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Abstract

The hydrologic dynamics and geomorphic evolution of watersheds are intimately coupled – runoff generation and water storage

are controlled by topography and properties of the surface and subsurface, while also affecting the evolution of those properties

over geologic time. However, the large disparity between their timescales has made it difficult to examine interdependent

controls on emergent hydro-geomorphic properties, such as hillslope length, drainage density, extent of surface saturation. In

this study, we develop a new model coupling hydrology and landscape evolution to explore how runoff generation affects long-

term catchment evolution, and analyze numerical results using a nondimensional scaling framework. We focus on hydrologic

processes dominating in humid climates where storm runoff primarily arises from shallow subsurface flow and from precipitation

on saturated areas. The model solves hydraulic groundwater equations to predict the water table location given prescribed,

constant groundwater recharge. Water in excess of the subsurface capacity for transport becomes overland flow, which generates

shear stress on the surface and may detach and transport sediment. This affects the landscape form that in turn affects runoff

generation. We show that (1) three dimensionless parameters describe the possible steady state landscapes that coevolve under

steady recharge; (2) hillslope length increases with increasing transmissivity relative to the recharge rate; (3) three topographic

metrics—steepness index, Laplacian curvature, and topographic index—provide a basis to recover key model parameters from

topography (including subsurface transmissivity). These results open possibilities for topographic analysis of humid upland

landscapes that could inform quantitative understanding of hydrological processes at the landscape scale.
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Abstract18

The hydrologic dynamics and geomorphic evolution of watersheds are intimately cou-19

pled – runoff generation and water storage are controlled by topography and properties20

of the surface and subsurface, while also affecting the evolution of those properties over21

geologic time. However, the large disparity between their timescales has made it diffi-22

cult to examine interdependent controls on emergent hydro-geomorphic properties, such23

as hillslope length, drainage density, extent of surface saturation. In this study, we de-24

velop a new model coupling hydrology and landscape evolution to explore how runoff gen-25

eration affects long-term catchment evolution, and analyze numerical results using a nondi-26

mensional scaling framework. We focus on hydrologic processes dominating in humid cli-27

mates where storm runoff primarily arises from shallow subsurface flow and from pre-28

cipitation on saturated areas. The model solves hydraulic groundwater equations to pre-29

dict the water table location given prescribed, constant groundwater recharge. Water30

in excess of the subsurface capacity for transport becomes overland flow, which gener-31

ates shear stress on the surface and may detach and transport sediment. This affects the32

landscape form that in turn affects runoff generation. We show that (1) three dimension-33

less parameters describe the possible steady state landscapes that coevolve under steady34

recharge; (2) hillslope length increases with increasing transmissivity relative to the recharge35

rate; (3) three topographic metrics—steepness index, Laplacian curvature, and topographic36

index—provide a basis to recover key model parameters from topography (including sub-37

surface transmissivity). These results open possibilities for topographic analysis of hu-38

mid upland landscapes that could inform quantitative understanding of hydrological pro-39

cesses at the landscape scale.40

1 Introduction41

1.1 Motivation42

Landscape morphology and subsurface structure are strong predictors of runoff gen-43

eration style and spatial distribution (Dunne, 1978). In humid climates, the infiltration44

capacity of undisturbed soil is high and overland flow due to exceedance of soil infiltra-45

tion capacity is rare. When relief is relatively low and soils are relatively thin, runoff is46

most commonly generated by the expansion of variable source areas, which may gener-47

ate overland flow where precipitation falls directly on saturated areas (Dunne & Black,48

1970). In steeper landscapes with deep soils, water may be transmitted laterally through49

the subsurface at permeability contrasts, becoming surface runoff only when it reaches50

stream channels (Hewlett & Hibbert, 1967). Saturated areas (including wetted stream51

channels) emerge as the supply of water from upslope areas exceeds the conveyance ca-52

pacity of water through the subsurface. This competition between upslope supply and53

downslope transport capacity links properties of the subsurface, such as transmissivity,54

to the runoff response of watersheds as a whole (O’Loughlin, 1981). Furthermore, over-55

land flow generates shear stress on the land surface that may detach and transport sed-56

iment. This drives the evolution of topographic convergence/divergence and convexity/concavity,57

which are important controls on runoff generation themselves (Prancevic & Kirchner,58

2019; Troch et al., 2003; Lapides et al., 2020).59

Research also suggests that incision and hillslope sediment transport play a role60

in setting the rate and extent of subsurface weathering by setting the rate at which fresh61

bedrock is supplied to the near surface (Gabet & Mudd, 2009; West et al., 2005). Sub-62

surface weathering is in turn crucial for setting subsurface properties that affect ground-63

water flow and storage capacity. These feedbacks suggest that there should be intimate64

links between runoff generation behavior and landscape morphology. If morphology af-65

fects and is affected by runoff generation, how might long-term evolution set the extent66

of surface saturation in a landscape? Are there emergent relationships between topographic67
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form and shallow subsurface hydrology that we could quantify? Here we will draw in-68

sights from coupled a coupled hydro-geomorphic model to answer these questions.69

1.2 Background70

Over geologic time, upland landscapes are shaped by the competition between in-71

cision by overland flow, gravitationally-driven fluxes of sediment due to processes includ-72

ing biogenic disturbance and frost heaving, and baselevel change (Howard, 1994). While73

it is not possible to observe the evolution of landscapes at human timescales, numeri-74

cal landscape evolution models (LEMs) have allowed researchers to make substantial progress75

in understanding how landscapes respond to dynamic forcings of tectonics, lithology, and76

climate (e.g., reviews by Chen et al., 2014; Bishop, 2007; Martin & Church, 2004; Pel-77

letier, 2013; Pazzaglia, 2003; Temme et al., 2013; Valters, 2016). However, the treatment78

of hydrology in models that consider evolution over geologic time remains rudimentary.79

Early LEMs treated runoff as the product of upslope area and an effective precip-80

itation rate (Willgoose, Bras, & Rodriguez-Iturbe, 1991; Ahnert, 1976; Armstrong, 1976),81

representing the time-averaged runoff from infiltration excess overland flow. In these mod-82

els, all areas of the landscape generated surface runoff simultaneously, though all areas83

may not experience erosion due to the presence of thresholds for sediment detachment84

(Horton, 1945). The practice of using such runoff formulations in LEMs is still common85

today when hydrologic response is not central to the study, as models with minimal hy-86

drologic dynamics can still effectively capture certain essential aspects of landscape form87

(e.g., Forte et al., 2016; Barnhart, Tucker, Doty, Glade, et al., 2020; Theodoratos et al.,88

2018). One of the first attempts to capture subsurface hydrology in a LEM came when89

Ijjász-Vásquez et al. (1992) developed a model that partitioned flow between surface and90

subsurface using a steady state topographic index criterion (Beven & Kirkby, 1979). The91

authors found that this partitioning significantly changed catchment hypsometry in com-92

parison to the infiltration excess formulation. Tucker and Bras (1998) compared several93

different landscape evolution and runoff generation formulations, including one that treats94

subsurface transport capacity similarly to Ijjász-Vásquez et al. (1992). They found that95

the evolved landscapes have sharp hillslope-valley transitions at a critical value of topo-96

graphic index. These transitions were smoothed by treating precipitation as a random97

process with an exponential distribution, rather than having a single value. However,98

the topographic index type models neglect the role of nonlinearities in groundwater flow,99

and antecedent conditions that determine catchment runoff response to precipitation.100

Flow nonlinearity affects the degree to which groundwater flow is driven by diffusion of101

the water table rather than advection due to slope gradients of permeability contrasts,102

and can have significant effects on runoff generation (C. Harman & Sivapalan, 2009). The103

steady state assumption of the topographic index model assumes that a storm event is104

effectively independent of prior events, and arrives with the full subsurface capacity avail-105

able to drain flow. Many hydrological studies have shown that antecedent conditions are106

important controls on runoff magnitudes, where wetter systems are primed for larger runoff107

response due to lack of available subsurface storage or transport capacity (Brocca et al.,108

2009; Tramblay et al., 2010).109

Several studies have coupled landscape evolution with hydrological processes in greater110

detail. Huang and Niemann (2006, 2008) developed a coupled groundwater model and111

LEM, and demonstrated the importance of dynamic runoff generation mechanisms for112

the topographic evolution of different areas of modeled basins. Huang and Niemann (2006)113

focused on the evolution of a single well-studied catchment, and found that as they sim-114

ulated its evolution from present, runoff was increasingly generated by subsurface lat-115

eral flow rather than saturation excess overland flow. Huang and Niemann (2008) ex-116

plored the long-term geomorphic evolution of synthetic catchments with groundwater117

flow, and concluded that the hypsometry of steady state landscapes was not generally118

distinguishable between surface-water-dominated and groundwater-dominated landscapes.119
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In this case, sensitivity of modeled topography to parameters was conducted by impos-120

ing changes on the slope-area relationship rather than examining results of the coupled121

model, making it more difficult to evaluate the precise role of groundwater flow in long122

term evolution. Zhang et al. (2016) presented a highly detailed, coupled hydrological model123

and LEM, though to our knowledge it has not been used beyond the initial proof of con-124

cept. With solutions to Richards equation for subsurface flow and St. Venant’s equation125

for surface flow and employment of several dozen parameters, this model is computation-126

ally expensive and may be more complex than needed to explore process feedbacks be-127

tween shallow subsurface hydrology and landscape evolution. A systematic approach is128

needed to understand these feedbacks. It must be simple enough for interpretation of129

process controls while still having the core elements of landscape evolution and dynamic130

runoff generation from the shallow subsurface.131

1.3 Approach132

In this study, we develop and use a new groundwater-landscape evolution model133

to explore how subsurface-mediated runoff generation affects long-term catchment evo-134

lution. The model solves hydraulic groundwater equations to predict the water table lo-135

cation given prescribed recharge. Water in excess of the subsurface flow capacity becomes136

overland flow, which may detach and transport sediment, altering topographic proper-137

ties that in turn affect runoff generation. Our model can support recharge rates which138

vary in space and time, but here we constrain the scope to considering only steady, uni-139

form recharge. In order to generalize our understanding from the model results, we con-140

duct a similarity analysis that provides new insight into the dynamics behind the widely141

used “stream power plus diffusion” model by reconciling contradictory dimensional anal-142

yses provided by Theodoratos et al. (2018) and Bonetti et al. (2020). We can reduce the143

seven dimensioned parameters of the model to four dimensionless parameters, one of which144

is always negligible. We present numerical results confirming the efficacy of our nondi-145

mensionalization and exploring the newly defined non-dimensional parameter space to146

determine how hydrologic and geomorphic parameters determine emergent hydro-geomorphic147

properties at geomorphic steady state. The results show that subsurface flow capacity148

relative to recharge rate exerts a fundamental control on hillslope length and relief, and149

that three topographic metrics derived from the governing equations form a natural ba-150

sis for evaluating the resulting coevolved landscapes. We derive and discuss a theoret-151

ical relationship between these metrics that allows us to recover the key model input pa-152

rameters (including subsurface transmissivity) from topographic analysis of the landscape.153

We conclude by discussing the possibilities this analysis may open for topographic anal-154

ysis of humid upland landscapes that could inform quantitative understanding of hydro-155

logical processes at the landscape scale.156

2 Governing equations157

To investigate the effects of subsurface hydrology on landscape evolution, we cou-158

ple a hydrological model to a standard model of landscape evolution. First, we derive159

a governing equation for topographic evolution that includes the role of space- and time-160

variable runoff in fluvial incision. Second, we examine the hydrological model that will161

generate runoff. Variable dimensions are provided in Sec. 9.162

2.1 Landscape evolution163

Topographic elevation z(x, y, t) is assumed to evolve due to fluvial incision Ef (x, y, t),164

hillslope diffusion Eh(x, y, t), and constant baselevel change U .165

∂z

∂t
= −Ef − Eh + U (1)
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The term Ef accounts for incision into the landscape by erosion due to overland166

flow. The term Eh accounts for gravitational soil-transport processes that tend to smooth167

out landscape features. The term U accounts for the constant rate of either tectonic up-168

lift or baselevel fall, in this case increasing topographic elevation relative to a fixed el-169

evation boundary.170

In one commonly used form of this equation, fluvial incision is described by the stream-
power law, originally derived from empirical data (Howard & Kerby, 1983):

Ef = KAm|∇z|n (2)

Here A(x, y, t) is the upslope drainage area. In the standard streampower formulation,
the exponents are m = 1/2 and n = 1. This is supported by observations of stream
profile concavity that suggest m/n ≈ 0.5, and a derivation in which incision is propor-
tional to streampower per unit surface area, and channel width increases with the square
root of discharge (Whipple & Tucker, 1999; Barnhart, Tucker, Doty, Shobe, et al., 2020).
This gives the streampower incision law:

Ef = K
√
A|∇z| (3)

This equation obscures the role of hydrological processes in the fluvial incision that171

drives landscape evolution. The relationship in (3) can also be derived from first prin-172

ciples in a way that provides a natural coupling to hydrological processes. This is accom-173

plished by assuming the incision rate Ef is related to the excess shear stress τ from over-174

land flow by some relationship. Frequently, this is written in the form:175

Ef = ke(τ − τc)β (4)

This excess shear stress formulation assumes that sediment is not redeposited within176

the domain (meaning that the system is assumed to be “detachment-limited”), which177

is widely used for upland watersheds (Howard, 1994). The shear stress generated by steady,178

uniform flow in a rectangular channel is:179

τ = ρwgdf |∇z|, (5)

where ρw is the density of water, g is the acceleration due to gravity, and df is the flow180

depth. A constitutive relation for flow resistance such as the Manning or Chezy equa-181

tion can provide the flow depth df at a particular discharge Q. We use the Chezy equa-182

tion for simplicity, which gives:183

df =

(
Q

Cw
√
|∇z|

)2/3

(6)

Here we assume that the channel width w is proportional to the square root of up-
slope area (e.g., Snyder et al., 2003; Wohl & David, 2008):

w ∼
√
A (7)

As we will show in subsequent scaling analysis, it will be useful to express this re-184

lation in terms of area per contour width a(x, y, t). However, the hydraulic scaling re-185

lationships for channel width are defined on the basis of catchment area A at a given cross186

section (Leopold & Maddock, 1953). To make the conversion between A and a, we rep-187

resent A as the product of a and a characteristic contour width v0, which is a chosen con-188

stant value. We will examine the physical significance of this parameter in later sections.189
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To obtain values for w from the expression (7) we additionally require the dimension-190

less parameter kw:191

w = kw
√
v0a (8)

In this equation there is only one degree of freedom, so we are free to choose a value192

of v0 for which there will always be a corresponding value of kw to satisfy a given rela-193

tionship between a and w. Ultimately, kw will become a component of the streampower194

coefficient K, while here v0 remains separate, and has additional significance in the con-195

text of hydrological processes.196

Next, we write the discharge Q(x, y, t) as the product of an instantaneous runoff197

ratio Q∗(x, y, t), upslope area A, and the average recharge rate p, Q = pAQ∗, and sub-198

stitute into (5) and (6) to find the flow depth and shear stress.199

df =

(
Q∗p
√
v0a

Ckw
√
|∇z|

)2/3

(9)

τ = ρwg

(
Q∗p
√
v0a

Ckw
√
|∇z|

)2/3

|∇z| (10)

To recover the the stream power formulation of the fluvial incision term, we set β =200

3/2 (Tucker, 2004) in (4), representative of hydraulic detachment by plucking (Whipple201

et al., 2000; Tsujimoto, 1999). With these substitutions, the incision rate Ef can be writ-202

ten as:203

Ef = K
√
v0Q

∗√a|∇z| (11)

where K = (ρwg)
3/2kep

Ckw
. This form is equivalent to (3), with time and space varying runoff204

accounted for in Q∗. Additionally because Q∗ is dimensionless, K in (11) has units of205

[1/T ], the same as in (3).206

The upslope area A is usually defined by explaining the algorithms used to calcu-207

late it in numerical schemes, which find flow directions on a discrete grid and sum the208

grid cell areas downslope along these flow directions. However, this approach gives the209

area an implicit dependence on grid cell spacing. Area per contour width a on the other210

hand has a precise mathematical definition that can be derived from conservation of mass211

(Bonetti et al., 2018, 2020). Consider the steady state depth of water hf across a sur-212

face where all locations contribute runoff at the same rate r. Conservation of mass for213

this system indicates that ∇·(hfu) = r, where u is the (vector) flow velocity. Now sup-214

pose that the flow velocity at every point also has magnitude r and points in the direc-215

tion of steepest descent −∇z/|∇z|. To satisfy continuity with this velocity, the flow depth216

must be equal to the upslope area per contour width, hf = a (Bonetti et al., 2018). This217

derivation shows that, by definition:218

−∇ ·
(
a
∇z
|∇z|

)
= 1 (12)

We are not implying that the assumptions we have made here are necessarily char-219

acteristics of all real flow; rather these assumptions can be employed, without violating220

conservation of mass, to derive an expression for area per contour width as a function221

of the local terrain. This expression will become important in our scaling analysis in later222

sections, as the scaling properties of the governing equations should be independent of223

the numerical implementation where a grid cell width must be chosen.224

–6–



manuscript submitted to JGR: Earth Surface

Here we use a linear diffusion model of hillslope processes for Eh, which emerges225

by assuming that the non-fluvial sediment transport rate qh is proportional to the lo-226

cal slope gradient −∇z, much as diffusion of a solute is proportional to the concentra-227

tion gradient (Dietrich et al., 2003). Then by assuming Eh ∼ −∇·qh from continuity,228

we find:229

Eh = D∇2z, (13)

where D is the linear diffusion constant. While nonlinear formulations of diffusion have230

proven useful in explaining topography (Roering et al., 1999; Roering, 2008), here we231

use linear diffusion to limit model complexity. We assume that baselevel change has a232

constant rate U in time and space by adopting a frame of reference anchored to base-233

level at the boundary of the domain. This can equivalently represent tectonic uplift or234

baselevel fall. This term becomes a “source” in the differential equation; without it, the235

topography would simply erode to a flat plane. While baselevel change is likely not steady236

in time in real landscapes, this assumption allows us to examine the emergent proper-237

ties of steady-state solutions to the governing equation. Combining all terms together,238

we arrive at our governing equations for topographic evolution:239

∂z

∂t
= −K

√
v0Q

∗√a|∇z|+D∇2z + U (14)

−∇ ·
(
a
∇z
|∇z|

)
= 1 (15)

This is different from the standard streampower formulation of landscape evolu-240

tion in that it includes a dimensionless runoff coefficient Q∗ to account for the spatial241

and temporal variation in runoff across the landscape. While there is considerable un-242

certainty in the form of the fluvial incision term, the similarity between the form we have243

selected and the standard “stream power plus diffusion” formulation allows us to make244

use of the same nondimensionalization techniques used for the standard LEM, and has245

properties that will aid in implementation and analysis of results while remaining plau-246

sible within the context of the existing literature.247

2.2 Hydrology248

Thus far, we have made no assumptions regarding the hydrology, instead introduc-249

ing Q∗ = Q/(pA). Any approach to representing hydrology could use the above equa-250

tions by calculate appropriate values for Q∗. In our application surface water runoff is251

assumed to be generated by exfiltrating subsurface lateral flow (Hewlett & Hibbert, 1967)252

and by precipitation on saturated areas (Dunne & Black, 1970). We solve for this runoff253

using a quasi-3D shallow unconfined aquifer model using the Dupuit-Forcheimer approx-254

imations (e.g., Childs, 1971). This model makes use of a method of regularization intro-255

duced by Marçais et al. (2017) that greatly improves model stability at seepage faces.256

We solve the model for lateral groundwater flow q(x, y, t), and local runoff production257

qs(x, y, t). Surface water discharge is calculated by instantaneously routing qs and sum-258

ming the accumulated local runoff over the area upslope of a given location. The gov-259

erning equations for the hydrological model are:260
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∂h

∂t
=

1

n

(
p−∇ · q − qs

)
(16)

q =− h cos θks
(
∇z +∇h

)
cos θ (17)

qs =G
(
h

b

)
R
(
i−∇ · q

)
(18)

Q =

∫
A

qsdA (19)

where h(x, y, t) is the aquifer thickness, n is the drainable porosity, θ(x, y, t) is the lo-261

cal slope of the (presumed impermeable) aquifer base, and b is the permeable thickness.262

The regularization function G(·) has a value of zero when the argument is less than one,263

and approaches 1 as the argument approaches 1. The ramp function R(·) is zero when264

the argument is less than zero and takes on the argument value when it is greater than265

zero.266

Though this model can accommodate time-variable recharge, here we consider only267

constant recharge at rate p. Careful examination of this model reveals that saturated268

areas receive “recharge” at the same rate as areas with deeper water tables. In reality,269

saturated areas receive direct precipitation, while areas with deeper water tables receive270

a smaller fraction as a result of losses to unsaturated zone storage and evapotranspira-271

tion from the root zone. When saturated area is a small proportion of the total area and272

the water table is not too deep, this effect may be negligible. We will leave further in-273

vestigation on the role of unsaturated zone dynamics to a future contribution, as this274

would add considerable complexity to the model.275

In the cases modeled here, the permeable thickness b is treated as constant in space276

and time. Considerable uncertainty exists in the rates and mechanisms that convert fresh277

bedrock to permeable fractured rock and/or regolith. Many past models have used an278

exponential function for the production of regolith (e.g., Ahnert, 1976; Armstrong, 1976;279

Rosenbloom & Anderson, 1994; Tucker & Slingerland, 1997), where the production rate280

is a function of regolith thickness. At geomorphic steady state, both the rates of change281

of topographic elevation and unweathered bedrock elevation go to zero. For the latter282

to be the case, the regolith production rate must be equal to the uplift rate. When the283

uplift rate and regolith production coefficients are spatially uniform, regolith thickness284

must be also be uniform to satisfy this equilibrium. This suggests that it is reasonable285

to treat permeable thickness as steady and uniform across the model domain given that286

we are only concerned with steady state landforms in this paper.287

3 Numerical implementation288

3.1 Timescale considerations289

One of the primary challenges in coupling a hydrological model with a landscape290

evolution model is the vast difference in process timescales. While the relevant timescale291

for storm runoff response may be on the order of hours or even minutes, landscape evo-292

lution processes can have characteristic timescales in the tens to thousands of years. It293

would be too computationally expensive to run models over geologic time using appro-294

priately small timesteps for stability and accuracy of the hydrological model. Zhang et295

al. (2016) identified two approaches to address this problem: online updating and offline296

updating. In the offline case, the hydrological model is run for many steps without up-297

dating topography, and then appropriately averaged discharge values are used to update298

topography over some larger geomorphic timestep. In contrast, online updating involves299

having a direct scaling between the hydrological timestep (e.g., one storm event) and the300

geomorphic timestep. Zhang et al. (2016) use an online approach, citing possible non-301

–8–
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uniqueness of solutions in the offline approach depending on the time between geomor-302

phic updates. Given that we consider only steady recharge in this paper, there should303

not be a significant difference between online and offline approaches given that the hy-304

drological state varies gradually, only in response to changing topography. Nonetheless,305

our approach can be considered online updating, as we scale the geomorphic timestep306

as ksf times the hydrological timestep: ∆tg = ksf∆th.307

3.2 Model implementation308

The groundwater and landscape evolution models described above were implemented309

as the DupuitLEM Python package, which makes extensive use of existing tools from the310

Python-based Earth surface modeling toolkit Landlab (Hobley et al., 2017; Barnhart,311

Hutton, et al., 2020). Landlab includes tools for creating grids, setting boundary con-312

ditions, handling input and output, along with a diverse range of process components313

that modify fields on Landlab grids according to physical laws. The groundwater model314

described above is implemented as a component in Landlab called GroundwaterDupuitPercolator315

(Litwin et al., 2020).316

DupuitLEM can handle raster, hexagonal, and irregular grids, along with zero-flux317

and fixed-value boundary conditions. The model base class takes components that up-318

date the hydrological state via hydrological fluxes and changes in boundary conditions,319

update topography via fluvial incision and hillslope diffusion, and update topography320

and regolith thickness via baselevel change and regolith production. Here we use the DupuitLEM321

subclass StreampowerModel, designed for use with the Landlab fluvial incision compo-322

nent FastscapeEroder, which solves a modified version of the Fastscape algorithm (Braun323

& Willett, 2013).324

The hydrological state is updated with a DupuitLEM HydrologicalModel. All hy-325

drological models solve for aquifer state and fluxes using the GroundwaterDupuitPercolator326

component. Surface water discharge is routed instantaneously using a D8 algorithm when327

the grid is a raster, or a steepest descent algorithm otherwise. In the case of steady recharge,328

we use the HydrologicalModel subclass HydrologySteadyStreamPower, which updates329

the surface water discharge by advancing the GroundwaterDupuitPercolator, finding330

surface flow directions including routing through topographic depressions, and accumu-331

lating qs along flow directions to determine Q. With known area A and recharge rate332

p, we can calculate the runoff ratio Q∗ = Q/(pA) that appears in our streampower model,333

linking the hydrology to geomorphic evolution. We use a raster grid with dimensions 125x125,334

with three zero flux boundaries (right, left, top) and one fixed value boundary along the335

bottom of the model domain. The geomorphic timestep is kept constant at 45 years, while336

the hydrologic timestep varies as a multiple of the von Neumann stability criteria, tak-337

ing values from approximately four hours to three days. The adaptive timestep solver338

of the GroundwaterDupuitPercolator will further subdivide the timestep to meet sta-339

bility criteria, while surface flow is only routed at this interval.340

4 Scaling and similarity341

A similarity analysis of the governing equations illuminates their fundamental con-342

trols and will guide the investigation conducted in the rest of this paper. Here we use343

an approach based on the concept of symmetry groups (Barenblatt, 1996). In essence,344

we seek to identify the complete set of scaling transformations of the governing equa-345

tions under which the solutions are invariant, and then apply transformations to con-346

solidate or eliminate parameters. This is an alternative approach to arrive at a general347

form of the governing equations where parameters emerge in dimensionless groups that348

can be varied in numerical experiments. We will begin this process by considering the349

simplest version of the model without space or time variable hydrology, where Q∗(x, y) =350

1 everywhere. We will call this the NoHyd model. Theodoratos et al. (2018) determined351
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that there are unique characteristic scales for the vertical coordinate, the horizontal co-352

ordinate, and time hg, `g, tg that emerge from the streampower-linear diffusion landscape353

evolution equations. The comparable scales for our governing equation are slightly dif-354

ferent, as we use the area per contour width a as a state variable rather than using area355

A. Based on the analysis of Theodoratos et al. (2018), we can rewrite equations (14) and356

(15) in terms of these scales without changing the units of the state variables.357

tg
∂z

∂t
= −

√
`gQ

∗√a|∇z|+ `2g∇2z + hg (20)

−∇ ·
(
a
∇z
|∇z|

)
= 1 (21)

Because we have replaced three parameters, K, D, and U , with three characteristic scales358

hg, `g, and tg, without changing the state variables, we can solve for the three charac-359

teristic scales in terms of the model parameters:360

hg =

(
DU3

v20K
4

)1/3

(22)

`g =

(
D2

v0K2

)1/3

(23)

tg =

(
D

v20K
4

)1/3

(24)

A physical law should remain valid regardless of the units that quantities are ex-361

pressed in. This endows physical laws with certain symmetries under scaling of the di-362

mensioned variables. There are three ways to scale two or more dimensioned variables363

by an arbitrary factor c > 0 that leave equations (20) and (21) unchanged.364

{t→ ct, tg → ctg} (25)

{z → cz, hg → chg} (26)

{x→ cx, y → cy, a→ ca, lg → clg} (27)

Note that the final transformation also requires that ∇2z → c−2∇2z and |∇z| →365

c−1|∇z|, which are a consequence of the first two elements of the transformation.366

These transformations can be applied as many times as desired, in any order, for367

any c > 0, and the equations remain the same because the factors c will always can-368

cel. For this reason, we can also choose values of c such that the characteristic scales do369

not appear in the equations. For example, we can apply the first transformation, tak-370

ing c = 1/tg, we have the transformation {t → t/tg, tg → 1}. By doing this, we have371

effectively rescaled t into units relative to tg. We will call this new time t′ = t/tg. Like-372

wise, we can do this with the other transformations:373

{t→ t/tg, tg → 1}
{z → z/hg, hg → 1}
{x→ x/`g, y → y/`g, a→ a/`g, lg → 1}

(28)
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We apply all three transformations to define dimensionless state variables:

t′ =t/tg

z′ =z/hg

x′ =x/`g

y′ =y/`g

∇′ =∇`g
a′ =a/`g

(29)

and express the governing equations for the landscape evolution model:

∂z′

∂t′
= −
√
a′|∇′z′|+∇′2z′ + 1 (30)

−∇′ ·
(
a′
∇′z′

|∇′z′|

)
= 1 (31)

No parameters appear in these rescaled equations. This would not be the case if374

we had chosen to write the equations in terms of area A and not area per unit contour375

width a, as a single parameter of v0/`g would appear in equation (31). Not accounting376

for this parameter effectively leaves a grid cell size dependence in the nondimensional-377

ization, which is something we seek to avoid.378

Next we relax our constraint of Q∗ = 1 and incorporate the hydrology equations379

into the scaling analysis. This model is called DupuitLEM. Because the hydrological model380

is linked to the geomorphic model through the dimensionless variable Q∗, the set of trans-381

formations used for the geomorphic equations above is not necessarily applicable to the382

DupuitLEM model. In addition to the characteristic scales used for the NoHyd model,383

`g, hg, and tg, we will introduce three scales particularly relevant to the hydrological pro-384

cesses: a characteristic aquifer thickness hc, a characteristic aquifer drainage time td, and385

the recharge rate p. A simple mass balance of water in a 1D hillslope with length `g, re-386

lief hg, recharge rate p, and hydraulic conductivity ks gives:387

p`g = hckshg/`g, (32)

while the characteristic drainage time can be derived for a shallow aquifer can be derived388

from C. Harman and Sivapalan (2009, their eq. 6), which likewise describes the drainage389

of an aquifer with characteristic length and relief with drainable porosity n:390

td =
`gn

ks sin θ
(33)

Making the approximation sin(θ) ∼ hg/`g, the resulting characteristic scales are:391

hc =
p`g

kshg/`g
(34)

td =
`gn

kshg/`g
(35)

p (36)
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In addition to the recast landscape evolution equations in (20) and (21), we add
those of the hydrological model:

∂h

∂t
=
hc
td

(
1− ∇ · q

p
− qs

p

)
(37)

q

p
=− h cos2(arctan |∇z|)

`2g
hghc

(
∇h+∇z

)
(38)

qs
p

=G
(
h

b

)
R
(

1− ∇ · q
p

)
(39)

Q∗ =
1

Ap

∫
A

qsdAc (40)

Here we have expanded the aquifer base angle θ as arctan |∇z|, as constant per-392

meable thickness implies that the aquifer base gradient is equal to the topographic gra-393

dient. As with the scaling analysis in equations (20) and (21), we can look for transfor-394

mations under which the equations are invariant. While the scaling in the time dimen-395

sion shown in (28) will apply as before, unlike in the geomorphic governing equations396

we cannot separately transform the vertical and horizontal length scales in the hydro-397

logic equations. The aquifer specific discharge q cannot be separated from the topographic398

gradient ∇z due to the cosine term in (38). As a result, there are only two transforma-399

tions that produce invariance:400

{t→ ct, tg → ctg, td → ctd}
{x→ cx, y → cy, a→ ca,A→ c2A, lg → clg,

q → cq, z → cz, h→ ch, hg → chg, hc → chc, b→ cb}
(41)

Again, we can choose scales c and apply the transformations in search of a form401

that eliminates or consolidates the characteristic scales. We will first apply the time trans-402

formation, choosing c = 1/(tgtd). This is equivalent to applying the transformation twice,403

once with c = 1/tg and again with c = 1/td. We will then apply the second transfor-404

mation, choosing c = 1/(`ghghc). Likewise, this is equivalent to applying the transfor-405

mation three times with each of the three factors in the denominator. In addition to the406

rescaled variables presented in (29), we add several additional rescaled variables:407

h =h′hc

t =t′td

q =q′p`g

qs =q′sp

(42)
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Applying the two transformations, and employing the above definitions, we find
find the governing equations simplify to the following:

∂z′

∂t′
=−Q∗

√
a′|∇′z′|+∇′2z′ + 1 (43)

−∇′ ·
(
a′
∇′z′

|∇′z′|

)
= 1 (44)

∂h′

∂t

td
tg

=1−∇′ · q′ − q′s (45)

q′ =− h′ cos2(arctan |∇′z′hg/`g|)
(
∇′h′ hc

hg
+∇′z′

)
(46)

=− h′ ∇
′h′hc/hg +∇′z′

1 + (hg/`g)2|∇′z′|2
(47)

q′s =G
(
h′
hc
b

)
R
(

1−∇′ · q′
)

(48)

Q∗ =
1

A′

∫
A′
q′sdA

′ (49)

Our use of Q∗ as a dimensionless representation of hydrology in the geomorphic408

equation means that we are still able to obtain a parameterless expression for topographic409

evolution, even though we have not separated the transformation of vertical and hori-410

zontal length scales in the hydrologic governing equations. There are, however, four pa-411

rameter groups that we cannot eliminate. We will give them the following names, which412

will be used throughout the rest of this paper:413

δ =
td
tg

=
n v

2/3
0 D2/3K4/3

ksU
(50)

α =
hg
`g

=
U

v
1/3
0 D1/3K2/3

(51)

γ =
b

hc
=
bkshg
p`2g

=
bksU

pD
(52)

Hi =
hg
hc

=
ksh

2
g

p`2g
=

ksU
2

p v
2/3
0 D2/3K4/3

(53)

Here δ represents the scaling between the hydrologic and geomorphic timescales414

of the model. By the nature of hydrologic and geomorphic processes, we expect this ra-415

tio to be very small in all cases. Additionally, δ multiplies the time rate of change of aquifer416

thickness, which should also be very small here as we only consider steady recharge. α417

is a characteristic gradient of the model that emerges from the geomorphic parameters.418

We will call γ the drainage capacity, as it is proportional to the maximum transmissiv-419

ity and the characteristic topographic gradient and inversely proportional to the mean420

recharge rate. Hi is analagous to the Hillslope number Hi presented by Brutsaert (2005)421

(Eq. 10.139) and used by C. Harman and Sivapalan (2009), C. J. Harman and Kim (2019),422

and others to understand shallow groundwater dynamics. It represents the relative im-423

portance of topographic gradients, versus diffusion of the water table, in driving ground-424

water flow. It can be thought of as a Peclet number, as it captures the ratio of advec-425

tive to diffusive processes.426
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4.1 Special cases427

These equations and parameters all apply in the general case when aquifer and to-428

pographic gradients are important drivers of groundwater flow. The expressions can be429

simplified under conditions where one gradient is more important than the other, reduc-430

ing the constraints on our symmetry groups. Suppose that relief is generally large in com-431

parison to aquifer thickness, hg � hc, in which case Hi� 1. Consequently, topographic432

gradients rather than aquifer thickness gradients tend to drive groundwater flow. In this433

case we neglect ∇h, altering the groundwater specific discharge expression (38):434

q

p
= −h cos2(arctan |∇z|)

`2g
hghc

∇z (54)

Applying our symmetry method as before, we find that `g and hg must still be scaled435

together. However, this time, h need not be scaled with these simultaneously in order436

to obtain a consistent set of equations. Instead, there are now three transformations that437

comprise the symmetry:438

{t→ ct, tg → ctg, td → ctd}
{h→ ch, hc → chc, b→ cb}
{x→ cx, y → cy, a→ ca,A→ c2A, lg → clg,

q → cq, z → cz, hg → chg}

(55)

Implementing the three transformations above with c = 1/tg, c = 1/hc, and c =439

1/(hg`g) respectively, we arrive at a rescaled set of governing equations similar to pre-440

vious, only with an altered expression for q′:441

q′ = −h′ cos2(arctan |∇′z′hg/`g|)∇′z′ (56)

Here the factor Hi = hg/hc no longer appears in the equation. This suggests that the442

solution to the full governing equations should be independent of Hi when Hi is large.443

This makes sense in the context of Equation (47), as 1/Hi multiplies the gradient in aquifer444

thickness, which by definition will be small relative to topographic gradients when Hi445

is large.446

Conversely, suppose that topographic gradients were largely insignificant, and flow447

was generally driven by gradients in aquifer thickness (∇h� ∇z). In this case, the ex-448

pression for groundwater specific discharge changes again, as we can approximate cos θ ≈449

1 and ∇z ≈ 0 for the purposes of groundwater flow. Then the governing equations are450

again the same except for q:451

q

p
= −h

`2g
hghc

∇h (57)

In this case, because the cosine term does not appear, `g and hg need not be scaled452

together. As in the previous case, there are three transformations that maintain sym-453

metry, with a separate scaling for aquifer thickness h. However, in order to maintain con-454

sistency in the groundwater specific discharge equation, the vertical coordinate and hg455

must be scaled with h.456
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{t→ ct, tg → ctg, td → ctd}
{h→ ch, hc → chc, b→ cb, z → cz, hg → chg}
{x→ cx, y → cy, a→ ca,A→ c2A, lg → clg, q → cq}

(58)

Noting that these transformations are simply a rearrangement of the previous, we457

select the scales c = 1/tg, c = 1/(hchg), and c = 1/`g respectively. We arrive at a458

rescaled set of governing equations when flow is primarily driven by gradients in aquifer459

thickness. Only the expression for q′ has changed:460

q′ = −h′∇
′h′

Hi
(59)

Under these conditions, the factor Hi = hg/hc still appears in the groundwater461

specific discharge expression, while the parameter α = hg/`g no longer appears. This462

suggests that as Hi becomes small, the sensitivity to Hi does not decrease, but sensitiv-463

ity to α does decrease. Small Hi indicates that water table gradients are more impor-464

tant than topographic gradients in driving flow. As α is a measure of topographic gra-465

dients, it is appropriate that it should diminish in importance when Hi is small. The two466

end-member scenarios, where hydraulic gradients are alternately driven by topography467

or aquifer thickness, provide insight into expected parameter sensitivity, which we will468

test with the numerical model. In particular, we expect that for low values of Hi, the so-469

lution should be generally insensitive to the value of α, while the sensitivity to Hi will470

be small for high values of Hi. Overall, we have reduced the governing equations from471

a system with 7 parameters to a system with 4 parameters, one of which we expect one472

to be unimportant in all cases (δ). This significantly improved our ability to explore and473

comprehend the parameter space in the following sections.474

5 Results475

We explore the properties of the scaled model through a series of simulations de-476

signed to sample the nondimensional parameter space of α, γ, and Hi. While the fourth477

dimensionless parameter, δ, does vary as we vary hydrological parameters, this effect should478

be negligible for reasons previously stated.479

We consider two cases of simulations. First, simulations with the NoHyd model in480

which Q∗ = 1 and second, simulations with DupuitLEM in which Q∗ varies in space481

and time. Such variation may arise under steady, uniform recharge as shallow subsur-482

face aquifer does not uniformly exfiltrate. Here time variation of Q∗ is only due to changes483

in geomorphic boundary conditions. Additional complexity could be added by consid-484

ering time and/or spatially varying recharge—we do not consider this here. We evalu-485

ated the condition of steady state topography on the basis of change in mean dimension-486

less relief Rh/hg, where Rh is the mean value of elevation z. For runs of the NoHyd model487

and runs of the DupuitLEM model where γ < 1, the results show clear indications of488

steady state, as the absolute value of dimensionless rate of relief change |dRh/hg
dt/tg

| declines489

below 10−10. In cases with larger γ, perturbations continue through time in the abso-490

lute value of relief change. We run the model at least until there is no decreasing trend491

in the absolute value of relief change. Times to meet these conditions range from approx-492

imately 300-2000 tg, around 7-45 million years.493

5.1 Confirmation of scaling and similarity494

The numerical results confirm the scaling predicted in our similarity analysis. In495

Figure 1A (i, ii, iii) we show that `g can be varied independently from hg (changing α)496
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with the NoHyd model and we can still obtain visually and numerically identical results497

in the rescaled coordinate system (x′, y′, z′). The same similarity appears when hg is var-498

ied independently while `g remains constant (i, iv, vi) and when hg and `g are varied to-499

gether (i, v, vii). The mean absolute difference in z′ between all model runs is less than500

10−13% of total relief. These results confirm the scaling found by Theodoratos et al. (2018),501

showing that the vertical and horizontal dimensions possess distinct and independent502

scaling relationships. Our similarity approach also predicts that the vertical and hori-503

zontal length scales should not scale independently in the DupuitLEM model, unless Hi�504

1. Figure 1B shows the same scaling of hg and `g implemented in Figure 1A, now us-505

ing the DupuitLEM model with Hi = 5 and γ = 2.5. As `g is increased independent506

of hg (i, ii, iii), α decreases and the distance between channels appears to increase. Sim-507

ilarly as we increase hg while holding `g constant (i, iv, vi), α increases and we observe508

a decrease in spacing between channels. It is only when hg and `g are varied together509

(i, v, vii), keeping α constant, that topography remains invariant in the rescaled coor-510

dinates. There is less than 2% difference in mean relief between the results in (i, v, vii).511

While sufficient to confirm the scaling analysis, this difference is larger to that observed512

in 1A due to isolated areas that develop slightly different drainage patterns. This is likely513

as a result of small numerical differences between the groundwater model solutions early514

in the evolution of topography.515

Our similarity analysis suggested that vertical and horizontal dimensions should516

scale independently when Hi is small. In this case, relief is small relative to the charac-517

teristic aquifer thickness, and as a result it should not play a strong role in generating518

hydraulic gradients that drive flow. Figure 1C shows the results of the same variation519

in hg and `g as Figure 1B, but now with Hi = 0.01. In this case, hg and `g appear to520

scale independently for relatively small values of α (< 0.2). Plots (i, iv, vi) do still show521

some topographic variation between model runs, while (i, ii, iii) do not. While this pro-522

vides some confirmation of our scaling analysis, in the cases we will test going forward,523

Hi values will generally not be small enough for the results to be independent of α.524

5.2 Sensitivity to dimensionless hydrologic parameters525

The results suggest that landscape and climate properties affecting shallow ground-526

water flow could have major effects on topography. There are strong differences in to-527

pography between model runs when dimensionless parameters describing these factors528

are varied. In particular, the evolved topography is strongly dependent on the drainage529

capacity γ, which is the ratio of soil depth b to characteristic aquifer thickness hc =
p`2g
kshg

.530

When γ = 0.5, the lowest value shown in Figure 2, the results look very similar to those531

obtained with the NoHyd model. In these cases the entire landscape experiences some532

overland flow and erosion, which is apparent in the spatial distribution of Q∗ shown in533

Figure 4. In contrast, high γ cases produce broad interfluves where Q∗ = 0, as the wa-534

ter table sits further below the surface. As a result these areas do not experience sur-535

face erosion. To a lesser degree, Hi affects the steady state topography as well. As dis-536

cussed previously, Hi describes the characteristic relief relative to the characteristic aquifer537

thickness. From the the hillshades presented in Figure 2, it appears that Hi has the great-538

est influence on topography when drainage capacity γ is large, in which case increasing539

Hi generally decreases the spacing between channels. The previous section evaluating540

the scaling properties of the model results showed that α has a significant effect on to-541

pography in most cases where Hi is not very small. The supplemental material includes542

figures showing the results of varying γ and Hi with higher and lower values of α than543

those shown here. While transitions in morphology and runoff happen at different val-544

ues of γ and Hi when α is varied, the fundamental dependence on these parameters re-545

mains the same.546

Distributions of Q∗ represent the spatial variability in runoff that emerges from our547

coupled geomorphic-hydrologic model under conditions of steady, uniform recharge. These548
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distributions confirm that the extent of areas contributing runoff tends to decrease with549

increasing γ, and to a lesser extent with decreasing Hi. Figure 4B shows cumulative dis-550

tribution functions of Q∗ for each model run, indicating the proportion of the landscape551

where Q∗ is less than a particular value on the x-axis. Strikingly, we see that areas that552

contribute no runoff (Q∗ = 0) first appear exactly when γ = 1 (third row from the553

bottom). This holds for smaller and larger values of α as well (see Figures S3, S6). It554

is at this point that the spatial variability in Q∗ is maximized: at lower values all areas555

contribute some runoff, while above this value, most areas contribute no runoff at all.556

As γ is the ratio of the characteristic aquifer thickness hc to the permeable thickness b,557

a value of 1 should indicate that a “characteristic hillslope” has just become saturated,558

which appears to be in agreement with our results. This is a powerful demonstration of559

the effectiveness of this nondimensionalization.560

In Figure 4C, the proportion of computational grid nodes with Q∗ > 0.5 indicates561

extensive saturation in low γ cases with minor sensitivity Hi values; the extent of runoff562

contributing areas declines slightly more rapidly when Hi is large. For comparison, we563

also plot the proportion of the landscape with positive curvature, which shows a more564

gradual change with γ.565

Clearly subsurface hydrology is having a strong effect on topography in this model.566

With increasing ability to drain water through the subsurface (large γ), less surface drainage567

is needed, and consequently, the spacing between streams is greater. Furthermore, land-568

scapes with lower drainage capacity (smaller γ) have larger source areas of overland flow569

extending across more the landscape. When drainage capacity is larger, the landscape570

is generally steeper and saturated areas are restricted to narrow incised regions. The pat-571

terns of Q∗ indicate that γ = 1 defines the transition between landscapes that evolve572

with these two behaviors.573

6 Emergent properties at landscape equilibrium574

6.1 Topographic analysis: steepness and curvature575

The landscapes shown in Figures 1, 2 and 4 reveal the visually striking influence576

of hydrological properties on landscape form. However, there is still much more we can577

learn about the controls on these emergent properties, guided by the form of the gov-578

erning equations. Furthermore, we would like to be able to develop some quantitative579

understanding that relates readily observable topographic features to hydrological prop-580

erties that are more difficult to measure. The relationships between model parameters581

and emergent hydrologic and geomorphic properties will be the focus of this section.582

Commonly, properties of stream channels and entire landscapes are examined by583

plotting local slope versus accumulated area (e.g., Tarboton et al., 1989; Willgoose, Bras,584

& Rodriguez-Iturbe, 1991; Dietrich et al., 1993). Results form point clouds where zones585

of distinct behavior can be identified (Perron et al., 2008). Recently, Theodoratos et al.586

(2018) showed that the topography resulting from the streampower-linear diffusion LEM587

may be analyzed by examining relationships between what they term the incision height588 √
A|∇z| and Laplacian curvature ∇2z. (Theodoratos & Kirchner, 2020b) refer to

√
A|∇z|589

as steepness, so here we will adopt similar terminology, with one difference: to match590

the form of our governing equations, we define steepness as
√
a|∇z|, using area per con-591

tour width a rather than area A. Steepness and curvature emerge naturally from the steady592

state form of the governing equation for topographic evolution (20). Setting the time rate593

of change equal to zero, and rearranging, we obtain the following relationship:594

∇2z =`−3/2g Q∗
√
a|∇z| − hg

`2g
(60)
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which has the equivalent dimensionless form:

∇′2z′ =Q∗
√
a′|∇′z′| − 1 (61)

When runoff generation is spatially uniform and therefore Q∗ = 1 for all (x, y),595

as in the NoHyd model, there is a linear relationship between steepness and curvature,596

with a slope of unity and intercept of -1 in dimensionless coordinates, as observed by Theodoratos597

et al. (2018). While this definition of steepness is contingent on the particular exponents598

on area and slope, Theodoratos et al. (2018) showed that this relationship can be gen-599

eralized to any exponent values, albeit with significantly more complicated formulas.600

Figure 5 shows topography from a run of the NoHyd model in slope-area and steepness-601

curvature space. The results show the expected slope and intercept in the steepness-curvature602

plot. All of the variability that appears in the slope-area space collapses onto a single603

line in steepness-curvature space, making steepness-curvature plots powerful tools for ex-604

amining model behavior. Observing this relationship in the numerical solution also demon-605

strates that the model accurately reproduces the analytical result at steady state.606

Furthermore, deviations created by the introduction of hydrologic variability with607

Q∗ should be readily apparent when plotting steepness versus curvature. When we use608

the DupuitLEM model, plotting Q∗
√
a′|∇′z′| rather than

√
a′|∇′z′| versus curvature would609

again result in a linear relationship. Through topographic analysis alone, however, steep-610

ness and curvature are available while Q∗ is not. Quantifying the relationship between611

these topographically-derived quantities and Q∗ across each steady state landscape in612

our nondimensional parameter space thus supports quantifying hydrological function based613

upon topography.614

Slope-area and steepness-curvature plots for selected model runs with different val-615

ues of γ and Hi are shown in Figure 6. The steepness-curvature relationships for the low616

γ cases show close agreement with the theoretical relationships derived from the NoHyd617

model (dotted black line). This is consistent with the observed values of Q∗, which are618

close to unity at most nodes. With increasing drainage capacity γ, there is an apparent619

separation between points that conform to the theoretical relationship and points that620

maintain constant negative curvature ∇2z = −hg/`2g. The difference between these be-621

haviors is revealed in the values of Q∗. Areas in yellow have Q∗ ≈ 0, and form the zone622

of constant negative curvature. This is exactly what we would expect from the solution623

to the steady state equation (61) in the absence of the fluvial incision term. Points in624

this zone are divergent hillslopes that do not reach surface saturation. Areas in blue have625

Q∗ ≈ 1, essentially conforming to the same relationship observed for the NoHyd model.626

Points in this zone are the fluvial valleys that are fully saturated and have discharge ap-627

proximately equal to upslope area times the recharge rate. This indicates that at these628

locations the vast majority of water is moving over the surface rather than through the629

subsurface. A limited number of points fall in between these two end members of behav-630

ior. These are the channel heads and other areas of limited runoff contribution, where631

0 < Q∗ < 1. When γ > 1, the proportion of points in this intermediate space ap-632

pears to decrease with increasing γ.633

Slope-area plots do show separation between these behaviors, though the end mem-634

bers of behavior are not nearly as distinct. Differences between channel and hillslope mor-635

phology are also apparent in map view plots of steepness and curvature (Figure 7). While636

steepness does seem to provide an indication of increasing channelization in the low γ637

cases, in the high γ cases, it takes on unusual swirling patterns on hillslopes, in part due638

to the D8 flow routing method. These are of little consequence in the context of processes639

acting in the model, because on these hillslopes Q∗ → 0 and therefore the fluvial in-640

cision term that also goes to zero. Map view curvature plots show that in low γ cases,641

areas of negative curvature are restricted to narrow areas near the ridges, while exten-642
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sive areas have near zero or positive curvatures, indicating predominantly concave-upward643

terrain. In comparison, in high γ cases, most points obtain a constant negative curva-644

ture, representing convex-upward hillslopes, while the channels obtain large positive cur-645

vatures as a consequence of the steep adjacent hillslopes.646

6.2 Hydromorphic balance647

How can we understand the separation between channel and hillslope behavior that648

appears in the DupuitLEM model results? While there is a unique relationship between649

steepness and curvature for the NoHyd model, this is no longer the case for the DupuitLEM650

model, indicating that some information is not captured by these terms alone. The miss-651

ing piece, as equation (61) shows, is Q∗. That is, there is a unique relationship between652

steepness, curvature, and Q∗. If we would like to know Q∗, one approach would be to653

solve for Q∗ and explore how it could be determined from the governing equations. Us-654

ing the equation for topography at steady state (20), we find Q∗ as a function of the pa-655

rameters, steepness, and curvature.656

Q∗ = `3/2g

∇2z√
a|∇z|

+
hg√
`g

1√
a|∇z|

(62)

We will call this equation the Geomorphic Balance. Results of plotting Q∗ versus657

the right hand side of this equation are shown in Figure 9A. Like the relationship be-658

tween steepness and curvature for the NoHyd model, the geomorphic balance shows a659

tight linear relationship. In other words, most places in the landscape have topography660

that is closely coupled with the runoff at that location, as predicted by the governing661

equations. Deviation from the 1:1 line in Figure 9A is an indication that the hydrologic662

state and geomorphic state are not completely in equilibrium with one another. These663

deviations likely have a similar origin to the perturbations in relief as the model evolves664

toward topographic steady state that we noted previously. Both indicate that subtle ad-665

justments between the hydrologic and geomorphic states persist in the evolution of the666

modeled landscapes. This demonstration of dynamic equilibrium has similarities to nat-667

ural settings where adjustment to small perturbations is persistent even in landscapes668

that are considered to be near geomorphic steady state.669

Unfortunately in most cases where one might want to apply the Geomorphic Bal-670

ance to real data to determine spatial patterns of runoff and saturation, the geomorphic671

length scales hg and `g are unknown. While the NoHyd model has distinct relationships672

between landscape properties and hg and `g, explored by Theodoratos et al. (2018), those673

relationships break down with the addition of subsurface hydrology. Even if we were to674

estimate hg and `g through geomorphic methods, the uncertainty in direct estimates these675

parameters is likely far too great to constrain Q∗ in (62).676

However, the hydrologic equations offer a complementary solution for Q∗. At hy-677

drological steady state, for steady recharge at rate p, the expression for conservation of678

mass (16) can be written as:679

p = ∇ · q + qs (63)

This should be a reasonable representation of our results, as the recharge rate is constant,680

and other properties vary slowly with time. Integrating this water balance over the wa-681

tershed area, A, and using Leibniz’ rule to evaluate the integral of the divergence term:682
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∫
A

pdA =

∫
A

(
∇ · q + qs

)
dA (64)

pA =

∫∫
∇ · q dxdy +Q∗pA (65)

pA =

∮
c

q · ndS +Q∗pA (66)

If we assume that the catchment boundary is a no-flux boundary except for the out-683

let with characteristic contour width v0, then this reduces to:684

pA = qv0 +Q∗pA (67)

This also assumes that groundwater flux is directed out of the watershed, which685

is a tenuous assumption for deeper regional aquifers but perhaps is appropriate for the686

shallow near-surface aquifers that tend to produce return flow and near-channel areas687

of surface saturation during rainfall events. We selected the characteristic contour width688

v0 here to be the same as the contour width used in (8), so the relationship A = v0a689

still holds. Next we substitute the expression for groundwater flow (17). Assuming gra-690

dients are directed out of the watershed, we can take the absolute value of gradients for691

similarity to the geomorphic balance.692

pA = v0ksh
(
|∇h|+ |∇z|

)
cos2(θ) +Q∗pA (68)

then substituting A = av0 and rearranging to solve for Q∗:

Q∗ = 1− ksh

p

(
|∇h|+ |∇z|

)
cos2(θ)

a
(69)

By limiting ourselves to locations where the water table has reached the land sur-693

face so that the aquifer base and land surface are parallel, we can set h→ b and ∇h→694

0.695

Q∗ = 1− ksb

p

|∇z| cos2(θ)

a
(70)

This is our Hydrologic Balance expression for Q∗. Contained in this expression is696

a modified version of the topographic index a
∇z cos2(θ) , where we have retained the co-697

sine term for similarity to the governing equation for groundwater flow. It is appropri-698

ate that topographic index should appear in this equation, as it has been shown to be699

a useful tool for understanding geomorphically-driven hydrological behavior (Beven &700

Kirkby, 1979). The results of plotting Q∗ against the right hand side of (70) are shown701

in Figure 9B. Correlations are not as strong as geomorphic balance. One trend that emerges702

is that at high drainage capacity (large γ), the fit to the theoretical curve improves as703

Hi increases. As discussed previously, when Hi is small, diffusive fluxes driven by gra-704

dients in aquifer thickness rather than topography are important for determining ground-705

water fluxes. This is something not captured in our simplified steady state model. Fur-706

ther investigation revealed that differences between modeled results and our analytical707

solution result from differences in methods of surface versus subsurface flow routing. Sub-708

surface flow is calculated in a “diffusive” sense by measuring fluxes in or out on all links709

connecting nodes of the computational mesh. In contrast, surface routing is calculated710

with an “advective”, steepest-descent approach, where all flow is routed downslope from711

one single node to another. The analytical solution assumes that the recharge on the up-712
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slope area, which we calculate with the “advective” method, is the total flow that is par-713

titioned between surface and subsurface flow at a node. This may not always be a good714

assumption. Numerous unsuccessful attempts to circumvent this problem suggest that715

this may in fact be an intrinsic feature of a model (and perhaps reality) in which sur-716

face flow is rapid and generally channelized in a single direction, while groundwater flow717

is more gradual and diffusive in nature. Even with these limitations, we can continue to-718

ward a result with the analytical solution we have presented.719

Now we have two expressions for Q∗: one hydrologic in (70) and one geomorphic720

in (62). We can combine these expressions by eliminating Q∗ and obtain:721

1− bks
p

|∇z| cos2(θ)

a
= `3/2g

∇2z√
a|∇z|

+
hg√
`g

1√
a|∇z|

(71)

or equivalently:

0 =
bks
p

(
|∇z| cos2(θ)

a

)
+ `3/2g

(
∇2z√
a|∇z|

)
+

hg√
`g

(
1√
a|∇z|

)
− 1 (72)

We call this expression the Hydromorphic Balance. It describes a fundamental re-722

lationship between steepness, curvature, and topographic index that emerges from the723

governing equations. This relationship suggests that values of the three terms in paren-724

thesis (which can all be calculated directly from a digital elevation model) should form725

a surface with linear coefficients bks/p, `
3/2
g , and hg/

√
`g respectively. Using the same726

nondimensionalization as previously, (72) can be rewritten simply as:727

0 =
γ

Tz
+
Cz
Sz

+
1

Sz
− 1 (73)

where Tz = ∇′z′ cos2(θ)
a′ is the dimensionless topographic index, Sz =

√
a′|∇′z′|728

is the dimensionless steepness, and Cz = ∇′2z′ is the dimensionless curvature. We do729

not expect points where Q∗ = 0 to conform to this relationship—such as where the wa-730

ter table does not reach the surface—because the hydrologic component of this balance731

is no longer valid. An alternative way to view the components of the Hydromorphic Bal-732

ance is in map view, separating out the terms and examining their spatial patterns. Fig-733

ure 10 shows the terms of (73) for four different parameter combinations (the four cor-734

ners of the space plotted in Figures 9A and 9B). The results show differing importance735

of terms in the low and high γ cases, with Cz/Sz more important when γ is large, and736

1/Sz more important when γ is small. Large γ cases attain larger steepness and larger737

curvature than the low γ counterparts. Here we limit our scope to places where Q∗ >738

0.001. While in application, this kind of threshold would not be known, the relationship739

between Q∗ and curvature (not shown) suggests that it would be sufficient to use the slightly740

more restrictive condition ∇2z > 0 to determine areas of the landscape that should con-741

form to the Hydromorphic Balance.742

6.3 Emergent hillslope length743

The perception that emergent length scales of the ridge-valley topography increase744

with drainage capacity can be quantified by measuring and comparing the average hill-745

slope length Lh. Here, we define Lh as the mean distance from hillslope points to the746

nearest channel. This is inversely proportional to twice the drainage density, where drainage747

density is calculated with the method described by Tucker et al. (2001). Hillslope length748

is of particular interest in the context of hydraulic groundwater theory, where it is both749

an important control on hillslope storage and characteristic response time (C. Harman750
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& Sivapalan, 2009; Troch et al., 2003). A measure of hillslope length depends on the de-751

lineation of channel locations. While it is common to use threshold values of steepness752

index to identify channels (e.g., Tucker et al., 2001), this implicitly assumes a relation-753

ship between steepness and incision, which is not the case in the DupuitLEM model. In-754

stead, we identify channels as points of positive Laplacian curvature (∇2z > 0), where755

fluvial incision is the dominant geomorphic process.756

We can use the hydromorphic balance to predict the scaling relationship between757

hillslope length and the drainage capacity γ. We begin with the hydrologic and geomor-758

phic balance expressions, equations (70) and (62). This time, rather than combining to759

eliminate Q∗ as we did previously, we can combine to eliminate the topographic gradi-760

ent |∇z|. Since we have defined channels as places where ∇2z > 0, channel heads can761

be defined as places where ∇2z = 0. We can apply the latter condition to the geomor-762

phic balance to obtain an expression for the critical upslope area per contour width ac763

at channel heads. We cannot eliminate all instances of the gradient in the hydromorphic764

balance, as it is present in the term cos(θ) = cos(arctan |∇′z′hg/`g|). Here we will make765

the assumption that the dimensionless gradient in this term is equal to one at channel766

heads, such that cos(θ) ≈ cos(arctan(α)). Assuming θ is similar at channel heads across767

our parameter space, this assumption should only affect the coefficient scaling γ and hill-768

slope length. We must also choose a value for Q∗ in order to find a solution for both the769

Hydrologic balance and Geomorphic Balance, as we have not eliminated it in this case.770

Our results show that Q∗ can vary substantially at locations of zero Laplacian curva-771

ture (not shown), but here we will introduce a constant characteristic value Q∗c for the772

purposes of finding a solution. Applying these conditions, we find that the hydromor-773

phic balance gives an expression for the area per contour width at channel heads ac:774

ac
lg

=

(
γ/Q∗c

2

1 + α2

)2/3

(74)

=

(
bks

pQ∗c
2

hg
h2g + l2g

)2/3

(75)

or, expanding out the definitions of hg and lg, we can solve for the critical area at775

channel heads, Ac = acv0:776

Ac =

(
v0bks

pQ∗c
2 ĥg

)2/3

(76)

where ĥg is the inverse sum of two vertical length scales defined by the geomorphic777

variables:778

1

ĥg
=
K

U
+

U
3
√
D2Kv20

(77)

The scaling confirms our previous observations that increasing the drainage capac-779

ity γ leads to greater spacing between channels, and therefore larger source areas at chan-780

nel heads. Intuitively, this suggests that the landscape is less dissected when more flow781

drains through the subsurface. The expanded relationship shows a similar story: increas-782

ing v0bks leads to larger contributing areas at channel heads, while increasing recharge783

rate p or effectiveness of fluvial incision relative to uplift lead to smaller contributing ar-784
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eas at channel heads. From here we further assume that the hillslope length at channel785

heads is proportional to the area per contour width, and thus Lh/`g ∼ γ2/3. Despite786

the crudeness of this estimate, Figure 11 (left panel) shows that this scaling is in agree-787

ment with the model results when γ > 1.788

7 Discussion789

7.1 Hydrogeomorphic coevolution790

The results presented here constitute one possible way that landscape history can791

be used to understand current hydrological processes by quantifying the coevolution of792

hydrological processes with landscape form (C. Harman & Troch, 2014; Troch et al., 2015).793

Prior attempts to use coevolution to understand hydrological flow paths and processes794

focus on evolving subsurface properties. Jefferson et al. (2010) and Yoshida and Troch795

(2016) explore how flow paths evolve on basaltic terrains, where porous young basalt ter-796

rains tend to drain flow vertically, while chemical weathering of basalt tends to progres-797

sively block flow paths with clays, leading to increased prevalence of lateral flow on older798

terrains. Both studies use space-for-time substitution to explore temporal changes in drainage799

density, but find contradictory trends, suggesting that underlying processes of drainage800

and erosion are still not well enough understood in these landscapes. Recent work on801

coevolution in denudational landscapes has focused on coevolution of subsurface flow paths802

and subsurface structure through the propagation of weathering fronts (Rempe & Di-803

etrich, 2014; C. J. Harman & Kim, 2019; C. J. Harman & Cosans, 2019; Brantley, Lebe-804

deva, et al., 2017). In these studies, continuous incision of streams is often used as a bound-805

ary condition to which hillslopes respond. In this study, we took a complementary ap-806

proach, enforcing constant regolith thickness and permeability, while exploring surface807

geomorphic evolution. We found that subsurface flow plays a critical role in setting hill-808

slope length, which may in turn affect the hydraulic gradients and flow rates that affect809

subsurface weathering processes. These results are consistent with the negative relation-810

ship between transmissivity and drainage density presented in Carlston (1963), and the811

inverse relationship between drainage density and hydraulic conductivity in the High Plains812

Aquifer measured by Luo and Pederson (2012). Approaches focused on surface and sub-813

surface may be unified to formulate more general theories of the evolution of denuda-814

tional landscapes.815

7.2 Scaling and typology of landscapes816

Our similarity approach expands upon the analysis of Theodoratos et al. (2018)817

and Bonetti et al. (2020). The analysis conducted by Theodoratos et al. (2018) showed818

that by selecting appropriate length and time scales, a standard form of the streampower-819

linear diffusion LEM—which uses A rather than a and does not consider an incision thresh-820

old or runoff coefficient—was parameterless, and thus had only a single landscape typology—821

assessed on the basis of topography—that could be rescaled to obtain every result the822

model could produce. As pointed out by Bonetti et al. (2020), the streampower-linear823

diffusion LEM does have an additional parameter, which is unaccounted for in Theodoratos824

et al. (2018) because the authors do not expose the differential equation that defines the825

upslope area per contour width. With this equation expressed, Bonetti et al. (2020) de-826

velop a nondimensionalization where one parameter remains, similar to the Peclet num-827

ber that appears in Perron et al. (2008). Our analysis of the streampower-linear diffu-828

sion LEM (called the NoHyd model here) shows that a parameterless set of equations829

can still be obtained from the governing equations when accounting for the upslope area830

differential equation. We show that, contrary to Bonetti et al. (2020), there is a single831

typology for the NoHyd model, which can be rescaled to obtain all results the model may832

produce.833
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We develop the scaling analysis further by including the effects of runoff generated834

from shallow unconfined groundwater flow. This introduces four dimensionless param-835

eters, of which three are important for the emergent topography. With this model, there836

is no longer a single landscape typology, but variation in form dependent on how flow837

is partitioned between surface and subsurface γ, the degree to which topography drives838

groundwater flow Hi, and the landscape gradient generated by underlying geomorphic839

processes α. Other typologies can certainly be imagined by the addition of other geo-840

morphic or hydrologic processes, including a channel incision threshold (Theodoratos &841

Kirchner, 2020a). However the one we present is unique in that it expresses feedbacks842

between hydrologic and geomorphic processes, which consequently link landscape typol-843

ogy to hydrologic function.844

7.3 Characteristic contour width and valley transmissivity845

We first introduced the concept of a characteristic contour width v0 in order to write846

the channel scaling relationship (Equation 7) in terms of upslope area per contour width847

a rather than upslope area A. This proved useful in subsequent scaling analyses, where848

we developed a new parameterless scaling of the governing geomorphic equations that849

is only possible because we have accounted for v0 in our definitions of the geomorphic850

length, height, and timescales `g, hg, and tg. We noted previously there that we are free851

to choose a value of v0, as there will always be a corresponding value of kw to satisfy the852

relationship between w and a. What then is a physically meaningful characteristic con-853

tour width, and how would we identify it outside of the context of a landscape evolu-854

tion model? One possible explanation appears in the hydromorphic balance equation (76)855

for the upslope area at channel heads, Ac. Here the characteristic contour width appears856

in the numerator v0bks, which is effectively the transmissivity integrated across a char-857

acteristic contour width. This integrated transmissivity is particularly important at chan-858

nel heads, where relative magnitudes of surface and subsurface flow are similar. Upstream859

of the channel head, the contour width is less important, as topographic features do not860

constrict groundwater flow to a fixed width. Further downstream from the channel head,861

groundwater flow is constricted by the valley width, but most of the discharge will be862

transmitted as surface water rather than groundwater. Because Ac scales with v0 just863

as it does with the transmissivity bks, v0 plays a critical role in determining the extent864

of landscape dissection, as increasing channel head source areas increases the distance865

from channels to ridges. In landscapes similar to those modeled here, we suggest that866

the characteristic contour width is best thought of as characteristic channel head width,867

and that more attention should be paid to this factor in field investigations.868

7.4 Landscape complexity869

In developing this first systematic exploration of the effects of subsurface flow on870

steady state landscape form, we have neglected the complexity of landscape processes871

and heterogeneity of landscape properties in favor of an approach with a tractable num-872

ber of parameters so that we can explore the diversity of behaviors it can produce. How-873

ever, it is likely that processes and heterogeneity not captured here have significant im-874

pacts on landscape form. Subsurface properties are not only heterogeneous, but spatially875

organized, including systematic variations in permeability with depth through soil and876

weathered bedrock and along hillslope catenas (Lohse & Dietrich, 2005). The scope of877

runoff generation processes we have examined is also limited, as we have not considered878

infiltration excess overland flow, nor other erosional processes that are linked to shallow879

groundwater, including seepage erosion (Abrams et al., 2009; Laity & Malin, 1985) and880

landsliding driven by excess pore water pressure (Montgomery & Dietrich, 1994). Like-881

wise, ecological processes may act on the environment in ways that cannot be captured882

by the processes and parameters included here. For example, feedback between depth883

to water table and tree growth may affect spatial patterns of hillslope and fluvial sed-884
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iment transport, as trees anchor sediment with roots, displace sediment through treethrow,885

or encourage soil production (Brantley, Eissenstat, et al., 2017; Gabet & Mudd, 2010).886

7.5 Steady state topography887

In this study we have focused on evaluating landscapes near topographic steady888

state in order to understand the emergent relationships between topography and hydrol-889

ogy generated by these governing equations. This is a powerful method employed in land-890

scape evolution models to understand the form toward which landscapes will evolve (e.g.,891

Perron et al., 2008; Theodoratos et al., 2018). In the model we have used here, however,892

times to steady state are long (millions to tens of millions of years) compared to real timescales893

of variability in climate and baselevel change. For this reason, transience, at least in some894

portions of the landscape, is likely the norm in real landscapes with similar dominant895

processes to those modeled here (Whipple, 2001). On the other hand, nonlinear mod-896

els of hillslope diffusion show substantially shorter times to steady state (Roering et al.,897

2001), which may be important when hillslopes are the limiting factor in reaching to-898

pographic steady state. Further investigation could focus on transient responses the model899

considered here, which may provide insights into a wider range of humid landscapes.900

7.6 Steady recharge901

In this model, we have shown that runoff generation from shallow groundwater driven902

by steady recharge has a strong effect on emergent landscape properties. With increas-903

ing γ, we found that the hydrological function of the landscape was increasingly binary:904

channels have surface runoff nearly equal to the sum of the recharge on the area upslope,905

while hillslopes do not contribute surface runoff at all. While this may be characteris-906

tic of some landscapes where saturated areas are more or less constant in time, in many907

places, saturated areas and wetted channels expand and contract in response to the ar-908

rival of storm events or snow melt (Dunne & Black, 1970; Nippgen et al., 2015; Antonelli909

et al., 2020). Furthermore, antecedent wetness plays an important role in determining910

the hydrological response to precipitation (Longobardi et al., 2003; O’Loughlin, 1981).911

As fluvial sediment transport in our model is proportional to runoff Q∗, we expect that912

precipitation stochasticity and subsurface water storage affect sediment transport and913

thus ultimately will affect the landscape form as well. Previous studies have shown that914

landscape form and channel profiles have are sensitive to variability in precipitation or915

discharge, depending on factors including the presence of erosion thresholds and the non-916

linearity of the fluvial incision model (Tucker, 2004; Lague et al., 2005; Deal et al., 2018).917

In a future contribution, we will extend the theoretical framework used here to incor-918

porate stochastic precipitation, allowing allowing us to explore the emergence of hydro-919

geomorphic features such as variable source areas.920

8 Conclusion921

Here we have coupled a model of shallow groundwater flow with a model of denuda-922

tional landscape evolution, and have shown the first results of such a model at topographic923

steady state. The shallow aquifer model uses the Dupuit-Forcheimer assumptions to gen-924

erate lateral groundwater flow and surface water discharge from groundwater return flow925

and precipitation on saturated areas. The topography evolves according to fluvial inci-926

sion by routed flow generated by the groundwater model, linear hillslope diffusion, and927

a constant rate of uplift. We use a novel scaling analysis to guide or numerical simula-928

tions, and find that the subsurface drainage capacity relative to climate plays a critical929

role in setting topographic properties including hillslope length. We showed that the lin-930

ear relationship between steepness and Laplacian curvature that emerges from the sim-931

ple streampower incision-linear diffusion LEM bifurcates with increasing subsurface drainage932

capacity: saturated areas tend toward the linear relationship between steepness and cur-933
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vature, while unsaturated hillslopes maintain constant negative curvature regardless of934

steepness. By incorporating the steady state solution of the hydrological model, we can935

explain the model results not as falling along a line of steepness and curvature, but as936

sitting on a manifold that relates steepness, Laplacian curvature, and topographic in-937

dex. A complementary analysis of the governing equations at steady state showed that938

hillslope length should scale with the subsurface drainage capacity, and therefore the trans-939

missivity, to the power 2/3. This was supported by our numerical results for sufficiently940

large drainage capacities. This analysis provides a pathway toward estimating subsur-941

face transmissivity at the landscape scale using terrain analysis. Links between landscape942

form and hydrologic function have been long sought-after in hydrology. Our work ex-943

amines the possibility that an understanding of landscape history through the coevolu-944

tion of landforms and hydrological process could be useful for generating hypotheses about945

these relationships that can be tested against field data. If successful, this approach could946

complement existing approaches for estimating hydrological parameters across regions947

or continents that are often necessary to drive large scale hydrological and land surface948

models.949

9 Notation950

Variable definitions are below, with dimensions length L, time T, and mass M. Prime951

always indicates the dimensionless equivalent, where dimensionless equivalents are de-952

fined in the text.953
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variable name dimension

x, y horizontal coordinates [L]
t time [T ]

z(x, y) topographic elevation [L]
h(x, y) aquifer thickness [L]
A(x, y) area upslope [L2]
a(x, y) area upslope per unit contour width [L]
θ(x, y) aquifer base slope angle [rad]

hg characteristic geomorphic height scale [L]
`g characteristic geomorphic length scale [L]
tg characteristic geomorphic time scale [T ]
hc characteristic hydrologic height scale [L]
td characteristic time to drain aquifer storage [T ]

Ef fluvial incision rate [L/T ]
Eh hillslope diffusion rate [L/T ]
U uplift rate [L/T ]
K streampower incision coefficient [1/T ]
m streampower area exponent [−]
n streampower slope exponent [−]
v0 characteristic contour width [L]
τ bed shear stress [M/LT 2]
τc critical bed shear stress [M/LT 2]
ke erosivity coefficient [M−βL1+βT 2β−1]
β shear stress exponent [−]
ρw density of water [M/L3]
g acceleration due to gravity [L/T 2]
df channel flow depth [L]
C Chezy coefficient [L1/2/T ]
w channel width [L]
kw width coefficient [−]
b permeable thickness [L]
qh hillslope sediment transport rate [L2/T ]
D hillslope diffusivity [L2/T ]
ksf timestep scaling factor [−]

q(x, y, t) groundwater specific discharge [L2/T ]
qs(x, y, t) local surface runoff [L/T ]
Q(x, y, t) discharge [L3/T ]
Q∗(x, y, t) dimensionless discharge [−]

p recharge rate [L/T ]
ks hydraulic conductivity [L/T ]
n drainable porosity [−]
G step function
R ramp function
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Figure 1. Hillshade plots (A, B, C) and cross sections (D, E, F) of steady state elevation for

model runs with varying hg and `g. Cross sections are taken along the dashed red lines. Data

plotted are in the re-scaled coordinate system (x′, y′, z′). (A, D) Model runs with the NoHyd

model, showing topography is nearly identical between the runs in the dimensionless coordi-

nate system regardless of the chosen values of hg and `g. (B, E) DupuitLEM model results are

sensitive to independent scaling of `g (i → ii → iii) and hg (i → iv → vi) when Hi is large. Scal-

ing such that α = hg/`g remains constant produces topography that is similar in the re-scaled

coordinates. (C, F) DupuitLEM results with small Hi, showing reduced sensitivity of modeled

topography to chosen length scales for small values of α. Note that the dimensionless size of the

domain in the Hi = 0.01 cases is larger than the other cases in order to resolve a sufficient num-

ber of ridge-valley features. This was accomplished by maintaining the number of grid cells and

increasing the contour width v0. The values of hg in the Hi = 0.01 cases (C, F) are also smaller

to allow for achievement of a tractable solution with very small Hi. Cross sections show the im-

permeable base elevation, water table elevation, and topographic elevation. Here zero elevation is

the fixed topographic elevation boundary condition along the lower edge of the domain.
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Figure 2. Hillshade plots of steady state elevation using the DupuitLEM model varying γ and

Hi while α is held constant. Hi varies over two orders of magnitude on a geometric scale, while

γ varies over one order of magnitude, further subdivided to show the transition that occurs at

γ = 1. Low γ topography appears similar to NoHyd model results, and is less sensitive to varying

Hi. Large γ results show broad hillslopes and slightly greater sensitivity to Hi.

–36–



manuscript submitted to JGR: Earth Surface

Figure 3. Cross section plots of DupuitLEM model results with varying γ and Hi correspond-

ing to hillshades in 2. Cross sections are taken in the same fashion to 1, horizontally along the

midpoint of the domain. Despite apparent similarities of the hillshades, there are prominent dif-

ferences in the subsurface with varying Hi. Lower Hi cases will have deeper regolith, as this is

dependent on the value of Hi. Noticeable depth to water table only becomes apparent at large

values of γ.
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Figure 4. (A) Spatial patterns of Q∗ from the DupuitLEM model varying γ and Hi while all

other parameters are held constant. Results are similar across differences in Hi, but show signif-

icant differences with γ. All points in the landscape generate some runoff in the lowest gamma

trials. (B) Cumulative distribution functions of Q∗ with varying γ and Hi. Low γ trials show a

range of Q∗ values, with all areas contributing to some degree. High γ cases show most areas do

not contribute runoff, with a small number where Q∗ ≈ 1. (C) Proportion of nodes contributing

runoff at Q∗ > 0.5, with varying γ (x-axis) and Hi (colors). Extent of areas contributing runoff is

small for large Hi, and generally decreases with decreasing Hi.

Figure 5. Dimensionless slope-area (left) and steepness-curvature plots (right) of steady state

topography using the NoHyd model. Area per contour width is used in place of area in both

plots to maintain consistency with model formulation. The steepness-curvature relationship ob-

served in the data show a precise fit to the linear relationship predicted from theory (dotted line).

Parameters selected are the same as Figure 1Ai.
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Figure 6. Dimensionless slope-area (left) and steepness-curvature (right) plots for selected

model runs from Figure 2. See correlating numbers in the upper left corner. As in Figure 2, γ

and Hi increase vertically and laterally from the bottom left respectively. Plots are colored by Q∗

of the final topography. Axes scales are different between plots, showing that large γ cases obtain

values of steepness and curvature far greater than the cases when γ is small.

Figure 7. Planform view steepness and curvature for selected model runs, with run number

corresponding to hillshades in figure 2. Spatial pattern of steepness appears to agree with channel

network locations in the low γ cases, while in the high γ cases, it takes on large values in pat-

terns that spiral away from ridges. Curvature is positive on ridges and negative in channels, with

large areas of constant negative curvature in the large γ cases.
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Figure 8. Planform view topographic index (left) and topographic index-curvature relation-

ship for selected model runs, with run number corresponding to hillshades in figure 2

Figure 9. (A) Geomorphic balance from equation (62), plotting Q∗ against the right hand

side (RHS) of the equation. Subplots correspond to the same model runs as in 2. (B) Hydrologic

balance from equation (70), plotting Q∗ against the right hand side of the equation.
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Figure 10. (A) Plot of the manifold (grey) defined in equation (73), with points plotted from

model run (29), large Hi and large γ. The points in yellow are hillslope points, and lie on an ap-

proximately horizontal plane, not on the manifold. (B) Plot of the manifold defined in equation

(73), with points plotted from model run (24), large Hi and small γ. (C) Map view of the terms

of the hydromorphic balance in equation (73). Columns correspond to terms, with the final being

the left hand side, which theory predicts to sum to zero. Rows are numbered with four different

model runs with varying γ and Hi. Areas greyed out have Q∗ < 0.001, thus representing hillslope

points where the hydromorphic balance may not apply.
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Figure 11. Hillslope length Lh increases with increasing γ. For a value of γ and α, Lh in-

creases with decreasing Hi. Similarly, for a given value of γ and Hi, Lh increases with decreasing

α. Gray lines with varying coefficients c show that the hillslope length scales approximately as

γ2/3 for γ > 1, which we derive from the hydromorphic balance.
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