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Abstract

Dense tree stands and high wind speeds characterize the dense temperate rainforests of southern Chilean Patagonia, where

landslides frequently strip hillslopes of soils, rock, and biomass. Assuming that wind loads on trees promote slope instability,

we explore the role of forest cover and wind speed in predicting mapped landslides with a robust Bayesian logistic regression. We

find that more crown openness and higher wind speeds credibly predict higher probabilities of detecting landslides moderately

well regardless of topographic location, though much better in low-order channels and on midslope locations than on open

slopes. Wind speed has less predictive power in areas that were smothered by tephra fall from recent volcanic eruptions, while

the influence of forest cover remains.
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Key Points: 6 

• Wind speed and crown openness of forests can aid landslide prediction in temperate 7 

rainforests of southern Chile; 8 

• Volcanic disturbance appears to smooth out the role of wind speed; 9 

• Distinguishing between landform types in a hierarchical model context improves the 10 

average performance of the landslide classification. 11 
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Abstract 13 

Dense tree stands and high wind speeds characterize the dense temperate rainforests of southern 14 

Chilean Patagonia, where landslides frequently strip hillslopes of soils, rock, and biomass. 15 

Assuming that wind loads on trees promote slope instability, we explore the role of forest cover 16 

and wind speed in predicting mapped landslides with a robust Bayesian logistic regression. We 17 

find that more crown openness and higher wind speeds credibly predict higher probabilities of 18 

detecting landslides moderately well regardless of topographic location, though much better in 19 

low-order channels and on midslope locations than on open slopes. Wind speed has less 20 

predictive power in areas that were smothered by tephra fall from recent volcanic eruptions, 21 

while the influence of forest cover remains. 22 

 23 

Plain Language Summary 24 

Chilean Patagonia is home to not only some of Earth’s largest swaths of temperate rainforests, 25 

but also to strong winds. Landslides commonly occur on steep hillslopes and remove, transport 26 

and deposit soil, rock and vegetation. To predict which areas are more likely fail compared to 27 

others, landslide models are needed. We developed a data-driven model that predicts from forest 28 

cover and wind speed the probability of detecting landslide terrain. Our findings indicate that 29 

both forest cover and wind speed play important, yet previously underappreciated, roles in 30 

predicting landslides in dense temperate rainforest. The model performance differs if 31 

distinguishing between landform types and previous volcanic disturbance, which may override 32 

the comparable modest control of wind on landsliding. Our study is the first of its kind in one of 33 

the windiest spots on Earth, and encourages a more discerning approach to landslide prediction. 34 
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1 Introduction 35 

Many of Earth’s steepest, wettest, and rapidly denuding landscapes are covered by dense 36 

temperate rainforests. The forests of southeast Alaska, southwest New Zealand, or Chilean 37 

Patagonia are amongst the most dense and biomass-rich biomes worldwide (DellaSala, 2011). 38 

These forests store large amounts of organic carbon (Luyssaert et al., 2008; Mohr et al., 2017) 39 

but also experience frequent disturbances (Johnstone et al., 2016) such as earthquakes, 40 

landslides, avalanches, windstorms, or volcanic eruptions (Buma et al., 2019; Korup et al., 2019; 41 

Sommerfeld et al., 2018; Veblen & Alaback, 1996) and thus high rates of erosion and biomass 42 

turnover (Hilton et al., 2008; Hilton et al., 2011). Landslides in particular have both a destructive 43 

and vital role in these forest ecosystems by regulating biomass erosion and deposition, nutrient 44 

cycling, and stand succession (Pawlik, 2013). Forest disturbances, in turn, alter landslide 45 

susceptibility (Buma & Johnson, 2015), and reported landslide densities in forest areas can be 46 

50-90% lower than in open land, depending on forest type and health (Rickli & Graf, 2009). 47 

Studies of landsliding after deforestation revealed that the susceptibility to shallow landslides can 48 

increase because of limited root reinforcement (Sidle, 1991; Schwarz et al., 2010) and altered 49 

hydraulic conductivity (Mirus et al., 2017). But also biomass surcharge (O’ Loughlin & Ziemer, 50 

1982) or trees transferring dynamic wind forces to the soil can trigger slope instability (Buma & 51 

Johnson, 2015). 52 

Among these possible controls on slope stability in forested mountains, forest cover and wind 53 

speed have been the least considered in landslide prediction; most research instead addressed the 54 

less dynamic factors of geology and topography (Reichenbach et al., 2018). 55 

Despite numerous studies on forest disturbances (Baumann et al., 2014) enquiries into the role of 56 

wind on landslide initiation have been anecdotal with unclear indications of cause and effect 57 
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(Buma & Johnson, 2015; Schwab, 1983). We suspect that forest cover and wind speed have 58 

opposite effects on slope stability. Despite anchoring soils, trees transfer dynamic wind forces as 59 

turning moments (torque) to the soil mantle via the tree bole, causing tree fall or even triggering 60 

shallow slope failure (Buma & Johnson, 2015). The torque depends mostly on wind speed 61 

(squared) and to lesser degree on tree physiology such as height or diameter (Hale et al., 2015). 62 

Storm-induced tree throw also displaces soil and opens up pits for enhanced water infiltration 63 

and pore-water pressure in soils (Valtera & Schaetzl, 2017).  64 

In this context, we investigate the role of wind in triggering shallow landslides in the temperate 65 

rainforests of Chilean Patagonia. This mountainous region is exposed to high westerly winds that 66 

bring large amounts of rain from the Pacific, but has been featured rarely in landslide studies 67 

(Korup et al., 2019; Sepúlveda et al., 2010; Somos-Valenzuela et al., 2020). Our objective is to 68 

explore the combined effects of forest cover and wind speed, grouped by different topographic 69 

positions, on predicting landslides in rainforests in three study areas of south-central Chile 70 

(Figure 1). 71 

 72 

2. Study areas 73 

The regional tectonic setting is characterized by active oblique subduction of the Nazca oceanic 74 

plate along the Southern Chile Trench and intra-arc dextral transpressional motion along the 75 

Liquiñe-Ofqui Fault zone in the southern Andes; Quaternary arc volcanism is active in the 76 

Southern Volcanic Zone (Figure 1). The western fringe of the Andes features steep mountainous 77 

terrain that was extensively glaciated (Singer, et al., 2004), and numerous cirques and small 78 

glaciers occupy headwaters today. The predominant soils are 1-2 m deep Andosols (Mohr et al., 79 
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2017) on top of Pleistocene volcanic sediments covering a basement of Miocene granitoids and 80 

Paleozoic schists and gneisses (Piña-Gauthier et al., 2013). 81 

The regional climate is humid, with annual precipitation totals of 3000-3200 mm (Alvarez-82 

Garreton et al., 2018; Mohr et al., 2017) and a mean annual temperature of 8 °C (Alvarez-83 

Garreton et al., 2018).  84 

Our study areas are largely covered by stands of Valdivian temperate rainforests, which are 85 

structurally complex with many endemic species (DellaSala, 2011). The living biomass is high 86 

(~370 tC/ha) and up to twice as much organic carbon may reside in floodplain forest soils around 87 

Chaitén (Figure 1; (Mohr et al., 2017). Broadleaf species dominate these rainforest, while 88 

conifers are rare. Prominent tree species include Nothofagus nitida (Phil.) Krasser (coïgue de 89 

Chiloé); Podocarpus nibigens Lindl. (Manio); Drimys winterii J.R.Forst and G.Forst (canelo); 90 

Amomyrtus meli (Phil.) D.Legrand and Krausel (meli); and Luma apiculata (DC.) Burret 91 

(Arrayán rojo). Rainforest stands around Chaitén are in various states of post-volcanic 92 

disturbance initiated by the 2008 eruption sequence of Chaitén Volcano (Lara, 2009). The 93 

eruption gave rise to pyroclastic density currents, small lateral blasts, lava-dome growth and 94 

collapse, lahars and widespread tephra (Alfano et al., 2011). Subsequent reworking of 95 

volcaniclastic sediments aggraded river channels and floodplain forests by up to 11 m, causing 96 

channel avulsions, bank erosion, and log jams (Major et al., 2016; Pierson et al., 2013; Swanson 97 

et al., 2013). Tephra damaged on hillslope forests triggered a pulsed and distinctly delayed 98 

increase in landslide activity several years after the eruption (Korup et al., 2019). 99 

 100 
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 101 

Figure 1. Distribution of landslides mapped from 2001 to 2019 in the three study areas (yellow 102 

borders) in south-central Chile: Calbuco (5880 km2), Huequi (897 km2) and Chaitén (2413 km2). 103 

Faults are part of the greater active Liquiñe-Ofqui Fault Zone. Hydrographic data are from the 104 

Dirección General de Aguas de Chile (DGA); geological data are from the National Geology and 105 

Mining Service of Chile (SERNAGEOMIN). Coordinate system is UTM 19S; satellite imagery 106 

is from Google Earth®. 107 
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3 Methods 108 

3.1 Data 109 

We compiled inventories of landslides that occurred in our study areas between 2001 and 2019 110 

by mapping from Google Earth® imagery and carrying out several local ground checks between 111 

2014 and 2019. We mapped landslides using diagnostic features such as distinct, elongate, and 112 

contrast-rich forest gaps with bare scarps showing displaced soil, and rock together with 113 

transport zones and runout lobes (Fiorucci et al., 2011). We mapped polygons approximating the 114 

total affected area for each landslide, estimating the date of each landslide with approximately 115 

annual precision that we obtained from the difference in timestamps of the images showing the 116 

latest undisturbed conditions and the earliest landslide occurrence. The triggers of these 117 

landslides remain unknown, though we can largely exclude seismic effects: the M7.6 Chiloé 118 

earthquake in 2016 (43.406°S, 73.941°W) was the largest recent near our study areas, though 119 

triggered 5% of the landslides in our study areas at the most. We mapped a total of 411 120 

landslides in Calbuco, 38 in Huequi, and 616 in Chaitén, covering 0.6%, 0.4% and 0.8% of each 121 

study area. 122 

We used forest-cover information from the Global Forest Change inventory (Version 1.7) 123 

(Hansen, 2013) as a proxy of tree canopy cover in 2000, thus giving an indication about forest 124 

stands prior to all landslides that we mapped. Tree cover is defined as the fraction of canopy 125 

closure for >5 m high vegetation classified from time series of Landsat images at 30-m 126 

resolution (https://earthenginepartners.appspot.com/science-2013-global-127 

forest/download_v1.7.html). Given the mostly high (>80%) crown closure in most of our study 128 
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area, we used a log1p-transformation of tree cover to reduce the strong negative skew in its 129 

distribution; we thus obtain a complementary metric of crown openness. 130 

Regional data on wind speed have become widely available given the rising interest in the 131 

potential for clean and renewable power generation. We used wind speed (m/s) estimates from 132 

the Worldclim dataset (Fick & Hijmans, 2017), available as monthly averages for the period 133 

1970-2000. These data were generated based on weather station data interpolated with elevation, 134 

distance from the coast, and mean MODIS cloud cover as covariates at 1-km grid resolution. We 135 

aggregated these data to mean annual wind speeds (Figure S1, Supporting Information). 136 

To characterize topographic position, we used SAGA GIS 2.3.2 and its landform classification 137 

tool by Weiss (2001) to derive a multi-scale Topographic Position Index (TPI) from 30-m 138 

elevation data from the Shuttle Radar Topography Mission (SRTM). The TPI compares the 139 

elevation of each pixel in a digital elevation model (DEM) to the mean elevation of a circular 140 

neighborhood around the pixel. To find a compromise between local landform detail and the 141 

wind-data resolution, we classified landform types by averaging over two neighborhoods of 100 142 

m and 1000 m. 143 

3.2 Bayesian multilevel model 144 

To analyze the role of crown openness and wind speed on the occurrence of shallow landslides 145 

we used logistic regression. This method has been used widely for landslide susceptibility studies 146 

due to its simplicity and ease of interpreting parameters (Das et al., 2012). We chose a Bayesian 147 

variant of logistic regression that admits prior knowledge about the parameters and explicitly 148 

handles uncertainties and sparse, imbalanced data (Bürkner, 2017; van de Schoot et al., 2021). 149 

We chose a hierarchical model (Kruschke & Vanpaemel, 2015) because we surmise that 150 
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landslide occurrence, crown openness, and wind speed vary with landform type, hence 151 

acknowledging structure in our data. The model predicts the probability of classifying a given 152 

location (pixel) as part of a mapped landslide P(L) as a function of crown openness and wind 153 

speed for each landform type and the average of all data. The hierarchical structure of the model 154 

learns from the data one pooled (or population-level) parameter estimate for all the data, and 155 

individual parameters estimates that express deviations (or group-level effects) from this average 156 

for each landform type (see Supporting Information). We chose a varying intercept model, in 157 

which the weights of crown openness and wind speed remain unchanged across all landform 158 

types, though with differing average landslide probability. During the learning process, 159 

parameter estimates can inform each other across groups, thus reducing the potential for 160 

overconfident and unduly high or low coefficient values (Kruschke, 2014). 161 

We use a weakly informative, but robust, Student-t prior distribution for both crown openness 162 

and wind speed, and for the (population-level) intercept; for the standard deviation of group-level 163 

(landform) effects we chose a standard exponential prior, assuming that a lower variance of P(L) 164 

between landforms is more likely than a higher one. We standardized all predictors to zero 165 

means and unit standard deviations and sampled from the numerically approximated posterior 166 

distribution given training data with a balanced number of landslide and unaffected terrain 167 

samples. We used the NUTS sampling scheme implemented in the STAN probabilistic 168 

programming language (Carpenter et al., 2017) to draw samples from the joint posterior 169 

distribution via the R package brms (Bürkner, 2017). We ran four independent Hamiltonian 170 

Monte Carlo chains based on 2000 iterations including 500 warm-up samples and checked each 171 

chain for convergence. We assessed the performance of this classifier based on its posterior 172 
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predictive distribution and recorded the fraction of correct classifications compared to the 173 

observed frequency of landslides in all study areas and for all landform types. 174 

4 Results 175 

In all three study areas, the posterior distributions show that different landform types have 176 

credibly different model intercepts and thus log-odds ratios of classifying landslides (Figure S2). 177 

For an average crown openness and wind speed, the posterior probability of classifying a 178 

location as part of a landslide is highest in midslope locations and low-order channels and their 179 

adjacent hillslopes, and lowest on upper slopes and (mostly flood and coastal) plains (Figure 2). 180 

 181 
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 182 

 183 

Figure 2. Posterior estimates of the probability of classifying a landslide based on standardized 184 

predictors crown openness and wind speed u* in our three study areas (Figure 1). Thick lines are 185 

posterior medians, and shaded areas enclose the 95% highest density intervals for mean wind 186 
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speed (grey), and roughly one standard deviation above (gold) and below (green). Black dots are 187 

observed data. 188 

 189 

Both crown openness and wind speed have positive credible and similar weights around Calbuco 190 

and Huequi, but roughly half their weight around Chaitén (Figure 3). The probability of 191 

classifying landslide terrain P(L) increases with crown openness and wind speed in all areas. For 192 

a fixed crown openness, P(L) changes with wind speed, except for the Chaitén area, which is the 193 

only area with a credible negative interaction between these two predictors. There, P(L) is nearly 194 

unchanged at high wind speeds regardless of forest cover (Figure 2). While the model predicts 195 

that P(L) increases with increasing wind speed in more dense forests around Chaitén, this 196 

relationship is reversed and lower wind speeds raise P(L) in more open forest stands. 197 

 198 
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 199 

Figure 3. Posterior regression weights of standardised crown openness, wind speed, and their 200 

interaction. Black horizontal lines are 95% highest density intervals, and white circles are 201 

posterior means. Interaction between crown openness and wind speed is credibly non-zero only 202 

in the Chaitén area. 203 

 204 
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The model performance at the level of each study area is moderate: the true positive rates are 205 

0.75 on average, and mostly higher than the average true negative rates, which are 0.52 on 206 

average (Figure S3). We note that models trained for Calbuco and Huequi have less average 207 

predictive skill for the volcanically disturbed Chaitén area, where 97% of mapped landslides and 208 

96% of the total landslide area occurred after the 2008 eruption sequence (Korup et al., 2019). 209 

However, the model trained for this particular area predicts landslides in the less or undisturbed 210 

study areas much better (though absence of landslides much worse). The average performance of 211 

all models improves substantially to true positive rates >0.8 if considering individual landform 212 

types in the hierarchical model (¡Error! No se encuentra el origen de la referencia.). This 213 

improvement holds for most landforms except for high and local ridges and upper slopes, for 214 

which the model predicts true negative rates (landslide absence) better. 215 

 216 
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 217 

Figure 4. Model performance expressed as the true positive and true negative rates versus 218 

empirically observed frequencies of landslide per landform type (colour-coded). Dashed grey 219 

lines mark the baseline frequency of landslides (or their absence) and thus a purely random 220 

classifier. Bubbles are scaled by observed landslides per landforms. Bubbles above (below) the 221 

grey lines are posterior estimates that are better (worse) than the baseline. 222 

 223 

5 Discussion 224 

We explored the roles of forest cover and wind speed in predicting shallow landslides that 225 

occurred in Chilean Patagonia between 2001 and 2019. Our statistical approach is based on the 226 
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assumption that the satellite-derived forest cover (Hansen, 2013) is sufficiently well resolved and 227 

accurate and representative of ecologically intact forest structure at the regional scale. Our 228 

balanced sample of landslide and unaffected terrain pixels is large enough to outweigh the role of 229 

possible outliers (such as local pixel noise or sensor artifacts) that we cater to by choosing a 230 

robust logistic regression. We acknowledge that the wind speed data are interpolated averages 231 

over at least three decades prior to the landslides that we mapped, and that more refined models 232 

could use synoptic data of wind fields and their variability as predictors. Averaged monthly wind 233 

speed may poorly reflect effects of gusts or windstorms. We therefore consider our estimates of 234 

the wind effects on landslides as conservative. Nonetheless, elevation is one foundation of these 235 

regionally interpolated wind speed estimates, and we expect that the data are consistent in this 236 

regard, collapsing effects of elevation and distance from the ocean (Fick & Hijmans, 2017). 237 

Measurements of wind directions in our study area highlight the role of wind exposure (Letelier 238 

et al., 2011) (Figure S4). An alternative model, however, in which the coefficients of crown 239 

openness and wind speed were allowed to vary across landforms revealed that neither predictor 240 

had weights that deviated credibly from the pooled average. 241 

Another source of uncertainty and potential source of model misclassification is linked to the 242 

landslide inventory. Our mapping may underestimate the occurrence of smaller failures under 243 

forest cover mostly due to image resolution and shadow effects (Brardinoni et al., 2003). Yet we 244 

mapped landslides that happened since 2001, thus avoiding older imager with lower resolution. 245 

Several images taken after the eruption of the Chaitén volcano (2008) have artifact noise in 246 

tephra-covered areas and may under-represent landslide numbers. Some of the mapped 247 

landslides may have had failure surfaces too deep-seated to be affected by high wind loads, and 248 

we may have misclassified these deep-seated failures as shallow landslides. During our field 249 
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surveys, we observed that root networks often spread laterally above the soil-bedrock interface, 250 

with only few smaller roots penetrating several to tens of centimeters into bedrock cracks. Hence 251 

some of the landslides that we mapped and that our model misclassified may have involved more 252 

fractions of rock debris than mechanical stresses transferred by tree roots alone could mobilize. 253 

 254 

Keeping these caveats in mind, our results support the notion that denser tree cover reduces the 255 

probability of classifying landslide terrain in a Bayesian framework. We find that wind speed has 256 

a comparable weight (Figure 3) with higher wind speeds predicting higher probabilities of 257 

classifying landslides. We also observe that the Chaitén area shows the largest differences in the 258 

weights and interaction of these predictors. There, the probability of classifying landslides in 259 

areas of high wind speed hardly changes with forest cover (Figure 2). We attribute this 260 

conspicuous difference to the 2008 eruptions of Chaitén volcano, which buried >150 km2 of 261 

temperate rainforest under tephra (Korup et al., 2019), causing die-back of tree cohorts due to 262 

toxic fallout, stomata plugging, and local loads, causing hundreds of shallow landslides that 263 

dominate our inventory in this study area. The defoliation of disturbed tree cohorts may have 264 

reduced the surface area exposed to wind loads and thus lowered the effects of high winds 265 

(Swanson et al., 2013). In contrast, less windy areas with low or disturbed tree cover are more 266 

likely to feature landslides under our model. Such low-wind speed areas may have favored 267 

deposition of tephra and hence accumulated thicker layers that promote the decay of dead roots, 268 

thus decreasing root cohesion (Sidle, 1991) particularly on wind-protected sites. We emphasize 269 

that the Calbuco area was also impacted by a volcanic eruption in 2015, but to a much lesser 270 

extent with smaller areas of forest dieback and fewer post-eruptive landslides. We attribute only 271 

19% of the mapped landslides (or 10% of the total area) to the Calbuco eruption. 272 
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 273 

Overall, our findings about the role of wind speed are in line with those by Buma & Johnson 274 

(2015), who identified wind exposure as an important control for landslide initiation in the 275 

temperate rainforests of southeast Alaska. There, wind sheltered areas were devoid of evidence 276 

of major storms in the past 1000 years (Nowacki & Kramer, 1998), whereas wind-exposed 277 

slopes were disturbed by shallow landslides frequently (Kramer et al., 2001). Our model shows 278 

that wind speed without any information on direction can be an important predictor. While we 279 

would prefer wind speed squared u2 as the physically more meaningful predictor, our data are 280 

monthly means, so that squaring them would yield underestimates, as (E(u))2 < E(u2), where E is 281 

the expectation value. 282 

 283 

In essence, our results demonstrate the advantage of using a hierarchical model admitting 284 

landform types over several ones that simply average over all landforms in a given study area 285 

(Figure 4). The predictive performance increases notably for some landforms, though at the cost 286 

of underpredicting landslides on other landforms. Upper hillslopes and high ridges seem the most 287 

problematic areas for our model in terms of negligible skill, whereas it can predict landslides in 288 

low-order channels, midslope ridges or valleys confidently in regions outside of the training 289 

areas. One reason for the less skilled predictions may be that our model ignores the structure or 290 

edge effects of forest patches (Ruck et al., 2012) that can locally modify wind patterns and speed 291 

(Pawlik, 2013). Such edge effects may emphasize the gradual expansion of landslide-affected 292 

areas by either the retrogressive erosion of scarps or the downslope migration of deposit lobes by 293 

reworking. While our random sampling scheme to obtain training data minimizes spatial 294 
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autocorrelation in the predictors, the spatial association of topography, forest structure, and wind 295 

speed distribution may indeed drive more slope instability than our model detects.  296 

 297 

Our model intentionally excludes the role of rainfall as one of the most plausible triggers of 298 

landslides in southern Chile. The high annual rainfall totals that can exceed 3,000 m in our study 299 

areas make precipitation rarely a limiting factor on landslides (Buma & Johnson, 2015). We 300 

suspect that wind speed correlates with precipitation metrics (Rulli et al., 2007), and that wind 301 

speed thus reflects to some degree also hydrological drivers of slope instability beyond the 302 

mechanical control of wind load. The high landslide counts that we observed in mostly low-order 303 

channels and their neighbouring hillslopes (79% of all landslides in Calbuco, 63% in Huequi, 304 

and 43% in Chaitén) also point to hydrological triggers. While these topographic depressions 305 

collect more water, they also favor denser tree cover and funnel winds, however. We stress that 306 

our model prediction is also independent of local slope inclination, which is the dominant 307 

predictor of slope instability in comparable landslide susceptibility models (Reichenbach et al., 308 

2018). Local elevation differences define the topographic position index, on which our landform 309 

classification is based. Yet these landforms are groups instead of predictors in our model. 310 

Moreover, the linear correlation between wind speed and local slope inclination (0.28 < r < 0.40) 311 

in our study areas is too low to attribute the role of wind speed to effects of hillslope steepness 312 

alone. 313 

 314 

In summary, we see two immediate benefits from our hierarchical modeling approach. First, it 315 

helps to improve model performance by structuring the data into topographic positions that are 316 

intuitive and objectively different from each other, whereas the popular alternative of using 317 
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instead more predictors is more prone to the risk of overfitting and collinearity. Second, grouping 318 

the model by landforms opens the way for more customized and optimized landslide prediction 319 

catered to specific topographic locations even if the bulk average prediction for a study area is 320 

low. The hierarchical structure also helps to identify more objectively those portions of the 321 

landscape, for which we need better data constraints for landslide prediction. 322 

 323 

6 Conclusions 324 

Our Bayesian hierarchical logistic regression shows that more crown openness of forests and 325 

higher wind speeds credibly raise the chance to detect landslide terrain in three mountainous 326 

areas sustaining temperate rainforest areas in southern Chile. Volcanic disturbance appears to 327 

smooth out the role of high wind speeds by making denser forest stands more prone to 328 

landslides, and more open stands less prone. Trees cohorts buried or suffocated by tephra are 329 

areas where altered rates of soil water infiltration and root decay may be more dominant drivers 330 

of slope instability than wind loads alone. In any case, distinguishing between landforms in a 331 

hierarchical model context substantially improves an otherwise moderate average performance of 332 

the classification, but also highlights topographic locations for which the prediction needs to be 333 

refined. Our model also encourages further enquiry into the rarely investigated role of wind 334 

speed in promoting slope instability in southern Chile and dense forested mountain regions 335 

elsewhere, especially with weather and wind extremes being on a projected rise in a warming 336 

world (Jung & Schindler, 2019; Rosende et al., 2019). 337 
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Introduction

This file contains supporting text devoted to outline the model setup and additional

figures that expand on the results documented in the main manuscript.

Text S1. We used a Bayesian robust regression to predict the posterior probability P (L)

at which a given location yi in our study areas is classified as part of a landslide source,

transport, or deposition area. We write this as P (L) = P (yi = 1) and denote the inverse

probability of classifying a location without a landslide as P (yi = 0) = 1−P (yi = 1). The

index i refers to the ith location, i.e. raster value, out of n observations in given study
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area. We can write this model with a Bernoulli likelihood conditional on the observed

data in general form as:

P (yi = 1|Xi,w) =
1

1 + e−Xiw
, (1)

where Xi is the ith row in a n×m design matrix with n observations and m columns.

The first column consists of 1’s for the intercept, while the remaining m−1 columns collect

the predictor (and possible interaction) values. The m× 1 column vector w contains the

m model coefficients, i.e. the intercept, the predictor weights, and weights for interaction

terms, if any. The matrix-vector product Xiw constitutes the linear predictor of the

model.

We acknowledge structure in our data by admitting j = {1, ..., 10} different grouping

levels lj to the model. These levels represent ten landform types that we classified from

the Topographic Position Index. We standardised the input values to zero means and unit

standard deviations and designate standardised parameters with an asterisk (∗). In this

hierarchical (or multilevel) model structure, we use as inputs standardised crown openness

χ∗ and standardised wind speed u∗, as well as their interaction χ∗.u∗ and write this for

our specific case:

P (yi = 1|Xi,w) =
(
1 + e−w0[j]+w1χ∗

i+w2u∗i+w3χ∗
i .u

∗
i

)−1
, (2)

where we allow the intercept w0[j] to vary by landform type j as:

w0[j] ∼ N (0, σ2
j ), (3)
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where σ2
j is the variance of group-level intercepts, i.e. whether and by how much the

log-odds ratios for average predictor inputs vary by landform type. Note that these

intercepts represent log-odds ratios of classifying location yi as part of a landslide for zero

(i.e. average) predictor values. Positive log-odds ratios are equivalent to values of P (L) >

0.5, while negative log-odds ratios are equivalent to P (L) < 0.5. The zero mean of the

Gaussian distribution in Equation 3 is the intercept of the model pooled over all data

regardless of landform type.

We specify our prior assumptions using the following distributions:

w0[j] ∼ T (ν = 3, µ = 0, σ = 2.5), (4)

w1 ∼ T (ν = 3, µ = 0, σ = 2.5), (5)

w2 ∼ T (ν = 3, µ = 0, σ = 2.5), (6)

w3 ∼ T (ν = 3, µ = 0, σ = 2.5), (7)

These independent prior distributions are weakly informative and based on the assump-

tion that all model weights are from a Student’s t-distribution with location µ = 0 and

scale σ = 2.5. This choice of prior means that we surmise that regression weights may

be equally likely positive or negative, though symmetrically distributed and within the
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interval [−7.96, 7.96] with 95% probability. Such extreme regression weights are unlikely

for standardised predictors and underline our weakly informative choice.

Our prior distribution of the variance of the group-level intercept is a standard expo-

nential. This reflects our assumption that the spread of log-odds of classifying landslides

is more likely near zero, hence more likely to differ less with landform type:

σj ∼ exp(λ = 1), (8)

This prior specifies that σj lies in the interval [0, 3] with 95% probability, with larger

spread becoming exponentially less likely.

We ran our model with different parameter choices for these priors and observed only

minute changes in the posterior distributions, given the large number of observations in

each study area. Although using the three study areas as another grouping level in the

model would be possible, we preferred using the data from the different regions as testing

data for models trained elsewhere.
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Figure S1. Distributions of standardised wind speed and standardised crown openness per

landform type in temperate rainforests in three study areas of south-central Chile. Boxes encom-

pass the interquartile range, and box centres are medians; whiskers span 1.5 times the interquar-

tile range and points are outliers.
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Figure S2. Posterior distributions of standardised model intercepts by landform type. Black

horizontal lines are 95% highest density intervals (HDIs), and white circles are posterior means.

Vertical grey solid (dashed) lines are pooled means (95% HDIs). Intercepts are the log-odds

ratios of classifying a pixel with average crown openness and wind speed as part of a landslide.
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Figure S3. Performance of Bayesian robust logistic regression for predicting landslide terrain

from crown openness and wind speed. True positive (and negative) rates refer to the fraction of

correctly predicted landslides (and their absence) for a given training and testing dataset. All

rates refer to the pooled model averaged over all landform types. The average true positive rate

is 0.75, whereas the average true negative rate is 0.52.
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Figure S4. Rose diagram of hourly wind speed and direction for south-central Chile (40–43◦S,

72–73◦W) from January 2013 to December 2017; grey circles are the frequency of observations.

The overall mean wind speed was 2.9 m s−1, mostly from a W to WNW direction and with negligi-

ble amount of calm conditions. Data are freely available from the Global Forecast System (GFS)

of the U.S. National Weather Service (NWS) at https://www.ncdc.noaa.gov/data-access/

model-data/model-datasets/globalforcast-system-gfs.
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