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Abstract

In this study, a neural network (NN) emulator for radiation parameterization was developed for the use of an operational weather

forecasting model in the Korea Meteorological Administration. The development of the NN emulator was based on large-scale

training sets and 96 categories (longwave–shortwave, months, land–ocean, and clear–cloud). As the radiation parameterization

was replaced by the NN emulator, a 60-fold speedup for the radiation process was achieved, with a decrease of 87.26% in

the total computation time. The accuracy of the NN emulator was strictly evaluated through comparison with the results

obtained from the infrequent use of the original radiation scheme with the same computational cost. The mean errors of the

NN radiation emulator were significantly reduced by 21–34% compared with the infrequent method. The combination of using

the NN radiation emulator and applying it infrequently provided an additional speedup of up to 36-fold, corresponding to

2180 times speedup compared with the control run, without a significant reduction in accuracy. The optimized structure for

the radiation emulator designed in this study also showed universal robustness even in the use of limited training sets with

incomplete coverage. In conclusion, the NN radiation emulator in this study provides benefits regarding both accuracy and

computational cost, making it useful for improving weather forecasting modeling.
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Abstract 33 

In this study, a neural network (NN) emulator for radiation parameterization was developed 34 

for the use of an operational weather forecasting model in the Korea Meteorological 35 

Administration. The development of the NN emulator was based on large-scale training sets 36 

and 96 categories (longwave–shortwave, months, land–ocean, and clear–cloud). As the 37 

radiation parameterization was replaced by the NN emulator, a 60-fold speedup for the 38 

radiation process was achieved, with a decrease of 87.26% in the total computation time. The 39 

accuracy of the NN emulator was strictly evaluated through comparison with the results 40 

obtained from the infrequent use of the original radiation scheme with the same 41 

computational cost. The mean errors of the NN radiation emulator were significantly reduced 42 

by 21–34% compared with the infrequent method. The combination of using the NN 43 

radiation emulator and applying it infrequently provided an additional speedup of up to 36-44 

fold, corresponding to 2180 times speedup compared with the control run, without a 45 

significant reduction in accuracy. The optimized structure for the radiation emulator designed 46 

in this study also showed universal robustness even in the use of limited training sets with 47 

incomplete coverage. In conclusion, the NN radiation emulator in this study provides benefits 48 

regarding both accuracy and computational cost, making it useful for improving weather 49 

forecasting modeling. 50 

Keywords: neural network, radiation, emulator, speedup, WRF, RRTMG 51 

 52 

Plain Language Summary 53 

Numerical weather forecasting model requires a lot of computational resources based on 54 

supercomputers. In an attempt to significantly reduce computational cost, emulator studies 55 

have been actively conducted. The ultimate goal of most emulator studies is to reduce the 56 

computational cost while replicating the accuracy of the control run. However, this study 57 

suggests a novel approach that can improve both accuracy and speed for radiation emulator. 58 

This is possible through comparison with the operational method based on the infrequent use 59 

of the radiation scheme. To do this, large-scale datasets and a highly classified training 60 

strategy were adopted. We also suggest that the combination of an NN radiation emulator and 61 

its infrequent use can produce significant speedup by as much as thousands of times while 62 

maintaining accuracy. This study will shed light on a new research direction for the 63 

development of radiation emulator based on numerical weather and climate models. 64 



1. Introduction 65 

Recent advances in artificial intelligence (AI) techniques have provided challenges 66 

beyond developing theory-based numerical weather–climate prediction models (Reichstein et 67 

al., 2019; Hutson, 2020). The post-processing of numerical model outputs is the most typical 68 

example of AI application to numerical weather and climate forecasting (Krasnopolsky and 69 

Lin, 2012; Rasp and Learch, 2018; Ham et al., 2019; Scher and Messori, 2019). The 70 

application of AI to data assimilation in numerical weather prediction (NWP) models 71 

(Boukabara et al., 2019; Cho et al., 2020; Lee et al., 2020) is also an important in the field of 72 

weather forecasting. The development of AI emulators (or surrogate models) to replace 73 

various processes within the NWP model has been recently attempted for applications such as 74 

dynamics (Dueben and Bauer, 2018; Scher, 2018), representation of sub-grid processes with 75 

convective parameterization (Brenowitz and Bretherton, 2018; Gentine et al., 2018; 76 

O'Gorman and Dwyer, 2018; Rasp et al., 2018; Yuval and O'Gorman, 2020), planetary 77 

boundary layer (Wang et al., 2019), and radiation (Chevallier et al., 1998, Chevallier et al., 78 

2000, Krasnopolsky et al., 2005; Krasnopolsky et al., 2010; Belochitski et al., 2011; 79 

Krasnopolsky et al., 2012; Pal et al., 2019; Roh and Song, 2020; Belochitski and 80 

Krasnopolsky, 2021). 81 

This study focuses on emulator studies for radiation processes. Although longwave (LW) 82 

and shortwave (SW) processes can be elaborately represented by a line-by-line radiative 83 

model (e.g., Clough et al., 1992; 2005), fast radiative transfer models with corrected-k 84 

methods (Mlawer et al., 1997; Iacono et al., 2008; Pincus et al., 2019) are commonly used, 85 

owing to the benefit of computational cost. Early studies based on shallow neural network 86 

(NN) with a single hidden layer were developed in the framework of the radiative transfer 87 

model (Chevallier et al., 1998) or its application to data assimilation with respect to the 88 

update of the initial field (Chevallier et al., 2000). The radiative transfer for TOVS (RTTOV) 89 



has been utilized using multiple linear regressions since 1999, and it has been widely used in 90 

data assimilation in the NWP model (Saunders et al., 2018). Recent studies on radiative 91 

transfer modeling have extended the application of various AI techniques, including multiple 92 

linear regression, deep neural network (DNN), adaptive network-based fuzzy inference 93 

systems, and convolution neural network (CNN) for radiation processes over a clear sky (Liu 94 

et al., 2020; Ukkonen et al., 2020; Bilgic and Mert, 2021; Veerman et al., 2021) and 3-95 

dimensional cloud radiative effects (Meyer et al., 2021). As these studies do not utilize 96 

repetition by time integration, such as in the numerical forecast model, errors by emulation do 97 

not accumulate. 98 

The radiation process also plays a key role in numerical weather–climate prediction 99 

models. In numerical models, it takes the form of radiation parameterization. However, the 100 

radiation treatment is still expensive for the numerical model; thus, efforts have been made to 101 

replace the radiation parameterization with the NN approximation (named the radiation 102 

emulator). This presents a challenge because the approximation error of the radiation 103 

emulator can rapidly increase during the long-term integration process inside the numerical 104 

model (Krasnopolsky et al., 2008). Nevertheless, the improvement in computational cost can 105 

significantly accelerate the numerical forecast model, demanding expensive supercomputer 106 

calculations. This acceleration can be very beneficial in the event of severe weather, in which 107 

urgent notification can lead to the protection of human life and property. As a pioneering 108 

study, Krasnopolsky et al. (2010) presented an impressive result, showing that the NN 109 

emulator for the Rapid Radiative Transfer Model for General Circulation Models (RRTMG; 110 

Iacono et al., 2008) parameterization can improve the computational cost by 16–60 fold (LW 111 

to SW), approximately 30-fold for a day, in comparison to the RRTMG scheme, resulting in a 112 

20%–25% reduction in the total computational cost for the National Centers for 113 

Environmental Prediction (NCEP) Climate Forecast System model. A follow-up study for the 114 



NCEP Global Forecast System by Krasnopolsky et al. (2012) further reported a 20 to 100 115 

(LW to SW) time speedup and 15%–18% reduction in total computational cost. Recently, 116 

Roh and Song (2020) focused on cloud-resolving simulations at fine temporal (20 s) and 117 

horizontal (250 m) scales, demonstrating a 20–100-fold speedup using NN emulators for the 118 

RRTMG-K parameterization (Baek, 2017). This resulted in an 82%–86% reduction in the 119 

total computational cost. This is an interesting result, considering that most previous studies 120 

were based on climate simulations under coarse temporal and horizontal resolutions. As the 121 

long-term and large-scale (e.g., the entire hemisphere) average is typically considered in 122 

climate simulations, errors caused by the emulator can be expressed in reduced form. 123 

According to the comparison results for various AI methods, Belochitski et al. (2011) 124 

found that LW emulators based on the approximate nearest neighborhood, classification and 125 

regression trees, and random forest methods caused increases in root mean square error 126 

(RMSE) of 84%, 40%, and 20%, respectively, compared with the NN method with 80 127 

neurons. Pal et al. (2019) reported that a DNN radiation emulator can produce 8–10 fold 128 

speedup and 90%–95% accuracy in the Super-Parameterized Energy Exascale Earth System 129 

Model (SP-E3SM) from the United States Department of Energy (DOE); however, they did 130 

not provide a specific reduction in the total computational cost. Liu et al. (2020) showed that 131 

the use of a CNN emulator could reduce the RMSE of clear-sky LW cooling rates by 41%–132 

59%, compared with the DNN emulator with three hidden layers, whereas the CNN resulted 133 

in approximately 10-fold slowdown in contrast to the 10.88-fold speedup for the DNN (i.e., 134 

the CNN was approximately 100 times slower than the DNN). We can see that the use of 135 

deep hidden layers or more complex structures (Pal et al., 2019; Liu et al., 2020) may not 136 

always produce better performance compared with the NN with a single hidden layer (in 137 

terms of speedup), although it offers a variety of possibilities for optimization. Belochitski 138 



and Krasnopolsky (2021) also noted the risk of developing radiation emulators for the DNN 139 

pertaining to the control of complexity and nonlinearity. 140 

Another approach to improve the speed of radiation parameterization is to perform the 141 

radiation scheme less often than the time step of the NWP model. Although the infrequent 142 

approach is popularly adopted in operational weather forecasting, numerical errors can 143 

accumulate over time in interaction with other processes (Xu and Randall, 1995; Pauluis and 144 

Emanuel, 2004; Pincus and Stevens, 2013). In particular, a fixed radiation process within the 145 

time step of radiation parameterization can induce considerable errors around sunrise and 146 

sunset when solar radiation changes rapidly. Roh and Song (2020) insisted that the frequent 147 

use of NN radiation emulator in the NWP model should provide benefits in both speedup and 148 

accuracy compared to the operational method based on infrequent use. The improvement of 149 

accuracy by the emulator is quite interesting because most emulator studies aim to mimic the 150 

original parameterization, and this cannot overcome the original scheme. In fact, results for 151 

300-neuron emulators showed reductions of 28.7% and 20.5% in RMSE for LW and SW 152 

fluxes, respectively, compared with the infrequent method in which the radiation scheme was 153 

called every 20th time step. Additionally, the 56 neuron-based emulator results showed 154 

benefits of both five-fold greater speedup (i.e., 20→100 times) and reduced RMSEs of 3.6%–155 

22.8%. However, as the results of Roh and Song (2020) were limited to idealized cloud 156 

simulations, whether the radiation emulator can offer benefits in both speedup and accuracy 157 

has yet to be verified in real weather forecasting. 158 

The Korean Peninsula is a typical area with a unique precipitation mechanism in the 159 

world, as part of a humid monsoon environment, leading to lower accuracy of precipitation 160 

forecasts for the area (Song and Sohn, 2015; Song and Sohn, 2018, Song et al., 2019; Song et 161 

al., 2020). To improve weather forecasting over the Korean Peninsula, we developed an NN 162 

radiation emulator for RRTMG-K parameterization under the framework of the Korea Local 163 



Analysis and Prediction System (KLAPS; Kim et al., 2002), which is an operational short-164 

range weather forecast model of the Korea Meteorological Administration (KMA). This 165 

study is significant as the first attempt to improve real-time weather forecasting using an NN 166 

radiation emulator. In contrast to climate simulation, the accuracy and stability requirements 167 

for weather forecasting are very high. This study also addresses new attempts to optimize the 168 

structure of the input–output variables and training sets. Furthermore, the accuracy of the 169 

developed radiation emulator was evaluated in comparison with the infrequent use of original 170 

radiation scheme with the same computational cost. No similar attempt has been 171 

demonstrated in the literature for radiation emulators, except the ideal simulation 172 

implemented by Roh and Song (2020). Lastly, this study suggests the possibility of additional 173 

speedup while maintaining accuracy through the infrequent use of an NN radiation emulator. 174 

2. Data and Methods 175 

The dynamic and physical processes of the current operational KLAPS in the KMA are 176 

based on the Advanced Research Weather Research and Forecasting (WRF-ARW) model 177 

(Skamarock et al., 2019) version 3.9.1.1, as well as recent physics updates achieved through 178 

the development of the Korean Integrated Model (KIM) system (Hong et al., 2018). These 179 

updated physics schemes are available for WRF versions later than version 4. In this study, 180 

we considered operational configurations of KLAPS, such as the RRTMG-K radiation (Baek, 181 

2017) and WRF double moment 7-Class (WDM7) microphysics (Bae et al., 2019), Shin and 182 

Hong planetary boundary layer (Shin and Hong, 2015), KIAPS Simplified Arakawa–183 

Schubert (SAS) cumulus (Kwon and Hong, 2017), Unified Noah land surface model (Tewari 184 

et al., 2004), and revised MM5 Monin–Obukhov surface layer (Jiménez et al., 2012). The 185 

systemic biases for the WDM microphysics scheme, which were reported by Lei et al. (2020), 186 

were corrected in this study. Although KLAPS also includes a local data assimilation system, 187 

it was replaced with the ECMWF Reanalysis 5 (ERA5) data (Hersbach et al., 2020) in the 188 



WRF Preprocessing System (WPS). As the data assimilation of KLAPS is not used, we will 189 

call the used numerical weather forecasting model “WRF” hereafter. The ERA5 datasets 190 

include 37 pressure and single-level data with hourly intervals and 0.25° × 0.25° horizontal 191 

resolution. The domain for the WRF simulation consists of 234 × 282 with a horizontal 192 

resolution of 5 km around the Korean peninsula and 39 vertical layers (or 40 levels) up to 50 193 

hPa. The WRF control run was integrated during one day every 20 s for both the time step (dt) 194 

and radiation time step (radt). Thus, total simulations are accumulated with 4,320 time steps. 195 

This study focuses on the RRTMG-K parameterization, which primarily computes vertical 196 

heating rates and radiative fluxes over the LW spectrum with 256 g points for 16 bands and 197 

the SW spectrum with 224 g points for 14 bands using a two-stream correlated-k method and 198 

optimized Monte Carlo independent column approximation. When the RRTMG-K scheme 199 

was used at each time step (i.e., the same as the control run), it was responsible for 88.63% of 200 

the total computational cost in the WRF control run. As the computational cost of the SW 201 

process during the day is approximately 3.72-fold greater than that of LW, the daytime 202 

simulation is 4.72 times slower than that at night. For a similar reason, the computational 203 

time increases around the summer solstice with a longer daytime period but decreases around 204 

the winter solstice, affected by the change in solar zenith angle. 205 

This study examines 48-day cases that consist of two extreme heavy precipitation cases 206 

and two non-precipitating events in each month over the Korean peninsula. Between 2009 207 

and 2018, the two selected precipitation events corresponded to the maximum and second 208 

maximum cases for daily precipitation in South Korea, whereas two non-precipitating cases 209 

were randomly selected. These cases can represent two extreme polarizing events that are 210 

considered difficult problems in machine learning, resulting in various atmospheric 211 

conditions despite small subsets. For example, outgoing LW radiation is generally 212 

characterized by minimum negative values for heavy precipitation events and maximum 213 



negative values for clear areas. The training data based on 48 cases were integrated at each 20 214 

s time step and recorded in 10 min intervals. The training data are produced through internal 215 

modification of RRTMG-K and related codes, not in final outputs that may be affected by 216 

other processes, to extract accurate input and output data. Training sets are further divided by 217 

month, land/ocean, and clear/cloud, in addition to LW and SW. The LW and SW 218 

parameterizations are already separated in the original scheme, and SW is only used during 219 

the daytime when it is defined as a positive solar zenith angle. The monthly separation 220 

confines the climatological monthly range of the input and output variables. Additionally, the 221 

physical variable characteristics around the surface can be significantly different between 222 

land and ocean. As radiative characteristics over cloud sky are very complicated as compared 223 

with those over clear sky, the separation of clear sky (i.e., zero cloud fractions at all levels) 224 

and cloud sky is physically reasonable. In fact, the data assimilation of satellite radiances in 225 

the NWP model is generally considered clear sky only because satellite data assimilation for 226 

cloud areas remains a challenging topic (Hong et al., 2018; Saunders et al., 2018; Hersbach et 227 

al., 2020). As previous radiation emulator studies did not distinguish between clear and 228 

cloudy areas in the NN training step, cloud fraction profiles were used as inputs, even for 229 

clear sky; this is a waste in terms of computational efficiency. In summary, a total of 96 230 

categories (12 months, land/ocean, clear/cloud, and LW and SW) are used in the training sets. 231 

Each training set consists of three million input–output pairs (corresponding to 1% of the 232 

total data). Such an attempt at optimization is noble, as no similar approach has been 233 

attempted in literatures for radiation emulators. Additionally, approximately 1.44 billion data 234 

records for LW and SW are used in this study, 720 times more than the 200,000 used in 235 

Krasnopolsky et al. (2010; 2012), implying that the NN approximation of the current 236 

radiation emulator is more mature. This is essential for achieving operational-level accuracy 237 

beyond the research level. 238 



As shown in Table 1, the inputs for the RRTMG-K emulator comprise 193 variables, 239 

including the following: vertical pressure, vertical temperature, vertical water vapor mixing 240 

ratio, vertical ozone mixing ratio, vertical cloud fraction, longitude, latitude, surface elevation, 241 

skin temperature, and surface emissivity (LW only), and solar constant (G) multiplied by the 242 

cosine solar zenith angle (cosθ) and surface albedo (SW only). Among the input variables, 243 

cloud fraction profiles have a significant influence on the LW and SW radiation processes. 244 

For example, strong cooling and heating areas are found above the cloud top for LW and SW, 245 

respectively, as shown by Roh and Song (2020). For a clear sky, the number of input 246 

variables is decreased to 161 as cloud fraction profiles are excluded. Geographical data, such 247 

as longitude, latitude, and elevation, are not included as input variables in the RRTMG-K but 248 

are added to realistically reflect the regional characteristics of the NN training. In particular, 249 

surface elevation is an important variable that affects actual vertical heights in relation to the 250 

terrain-following hybrid sigma pressure vertical coordinate of the WRF model (Skamarock et 251 

al., 2019). Other redundant constant variables, such as trace gases and aerosols, as well as 252 

microphysics variables, are excluded from the input variables to avoid possible uncertainties 253 

that they can cause. A total of 42 output variables for LW and SW were considered, such as 254 

heating rate profiles in 39 layers, total sky upward fluxes at the top of the atmosphere (TOA) 255 

and the surface, and total downward flux at the surface. Clear sky fluxes are excluded from 256 

the outputs because they are idealized clear skies and do not affect other variables. Note that 257 

there is no downward LW flux at the TOA, and the downward SW flux at the TOA can be 258 

parameterized by G×cosθ. G×cosθ is the primary driver of the SW radiation processes 259 

associated with the solar cycle. 260 

The NN software based on a single hidden layer (Krasnopolsky, 2014) was utilized to 261 

develop the radiation emulator in this study. Previous radiation emulators (e.g., Krasnopolsky 262 

et al., 2005; Krasnopolsky et al., 2010; Belochitski et al., 2011; Roh and Song, 2020; 263 



Belochitski and Krasnopolsky, 2021) have been developed using this software (or similar 264 

version for old literatures). Here, no tuning for hyperparameters (e.g., batch size, learning rate, 265 

activation function, regularization, normalization for inputs and outputs, and weight 266 

initialization) was performed, except the number of neurons. All settings of the 267 

hyperparameters used in this study are based on the default configuration of Krasnopolsky 268 

(2014); these will remain in future works. For non-linear relationships among given inputs 269 

and outputs, neural networks can provide an approximated solution (here, we used a 270 

hyperbolic tangent function for the activation function). Owing to NN training, weight and 271 

bias coefficients, which relate the inputs to the hidden layer and hidden layer to outputs, are 272 

obtained. Finally, the radiation emulator based on the obtained weight and bias coefficients 273 

completely replaced the original RRTMG-K parameterization in the WRF simulation (called 274 

NN-WRF in this study). When the NN results were applied to the WRF model, NN outputs 275 

were not produced over the range of min/max of the training set outputs to prevent errors 276 

caused by the extrapolation. As given by Krasnopolsky et al. (2010), numerical complexity 277 

can be expressed in the form of k × (n + m + 1) + m, where k, n, and m are the numbers of 278 

hidden neurons (neurons hereafter), input variables, and output variables, respectively. Thus, 279 

if a large number of neurons are considered, the accuracy may be enhanced; however, 280 

negative effects on the computational cost result owing to the proportional relationship 281 

between the number of neurons and numerical complexity. We expect that more optimization 282 

between hidden layers and neurons based on the DNN in future work can bring further 283 

improvements in accuracy; however, this is beyond the scope of this study. 284 

After several empirical tests, 90 neurons were selected to target a 60-fold speedup 285 

compared to the original RRTMG-K parameterization. The 60-fold speedup corresponds to 286 

approximately twice the speedup of Krasnopolsky et al. (2010). Additional experiments using 287 

different neurons may be necessary; however, this is not the principal concern of this study. 288 



The speedup of the radiation emulator was calculated under a single processor configuration 289 

during a one-day simulation for 48 cases. In other words, the speedup indicates the ratio of 290 

computation time for radiation processes (for LW and SW) when the RRTMG-K code (i.e., 291 

module_ra_rrtmg_swk.F in the WRF model) is completely replaced by the NN emulator 292 

(new module_ra_rrtmg_swk.F). Notably, the RRTMG-K LW code (module_ra_rrtmg_lwk.F) 293 

is a subroutine of the SW code (i.e., the input–output array in the LW code is completely 294 

shared with the SW code). In this study, two heavy precipitation and two clear-sky dominant 295 

events are considered in each month for the entire training dataset (2009–2018). The 296 

difference in speedup between clear-sky dominant and heavy precipitation events is not 297 

significant within 1%, in contrast to the 17% speedup for the cloud area in Krasnopolsky et al. 298 

(2010). Therefore, fewer input variables are considered in this study for clear sky by 299 

excluding the cloud fraction, contributing to a 14% reduction in numerical complexity 300 

compared with the cloud area. Therefore, distinguishing between clear and cloudy areas is 301 

considered an effective way to develop a radiation emulator. This has not been attempted in 302 

previous radiation emulator studies, which completely replace radiation parameterization 303 

within the numerical weather–climate models, although it has been commonly adopted in 304 

data assimilation studies, such as Chevallier et al. (2000). Consequently, the speedup for the 305 

radiation process of 60.90-fold (29.86-fold for night and 78.09-fold for daytime) contributes 306 

to the decrease in the total computation time of 87.26% (or eight times speedup) in the WRF 307 

model. This reduction is relatively large compared with the 20%–25% reduction in 308 

Krasnopolsky et al. (2010), implying that this study can pertain to situations in which 309 

radiation parameterization is vital for the entire model. 310 

3. Results 311 

Figure 1 represents the accuracy of the NN training for the LW/SW heating rate and flux 312 

in terms of monthly RMSEs. Although the NN training tends to converge an optimized 313 



solution for all given input–output pairs, the accuracy may vary depending on the output 314 

variables. Vertical heating rates for 39 layers and 3 fluxes are displayed together for LW and 315 

SW in the figure. Land/ocean results, as well as clear/cloud results, are combined in these 316 

RMSEs. Note that a fractional land area of 45.30% and an annual mean clear area fraction of 317 

35.88% are considered in this study. The RMSE results can be highly affected by the 318 

presence of clouds in the training cases. As September is characterized by the lowest cloud 319 

area fraction (47.47%), the RMSEs for LW in September are thought to be the smallest of the 320 

year. In contrast, larger RMSEs for LW were found in January and December. The RMSEs of 321 

SW tend to increase in boreal summer because the solar zenith angle increases toward 322 

summer solstice, in contrast to the lower errors of the winter season. As the cloud area 323 

fraction in June (51.92%) is relatively lower than that in April–May and July–August (66.07–324 

78.97%), the uncertainty of SW in June is relatively small despite the high solar zenith angle. 325 

Figure 2 shows the RMSEs of the training sets on land/ocean, as well as clear/cloudy. 326 

Although there is no significant difference in SW between land and ocean, the RMSE for LW 327 

over land is 13–16% higher than that over the ocean. It can be understood that the high 328 

variability of surface temperature and emissivity over land increases the uncertainty of LW. 329 

Among the three types of categories (month, land–sea mask, clear–cloud mask), the 330 

separation between clear and cloud areas had the greatest impact on optimizing the training 331 

accuracy. The RMSEs of heating rates (fluxes) over the cloud area are approximately 17.58 332 

times and 20.25 times (10.60 times and 22.01 times) larger for LW and SW, respectively, 333 

indicating that the NN approximation for clouds is highly uncertain. 334 

Consequently, the mean RMSE results for the LW and SW heating rates (0.46 K day-1 335 

and 0.17 K day-1) appear to be slightly improved than those (1.02 K day-1 and 0.49 K day-1) in 336 

Roh and Song (2020), although the 90 neurons used in this study is smaller than the 300 337 

neurons used in previous studies. As there is no change in the internal parameters of the NN 338 



between Roh and Song (2020) and this study, the advanced accuracy can be interpreted as the 339 

result of the decreased uncertainty in the coarse horizontal resolution. In other words, the 340 

NWP simulations at 5 km are easier than those at 0.25 km. In the 5 km simulation in this 341 

study, the RMSEs for LW and SW heating rates appear to be comparable with those from the 342 

100 km results (0.49 K day-1 and 0.20 K day-1) of Krasnopolsky et al. (2010) and the 25 km 343 

results (0.52 K day-1 and 0.26 K day-1) of Krasnopolsky et al. (2012). Considering the 344 

smoothing effect of the 25-fold larger grid size, the results for the training and test sets imply 345 

more advanced accuracy in this study. It is also the consequence of 720 times more training 346 

data and optimization based on 96 categories (months, land/sea, and clear/ cloud). In 347 

conclusion, the RMSE results in Figure 1 represent the maximum performance of the NN 348 

radiation emulator. In the process of integrating the NWP model, the error can be greatly 349 

amplified. 350 

Figure 3 displays the 12 h forecast fields of fluxes and precipitation for the Typhoon 351 

SANBA event (September 17, 2012) between the WRF control run (Figures 3a–c) and WRF 352 

simulations with NN radiation emulator results (NN-WRF; Figures 3d–f). In this event, the 353 

maximum area-averaged daily precipitation over the Korean Peninsula was recorded for 354 

2009–2018. According to Figure 3, areas with low LW upward flux at the top (LWUPT) and 355 

high SW upward flux at the top (SWUPT) are found in relation to clouds that are widely 356 

distributed around the typhoon. The LWUPT tends to be smaller owing to the lower cloud top 357 

temperature in the clouded sky, whereas it is large under a clear sky because surface signals 358 

with high temperature are directly delivered at the TOA. In contrast, the SWUPT increased 359 

owing to the presence of clouds with respect to the increased reflection of solar radiation. 360 

Despite the 12 h forecast results of 2160 applications with a radiation time step of 20 s, the 361 

NN-WRF results present a similar pattern as those from the WRF control run. However, it 362 

fails to accurately predict cloud and precipitation patterns. Considering that the NWP results 363 



are very sensitive to initial perturbations, this problem is thought to be challenging to 364 

overcome using the NN radiation emulator. Figure 4 is an example of a clear-sky dominant 365 

non-precipitation case as well as an autumnal equinox date with the same length of night and 366 

day (September 23, 2011). In the absence of clouds, LWUPT and SWUPT tend to be 367 

determined primarily by surface temperature, surface emissivity (LW only), and surface 368 

albedo (SW only). For such a case, the NN approximation can be quite accurate. We can 369 

confirm that the NN-WRF can more accurately simulate radiation processes for clear cases 370 

than cloud cases with a high degree of uncertainty. 371 

Statistical results for a total of 48 cases are given in Figure 5 as the form of RMSE 372 

distribution at each 5 km grid and hourly scale. The spatial distribution of RMSEs was 373 

obtained by comparing the NN-WRF results with the WRF control run. Note that the current 374 

NN radiation emulator corresponds to a 60-fold speedup compared with the original 375 

RRTMG-K parameterization. Therefore, the accuracy of NN-WRF should be compared with 376 

the 60-fold reduced use of the RRTMG-K scheme (hereafter, WRF60), providing the same 377 

computation cost for a fair comparison. That is, the radiation scheme is used each time step 378 

(20 s) for the WRF control run and NN-WRF but is applied at an interval of 1200 s for the 379 

WRF60. In general, the RMSE results for LW and SW fluxes over land are much larger than 380 

those over ocean in relation to a smoother property over the sea surface. Note that the skin 381 

temperature over the ocean is the sea surface temperature, which is not coupled with 382 

atmospheric simulation in this study. Compared with WRF60, NN-WRF produces more 383 

realistic distributions with lower RMSEs for the LW flux, SW flux, and skin temperature 384 

(Figure 5). The remaining high-RMSE areas appear to be uncertainties induced by clouds. As 385 

the information of location (longitude, latitude, and elevation) was also utilized as an input 386 

variable during the NN rain, it is difficult to identify regional bias in the RMSE distribution, 387 

except for high mountain areas over the Kaema Plateau and the northeastern part of China. 388 



For the high mountain region, large variability at the surface can affect much of the lower 389 

troposphere, and it can lead to a large error. 390 

The evaluation results for a total of 48 cases are given in the form of a time series in 391 

Figure 6. All simulations were integrated over one day from midnight (00:00 LST), and thus, 392 

the NN radiation emulators were applied in the order of nighttime before sunset (LW), LW 393 

and SW during the daytime, and nighttime after sunrise (LW). The range of the one-day 394 

forecast is sufficient for the use of the short-range forecast in KLAPS. The accuracy of LW 395 

flux and precipitation tends to be reduced in the latter part of the prediction, whereas the SW 396 

flux and skin temperature results are characterized by large errors during the daytime with 397 

respect to the diurnal cycle of the sun. During the initial period between 2 h and 5 h, WRF60 398 

produced better results for LW flux and skin temperature than NN-WRF. In this regime, the 399 

infrequent use of radiation schemes is thought to not be critical for reducing the accuracy. In 400 

the case of WRF60, errors resulting from the infrequent use of the radiation scheme are 401 

thought to be amplified in the latter part of the forecast after 6 h, whereas the increase in error 402 

is relatively limited in the NN-WRF. After 6 h, the RMSEs of NN-WRF for fluxes and skin 403 

temperatures were much lower than those of WRF60. This difference after 6 h could be due 404 

to the additional use of SW during the daytime. Overall, the NN-WRF produced lower 405 

RMSEs by 32–34% for LW and SW fluxes and 21% for skin temperature compared with 406 

WRF60 (Table 2). The improvements in accuracy are the largest by 48% in LWUPB. 407 

Notably, the skin temperature is not a direct output variable in the RRTMG-K scheme; rather, 408 

it is indirectly affected by the heating rate change around the surface. Because precipitation is 409 

more indirectly affected by thermal changes from the radiation process but is basically 410 

produced by microphysics parameterization, the improvement in accuracy for the NN-WRF 411 

for precipitation is limited to 4%. 412 



As the NN radiation emulator and infrequent use of radiation schemes are independent of 413 

each other for the speedup of the radiation process, the combination of the NN radiation 414 

emulator and its infrequent use could enable further improvements in computational speed. 415 

Figure 7 shows the statistical results further showing total RMSEs of LW flux, SW flux, skin 416 

temperature, and precipitation according to the combination of NN radiation emulator and 417 

infrequent method by factors of 3, 6, 18, 30, and 36 (NN-WRF3, NN-WRF6, NN-WRF18, 418 

NN-WRF30, and NN-WRF36). Note that the WRF60 and NN results are the same as the 419 

RMSEs shown in Table 2. Because the WRF60 and NN radiation results were 60 times faster 420 

than those of the WRF control run, the experiments for NN-WRF3, NN-WRF6, NN-WRF18, 421 

NN-WRF30, and NN-WRF36 correspond to 180, 360, 1080, 1800, and 2160 times faster than 422 

the WRF control run. Because numerical errors from the NN radiation emulator and its 423 

infrequent use are added and accumulated, errors are generally expected to increase. However, 424 

the infrequent use of radiation emulators can partly contribute to the reduction in the 425 

fundamental error of the radiation emulator because the frequency of using the emulator is a 426 

major factor that can amplify the error. Thus, for the combination case of radiation emulator 427 

usage and infrequent method, the increase in numerical error is thought to have been partially 428 

compensated and, thus, relatively limited. Consequently, Figure 7 shows that the combination 429 

of the NN radiation emulator and infrequent method produces both additional speedup (from 430 

180 to 2160 times) and accuracy improvements. The RMSE errors for LW flux, SW flux, 431 

skin temperature, and precipitation were improved by 13–31%, 13–34%, 4–21%, and up to 432 

3%, respectively. Because the final goal in most emulator studies is an accurate reproduction 433 

of the control run, with improvements in speed, the emulator cannot exceed the accuracy of 434 

the control run. However, this study suggests the possibility of further improvement in both 435 

accuracy and speed in relation to radiation emulator frequency. This concept was first proved 436 

in an ideal case by Roh and Song (2020), and this study further contributes to the robust 437 



demonstration of NWP results based on various real cases. This benefit in relation to 438 

accuracy and speed can contribute greatly to improving the operational NWP system. In 439 

conclusion, this study will shed light on new research directions on the development of 440 

radiation emulators in terms of their frequency of use. 441 

The development of a universal radiation emulator is a challenging topic because 442 

radiation emulators have fundamental uncertainty in relation to their dependency on training 443 

sets (Boukabara et al., 2020; Belochitski and Krasnopolsky, 2021). This study further 444 

investigates the possible impact of training sets on the current radiation emulator results. 445 

Herein, we consider new training sets independently from one year (2019) and the same 446 

validation sets based on 48 cases used in the previous analysis. Notably, the 24 cases used in 447 

this study were for extreme events with maximum and second maximum daily precipitation 448 

in each month for the period of 2009–2018. Thus, training sets based on one year (2019) will 449 

not be sufficiently representative of extreme flood events at the 10 y scale. Krasnopolsky et al. 450 

(2008) also noticed that these far-corner events with rare frequencies can induce significant 451 

errors in the NN radiation emulator. We expect such a representation error with extreme 452 

values to be mitigated when more training cases and proper sampling procedures are 453 

considered. However, as the NN software used in this study (Krasnopolsky, 2014) did not 454 

provide parallel processing for fast training, such as batch size, several days were consumed 455 

for each training set when three million training sets were considered. Consequently, it was 456 

difficult to use training sets of much greater than three million. In the future, this will need to 457 

be technically improved with a more advanced training procedure based on a graphics 458 

processing unit (GPU). Nevertheless, Figure 8 shows that the monthly RMSE distributions 459 

for the test sets (48 cases between 2009 and 2018) appear to be relatively reasonable. Notably, 460 

the structure of the input–output variables and the number of training sets (3 million × 96 sets) 461 

are the same as those in Figure 1. In relation to the lack of representation for new training sets 462 



based on 2019, the mean RMSEs for the test sets (Figure 8) are 28%–33% larger than those 463 

in Figure 1. The uncertainty with representation error can be amplified more when it is 464 

applied to the WRF simulation, and the validation results in Figure 9 provide a response to 465 

this concern. Compared with Figure 7, the mean RMSEs for the NN radiation emulator are 466 

actually increased by 25%, 18%, 21% for LW flux, SW flux, and skin temperature, 467 

respectively. However, these results still maintained relatively low RMSEs than WRF60, by 468 

15% for LW flux, 22% for SW flux, and 5% for skin temperature. No significant 469 

improvement was observed for precipitation, which can be regarded as an indirect output. 470 

The effects of using the NN radiation emulator infrequently were also examined. For a 471 

speedup of up to 36 fold, lower RMSEs for LW and SW fluxes were maintained compared 472 

with WRF60. For skin temperature, the maximum available speedup while maintaining a 473 

lower RMSE is slightly reduced by the 18-fold speedup. These radiation emulator results 474 

suggest that improvements in both accuracy and speed can be robustly confirmed, even when 475 

training sets with incomplete coverage are used. Despite the issue of representation, the 476 

optimized input–output structure and categorized training strategy for the radiation emulator 477 

in this study are considered to have contributed to maintaining reasonable performance for 478 

the validation set, including extreme events. However, for future work, we expect that the 479 

consideration of more large-scale training sets and appropriate sampling techniques would 480 

produce better performance for radiation emulators by reducing the error due to 481 

representation. 482 

4. Summary and Conclusions 483 

To improve the accuracy and speed of the radiation process, the RRTMG-K radiation 484 

emulator was developed in this study for the use of the operational KLAPS (or WRF) model, 485 

which is a mesoscale weather forecasting model in the KMA. NN training with 90 neurons 486 

was performed for large-scale training sets, which consisted of 161 (clear area) or 193 (cloud 487 



area) inputs, 42 outputs, and 3 million data points for 96 categories (LW and SW, 12 months, 488 

land/ocean, clear/cloudy). We considered a 48-day case, which consisted of two extreme 489 

heavy precipitation cases and two non-precipitating cases for each month over the Korean 490 

peninsula. The NN training provided weight and bias coefficients, which were inserted into 491 

the radiation emulator within the WRF model. Consequently, the RRTMG-K 492 

parameterization was completely replaced by the NN radiation emulator. The WRF 493 

simulations for both the control run and emulator were integrated for one day with a time step 494 

and radiation time step (radt) of 20 s under the domain over the Korean peninsula, with a grid 495 

composed of 234 × 282 points representing a 5 km horizontal resolution and 39 vertical 496 

layers. The developed emulator based on 90 neurons produced a 60-fold speedup in 497 

comparison with the RRTMG-K scheme, resulting in a decrease of 87.26% in the total 498 

computation time in the WRF model. 499 

Among the 96 categories for NN training, the separation between clear and cloudy areas 500 

greatly contributed in optimizing the speed and accuracy of the emulators. The RMSEs over 501 

the cloud area in the NN training were 10.60–22.01 times larger than those over the clear sky. 502 

The mean RMSE results for the training sets were 0.46 K day-1 and 0.17 K day-1 (3.34 W m-2 503 

and 16.34 W m-2) for LW and SW heating rates (LW and SW fluxes), respectively. To 504 

evaluate the accuracy, we analyzed the mean RMSEs for 48 cases. The NN-WRF results 505 

produced considerably lower RMSEs of 32–34% for LW and SW fluxes and 21% for skin 506 

temperature compared with the WRF60, corresponding to the same 60-fold speedup based on 507 

the infrequent use of the radiation scheme. Furthermore, the combination of the NN radiation 508 

emulator and the infrequent method exhibited both accuracy and speed improvements 509 

compared with the operational method (WRF60). For example, the infrequent use of the NN 510 

radiation emulator produced results 180, 360, 1080, 1800, and 2160-fold faster than the 511 

control run, and the RMSEs from the emulators were still lower than those of the WRF60. 512 



Finally, this study examined the impact of representation errors on training sets to develop a 513 

universal radiation emulator. The first year of 2019 was considered an independent new 514 

training period; however, 48 cases were considered in validation sets, including extreme 515 

heavy precipitation events in the 10-year (2009–2018) scale. Although the resulting RMSEs 516 

increased by 18–25% (except for precipitation) in relation to the imperfect coverage of 517 

training sets, they were still more accurate than those obtained by the operational method 518 

(WRF60). Despite the representation error, the optimized input–output structure and 519 

categorized training strategy in this study were considered to have contributed in maintaining 520 

reasonable performance, even for extreme flood events. 521 

We emphasize that the radiation emulator developed in this study is a first attempt to 522 

improve meso-scale weather forecasting based on real cases in terms of both accuracy and 523 

speedup; most previous radiation emulator studies were based on climate simulations, and 524 

their ultimate goals were confined only to increasing the speedup. Additionally, the 525 

categorized NN training (months, land/ocean, clear/cloudy) deserved recognition for its 526 

novelty in applying the NN radiation emulator to operational NWP systems beyond the 527 

research level. The combination of NN radiation emulator and its infrequent application also 528 

provides remarkable results, contributing to a speedup of greater than 1000-fold, which was 529 

not reported in previous radiation emulator studies associated with numerical weather– 530 

climate models. As the computational speed of the NN radiation emulator, along with its 531 

infrequent use, is fast enough, the use of a more complex structure for the radiation emulator 532 

is also possible. This sheds light on a new research direction for the radiation emulator, 533 

considering that the current development of radiation emulators with numerical weather– 534 

climate models has been limited by mostly NN (partially DNN) due to computational cost. 535 

However, we acknowledge the limitations of this study such as the use of various machine 536 

learning techniques in addition to the NN based on the single hidden layer, the optimization 537 



of hyper-parameters, and the use of more large-scale training sets and advanced sampling 538 

techniques. Consideration of these issues will lead to improved performance of the radiation 539 

emulator in the future. 540 
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Figure 1. Monthly root mean squared error (RMSE) of (a) LW heating rate, (b) SW heating 761 
rate, (c) LW flux, and (d) SW flux for NN training results. Heating rates with 39 layers and 762 
three fluxes are displayed together in the figure. Land and ocean results, as well as clear and 763 
cloud, are averaged in the figure. 764 

Figure 2. Same as Figure 1 but for land and ocean as well as clear and cloud. 765 

Figure 3. Spatial distributions of 12 h forecast LW and SW upward fluxes at the top of the 766 
atmosphere (LWUPT and SWUPT) and hourly precipitation for the Typhoon SANBA event 767 
(September 17, 2012) between the WRF control run and NN radiation emulator (NN-WRF). 768 

Figure 4. Spatial distributions of 12 h forecast LW and SW upward fluxes at the top of the 769 
atmosphere (LWUPT and SWUPT), and skin temperature for a clear-sky dominant event 770 
(September 23, 2011) between the WRF control run and NN radiation emulator (NN-WRF). 771 

Figure 5. Root mean square error (RMSE) distributions of LW and SW fluxes and skin 772 
temperature between WRF simulations for 60-fold reduced usage (WRF60) and NN radiation 773 
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Figure 6. Time series of the root mean square error (RMSE) of (a) LW flux, (b) SW flux, (c) 776 
skin temperature, and (d) precipitation between WRF simulations 60-fold reduced usage 777 
(WRF60) and NN radiation emulator (NN-WRF) compared with those from the WRF control 778 
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Figure 7. Statistical results showing the root mean square error (RMSE) of (a) LW flux, (b) 780 
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while keeping the same test sets used in Figure 1. 789 

Figure 9. Same as Figure 7 but for results based on NN training from independent one year 790 
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Table 1. List of input and output variables for neural network longwave (LW) and shortwave 793 
(SW) emulators. Note that the number of input variables decreases by 161 for the case of 794 
clear sky. 795 

Inputs # 
Vertical pressure 1–39 
Vertical temperature 40–78 
Vertical water vapor 79–117 
Vertical ozone 118–156 
Vertical cloud fraction 157–188 
Longitude 189 
Latitude 190 
Surface Elevation 191 
Skin temperature (LW) 192 
Surface emissivity (LW) 193 
Cosine solar zenith angle multiplied by solar constant (SW) 192 
Surface albedo (SW) 193 
Outputs # 
Vertical total sky heating rate (LW, SW) 1–39 
Total sky longwave upward flux at the top (LWUPT) 40 
Total sky longwave upward flux at the bottom (LWUPB) 41 
Total sky longwave downward flux at the bottom (LWDNB) 42 
Total sky shortwave upward flux at the top (SWUPT) 40 
Total sky shortwave upward flux at the bottom (SWUPB) 41 
Total sky shortwave downward flux at the bottom (SWDNB) 42 
 796 
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Table 2. Evaluation results for WRF simulations with 60-fold reduced usage (WRF60) and 798 
NN radiation emulator results (NN-WRF) compared with those from the WRF control run. 799 
Statistics in table represent pattern correlation and the root mean squared error (RMSE) at 800 
hourly and 5 km scales for 48 cases. 801 

Experiments WRF60 NN-WRF 

Speedup of radiation 60 60.9039 

Reduced computation time 87.1528% 87.2642% 

LW flux [W m-2] 0.9858, 8.1067 0.9935, 5.5495  

LWUPT 0.9695, 10.7497 0.9868, 7.1105 

LWUPB 0.9969, 4.4654 0.9992, 2.3017 

LWDNB 0.9911, 9.1050 0.9944, 7.2362 

SW flux [W m-2] 0.9692, 48.9695 0.9865, 32.1263 

SWUPT 0.9584, 61.4614 0.9821, 40.2748 

SWUPB 0.9802, 10.9657 0.9904, 7.6515 

SWDNB 0.9691, 74.4815 0.9869, 48.4527 

Skin temperature [K] 0.9989, 0.5105 0.9993, 0.4018 

Precipitation [mm] 0.9408, 0.5315 0.9455, 0.5112 
 802 
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804 
Figure 1. Monthly root mean squared error (RMSE) of (a) LW heating rate, (b) SW heating 805 
rate, (c) LW flux, and (d) SW flux for NN training results. Heating rates with 39 layers and 806 
three fluxes are displayed together in the figure. Land and ocean results, as well as clear and 807 
cloud, are averaged in the figure. 808 
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810 
Figure 2. Same as Figure 1 but for land and ocean as well as clear and cloud. 811 
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813 
Figure 3. Spatial distributions of 12 h forecast LW and SW upward fluxes at the top of the 814 
atmosphere (LWUPT and SWUPT) and hourly precipitation for the Typhoon SANBA event 815 
(September 17, 2012) between the WRF control run and NN radiation emulator (NN-WRF). 816 
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(a) LWUPT (WRF) (b) SWUPT (WRF) (c) Precipitation (WRF)

(d) LWUPT (NN-WRF) (e) SWUPT (NN-WRF) (f) Precipitation (NN-WRF)



818 
Figure 4. Spatial distributions of 12 h forecast LW and SW upward fluxes at the top of the 819 
atmosphere (LWUPT and SWUPT), and skin temperature for a clear-sky dominant event 820 
(September 23, 2011) between the WRF control run and NN radiation emulator (NN-WRF). 821 
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(a) LWUPT (WRF) (b) SWUPT (WRF) (c) Ts (WRF)

(d) LWUPT (NN-WRF) (e) SWUPT (NN-WRF) (f) Ts (NN-WRF)



823 
Figure 5. Root mean square error (RMSE) distributions of LW and SW fluxes and skin 824 
temperature between WRF simulations for 60-fold reduced usage (WRF60) and NN radiation 825 
emulator (NN-WRF) compared with those from the WRF control run. The average RMSEs 826 
from three LW and SW fluxes are presented. 827 
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(a) LW Flux (WRF60) (b) SW Flux (WRF60) (c) Ts (WRF60)

(d) LW Flux (NN-WRF) (e) SW Flux (NN-WRF) (f) Ts (NN-WRF)



829 
Figure 6. Time series of the root mean square error (RMSE) of (a) LW flux, (b) SW flux, (c) 830 
skin temperature, and (d) precipitation between WRF simulations 60-fold reduced usage 831 
(WRF60) and NN radiation emulator (NN-WRF) compared with those from the WRF control 832 
run. 833 
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835 
Figure 7. Statistical results showing the root mean square error (RMSE) of (a) LW flux, (b) 836 
SW flux, (c) skin temperature, and (d) precipitation for WRF simulations according to the 837 
combination of NN radiation emulator (NN-WRF) and its infrequent usage, compared with 838 
the 60-fold reduced usage of the radiation parameterization (WRF60). In the x-axis, e NN-839 
WRF3, NN-WRF6, NN-WRF18, NN-WRF30, NN-WRF36 represent additional speedup 840 
improvements of NN radiation emulator through the 3, 6, 18, 30, and 36-fold reduced usage. 841 
Those emulator results are 180, 360, 900, 1080, 1800, 2160 times faster than those of the 842 
WRF control run, as the NN radiation emulator is already 60 times faster than the control run. 843 
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845 
Figure 8. Same as Figure 1 but for results based on NN training from independent one year 846 
while keeping the same test sets used in Figure 1. 847 
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849 
Figure 9. Same as Figure 7 but for results based on NN training from independent one year 850 
while keeping the same validation cases as Figure 7. 851 
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