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Abstract

The persistent and growing spread in effective climate sensitivity (ECS) across global climate models necessitates rigorous

evaluation of their cloud feedbacks. Here we evaluate several cloud feedback components simulated in 19 climate models against

benchmark values determined via an expert synthesis of observational, theoretical, and high-resolution modeling studies. We

find that models with smallest feedback errors relative to these benchmark values have moderate total cloud feedbacks (0.4–0.6

Wm$ˆ{-2}$K$ˆ{-1}$) and generally moderate ECS (3–4 K). Those with largest errors generally have total cloud feedback and

ECS values that are too large or too small. Models tend to achieve large positive total cloud feedbacks by having several cloud

feedback components that are systematically biased high rather than by having a single anomalously large component, and vice

versa. In general, better simulation of mean-state cloud properties leads to stronger but not necessarily better cloud feedbacks.

The Python code base provided herein could be applied to developmental versions of models to assess cloud feedbacks and cloud

errors and place them in the context of other models and of expert judgement in real-time during model development.
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Key Points:5

• Models with smallest feedback errors have moderate total cloud feedbacks and ECS6

• Models with large positive total cloud feedbacks have several systematically high-7

biased feedback components8

• Better simulation of mean-state cloud properties leads to stronger but not nec-9

essarily better cloud feedbacks10
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Abstract11

The persistent and growing spread in effective climate sensitivity (ECS) across global12

climate models necessitates rigorous evaluation of their cloud feedbacks. Here we eval-13

uate several cloud feedback components simulated in 19 climate models against bench-14

mark values determined via an expert synthesis of observational, theoretical, and high-15

resolution modeling studies. We find that models with smallest feedback errors relative16

to these benchmark values generally have moderate total cloud feedbacks (0.4–0.6 Wm−2K−1)17

and ECS (3–4 K). Those with largest errors generally have total cloud feedback and ECS18

values that are too large or too small. Models tend to achieve large positive total cloud19

feedbacks by having several cloud feedback components that are systematically biased20

high rather than by having a single anomalously large component, and vice versa. In gen-21

eral, better simulation of mean-state cloud properties leads to stronger but not neces-22

sarily better cloud feedbacks. The Python code base provided herein could be applied23

to developmental versions of models to assess cloud feedbacks and cloud errors and place24

them in the context of other models and of expert judgement in real-time during model25

development.26

Plain Language Summary27

Climate models strongly disagree with each other regarding how much warming28

will occur in response to increased greenhouse gases in the atmosphere. This is mainly29

because they disagree on the response of clouds to warming — a process known as the30

cloud feedback that can amplify or dampen warming initially caused by carbon dioxide.31

In this study we compare many models’ cloud feedbacks to those that have been deter-32

mined by a recent expert assessment of the literature. We find that the models whose33

cloud feedbacks most strongly disagree with expert assessment tend to have more ex-34

treme cloud feedbacks and hence warm too much or too little in response to carbon diox-35

ide. The models with total cloud feedbacks that are too large do not have a single mas-36

sive feedback component but rather several components that are larger than in other mod-37

els. Models that simulate current-climate clouds that look more like those in nature also38

simulate stronger amplifying cloud feedbacks, but doing a better job at simulating current-39

climate clouds does not, in general, guarantee a better simulation of cloud feedbacks.40

1 Introduction41

Cloud feedback — the change in cloud-induced top-of-atmosphere radiation anoma-42

lies with global warming — is the primary driver of differences in effective climate sen-43

sitivity (ECS) across global climate models (GCMs). This has been the case for all ex-44

isting model intercomparisons, starting with Cess et al. (1989, 1990) and continuing to45

the most recent collection of models as part of CMIP6, the 6th phase of the Coupled Model46

Intercomparison Project (M. D. Zelinka et al., 2020; Eyring et al., 2016). Despite sub-47

stantial progress in understanding, diagnosing, modeling, and observationally constrain-48

ing cloud feedbacks from a variety of approaches, the spread in cloud feedbacks across49

GCMs has remained substantial through the decades and actually increased in CMIP650

relative to CMIP5 (M. D. Zelinka et al., 2020). Moreover, strengthened cloud feedback51

— particularly for extratropical low clouds — is the primary reason for the increase in52

average climate sensitivity in CMIP6 relative to CMIP5, as well as for the emergence of53

models with very high ECS above the upper limit of the likely range (1.5–4.5 K) reported54

in the fifth assessment report of the Intergovernmental Panel on Climate Change (M. D. Zelinka55

et al., 2020; Flynn & Mauritsen, 2020; M. Collins et al., 2013).56

Given the need for models to reliably predict future climate and the fact that cloud57

feedbacks strongly affect their ability to do so makes it imperative to evaluate models’58

cloud feedbacks against some form of ground truth. Such an evaluation is now possible59
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because quantitative values of individual cloud feedbacks (and their uncertainties) were60

recently determined based on an expert synthesis of theoretical, observational, and high-61

resolution cloud modeling evidence. This synthesis was conducted as part of a broader62

assessment of climate sensitivity, in which three semi-independent lines of evidence (pro-63

cess studies, historical climate record, and paleoclimate record) were brought together64

in a Bayesian framework to place robust bounds on Earth’s climate sensitivity (Sherwood65

et al., 2020).66

Our goals in this work are several-fold. First, we evaluate GCM cloud feedback com-67

ponents against those assessed in Sherwood et al. (2020). This allows us to answer sev-68

eral questions, including: Do models with extremely large or small climate sensitivities69

have cloud feedback components that are erroneous? If so, which component(s)? How70

are cloud feedbacks in CMIP6 — and their biases with respect to expert assessment —71

changing from CMIP5? Are some models getting the “right” total cloud feedback via72

erroneous components that compensate?73

Second, we investigate whether the fidelity with which models simulate present-74

day cloud properties is linked to their cloud feedbacks and to the fidelity with which their75

cloud feedbacks agree with expert judgement. A key question is whether better simu-76

lation of present-day cloud properties leads to cloud feedbacks that are better aligned77

with expert judgement. This is particularly relevant because aspects of the cloud sim-78

ulation in many high-ECS CMIP6 models are in many cases considered superior to those79

in CMIP5 (Gettelman et al., 2019; Bodas-Salcedo et al., 2019), yet holistic aspects of the80

climate simulation in these models appear inferior to their lower-ECS counterparts (Zhu81

et al., 2020, 2021; Tokarska et al., 2020; Nijsse et al., 2020)82

Finally, we provide a code base to compute cloud feedbacks and error metrics for83

all of the assessed categories, and visualize them in a multi-model context. This will al-84

low, for example, model developers to evaluate cloud feedbacks in developmental ver-85

sions of their models against expert judgement, other models, and other variants of their86

model, providing them with detailed information about a key process affecting their model’s87

climate sensitivity.88

2 Data and Methods89

We are primarily interested in cloud feedbacks in response to CO2-induced global90

warming, so we make use of abrupt CO2 quadrupling experiments conducted with fully-91

coupled GCMs in CMIP5 and CMIP6 (abrupt-4xCO2). We first compute cloud radia-92

tive anomalies at the top-of-atmosphere (TOA) by multiplying cloud fraction anoma-93

lies with cloud radiative kernels (M. D. Zelinka et al., 2012a, 2012b). The cloud fraction94

anomalies needed for this calculation are reported in a matrix of 7 cloud top pressure95

(CTP) categories by 7 visible optical depth (τ) categories matching the categorization96

of the International Satellite Cloud Climatology Project (ISCCP; Rossow & Schiffer, 1999).97

These matrices are produced by the ISCCP simulator (Klein & Jakob, 1999; M. Webb98

et al., 2001), referred to as clisccp in CMIP parlance. Cloud radiative kernels quan-99

tify the sensitivity of top-of-atmosphere radiative fluxes to small cloud fraction pertur-100

bations in each of these 49 cloud types. Hence the product of the two yields the radi-101

ation anomaly from each cloud type, which can be summed over the entire matrix to pro-102

vide the total cloud radiative anomalies at a given location. Because of the reliance on103

clisccp, we are limited in this study to those models (listed in Table 1) that have suc-104

cessfully implemented the Cloud Feedback Model Intercomparison Project (CFMIP) Ob-105

servation Simulator Package (COSP; Bodas-Salcedo et al., 2011). As will be evident be-106

low, these models exhibit cloud feedbacks spanning nearly the full range of values pro-107

duced in the full ensemble of CMIP5 and CMIP6 models analyzed in M. D. Zelinka et108

al. (2020), and we therefore consider this subset to be a sufficiently representative sam-109

ple of model diversity.110
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Table 1. Models used in this study. CMIP5 and CMIP6 models are indicated with lower-

case and upper-case symbols, respectively. Years within the abrupt-4xCO2 simulation with data

available to analyze are indicated.

Symbol Model Reference Years

a CCSM4 Gent et al. (2011) 1-104

b CanESM2 Arora et al. (2011) 1-21 / 121-140

c HadGEM2-ES W. J. Collins et al. (2011) 1-20 / 122-140

d MIROC-ESM S. Watanabe et al. (2011) 1-20 / 121-140

e MIROC5 M. Watanabe and others (2010) 1-20 / 121-140

f MPI-ESM-LR Stevens et al. (2013) 1-20 / 121-140

g MRI-CGCM3 Yukimoto et al. (2012) 1-20 / 121-140

H CNRM-CM6-1 Voldoire et al. (2019) 1-150

I CNRM-ESM2-1 Séférian et al. (2019) 1-150

J CanESM5 Swart et al. (2019) 1-150

K E3SM-1-0 Golaz et al. (2019) 1-150

L GFDL-CM4 Held et al. (2019) 1-150

M HadGEM3-GC31-LL K. D. Williams et al. (2018) 1-150

N IPSL-CM6A-LR Boucher et al. (2020) 1-150

O IPSL-CM6A-LR-INCA Boucher et al. (2020) 1-150

P MIROC-ES2L Hajima et al. (2020) 1-150

Q MIROC6 Tatebe et al. (2019) 1-150

R MRI-ESM2-0 Yukimoto et al. (2019) 1-150

S UKESM1-0-LL Sellar et al. (2019) 1-150
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Anomalies are computed with respect to the contemporaneous pre-industrial con-111

trol (piControl) simulation, with three exceptions: CNRM-CM6-1, CNRM-ESM2-1, and112

IPSL-CM6A-LR-INCA did not archive clisccp from the piControl simulation, so we113

take this field from piClim-control, a 30-year long atmosphere-only simulation that uses114

sea-surface temperatures (SSTs) and sea ice concentrations fixed at the model-specific115

piControl climatology (Pincus et al., 2016).116

We compute cloud feedbacks by regressing annual mean cloud-radiative anomalies117

on annual and global mean surface air temperature anomalies over the duration of the118

150-year abrupt-4xCO2 experiment containing all necessary data. In CMIP6, clisccp119

output is available throughout the full duration of the run, whereas in CMIP5 it is typ-120

ically only available for two non-contiguous 20-year periods, one at the beginning and121

one at the end of the run (Table 1).122

M. D. Zelinka et al. (2012a) validated cloud feedbacks computed using the cloud123

radiative kernel (CRK) methodology against independent estimates derived as the ad-124

justed change in cloud radiative effect (∆CREadj; Shell et al., 2008; Soden et al., 2008)125

for six CMIP3 models. Here we update this comparison using the CMIP5 and CMIP6126

models analyzed in this study. We compare CRK-derived cloud feedbacks with the ∆CREadj127

and approximate partial radiative perturbation (APRP; Taylor et al., 2007)-derived val-128

ues computed in M. D. Zelinka et al. (2020). Six ∆CREadj feedbacks are provided based129

on the adjustments from the non-cloud radiative kernels of Soden et al. (2008), Shell et130

al. (2008), Block and Mauritsen (2013), Huang et al. (2017), Pendergrass et al. (2018),131

and Smith et al. (2018). APRP provides only the SW component, but it additionally pro-132

vides estimates of SW cloud amount, scattering, and absorption feedbacks, allowing us133

to compare to the CRK-derived SW amount and optical depth components. Figure S1134

shows the multi-model mean zonal mean SW and LW cloud feedbacks from these three135

techniques, along with their across-model correlations, and Figure S2 scatters the global136

mean CRK-derived and non-CRK-derived feedback values against each other. The CRK-137

derived feedbacks are in excellent agreement with the ∆CREadj and APRP feedbacks,138

for both the spatial characteristics of the multi-model mean and the across-model cor-139

relation of the zonal and global means. This confirms the validity of the CRK technique140

for estimating cloud feedback.141

We focus in this study on feedbacks estimated from abrupt-4xCO2 experiments so142

as to stay consistent with Sherwood et al. (2020), but have repeated all calculations us-143

ing Atmospheric Model Intercomparison Project (amip) experiments with imposed +4K144

SST perturbations that are spatially uniform (amip-p4K) and patterned (amip-future4K),145

as described in the CFMIP protocol (M. J. Webb et al., 2017). Feedbacks in these sim-146

ulations were computed as cloud radiation anomalies normalized by global mean surface147

air temperature anomalies between the +4K experiments and the control amip exper-148

iment. All basic conclusions reported in this study are insensitive to whether we con-149

sider feedbacks diagnosed in amip-p4K, amip-future4K, or abrupt-4xCO2 experiments.150

To distinguish feedbacks occurring in regions of large-scale ascent from those oc-151

curring in regions of large-scale descent over tropical oceans, we aggregate (with area-152

weighting) all monthly control and perturbed climate fields over the tropical oceans into153

10-hPa wide bins of 500 hPa vertical pressure velocity (ω500) following Bony et al. (2004).154

Anomalies between perturbed and control climates are then performed in ω500 space rather155

than geographic space when computing tropical marine ascent/descent feedbacks. The156

resulting feedbacks can be further broken down into dynamic, thermodynamic, and co-157

variance terms (see Bony et al., 2004), but for the purposes of this study, we will con-158

sider only their sum, and will further aggregate these to “ascent regions” where ω500 <159

0 and “descent regions” where ω500 ≥ 0.160

Following M. D. Zelinka et al. (2016), we separately quantify feedbacks arising from161

low, boundary layer clouds and from non-low, free tropospheric clouds, hereafter referred162
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to as “low” and “high” cloud feedbacks, respectively. This is done by performing the cloud163

feedback calculations using only restricted parts of the clisccp histogram: CTPs > 680164

hPa for low clouds and CTPs ≤ 680 hPa for high clouds. Within these subsets, the cloud165

feedback is further broken down into (1) the “amount” component due to change in to-166

tal cloud fraction holding CTP and τ distribution fixed; (2) the “altitude” component167

due to the change in CTP distribution holding total fraction and τ distribution fixed;168

and (3) the “optical depth” component due to the change in τ distribution holding the169

total fraction and CTP distribution fixed (M. D. Zelinka et al., 2013, 2016).170

Passive satellite-based measurements – like those mimicked by the ISCCP simu-171

lator used in this study – provide unobscured cloud fractions visible from space. This172

means that low-clouds may be hidden and revealed by changes in high-cloud cover. This173

complicates interpretation of low-cloud feedbacks, since high-cloud changes are aliased174

to an unknown extent into low-cloud feedbacks. To avoid this potential source of mis-175

interpretation, we express the standard low-level cloud feedbacks as a sum of three terms176

following Scott et al. (2020) and Myers et al. (2021):177

low = lowunobsc + ∆obsc + cov.178

lowunobsc is the “true” low-cloud feedback occurring in regions that are not obscured by179

upper-level clouds and are unaffected by changes in obscuration, which we further break180

down into amount, altitude, optical depth, and residual components. ∆obsc is the “obscuration-181

induced” component of low-cloud feedback arising entirely from changes in upper-level182

cloud fraction that reveal or hide low-level clouds. It is therefore by definition solely an183

“amount” component, so we absorb it into the high-cloud amount feedback. The covari-184

ance term, cov, is typically very small. To summarize, the total cloud feedback can be185

expressed as:186

total =
∑

i highi +
∑

i lowunobsc,i + cov,187

where i ∈ {amount, altitude, optical depth, residual} components, and the high cloud188

amount component includes the ∆obsc component.189

In Table 2, we list the central value and 1-σ uncertainty of the cloud feedback com-190

ponents assessed in Sherwood et al. (2020) and describe how we compute them in GCMs.191

We also provide a matrix in Figure S3 to help visualize the feedback components that192

are computed in this study. A large amount of observational evidence, based mainly on193

inter-annual variability, was used to provide quantitative values for the assessed total cloud194

feedback and several of its individual components. In addition, process-resolving mod-195

els in the form of large eddy simulations were a key piece of evidence for the strength196

of tropical marine low cloud feedback, while guidance from theoretical understanding un-197

derlies the assessed high cloud altitude, tropical anvil, and land-cloud amount feedbacks.198

Many of the expert assessed cloud feedbacks are independent of any GCM results, but199

the assessed central value and uncertainty for the high cloud altitude, land cloud amount,200

and middle latitude marine low cloud amount feedbacks were derived at least partially201

from GCMs, albeit a collection that included pre-CMIP5 models that are excluded here202

and that excluded some recently-published CMIP6 models that are included here. Com-203

paring GCM results to expert-assessed values can therefore be thought of as a quick and204

economical way of evaluating model feedbacks against the very wide body of evidence205

that forms the basis of the expert-assessed cloud feedbacks.206

Values of effective climate sensitivity (ECS) are taken from M. D. Zelinka et al. (2020),207

updated to include recently-available models. These ECS values are computed in a man-208

ner consistent with the cloud feedbacks, by regressing global and annual mean TOA net209

radiative flux anomalies on global and annual mean surface air temperature anomalies210

over the 150-year duration of the abrupt-4xCO2 experiment. Anomalies are computed211

with respect to the contemporaneous piControl simulation, except in IPSL-CM6A-LR-212

INCA, for which we use piClim-control because no piControl fields are available.213
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Finally, for each model we compute a radiatively-relevant cloud property error met-214

ric, ENET, using Equation 5 of Klein et al. (2013). First, cloud fraction errors are com-215

puted by differencing climatological ISCCP simulator cloud fraction histograms from amip216

simulations and the ISCCP HGG observational climatology (Young et al., 2018). Both217

modeled and observed climatologies are computed over the 26-year period January 1983218

to December 2008, when all model simulations and observations overlap, but error met-219

rics are very insensitive to the time period considered. Second, these errors are multi-220

plied by net (LW+SW) cloud radiative kernels, thereby weighting them by their corre-221

sponding net TOA radiative impact. Third, this product is aggregated into six cloud types:222

optically intermediate and thick clouds at low, middle, and high levels. These are then223

squared, averaged over the six categories, summed (with area weighting) over month, lon-224

gitude, and latitude between 60◦S and 60◦N, and the square root is taken. Finally, this225

scalar value is normalized by the accumulated space–time standard deviation of observed226

radiatively-relevant cloud properties, defined analogously. This process yields a single227

scalar error metric, ENET, in each model that quantifies the spatio-temporal error in cli-228

matological cloud properties for clouds with τ > 3.6, weighted by their net TOA radia-229

tive impact. We acknowledge that evaluation against ISCCP observations is a limited230

viewpoint on the quality of models’ cloud simulations — one that may change if using231

other cloud datasets, like those derived from active sensors.232

3 Results233

3.1 GCM Cloud Feedbacks Evaluated Against Expert-Assessed Values234

In Figure 1, cloud feedbacks from 7 CMIP5 and 12 CMIP6 models are compared235

with the assessed values for feedback categories listed in Table 2. Each feedback value236

is scaled by the fractional area of the globe occupied by that cloud type such that sum-237

ming all components yields the global mean feedback. Each marker is color-coded by its238

ECS, with the color boundaries corresponding to the 5th, 17th, 83rd, and 95th percentiles239

of the Baseline posterior PDF of ECS from Table 10 of Sherwood et al. (2020). In Ta-240

ble 3, we list the GCM values and highlight any values that lie outside of the very likely241

(90%) and likely (66%) confidence intervals of expert judgement with double and sin-242

gle asterisks, respectively. Supplementary Figures 4-22 are identical to Figure 1, but with243

individual models highlighted in each figure for better discrimination.244

All but seven models fall within the likely range assessed for the high cloud alti-245

tude feedback and the multi-model means are very close to the central assessed value.246

However, some models have weak high cloud altitude feedbacks that lie below the lower247

bound of the likely (MRI-CGCM3 and MIROC6) and very likely (MIROC5 and MIROC-248

ES2L) confidence intervals, and some have strong high cloud altitude feedbacks that lie249

above the upper bound of the likely (HadGEM2-ES and CanESM5) and very likely (E3SM-250

1-0) confidence intervals. This feedback component has the greatest number of models251

(3) lying outside of the assessed very likely range; these are the same three models that252

lie outside the assessed very likely range for total cloud feedback. Such wide inter-model253

variation is noteworthy for a feedback having a strong theoretical basis and both obser-254

vational and high-resolution modeling support.255

Consistent with Klein et al. (2017), the distribution of modeled tropical marine low256

cloud feedback values favors the low end of the expert assessed value. Only one model257

(CanESM5) exceeds the central expert assessed value, and several models’ values lie be-258

low the lower bound of the likely (MIROC5, MRI-CGCM3, HadGEM3-GC31-LL, MIROC-259

ES2L, and MIROC6) and very likely (CCSM4) confidence intervals.260

In contrast, all models underestimate the strength of the negative anvil cloud feed-261

back, relative to the central value assessed in Sherwood et al. (2020). Eight models (MRI-262

CGCM3, CNRM-CM6-1, CNRM-ESM2-1, E3SM-1-0, HadGEM3-GC31-LL, IPSL-CM6A-263
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Figure 1. Cloud feedback components estimated from climate model simulations and as as-

sessed in Sherwood et al. (2020). For each component, the individual model values are indicated

with symbols, the multi-model means are indicated with green (CMIP5) and purple (CMIP6)

bars, and the expert assessed likely and very likely confidence intervals are indicated with black

errorbars. Model symbols are color-coded by ECS with color boundaries corresponding to the

edges of the likely and very likely ranges of the Baseline posterior PDF of ECS from Sherwood et

al. (2020). Identical figures highlighting each individual model are provided in Figures S4-S22.
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LR, IPSL-CM6A-LR-INCA, and UKESM1-0-LL) have positive anvil feedbacks that place264

them above the upper bound of the assessed likely confidence interval.265

All models lie within the assessed likely range for the land cloud amount feedback,266

while all but five models (MIROC5, HadGEM3-GC31-LL, MIROC-ES2L, MIROC6, and267

UKESM1-0-LL) lie within the assessed likely range of the middle latitude marine low268

cloud amount feedback.269

Whereas the central estimate of the high latitude low cloud optical depth feedback270

from the assessment is 0, all models simulate a negative feedback. All but two models271

(MIROC-ESM and MPI-ESM-LR) fall within the likely assessed range, however. In the272

multi-model average, the negative feedback values are more than halved in CMIP6 rel-273

ative to CMIP5, bringing CMIP6 models into better agreement with expert judgement.274

This may be related to a weakened cloud phase feedback owing to improved simulation275

of mean-state cloud phase (Bodas-Salcedo et al., 2019; Gettelman et al., 2019; M. D. Zelinka276

et al., 2020; Flynn & Mauritsen, 2020). The inter-model spread in this feedback com-277

ponent has also dramatically decreased in CMIP6.278

The unassessed feedback is near zero on average across all models, consistent with279

it being assigned a value of zero in the expert assessment. However, its across-model stan-280

dard deviation and its CMIP5-to-CMIP6 increase in multi-model average are larger than281

all other individual components except the high cloud altitude feedback. Contributors282

to this feedback will be discussed in greater detail in Section 3.5.283

The sum of all six assessed feedback components is positive in all but two models284

(MIROC5 and MIROC-ES2L) and exhibits substantially more inter-model spread than285

any individual component comprising it. Its standard deviation (σ = 0.27 Wm−2K−1)286

is also larger than would exist if the feedback components comprising it were uncorre-287

lated across models (σ if summing individual uncertainties in quadrature = 0.20 Wm−2K−1),288

as discussed further in Section 3.2. While the multi-model mean value is close to the expert-289

assessed value, some models lie below the lower bound of the assessed likely (CCSM4 and290

MIROC6) and very likely (MIROC5 and MIROC-ES2L) confidence intervals, and E3SM-291

1-0 lies above the upper bound of the assessed likely confidence interval.292

The total cloud feedback, which is the sum of assessed and unassessed components,293

has a larger standard deviation than would occur if these two components were uncor-294

related. Owing to this correlation, all but four models (MIROC-ESM, MPI-ESM-LR,295

CNRM-ESM2-1, and MRI-ESM2-0) exhibit degraded agreement with expert assessment296

once accounting for their unassessed feedbacks. In addition to the models that fell out-297

side the likely and very likely ranges for the sum of assessed feedbacks, there are now298

four new models (CanESM5, IPSL-CM6A-LR, IPSL-CM6A-LR-INCA, and UKESM1-299

0-LL) that lie above the upper bound of the assessed likely confidence interval, and E3SM-300

1-0 has now moved above the upper bound of the assessed very likely confidence inter-301

val.302

Unsurprisingly, models with larger total cloud feedback tend to have higher ECS.303

All five models with total cloud feedbacks above the upper limit of the expert-assessed304

likely range (CanESM5, E3SM-1-0, IPSL-CM6A-LR, IPSL-CM6A-LR-INCA, and UKESM1-305

0-LL) are part of CMIP6. These models also have ECS values above 3.9 K, the upper306

limit of the expert-assessed likely ECS range, and all but IPSL-CM6A-LR and IPSL-CM6A-307

LR-INCA have ECS values above 4.7 K, the upper limit of the very likely ECS range.308

However, two models with ECS > 3.9 K (HadGEM2-ES, MIROC-ESM) and even three309

with ECS > 4.7 K (CNRM-CM6-1, CNRM-ESM2-1, and HadGEM3-GC31-LL) have to-310

tal cloud feedbacks within the likely range, indicating that other non-cloud feedbacks are311

pushing these models to very high ECS. No models considered here — even those whose312

cloud feedbacks lie below the lower limit of the likely and very likely total cloud feed-313

back confidence bound — have ECS values below 2.6 K, the lower limit of the Sherwood314
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et al. (2020) assessed likely range. In general, too-large cloud feedbacks seem to guar-315

antee too-large ECS, but too-small cloud feedbacks do not guarantee too-small ECS. Also,316

too-large ECS can arise even without too-large cloud feedbacks.317

Turning now to the multi-model mean cloud feedback components, we see that the318

mean total cloud feedback is roughly twice as large in CMIP6 than in CMIP5, qualita-319

tively consistent with M. D. Zelinka et al. (2020), who assessed a much larger collection320

of models. This occurs because the high cloud altitude, midlatitude marine low cloud321

amount, high latitude low cloud optical depth, and unassessed feedbacks all become more322

positive, on average, in CMIP6. The other feedbacks change very little on average.323

All multi-model mean assessed feedback components lie within the respective expert-324

assessed likely range. They also lie very close to the central assessed values, with two ex-325

ceptions: The tropical marine low cloud feedback averaged across all models (0.12 ± 0.07326

Wm−2K−1) is about half as large as assessed (0.25 ± 0.16 Wm−2K−1), and the trop-327

ical anvil cloud area feedback averaged across all models is close to zero (−0.04 ± 0.06328

Wm−2K−1), whereas it was assessed to be moderately negative (−0.20 ± 0.20 Wm−2K−1).329

For these two components, GCM values were not used to inform the expert judgement330

value, but rather they were based upon observations and, in the case of tropical marine331

low cloud feedbacks, large eddy simulations that resolve many of the cloud processes that332

must be parameterized in GCMs (see Table 1 of Sherwood et al., 2020).333

3.2 Correlations Among GCM Cloud Feedbacks334

The previous section provided several indications that models with large positive335

total cloud feedbacks tend to have systematically higher cloud feedbacks for all compo-336

nents rather than having a single anomalously strong positive component, and vice versa337

for models with small or negative total cloud feedbacks. We quantify this more rigor-338

ously in this section by diagnosing the correlation structure among the individual com-339

ponents.340

All individual cloud feedback components are positively correlated with the total341

cloud feedback, especially the high cloud altitude, midlatitude marine low cloud amount,342

and unassessed feedbacks (Figure 2a, column 1). While the tropical marine low cloud343

feedback is significantly correlated with the total, it is markedly weaker than for several344

other components, which is surprising given previous findings that low latitude marine345

low clouds in regions of moderate subsidence drive inter-model spread in climate sen-346

sitivity (Bony & Dufresne, 2005). The discrepancy may arise from the relatively small347

subset of models considered here, but it also may be related to the precise definition of348

low-cloud types: Taking the sum of stratocumulus and trade cumulus cloud feedbacks349

diagnosed in Myers et al. (2021) using different meteorological criteria than employed350

here as an alternative estimate of tropical marine low-cloud feedback, we find a larger351

correlation (r=0.80) with total cloud feedback.352

The positive correlations between individual components and the total cloud feed-353

back is expected: If all the models were distributed randomly for each feedback compo-354

nent, one would expect the models with largest total cloud feedback to be the ones that355

most consistently lie on the positive tail of all components. To demonstrate this, we gen-356

erated normal distributions with 10,000 samples matching the multi-model mean and357

standard deviation for each of the six assessed and one unassessed components and re-358

peated the above calculations on these random data. All individual components are sig-359

nificantly positively correlated with their sum, with correlation strengths proportional360

to the individual component variances (Figure 2b, column 1).361

The prevalence of strong and significant positive correlations among individual feed-362

back components seen in the actual model data is, however, not expected from chance.363

This leads to (1) individual components being more strongly correlated with the total364
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Figure 2. Matrix showing the across-model correlation among all cloud feedback components

for (a) actual model data and (b) synthetic normally-distributed data with means and stan-

dard deviations equal to those of the models for each feedback component. Correlations that are

significantly different from zero at the 95% confidence level are indicated with an asterisk.

cloud feedback and (2) a wider spread in the total cloud feedback than would occur if365

individual components were uncorrelated. Models with large positive total cloud feed-366

backs tend to have systematically larger-than-average cloud feedbacks across multiple367

components rather than being generally near-average but having a single large compo-368

nent. E3SM-1-0, for example, has the largest positive total cloud feedback, and its feed-369

back values are among the largest values in all categories except the land cloud feedback370

(Figure S14 and Table 3). Conversely, models like MIROC5 with negative total cloud371

feedbacks tend to have cloud feedbacks on the left tail of the distribution for all com-372

ponents (Figure S8 and Table 3). Consistent with this, we find that most models with373

near-average total cloud feedbacks have components that are systematically near-average374

rather than having several components with extreme values of opposing sign that counter375

each other. One exception is CNRM-ESM2-1, which has feedbacks on the high tail of376

the model distribution for some components and on the low tail for others (Figure S12377

and Table 3).378

That all of the significant correlations in Figure 2a are positive might suggest that379

they are linked by a physical mechanism rather than arising from tuning artifacts. As380

will be shown in Section 3.5, high-cloud feedbacks are among the largest components of381

the unassessed feedback; hence it is plausible that the positive correlations among the382

unassessed, high-cloud altitude, and anvil feedbacks reflect a shared physical mechanism383

involving high clouds. Other large positive correlations (e.g., between high-cloud alti-384

tude and tropical and middle latitude marine low-cloud amount) are harder to rational-385

ize. We discuss further implications of all of these correlations in Section 3.4.386

3.3 Metrics of Overall Cloud Feedback Errors387

To assess the overall skill of each model in matching the expert-assessed cloud feed-388

back components, we compute a single cloud feedback error metric for each model as the389

root mean square error (RMSE) with respect to the central expert judgement value over390

all six assessed feedback components of Sherwood et al. (2020). Each model’s cloud feed-391

back RMSE is provided in Table 3 and is plotted against total cloud feedback in Figure392

3.393

CMIP5 and CMIP6 models exhibit both high and low cloud feedback RMSE val-394

ues, and the multi-model mean RMSE values are the same for both ensembles (Table395
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Figure 3. Total cloud feedback scattered against cloud feedback RMSE, with expert likely

and very likely ranges of total cloud feedback indicated with horizontal shading. Models are de-

noted by the symbols listed in Table 3 and are colored according to their (a) ECS values and (b)

net radiatively-relevant cloud property error metric, ENET.

3). Although the three best-performing models in this measure are CMIP6 models, there396

is no systematic tendency for CMIP6 models to be performing better than CMIP5 mod-397

els with respect to expert judgement. For models from the same modelling centers that398

can be tracked between the two generations, the same number of models show degraded399

performance as improved performance in this measure: MIROC-ES2L [P] and the two400

UKMO models (HadGEM3-GC31-LL [M] and UKESM1-0-LL [S]) have higher RMSE401

than their predecessors (MIROC-ESM [d], and HadGEM2-ES [c]), whereas CanESM5402

[J], MIROC6 [Q], and MRI-ESM2-0 [R] have lower RMSE than their predecessors (CanESM2403

[b], MIROC5 [e], and MRI-CGCM3 [g]).404

The seven models with smaller-than-average cloud feedback errors (i.e., RMSE ≤405

0.11 Wm−2K−1) have moderate (0.4–0.6 Wm−2K−1) total cloud feedbacks, except for406

CanESM5 [J], which has a total cloud feedback of 0.8 Wm−2K−1. All but three of these407

models have moderate (3–4 K) ECS values, the exceptions being HadGEM2-ES [c], MIROC-408

ESM [d], and CanESM5 [J], which have ECS values above 4.5 K. This makes sense given409

that the expert-assessed value of total cloud feedback, which has the greatest leverage410

on ECS, led to moderate values of ECS in Sherwood et al. (2020). Of the seven mod-411

els with below-average feedback errors, GFDL-CM4 [L], MRI-ESM2-0 [R], and CanESM2412

[b] are the only ones for which all assessed feedbacks lie within the expert likely range413

(Figures S15, S21, and S5, respectively; Table 3). Put simply, they get the right answer414

for the right reasons.415

Models with too-large or too-small total cloud feedbacks and ECS tend to have larger-416

than-average cloud feedback RMSE values. That is, the models that lie farthest from417

the horizontal dashed line tend to be located on the right side of Figure 3. All five mod-418

els with small total cloud feedback (< 0.2 Wm−2K−1) and small ECS (< 3 K) have cloud419

feedback components that are systematically biased low relative to expert judgement,420

giving them larger-than-average RMSE. Most models with large total cloud feedback and421

large ECS have cloud feedback components that are systematically biased high relative422

to expert judgement, also giving them larger-than-average RMSE. Of the nine models423

with ECS > 4.5 K, only HadGEM2-ES [c], MIROC-ESM [d], and CanESM5 [J] have below-424

average RMSE value. CCSM4 [a] has the highest RMSE of all models considered despite425

lying within the assessed likely range for five components (Figure S4; Table 3).426

Two models (CNRM-CM6-1 [H] and CNRM-ESM2-1 [I]) have total cloud feedbacks427

very close to the central value of the expert assessment but larger-than-average RMSE428

values. They achieve reasonable total cloud feedbacks partly through having low-biased429
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Figure 4. (a) Total cloud feedback and (b) cloud feedback RMSE scattered against net

radiatively-relevant cloud property error metric, ENET. Models are denoted by the symbols listed

in Table 3 and are colored green for CMIP5 and purple for CMIP6. Expert likely and very likely

ranges of total cloud feedback indicated with horizontal shading in (a). Correlations that are

significant at 95% confidence are indicated with an asterisk.

tropical marine low cloud feedbacks that counteract their high-biased tropical anvil cloud430

area feedbacks (Figures S11-12; Table 3). Put simply, they get the right answer for the431

wrong reasons.432

GFDL-CM4, CanESM5, MRI-ESM2-0, and CanESM2 remain the four models with433

lowest RMSE regardless of whether we use feedbacks derived from abrupt-4xCO2 or amip-p4K434

experiments.435

3.4 Relationship Between Cloud Feedbacks and Mean-State Cloud Prop-436

erty Errors437

The fidelity with which models simulate mean-state radiatively-relevant cloud prop-438

erties is strongly and significantly correlated with total cloud feedback (Figure 4a). We439

show this result for the net radiatively-relevant cloud property error (ENET), but it is440

also strong and significant for the SW-radiation error as well as the cloud property er-441

ror without radiative weighting (not shown). This result is consistent with Figure 11 of442

Klein et al. (2013), but now the relationship holds across two ensembles of models (CMIP5443

and CMIP6). Given that ENET is an aggregated metric, we also tested whether the an-444

ticorrelation persists when considering relationships between individual cloud feedbacks445

and cloud-type specific ENET values (e.g., between midlatitude marine low-cloud amount446

feedback and mean-state errors for midlatitude marine low-clouds). This anticorrelation447

continues to hold for all but the land cloud amount feedback, albeit with weaker corre-448

lation coefficients (not shown). While caution is necessary given the relatively small sam-449

ple size, an important question is why better simulating present-day cloud properties is450

associated with larger cloud feedbacks. We leave this as an open question for future re-451

search.452

On average, mean-state cloud properties are simulated better in CMIP6 than in453

CMIP5 (Figure 4a; Table 3). Six CMIP6 models now have smaller error values than the454

smallest exhibited in CMIP5. For models from the same modeling center than can be455

tracked, all but one has improved in this measure from CMIP5 to CMIP6. Specifically,456

marked improvement is seen from CanESM2 [b] to CanESM5 [J], from HadGEM2-ES457

[c] to HadGEM3-GC31-LL [M] and UKESM1-0-LL [S], and from MIROC5 [e] to MIROC6458

[Q], whereas MRI-ESM2-0 [R] has very slightly degraded mean-state clouds relative to459

MRI-CGCM3 [g].460
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It is often implicitly assumed by model developers and model analysts that the de-461

gree to which a model’s clouds resembles reality can be used as a basis to trust their re-462

sponse to climate change. In Figure 4b, we test this assumption by comparing the agree-463

ment with expert judgment for cloud feedbacks (encapsulated in RMSE) to the agree-464

ment with observations of the present-day climatological distribution of clouds and their465

properties (encapsulated in ENET). While the correlation between these two metrics is466

positive, it is very weak and not significant at 95% confidence. Moreover, many mod-467

els with small mean-state cloud errors have cloud feedback errors that are as large or larger468

than models with large mean-state errors, indicating that improved simulation of mean-469

state cloud properties does not necessarily lead to improved cloud feedbacks with respect470

to expert judgment. The weak correlation also holds for relationships between RMSE471

and components of ENET corresponding to individual cloud feedbacks (not shown).472

In Figure 3b, models are color-coded by ENET, allowing for a simultaneous assess-473

ment of how well models simulate mean-state cloud properties and match expert judg-474

ment of total cloud feedback and its components. From this it is evident that most of475

the models with small mean-state errors (yellow shading) have large cloud feedback er-476

rors and several lie above the upper limit of the likely range of total cloud feedback (i.e.,477

in the top-right portion of the diagram). The one exception is GFDL-CM4 [L], which478

achieves low cloud feedback RMSE, low values of ENET, and total cloud feedback near479

the central value of expert judgement.480

While realistic mean-state cloud properties may not guarantee that a model sim-481

ulates more reliable cloud feedbacks, the models with worst mean-state cloud proper-482

ties (i.e., ENET > 1.3) all have poor agreement with the expert-assessed total cloud feed-483

back and/or its components (see models at top right of Figure 4b). This is also evidenced484

by the fact that most of the models with large mean-state errors (purple/black shading)485

have large cloud feedback RMSE and lie below the lower limit of the likely range of to-486

tal cloud feedback (i.e., in the bottom-right part of Figure 3b). This suggests that sim-487

ulating poor mean-state cloud properties precludes a model from simulating cloud feed-488

backs in agreement with expert judgement. In other words, better simulation of mean-489

state cloud properties may be a necessary but insufficient criterion for simulating more490

trustworthy cloud feedbacks.491

This finding has support in recent literature. Mülmenstädt et al. (2021) showed492

that a model with better mean-state cloud properties could have greater biases in its cli-493

mate responses owing to compensating errors in cloud and precipitation processes. As494

noted in that study, fidelity in simulating mean-state clouds alone is an insufficient con-495

straint on a model’s feedback because of the many different combinations of process rep-496

resentations that can lead to equally valid representations of mean-state clouds. Since497

these process representations can all differ in their sensitivity to warming, the cloud feed-498

back is not uniquely determined by mean-state properties, and improving the represen-499

tation of the mean-state (especially at the expense of the process-level) does not guar-500

antee that feedbacks will be more reliably simulated. This notion is supported by the501

fact that the set of model parameters driving the variance in mean-state extratropical502

cloud radiative effect across members of the HadGEM3-GA7.05 perturbed physics en-503

semble differ from those driving the variance in its cloud feedback (Tsushima et al., 2020).504

A corollary to this are the many examples in which models with better “bottom-up” pro-505

cess representation more poorly satisfy “top-down” constraints like the observed histor-506

ical global mean temperature evolution (Golaz et al., 2013; Suzuki et al., 2013), expert-507

assessed magnitude of aerosol indirect effects (Jing & Suzuki, 2018) or paleoclimate states508

(Zhu et al., 2020, 2021)509
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3.5 GCM Cloud Feedbacks in Unassessed Categories510

Sherwood et al. (2020) only assessed quantitative values for a selection of well-studied511

cloud feedbacks, so it is important to know whether any of the unassessed feedbacks are512

substantial. Examining these feedback components is important as it may guide where513

future research with observations, process-resolving models, and theory is needed to fur-514

ther constrain GCMs’ cloud feedbacks. Figure 5 shows a breakdown of explicitly-computed515

feedbacks that were not assessed in Sherwood et al. (2020). There are an infinite num-516

ber of ways of breaking down these components, but our strategy was to quantify those517

that complement the assessed feedbacks, either in altitude or geographic space, to the518

extent possible. For example, we quantify the low cloud altitude feedback since the high519

cloud feedback is an assessed category, and we quantify the low cloud optical depth feed-520

back between 30 and 90 degrees latitude but excluding the 40–70 degree zone where it521

was already assessed. The sum of these closely reproduces the implied unassessed feed-522

backs in Figure 1 (not shown). See Figure S3 for a matrix that helps to visualize and523

rationalize the discretization made.524

The multi-model mean unassessed cloud feedback transitions from being 0.01 Wm−2K−1
525

on average in CMIP5 to 0.08 Wm−2K−1 on average in CMIP6. The largest shift occurs526

for the multi-model mean extratropical high cloud optical depth component, which tran-527

sitions from a negative to a weak positive value. This component, along with the trop-528

ical marine ascent low-cloud amount plus optical depth component exhibit the largest529

inter-model spread among all unassessed categories, and may be worthwhile targets for530

future expert assessment.531

There are a few models whose unassessed feedbacks sum to a value that is large532

relative to their total and/or combined assessed feedbacks and worth examining in greater533

detail. MIROC5, MIROC-ES2L, and MIROC6 exhibit strong negative unassessed cloud534

feedbacks (with values < −0.10 Wm−2K−1) that are comparable in magnitude to the535

sum of their assessed feedbacks. MIROC5 and MIROC6 have strong negative low-cloud536

amount plus optical depth components in tropical marine ascent regions, while MIROC-537

ES2L has strong negative high-cloud amount and optical depth components in tropical538

marine subsidence regions. All three of these models have moderately negative extra-539

tropical high-cloud optical depth feedbacks as well. Two CMIP6 models (CanESM5 and540

E3SM-1-0) have positive unassessed feedbacks that exceed 0.15 Wm−2K−1 — the multi-541

model mean plus standard deviation. This occurs because of several systematically pos-542

itive components, the largest of which is the 0.11 Wm−2K−1 extratropical high-cloud543

optical depth component in E3SM-1-0.544

4 Discussion and Conclusions545

We have evaluated cloud feedback components simulated in 19 CMIP5 and CMIP6546

models against benchmark values determined via an expert synthesis of observational,547

theoretical, and high-resolution modeling studies (Sherwood et al., 2020). We found that,548

in general, models that most closely match the expert-assessed values across several cloud549

feedback components have moderate total cloud feedbacks (0.4–0.6 Wm−2K−1) and mod-550

erate ECS (3–4 K). In contrast, models with largest feedback errors with respect to ex-551

pert assessment generally have total cloud feedbacks and climate sensitivities that are552

too large or too small.553

There is no evidence that CMIP6 models simulate cloud feedbacks in better agree-554

ment with expert judgement than do CMIP5 models. While the three best models in our555

error metric are CMIP6 models, all models with total cloud feedbacks above the upper556

limit of the expert-assessed likely range are part of CMIP6 and have ECS values above557

3.9 K, the upper limit of the expert-assessed likely ECS range. However, the converse558

is not true: several models with high ECS have total cloud feedbacks within the likely559
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Figure 5. As in Figure 1, but for cloud feedback components that were not assessed in

Sherwood et al. (2020). Note the x-axis spans a range that is only a third of that in Figure

1.
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range. This means that large cloud feedback ensures a high ECS, but high ECS can emerge560

even with moderate cloud feedbacks, a result consistent with M. J. Webb et al. (2013)561

for CMIP3 models. More generally, having 2xCO2 radiative forcing and feedbacks in agree-562

ment with expert judgement does not guarantee that a model’s ECS will be in agree-563

ment with expert judgement because the latter is further constrained by evidence from564

the paleoclimate and historical records (Sherwood et al., 2020).565

On average, and for most individual modeling centers, mean-state cloud proper-566

ties are better simulated in CMIP6. Better simulation of mean-state cloud properties is567

strongly and significantly correlated with larger total cloud feedback. The reasons for568

this remain to be investigated, but it is consistent with emergent constraint studies in-569

volving mean-state properties of clouds or their environment, nearly all of which point570

to higher-than-average cloud feedbacks and climate sensitivities (Volodin, 2008; Tren-571

berth & Fasullo, 2010; Fasullo & Trenberth, 2012; Sherwood et al., 2014; Tian, 2015; Bri-572

ent et al., 2016; Siler et al., 2018).573

But more skillful simulation of mean-state cloud properties does not guarantee more574

skillful simulation of cloud feedbacks, and many models with small mean-state errors have575

large cloud feedback errors with respect to expert judgment. In general, better simula-576

tion of mean-state cloud properties leads to stronger but not necessarily better cloud feed-577

backs. GFDL-CM4, which has the smallest cloud feedback error, small mean-state cloud578

property error, and a total cloud feedback near the expert-assessed central value, is the579

exception to this rule. Skill at simulating mean-state cloud properties appears to be a580

necessary but not sufficient criterion for simulating realistic cloud feedbacks.581

Models with large positive total cloud feedbacks tend to have systematically higher582

cloud feedbacks for all components rather than having a single anomalously strong pos-583

itive component, and vice versa for models with small or negative total cloud feedbacks.584

This means, for example, that there is no single feedback that all high ECS models are585

exaggerating. However, if there is some physical relationship causing the correlation be-586

tween individual feedback components, this may imply that constraining one component587

would have knock-on effects across several components. In this case, feedbacks from mul-588

tiple cloud types could be constrained with less evidence than would be needed if they589

were uncorrelated, and changing one aspect of a model might systematically change the590

feedbacks from multiple cloud types, making it easier to improve its cloud feedbacks. Es-591

tablishing and understanding the physical basis of correlations among feedback compo-592

nents and their potential linkages with mean-state cloud properties is important future593

work.594

The high latitude low-cloud optical depth feedback has shifted from being robustly595

negative across CMIP5 models, with some models simulating moderately strong nega-596

tive feedbacks below the expert-assessed likely range, to a much weaker negative feed-597

back in CMIP6, with the models tightly clustered about it. This represents a shift to-598

wards better agreement with expert judgement (also seen in Myers et al., 2021), and may599

be tied to reductions in super-cooled liquid biases in the latest models (Bodas-Salcedo600

et al., 2019; Gettelman et al., 2019; M. D. Zelinka et al., 2020).601

Results from several individual cloud feedback components raise important ques-602

tions and motivate future investigation:603

• The high cloud altitude feedback strength varies widely across models, despite its604

firm theoretical basis and support from observational analyses and high-resolution605

modeling. This motivates further work to pin down causes of inter-model spread606

and to eliminate sources of bias in this feedback.607

• Although we found that the tropical marine low cloud feedback simulated by most608

models lies at the low end of the expert-assessed likely range, recent observational609

constraints support slightly lower values (Cesana & Del Genio, 2021; Myers et al.,610

–19–



manuscript submitted to JGR: Atmospheres

2021; Ceppi & Nowack, 2021) owing in part to a better discrimination between611

strong stratocumulus feedbacks and weaker trade cumulus feedbacks. If incorpo-612

rated into a future assessment, the expert value of this feedback could be revised613

downward, likely resulting in a better alignment between it and the multi-model614

mean. To the extent that the assessed confidence bounds also narrow, however,615

the models with very weak tropical marine low cloud feedbacks may still lie be-616

low the expert judgement range.617

• Despite the wide uncertainty in its expert-assessed value, eight models have pos-618

itive tropical anvil cloud feedbacks that place them above the upper bound of the619

assessed likely confidence interval. This discrepancy between models and expert620

judgment can be traced to the disagreement between models and observations in621

the sensitivity of tropical TOA radiation and deep convective cloud properties to622

interannual fluctuations in surface temperature found in the studies of Mauritsen623

and Stevens (2015) and I. N. Williams and Pierrehumbert (2017), which were in-624

fluential in establishing the expert-assessed value. Much uncertainty remains sur-625

rounding the processes controlling tropical anvil cloud fraction and its changes with626

warming, and the fidelity with which GCMs can simulate them (Bony et al., 2016;627

Hartmann, 2016; Seeley et al., 2019; Wing et al., 2020; Gasparini et al., 2021).628

• Cloud feedback components that were not assessed in Sherwood et al. (2020), though629

summing to zero on average across models, have substantial inter-model spread630

and partly drive the increase in multi-model average cloud feedback from CMIP5631

to CMIP6. Of these, the extratropical high cloud optical depth component exhibits632

the largest increase. This, along with the aforementioned uncertainties surround-633

ing high cloud altitude and anvil cloud feedbacks highlights the need for further634

observational analyses, process-resolving modeling, and theoretical studies target-635

ing high cloud feedbacks.636

We have provided Python code that performs all calculations and generates all vi-637

sualizations presented in this study. The code is also easily modified to accommodate638

comparisons between GCM cloud feedbacks and the similar but not identical breakdown639

of cloud feedback components that is used in the 6th Assessment report of the IPCC.640

We envision that this code could be applied to perturbed parameter or perturbed physics641

ensembles and to developmental versions of models to assess cloud feedbacks and cloud642

errors and place them in the context of other models and of expert judgement in real-643

time during model development. This may be particularly valuable in less computation-644

ally expensive prescribed SST perturbation experiments that are routinely performed645

during model development. Despite their simpler design, these “Cess-type” experiments646

effectively capture the feedbacks present in fully coupled experiments (Ringer et al., 2014).647

So doing could help modelers to identify and correct erroneous cloud feedbacks that lead648

to biased climate sensitivity prior to the model being frozen, thereby increasing the re-649

liability of the model for policy-relevant climate projections (e.g., Voosen, 2021).650
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1. Figures S1 to S22

Introduction

In this document, we provide 22 supplementary figures. Figures S1 and S2 compare cloud

radiative kernel-derived cloud feedbacks with those derived using independent methods.

Figure S3 provides a matrix showing which regions and cloud types contribute to each

feedback, facilitating understanding of how the assessed feedbacks are computed, which

feedbacks are left unassessed, and how we further discretize these remaining unassessed

feedbacks. Figures S4-S22 are identical to Figure 1 of the main text, but individual models

are highlighted in each.

References

Huang, Y., Xia, Y., & Tan, X. X. (2017). On the pattern of CO2 radiative forcing and

poleward energy transport. Journal of Geophysical Research-Atmospheres , 122 (20),

10578–10593. doi: 10.1002/2017jd027221

August 30, 2021, 9:19pm



X - 2 :

Shell, K. M., Kiehl, J. T., & Shields, C. A. (2008). Using the Radiative Kernel Technique

to Calculate Climate Feedbacks in NCAR’s Community Atmospheric Model. J.

Climate, 21 (10), 2269–2282. doi: 10.1175/2007JCLI2044.1

Soden, B. J., Held, I. M., Colman, R., Shell, K. M., Kiehl, J. T., & Shields, C. A. (2008).

Quantifying Climate Feedbacks Using Radiative Kernels. J. Climate, 21 , 3504–3520.

doi: 10.1175/2007JCLI2110.1

Taylor, K. E., Crucifix, M., Braconnot, P., Hewitt, C. D., Doutriaux, C., Broccoli, A. J.,

. . . Webb, M. J. (2007). Estimating Shortwave Radiative Forcing and Response in

Climate Models. J. Climate, 20 (11), 2530–2543. doi: 10.1175/JCLI4143.1

Zelinka, M. D., Klein, S. A., & Hartmann, D. L. (2012). Computing and Partitioning

Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels.

Journal of Climate, 25 (11), 3715–3735. doi: 10.1175/jcli-d-11-00248.1

August 30, 2021, 9:19pm



: X - 3

3

2

1

0

1

2
W

/m
2 /K

Multi-model mean cloud feedbacks
LW; CRK and CREadj

3

2

1

0

1

2

W
/m

2 /K

SW; CRK and CREadj

Soden
Shell
Pendergrass
Huang

Smith
Block
CRK

90S 50S 30S 15S EQ 15N 30N 50N 90N
Latitude

3

2

1

0

1

2

W
/m

2 /K

SW; CRK and APRP

CRK total
CRK optical depth
CRK amount

APRP total
APRP scattering+absorption
APRP amount

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n 
Co

ef
fic

ie
nt

Across-model correlation between CRK and non-CRK cloud feedbacks
LW; CRK vs CREadj

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n 
Co

ef
fic

ie
nt

SW; CRK vs CREadj

Soden
Shell
Pendergrass

Huang
Smith
Block

90S 50S 30S 15S EQ 15N 30N 50N 90N
Latitude

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n 
Co

ef
fic

ie
nt

SW; CRK vs APRP

total
optical depth
amount

Figure S1. (left) Zonal and multi-model mean LW and SW cloud feedbacks estimated using

three methodologies: cloud radiative kernels (CRK; Zelinka et al., 2012), adjusted change in

cloud radiative effect (∆CREadj; Soden et al., 2008; Shell et al., 2008), and approximate par-

tial radiative perturbation (APRP; Taylor et al., 2007). Six estimates of ∆CREadj are shown,

each using a different radiative kernel identified in the caption on row 2. (right) Across-model

correlation between CRK-derived and non-CRK-derived zonal mean cloud feedbacks. The CRK-

derived SW cloud feedback is further broken down into optical depth and amount components,

which are compared to the APRP-derived SW scattering plus absorption component and amount

component, respectively.
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scattered against those estimated using non-CRK techniques. For clarity, we show only one of

the six estimates of ∆CREadj, that derived using the kernels of Huang et al. (2017).
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High N/A 4 1 1 N/A N/A

Low N/A 4 1 1 N/A N/A
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High Asc

3
Dsc
2 N/A N/A N/A Asc

3
Dsc
2 4

Low Asc
3

Dsc
2 N/A N/A N/A Asc

3
Dsc
2 4

30˚-40˚N/S
High 8 N/A N/A N/A 7 7

Low 5 N/A N/A N/A 6 6

40˚-60˚N/S
High 8 N/A N/A N/A 7 7

Low 5 N/A N/A N/A 6 6

60˚-70˚N/S
High 8 N/A N/A N/A 7 7

Low 5 N/A N/A N/A 6 6

70˚-90˚N/S
High 8 N/A N/A N/A 7 7

Low 5 N/A N/A N/A 6 6

Unassessed
1. Global Low ALT
2. Tropical Ocean Descent High AMT+TAU
3. Tropical Ocean Ascent Low AMT+TAU
4. Tropical Land High+Low TAU
5. 60-90 Ocean Low AMT
6. 30-40/70-90 Ocean+Land Low TAU
7. 30-90 Ocean+Land High TAU
8. 30-90 Ocean High AMT
9. Global Obscuration Covariance*
10. Global Zelinka et al. (2013) Residual*

*not shown in matrix for brevity

Assessed
1. Global High ALT
2. Tropical Ocean Descent Low AMT + TAU
3. Anvil
4. Global Land AMT
5. Middle latitude Low AMT
6. Extratropical Low TAU

N/A = Not Applicable

Figure S3. Matrix of assessed and unassessed cloud feedbacks. The sum of all assessed and

unassessed components equals the total cloud feedback.
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Figure S4. As in Figure 1, but highlighting CCSM4.
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Figure S5. As in Figure 1, but highlighting CanESM2.
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Figure S6. As in Figure 1, but highlighting HadGEM2-ES.
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Figure S7. As in Figure 1, but highlighting MIROC-ESM.
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Figure S8. As in Figure 1, but highlighting MIROC5.
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Figure S9. As in Figure 1, but highlighting MPI-ESM-LR.
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Figure S10. As in Figure 1, but highlighting MRI-CGCM3.
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Figure S11. As in Figure 1, but highlighting CNRM-CM6-1.
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Figure S12. As in Figure 1, but highlighting CNRM-ESM2-1.
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Figure S13. As in Figure 1, but highlighting CanESM5.
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Figure S14. As in Figure 1, but highlighting E3SM-1-0.
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Figure S15. As in Figure 1, but highlighting GFDL-CM4.

August 30, 2021, 9:19pm



X - 18 :

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Wm 2K 1

Total Cloud Feedback

Sum of Assessed Cloud Feedbacks

Implied Unassessed Cloud Feedbacks

High Latitude Low-Cloud Optical Depth

Middle Latitude Marine Low-Cloud Amount

Land Cloud Amount

Tropical Anvil Cloud Area

Tropical Marine Low-Cloud

High-Cloud Altitude

Cen
tra

l

5% 95
%

17
%

83
%

WCRP Assessment

Assessed Cloud Feedback Values [abrupt-4xCO2]
HadGEM3-GC31-LL [5.5K]
CMIP5 Mean [n=7]
CMIP6 Mean [n=12]

2.3

2.6

3.9

4.7

EC
S 

[K
]

CMIP5
   CCSM4
   CanESM2
   HadGEM2-ES
   MIROC-ESM
   MIROC5
   MPI-ESM-LR
   MRI-CGCM3

CMIP6
   CNRM-CM6-1
   CNRM-ESM2-1
   CanESM5
   E3SM-1-0
   GFDL-CM4
   HadGEM3-GC31-LL
   IPSL-CM6A-LR
   IPSL-CM6A-LR-INCA
   MIROC-ES2L
   MIROC6
   MRI-ESM2-0
   UKESM1-0-LL

Figure S16. As in Figure 1, but highlighting HadGEM3-GC31-LL.
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Figure S17. As in Figure 1, but highlighting IPSL-CM6A-LR.
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Figure S18. As in Figure 1, but highlighting IPSL-CM6A-LR-INCA.
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Figure S19. As in Figure 1, but highlighting MIROC-ES2L.
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Figure S20. As in Figure 1, but highlighting MIROC6.
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Figure S21. As in Figure 1, but highlighting MRI-ESM2-0.
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Figure S22. As in Figure 1, but highlighting UKESM1-0-LL.

August 30, 2021, 9:19pm


