3.0 N23W81 9.61×10−2 2 7.09×105 940
9 1999 Jun 04 07:03 M 4.2 N17W69 2.62×10−2 5 3.95×106 940
10 2000 Apr 04 15:39 M 1.0 N15W63 3.30×10−2 2 9.24×106 940
11 2000 Jun 06 15:25 X 2.5 N21E15 4.22×10−1 5 1.28×107 940
12 2000 Jun 10 17:00 M 5.6 N22W39 1.02×10−1 5 9.57×106 940
13 2000 Jul 14 10:23 X 6.1 N22W07 1.35 5 1.20×107 940
14 2000 Jul 22 11:32 M 3.9 N14W56 8.18×10−2 5 1.69×105 940
15 2000 Sep 12 12:12 M 1.0 S19W08 2.94×10−2 1 5.43×106 940
16 2000 Oct 16 07:35 M 2.8 W110 8.54×10−2 1 7.18×104 940
17 2000 Nov 08 23:27 M 7.9 N10W77 3.36×10−1 3 4.51×106 940
18 2000 Nov 24 15:13 X 2.5 N21W08 1.64×10−1 5 6.77×106 940
19 2000 Nov 25 01:31 M 8.4 N07E50 2.66×10−1 5 1.69×106 940
20 2001 Jan 28 15:58 M 1.7 S04W59 3.54×10−2 5 1.60×106 940
21 2001 Mar 29 10:15 X 1.8 N14W13 2.74×10−1 5 3.83×105 940
22 2001 Apr 02 21:50 X18.4 N18W82 1.62 5 2.75×106 940
23 2001 Apr 10 05:26 X 2.3 S23W09 3.66×10−1 5 9.50×106 940
24 2001 Apr 12 10:28 X 2.2 S19W43 4.02×10−1 5 6.54×106 940
25 2001 Apr 15 13:50 X15.8 S20W85 6.20×10−1 7 8.77×106 940
26 2001 May 07 12:20 C 4.1 W35 1.22×10−2 5 1.50×104 940
27 2001 Aug 09 11:22 C 3.9 W10 1.08×10−2 5 1.57×104 940
28 2001 Sep 15 11:28 M 1.6 S21W49 5.35×10−2 2 1.98×104 940
29 2001 Sep 24 10:35 X 2.7 S17E29 1.09 3 1.48×106 940
30 2001 Oct 01 05:15 M 9.1 S22W85 7.56×10−2 5 1.12×105 940
31 2001 Oct 19 16:30 X 1.8 N15W29 1.66×10−1 5 3.38×104 940
32 2001 Oct 22 15:08 M 7.0 S17E19 1.89×10−1 5 1.77×107 940
33 2001 Nov 04 16:19 X 1.1 N07W19 2.76×10−1 2 1.36×107 940
34 2001 Nov 17 05:23 M 3.0 S13E42 1.34×10−1 3 3.69×106 940
35 2001 Nov 22 20:34 M 4.1 S25W67 6.49×10−2 5 4.74×106 940
36 2001 Nov 22 23:27 X 1.0 S15W34 4.68×10−1 3 1.38×105 940
37 2001 Dec 26 05:36 M 7.6 N08W54 6.30×10−1 4 1.14×106 940
38 2001 Dec 28 20:42 X 3.5 S26E95 2.92 4 4.43×106 940
39 2002 Jan 14 06:23 M 4.8 W90 4.03×10−1 4 9.69×104 940
40 2002 Feb 20 06:12 M 5.7 N12W72 1.75×10−2 7 7.40×106 940
41 2002 Mar 15 23:06 M 2.3 S08W03 6.34×10−2 1 2.15×106 940
42 2002 Mar 18 02:30 M 1.1 W22 1.73×10−2 5 2.67×105 940
43 2002 Apr 17 08:24 M 2.9 S14W36 1.35×10−1 3 6.93×105 940
44 2002 Apr 21 01:47 X 1.7 S14W84 7.82×10−1 3 4.51×106 940
45 2002 May 22 03:48 C 5.2 S22W53 1.82×10−2 1 2.02×106 940
46 2002 Jul 15 20:08 X 3.2 N19W01 1.49×10−1 7 9.81×106 940
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Table 1. (continued)

Event SXR SXR SXR Hα SXR SXR Radio Radio
Number Date Time Class Location Fluence Flag Fluence Frequency

(hh:mm) (J/m2) (sfu x min) (kHz)

47 2002 Jul 20 21:28 X 3.4 E100 1.08 5 3.32×106 940
48 2002 Aug 14 02:11 M 2.6 N10W54 1.06×10−1 3 9.51×105 940
49 2002 Aug 22 01:57 M 5.9 S07W62 3.82×10−2 5 1.02×107 940
50 2002 Aug 24 01:11 X 3.5 S02W81 5.75×10−1 5 7.23×105 940
51 2002 Sep 05 17:04 C 5.2 N09E28 2.49×10−2 3 2.34×105 940
52 2002 Nov 09 13:23 M 4.9 S12W29 5.52×10−2 5 8.14×106 940
53 2003 May 28 00:27 X 3.9 S07W21 3.12×10−1 5 7.20×106 940
54 2003 May 31 02:24 X 1.0 S07W65 1.20×10−1 5 7.96×106 940
55 2003 Oct 26 18:11 X 1.4 N02W38 3.83×10−1 1 1.43×106 940
56 2003 Oct 28 11:10 X18.4 S16E07 1.96 5 2.16×107 940
57 2003 Oct 29 20:49 X10.8 S15W02 9.80×10−1 5 8.79×106 940
58 2003 Nov 02 17:25 X 9.3 S14W56 1.09 5 2.70×106 940
59 2003 Nov 04 19:44 X18.4 S19W83 2.65 1 9.53×105 940
60 2003 Nov 20 23:53 M 6.2 N02W17 2.82×10−2 7 7.07×106 940
61 2004 Apr 11 04:19 M 1.0 S14W47 1.72×10−2 5 3.03×106 940
62 2004 Jul 25 15:15 M 1.2 N08W33 3.25×10−2 1 7.51×104 940
63 2004 Sep 19 17:11 M 2.0 N05W58 5.46×10−2 5 4.20×106 940
64 2004 Nov 07 16:06 X 2.2 N09W17 2.08×10−1 5 1.36×106 940
65 2004 Nov 10 02:13 X 2.8 N09W49 1.68×10−1 7 1.84×106 940
66 2005 Jan 15 23:00 X 2.9 N14W08 8.63×10−1 2 1.01×106 940
67 2005 Jan 17 09:52 X 4.2 N14W24 7.20×10−1 5 1.63×106 940
68 2005 Jan 20 07:00 X 7.9 N12W58 1.97 5 1.66×107 940
69 2005 May 13 16:57 M 8.5 N12E11 2.50×10−1 5 1.79×107 940
70 2005 Jun 16 20:22 M 4.3 N09W87 7.75×10−2 5 6.94×105 940
71 2005 Jul 13 14:49 M 5.6 N13W75 4.64×10−1 4 1.08×105 940
72 2005 Jul 14 10:54 X 1.4 W95 6.63×10−1 3 2.65×104 940
73 2005 Jul 27 05:01 M 3.8 <E90 1.16×10−1 5 8.83×104 940
74 2005 Aug 22 17:28 M 6.2 S12W60 2.87×10−1 3 1.54×106 940
75 2005 Sep 07 17:40 X18.1 S06E89 6.65 3 1.42×107 940
76 2005 Sep 13 20:04 X 1.6 S09E05 4.86×10−1 5 1.49×105 940
77 2006 Dec 05 10:35 X 9.0 S07E79 6.12×10−1 5 1.90×106 916
78 2006 Dec 13 02:39 X 3.4 S05W23 5.88×10−1 5 1.82×107 916
79 2006 Dec 14 22:15 X 1.5 S06W46 1.36×10−1 7.52×106

80 2010 Aug 14 10:05 C 4.4 N17W52 1.19×10−2 1.29×105 916
81 2011 Mar 08 10:44 M 5.3 S17W86 3.98×10−2 2 5.55×103 916
82 2011 Jun 07 06:41 M 2.5 S21W64 4.91×10−2 5 1.80×107 916
83 2011 Aug 04 03:57 M 9.3 N15W49 6.07×10−2 5 8.78×106 916
84 2011 Aug 09 08:05 X 6.9 N17W83 1.77×10−1 7 5.71×106 916
85 2011 Sep 22 11:01 X 1.4 N11E74 4.78×10−1 2 4.32×106 916
86 2011 Nov 26 07:10 C 1.2 N08W49 1.47×10−2 1.74×105 916
87 2012 Jan 23 03:59 M 8.7 N28W36 3.97×10−2 5 5.26×105 916
88 2012 Jan 27 18:37 X 1.7 N27W71 2.33×10−1 5 4.38×106 916
89 2012 Mar 07 00:24 X 5.4 N17E15 6.89×10−1 5 2.19×107 916
90 2012 Mar 13 17:41 M 7.9 N18W62 2.65×10−1 3 2.92×106 916
91 2012 May 17 01:47 M 5.1 N12W89 1.21×10−1 5 9.08×106 916
92 2012 Jun 14 14:35 M 1.9 S17E14 1.55×10−1 9.52×104
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Table 1. (continued)

Event SXR SXR SXR Hα SXR SXR Radio Radio
Number Date Time Class Location Fluence Flag Fluence Frequency

(hh:mm) (J/m2) (sfu x min) (kHz)

93 2012 Jul 06 01:40 M 2.9 S18W41 4.62×10−2 5 1.21×107 916
94 2012 Jul 12 16:49 X 1.4 S16W09 5.28×10−1 3 7.54×105 916
95 2012 Jul 17 17:15 M 1.7 S17W75 1.86×10−1 3.27×105 916
96 2012 Jul 19 05:58 M 7.7 W99 3.58×10−1 4.88×105

97 2012 Aug 31 20:43 C 8.4 S06E20 6.57×10−2 3.19×106 916
98 2012 Sep 27 23:57 C 3.7 N08W41 4.19×10−3 6.18×104 916
99 2013 Mar 15 06:58 M 1.1 N11E12 6.64×10−2 3.92×104

100 2013 Apr 11 07:16 M 6.5 N09E12 7.11×10−2 5 3.38×107 916
101 2013 May 15 01:48 X 1.2 N11E51 1.19×10−1 5 1.58×104 916
102 2013 May 22 13:32 M 5.0 N15W70 1.77×10−1 3 5.74×105 916
103 2013 Jun 21 03:14 M 2.9 S16E66 8.11×10−2 2 6.18×104 916
104 2013 Sep 29 23:37 C 1.2 N15W40 3.07×10−3 6.94×104 916
105 2013 Dec 28 18:02 C 9.3 S18E07 4.80×10−3 1.23×104 916
106 2014 Jan 07 10:13 M 7.2 S13E11 2.95×10−2 5 1.75×107 916
107 2014 Feb 20 07:55 M 3.0 S15W67 7.38×10−2 3 1.75×106 916
108 2014 Feb 25 00:49 X 4.9 S12E82 4.64×10−1 5 6.83×106 916
109 2014 Apr 18 13:03 M 7.3 S16W41 1.13×10−1 5 7.98×106 916
110 2014 Sep 10 17:45 X 1.6 N16W06 3.88×10−1 5 3.49×107 916
111 2015 Jun 21 01:42 M 2.0 N12E16 1.61×10−1 7.82×106

112 2015 Jun 25 08:16 M 7.9 N09W42 2.11×10−1 3.51×105

113 2016 Jan 02 00:11 M 2.3 S12W27 8.51×10−2 4.53×103
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