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Abstract

The Lagrangian and Eulerian near-surface current signatures of a low-mode internal tide propagating through a turbulent jet

are compared in an idealized numerical simulation. We estimate and compare internal tides’ stationary and nonstationary

velocity amplitudes as well as non-stationarity timescales. We find Lagrangian internal tides total amplitude similar to Eulerian

one. Lagrangian velocity are mostly nonstationary and Lagrangian non-stationary timescales are comparable to or smaller

than Eulerian ones. This low-bias is proposed to be the result of the deformation of internal tide surface signal along the

drift induced by lower frequency surface currents. A model based on the latter hypothesis successfully predicts Lagrangian

autocovariance and highlights its dependence to Eulerian autocovariance and to the properties of the internal tides and jet.

We address the implications of these results in the context of the Surface Water and Ocean Topography (SWOT) mission, for

which the separation of mesoscale balanced flow and internal tides with data at the ocean’s surface was raised.
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ABSTRACT

The Lagrangian and Eulerian near-surface current signatures of a low-mode internal tide

propagating through a turbulent jet are compared in an idealized numerical simulation.

We estimate and compare internal tides’ stationary and nonstationary velocity amplitudes

as well as non-stationarity timescales. We find Lagrangian internal tides total amplitude

similar to Eulerian one. Lagrangian velocity are mostly nonstationary and Lagrangian

non-stationary timescales are comparable to or smaller than Eulerian ones. This low-

bias is proposed to be the result of the deformation of internal tide surface signal along

the drift induced by lower frequency surface currents. A model based on the latter

hypothesis successfully predicts Lagrangian autocovariance and highlights its dependence

to Eulerian autocovariance and to the properties of the internal tides and jet. We address

the implications of these results in the context of the SurfaceWater and Ocean Topography

(SWOT) mission, for which the separation of mesoscale balanced flow and internal tides

with data at the ocean’s surface was raised.
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1. Introduction25

The disentangling of internal tides and balanced flow is a key issue for the Surface26

Water and Ocean Topography (SWOT) mission (Morrow et al. 2019). This wide-swath27

altimetermissionwill provide instantaneous 2D sea levelmaps, with an expected horizontal28

resolution of the order of 15–30 km (Morrow et al. 2019; Fu et al. 2012). With this29

resolution, internal tides and mesoscale balanced flowwill be captured, providing a unique30

opportunity to study both motions and their interaction. While both motions have distinct31

time scales, they can have similar length scales (order of hundreds of kilometers) which32

makes their separation by spatial filtering difficult. SWOT coarse temporal resolution33

(20 day repeat time approximately) will also prevent a separation by temporal filtering.34

Due to these two issues, internal tides and balanced flow will be entangled in SWOT data,35

which is problematic for estimates of surface currents via geostrophy.36

Internal tides (or baroclinic tides) are internal waves generated by the barotropic tide37

when it passes over a topography (Garrett and Kunze 2007). Internal tides that are phase-38

locked with the tidal forcing are referred to as stationary internal tides. Stationary internal39

tides are predictable as they are phase-locked and of known amplitude. A fraction of the40

internal tides energy (mainly high modes) dissipates close to their generation’s location41

(Whalen et al. 2020) but a significant part travels in the open ocean over potentially42

great distances – up to thousands of kilometers – with a low-mode vertical structure. As43

they travel, internal tides encounter variations of the background stratification as well as44

obstacles (continental shelf, islands, etc) which can cause energy dissipation or scattering45

toward higher modes (Whalen et al. 2020; Savva and Vanneste 2018; Savage et al. 2020).46

Internal tides can also become nonstationary. In particular, loss of stationarity has been47

observed when internal tides travel in a background stratification that varies in time48

(Buĳsman et al. 2017), or pass through a turbulent jet (Ponte and Klein 2015; Dunphy49
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et al. 2017; Savage et al. 2020). They also become nonstationary when they reach the50

continental shelf (Nash et al. 2012b,a).51

Several works used altimeter observations to study baroclinic tide including its non-52

stationary component (Ray and Zaron 2016; Zaron 2017, 2019; Nelson et al. 2019). To53

overcome limitations of altimeter data, the use of the global drifter program (GDP) dataset54

has been investigated in addition to the altimeter data (Zaron 2017, 2019; Nelson et al.55

2019). The GDP complete dataset, combining Argos and GPS localisation system, is56

available interpolated over a temporal grid of 1h (Elipot et al. 2016). Lately, the number57

of drifters localised via GPS has increased, with only GPS tracked drifters recently de-58

ployed, thus decreasing the localisation error in the data (Elipot et al. 2016). This dataset59

has already been used to investigate high frequency near-surface near-inertial oscillations60

(NIOs) (Elipot et al. 2010).61

There are however challenges and questions raised by the use of Lagrangian data. One62

of the challenges associated with the analysis and interpretation of Lagrangian data is that63

data collected by a drifter as it moves along with the flow may entangle Eulerian spatial64

and temporal variability and, give a deformed perspective of the Eulerian field. (LaCasce65

2008) reviewed conceptual frameworks that have been developed in order to tackle this66

issue (Lumpkin et al. 2002;Middleton 1985; Davis 1983, 1985). Two regimes are typically67

identified : fixed float and frozen turbulence. The prevalence of one regime over the other68

is determined by the parameter U = )�/)0, where )� is the Eulerian evolution timescale69

of the flow and )0 is the time required for a drifter to travel the Eulerian characteristic70

spatial scale of the observed fluctuation. )0 is given by !/*, with U corresponding to an71

advection velocity and L the fluctuation’s spatial scale. If U � 1, the time required for72

the drifter to travel the length ! is greater than the timescale of the fluctuation, )� . In73

this case, one can expect an agreement between the Lagrangian and Eulerian timescales.74

Conversely, if U� 1, it takes a drifter a time smaller than)� to travel a distance !, causing75
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a more rapid fluctuation in the Lagrangian perspective. In this paper we apply these ideas76

to fit the case of internal tides interacting with a turbulent jet.77

(Zaron and Elipot 2020) found a spectral broadening of the barotropic tide peaks in78

Lagrangian data compared to the Eulerian one, due to flow and/or tides spatial non-79

stationarity. It is therefore not trivial that Lagrangian drifter data may be used to study80

internal tides and their loss of stationarity depending on the regions of the ocean and the81

associated dynamical regime. It is also necessary to evaluate the use of Lagrangian data82

in the context of SWOT. Can Lagrangian data be used to filter and identify internal tides?83

In this study, we compare the non-stationarity timescales and amplitudes of an internal84

tide field crossing a turbulent jet, in Eulerian and Lagrangian frameworks. This allows us85

to test analytical models describing balanced flow and internal tides in an idealized set-up86

and the relationship of Eulerian and Lagrangian timescales.87

We first present the numerical set-up used in this study as well as the method and model88

used to estimate signal amplitudes and decorrelation timescales. The results are shown in89

the second part for one simulation at first and several simulations varying the jet’s strength90

later, . Lastly, we develop a theoretical model to predict Lagrangian autocovariance from91

Eulerian one and confront our results to it.92

2. Numerical simulations and Lagrangian data93

a. Numerical simulations94

Idealized numerical simulations of an internal tide crossing a turbulent jet are considered.95

The numerical model is the Coastal and Regional Ocean COmunity model (CROCO)96

solving the hydrostatic equations. Its configuration follows Ponte et al. (2017) with a97

rectangular numerical domain (1024 km x 3072 km), zonally periodic. The Coriolis98

frequency follows the beta-plane approximation and is defined so that the domain is99

representative of mid-latitudes. A turbulent zonal jet crosses the domain at its center100
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along the meridional direction. It results from initialising the numerical simulation with a101

baroclinically unstable jet and is maintained by relaxing zonally averaged fields (velocities,102

temperature, sea level) toward the initial jet. Simulations with different turbulent jet103

strength are obtained by modulating the strength of the initial jet or equivalently the104

latitudinal thermal gradient. After 500 days, relaxation of the zonal mean fields toward105

the initial jet is ceased. The jet has a mean velocity amplitude maximum around 1450km106

in the center of the jet (Fig.1a, red line). The jet’s amplitude decays over the observed107

period of time with a maximum around 0.6 m/s at the beginning and around 0.4 m/s at108

the end. The jet’s velocity is computed by averaging each velocity component (u and v)109

over 2 days.110

A mode-1 internal wave is generated at H = 400 km with a semi-diurnal frequency111

(2 cpd). Its signature at the surface contributes significantly to the total velocity amplitude112

in the northern and southern areas (Fig.1a, green line compared to red line). Sponge layers113

are put on the top and the bottom of the domain (H < 300 km and H > 2700 km). About114

8000 simulated near surface drifters (referred to as drifters in the rest of this study) are115

also initialised at day 500 on a regular grid extending from 600 km to 2400 km and their116

advection is performed online (Fig.1b).117

b. Lagrangian outputs overview118

In the central part of the domain, the jet turbulence dominates the drifter net motion with119

a displacement of about 300 km in the G-direction and 160 km in the H-direction, i.e. an120

internal tide wavelength, over a 40 day time window (Fig.2c). When averaged over all121

drifters in this area, the net displacement over such time window is about 200 km. Away122

from the jet (Fig.2a and e), the net distance travelled by selected drifters, in the y-direction,123

is of about 20–30 km which is a fraction of an internal tide wavelength. Internal tides124

produce on the other hand periodical displacements of the order of 2–3 km. Eulerian125
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and Lagrangian zonal velocity time series exhibit significant differences in the jet at both126

low and internal tide frequency (modulation of the envelope and phase) over the 40 day127

temporal window (Fig2d). To quantify these differences, we will estimate amplitude128

and decorrelation/nonstationary time scales associated with the jet and internal tides and129

compare the results in different parts of the domain.130

Zonal velocity time series outside the jet (Fig2b and f) exhibit weaker differences131

between both perspectives, as seen from their envelopes. Modulations of internal tide132

fluctuations in the south and north parts of the domain differ markedly from each other133

with faster fluctuations of their envelope in the north compared to the south. This feature134

occurs in both Eulerian and Lagrangian time series and reflects the loss of stationarity of135

the internal tide as it propagates northward and interacts with the turbulent jet.136

c. Methods137

1) Estimation of Eulerian and Lagrangian amplitudes and timescales138

We estimate the amplitudes and decorrelation timescales of slow and fast motions by139

computing the velocity autocovariance in Eulerian and Lagrangian model outputs and140

fitting it to a theoretical model for a superposition of two motions (fast and slow) keeping141

timescales and amplitudes as variables. We assume a velocity component Emay be written142

as the sum of an internal tide part Ẽ and a turbulent (or jet) part E:143

E = Ẽ + E (1)

Assuming internal tide velocities and jet velocities are uncorrelated, the total autocovari-144

ance, C, equals to the sum of the autocovariances of Ẽ and E :145

� (g) = 〈E(C)E(C + g)〉 = �̃ (g) +� (g), (2)

where 〈·〉 is a time averaging operator.146

7



The high frequency signal for mode-1 internal tides is written as147

Ẽ =<
[
Ẽ4 (C)48lC

]
with< the real part (3)

where Ẽ4 is the envelop of the oscillations of the tides and depends on the time, thus148

capturing the non-stationarity of the waves. l/2c is the frequency of the waves, 2 cycles149

per day.150

The internal tide signal can be decomposed into stationary and nonstationary contribu-151

tions. The stationary part is defined with a coherent temporal averaging operator :152

ẼB = 〈̃E〉2, (4)

=<
[
〈̃E4〉248lC

]
(5)

Hence the nonstationary part, defined as the total velocity minus the stationary part :153

Ẽ=B = Ẽ− 〈̃E〉, (6)

=<
[
(Ẽ4 − 〈̃E4〉2)48lC

]
(7)

Assuming the envelope of the nonstationary signal is exponential with a decay timescale154

)̃ , the fast autocovariance is expressed as:155

�̃ (g) =
[
+̃2
B + +̃2

=B4
−g/)̃

]
× 2>B(lg) (8)

Following Veneziani et al. (2004) the turbulent velocity autocovariance is assumed to156

have the form :157

� (g) =+2
4−g/)2>B(Ωg) (9)

where ) is the decorrelation timescale and Ω accounts for eddies and meanders.158

The total autocovariance is then given by:159

� (g) = �̃ (g) +� (g) =
[
+̃2
B + +̃2

=B4
−g/)̃ ] × 2>B(lg) ++2

4−g/)2>B(Ωg) (10)

This model is then fitted with the autocovariance obtained from our data and averaged160

in bins in the y-direction. The variables )̃ , +̃B,+̃=B, ) ,+ andΩ are estimated to find the best161
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fit. The fit is done using a non linear least square regression (Jones et al. 2001–). Lower162

bounds are fixed to zero for all parameters except timescales, for which they are fixed at163

one day. The weight is uniform with no dependence on the timelag.164

Because of drifters displacements across the domain, the time window used for the165

computation of Lagrangian autocovariances has to be short enough for the result to be166

typical of a specific area, while being long enough to capture the long decorrelation167

timescale. For each drifter’s trajectory the velocity time series is split into segments of168

length )F, overlapping each other by 50%. A time window of 40 day is chosen. Eulerian169

mean velocities, averaged in time and zonal direction is interpolated on drifters trajectories170

and removed. No significant impacts of this removal were observed on the results for the171

fast signal. The autocovariance is computed over each segment and averaged within 50 km172

wide meridional bins. Each segment is attributed to a bin depending on the mean position173

over the period T. We did not find a significant sensitivity of our results to the length174

of the window. The Eulerian autocovariance is computed at each grid point using the175

same time windows and bin-averaged meridionally as for the Lagrangian autocovariance.176

Autocovariances are then divided by the autocovariance at timelag zero to obtain the177

autocorrelation.178

3. Signatures of internal tides and turbulent jet in Eulerian and Lagrangian perspec-179

tive180

a. Autocorrelation functions181

Three main regimes stand out on Lagrangian and Eulerian 2D autocorrelation (function182

of timelag and y) (Fig.3 first and second column respectively), corresponding to typical183

drifters’ trajectories shown in Fig2a, c and e. Autocorrelation at these latitudes of interest184

are further shown in Fig. 4. Fast oscillations, corresponding to the internal tides, are seen185

in the northern and southern parts of the domain for all autocorrelation functions. In these186
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areas, the signal seems to be dominated by internal tides, with a negligible influence of187

the slow advection of the drifters by the balanced flow. No decay of the amplitude of the188

oscillations with the time lag can be visually detected south of the domain, especially in189

the Eulerian perspective (see Fig. 4, panels e and f) indicating that internal tides are nearly190

stationary there. On the contrary, the amplitude of the fast oscillations decays mildly191

in the northern area, indicating internal tides non-stationarity. There are no significant192

visual differences between Lagrangian and Eulerian autocorrelations in the northern and193

southern areas. Conversely, the central area (H ∈ [1000;2000] km) exhibits a fast decay –194

especially in the Lagrangian perspective – of fast oscillations combined to a slower general195

decay associated with the slower jet turbulence. As observed in drifters trajectories and196

velocity time series (Fig. 2, panels c and d), Lagrangian diagnostics diverge from Eulerian197

ones in this area. The damping of fast oscillations in the central area occurs over a198

much shorter timescale in Lagrangian autocorrelation compared to Eulerian one : fast199

oscillations disappear after only a few days (g ≤5days) in Lagrangian perspective while200

they are still visible in the Eulerian one for the largest g (20 days). The decorrelation of the201

slower motion is also faster in Lagrangian autocorrelation compared to Eulerian one, and202

exhibits a negative lobe around g ∼ 4 days in the Lagrangian autocorrelation of E, which203

we attribute to the slow evolution of jet meanders. We also note that the autocorrelation204

of D does not decrease toward zero in the jet. Although this aspect is not the focus of our205

study, we attribute this to the fact that drifters oversample the meandering jet, resulting in206

a larger mean for the zonal velocity compared to the Eulerian mean. The fact that Eulerian207

autocorrelation decaysmore slowly than Lagrangian one is consistent with previous studies208

comparing Eulerian and Lagrangian decorrelation timescales (Lumpkin et al. 2002).209
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b. Estimates of velocity amplitudes and decorrelation timescales210

To estimate Eulerian and Lagrangian decorrelation timescales and velocity amplitudes211

for both slow and fast motions, we fit the autocovariance from our data (Eulerian and212

Lagrangian) to the model given by eq. (10).213

Eulerian and Lagrangian diagnostics (blue and red lines Fig. 5) show a loss of the214

stationarity of internal tides during the crossing of the jet. Eulerian stationary amplitude215

(Fig. 5c) exhibits high values relatively to the non-stationary one (Fig. 5d) (∼0.06 ms−1
216

versus ∼0.01 ms−1) in the south with Eulerian envelope (Fig. 4 e and f) near constant indi-217

cating internal tides nearly stationary in this area. During the crossing of the jet, internal218

tides loss of stationarity is captured in Eulerian diagnostics as the nonstationary amplitude219

becomes larger than the stationary one, increasing up to ∼0.08 ms−1 in the northern part220

(H larger than ∼1700 km), while the stationary part decreases slightly (∼0.05 ms−1). A221

bump is observed in nonstationary amplitude due to the combined effects of a bump in222

stratification in the jet, Coriolis and the loss of stationarity. In this dominantly nonstation-223

ary area, nonstationarity timescales are between 10 and 20 days. We note that the Eulerian224

envelope in the north (blue lines Fig. 4a and b) does not seem to reach zero but a plateau,225

consistent with a remaining stationary component.226

Lagrangian diagnostics present patterns significantly different from Eulerian ones as227

expected from drifters trajectories (Fig. 2 a, c and e) and autocorrelations (Fig. 3). In228

the south, the Lagrangian envelope (red lines Fig. 4 e and f) decays faster than Eulerian229

one. Lagrangian nonstationary and stationary amplitudes (red lines Fig. 5c and d) present230

similar values (∼0.04 ms−1 for the stationary part and ∼0.03 ms−1 for the nonstationary231

part). Nonstationary timescales (Fig. 5a) remain between 10 and 20 days. In the jet area,232

the nonstationary amplitude largely dominates as it reaches values around ∼0.08 ms−1
233

while the stationary part decreases toward values smaller than ∼0.01 ms−1. Nonstationary234

timescale decreases rapidly in this region and reaches 1 day in its center. This apparent non-235
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stationarity in Lagrangian perspective is likely due to a dominant slow motion strongly236

advecting the drifters in this area. In the north, we observe a decay of Lagrangian237

autocorrelation envelope close to the Eulerian one. Stationary and nonstationary amplitude238

are similar to Eulerian ones with non-stationarity dominant. Timescales also have similar239

values, between 10 and 20 days. The non-stationarity in this area is captured similarly in240

both Lagrangian and Eulerian diagnostics.241

The slow motion decorrelation timescales (Fig. 5b) reach their lowest values in the242

central area, ∼20 day in Eulerian data and ∼10 day in Lagrangian outputs. It corresponds243

to the area of high amplitude (Fig. 5e). It also coincides with the area of low Lagrangian244

non-stationarity timescales which supports an apparent non-stationarity in Lagrangian245

diagnostics dominant in this part. As seen in Lagrangian autocorrelation (Fig. 3), oscilla-246

tions due to slow motion meanders are observed in the autocorrelation of v but well fitted247

by our model (Veneziani et al. 2004). The fit for the autocorrelation of u seems however to248

fail in the center of the jet with a decorrelation timescale of the slow motion overestimated249

in that bin as a tendency towards a value superior to zero is not expected by our model for250

slow motion.251
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c. Sensitivity to the jet’s EKE252

The sensitivity of internal tide nonstationarity timescales to the jet EKE is investigated253

with five numerical simulations of increasing jet’s strength as shown by the meridional254

distributions of velocity amplitude (Figure 6b).255

The jet strength, as measured by the velocity amplitude maximum value, varies by256

a factor of about 2 across five simulations (Fig.6b). The internal tides’ total velocity257

amplitude, defined by
√
+̃2
B + +̃2

=B, increases in the northern area with the jet’s strength258

(Fig.6e). It increases with latitude similarly in both Eulerian and Lagrangian perspectives,259

regardless of the region of the domain or the jet’s strength.260

For the 2 most energetic simulations, (3 and (4, both Eulerian and Lagrangian diag-261

nostics show a loss of stationarity of internal tides occurs when internal tides cross the262

jet. As in the previously studied simulation, the internal tides are nearly stationary in263

the southern area in Eulerian amplitudes (continuous lines in Fig. 6c and d) while La-264

grangian stationary and nonstationary ones (circular markers in Fig. 6c and d) remain of265

similar order. In the jet, Eulerian and Lagrangian nonstationary amplitudes increase while266

Lagrangian stationary amplitude drops to zero. Lagrangian timescales (Fig. 6a) reach267

minimal values (≤5days) while Eulerian ones remain around or above 10 days in every268

simulation. The width of this area increases with the jet’s strength. As the drifters move269

along with the flow they might capture spatial variations as internal tides’ non-stationarity270

. This may explain Lagrangian timescales shorter than Eulerian ones in the area where the271

slow motion dominates. In the northern area, the same pattern is found for the two cases :272

non-stationarity amplitudes and timescales are similar in both framework, the Lagrangian273

non-stationarity is not/weakly biased by the drifters’ perspective. Interestingly, the inter-274

mediate case, (2 exhibits features similar to (−3 and (4 in the south and jet but distinct275

stationary amplitude and nonstationary timescale. The autocorrelation does not reach a276

plateau (stationary amplitude) in the chosen time window. This case is then considered277
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completely nonstationary in the north by our method, with small stationary amplitude and278

overestimated timescale. Contrary to previous cases, the two least energetic simulations,279

(0 and (1, show weak loss of stationarity in Eulerian perspective as the stationary am-280

plitude remains dominant for all bins and the nonstationary timescales near the highest281

values allowed in our fitting procedure. Lagrangian stationary amplitude drops to zero in282

the jet as the nonstationary one exhibits a bump in the same area and the timescale drop to283

1 day supporting Lagrangian apparent non-stationarity due to advection even for weakly284

energetic simulations.285

4. Lagrangian model for autocovariance and comparison to fitted autocovariance286

a. Theoretical expectation for the fast Lagrangian autocorrelation287

We assume that the fast signal is a modulated monochromatic wave propagating in a288

single direction (say G) and characterized by a frequency l and wavenumber ::289

Ẽ(C) =<
{
Ẽ4 (G, C)48(lC−:G)

}
, (11)

where Ẽ4 is the slowly varying envelope. Let’s consider a parcel traveling with the flow290

with trajectory - (C). The autocovariance of Ẽ as measured along the parcel trajectory is291

given by:292

�̃! (g) = 〈Ẽ(C + g)Ẽ(C)〉, (12)

=
1
2
<

{〈
Ẽ4

[
- (C + g), C + g

]
Ẽ∗4

[
- (C), C

]
4
8

[
lg−: (- (C+g)−- (C))

] 〉}
, (13)

where we assume that fast oscillation terms (∝ 4±28lC) are smoothed out by the averaging293

procedure. Neglecting the contribution of the wave velocity to the displacement: - (C) =294 ∫ C
Ē(B)3B, as well as the spatial dependency of the wave envelope (this point is discussed295

in the discussion, sect. b, below), and further assuming that the envelope of the wave and296

the slow flow are not correlated, we obtain:297

�̃! (g) =<
{
�̃� (g) ×

〈
4
8

[
lg−: (- (C+g)−- (C))

] 〉 }
, (14)
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where �̃� (g) is the autocovariance of the envelope. For the latter, we will re-use the model

previously introduced in eq. (8), now denoting the Eulerian decorrelation term as )̃� :

�̃� (g) = �̃ (g)/cos(lg) = +̃2
B + +̃2

=B exp(−g/)̃� ).

We assume now that the slow flow is a stationary Gaussian process, with a rms amplitude298

+̄ (over one direction) and an exponential decorrelation in time with a typical time scale299

)̄ – somewhat consistent with the model proposed in section 1, eq. (9) dropping the300

cos(Ωg) term for simplicity. Such model – sometimes referred as an unbiased correlated301

velocity model in the literature (Gurarie et al.) – corresponds to the time-homogeneous302

Ornstein-Uhlenbeck process.303

The displacement X- = - (C + g) − - (C) is also a Gaussian process with null mean and304

variance given by (Pope 2015, Chap. 12):305

〈X- (C)2〉 ≡ f2
- = 2)̄2+̄2

[
g/)̄ −

(
1− 4−g/)̄

)]
. (15)

It is worth noting that the variance of the displacement admits two asymptotic regimes:306

f2
-
→ +̄2g2 for g � )̄ , and f2

G → 2+̄2)̄g for g � )̄ . From this variance for the displace-307

ment, one obtains the final expression for the autocovariance of the fast motion in the308

Lagrangian frame:309

�̃! (g) = �̃�
∫ ∞

−∞
cos(lg− :X-)?(X-)3X- (16)

=

(
+̃2
B + +̃2

=B exp(−g/)̃� )
)

cos(lg)
∫ ∞

−∞
cos(:X-) 4

−X-2/(2f′2
-
)

f′
-

√
2c

3X- (17)

= �̃4−f
2
-
:2/2 = �̃ exp

(
−:2+̄2)̄2

[
g/)̄ − (1− 4−g/)̄ )

] )
(18)

The resulting Lagrangian autocorrelation has no stationary part and decays faster than the310

Eulerian autocorrelation, as follows from the exponentially decay due to drifter transports.311

A non-dimensional parameter :+̄)̄ readily appears in this exponential, which compares312

the time taken by the a drifter to travel a wave length compare to the typical decorrelation313
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time of the slow flow. Several regimes are identified, depending on the effect of the314

advection, :2f2, at a fixed time, typical of the decorrelation of the envelope :315

• Weak advection ,:2f2� 1 : The signature of the wave signal in the Lagrangian frame316

of reference matches the Eulerian one: �̃! (g) ∼ �̃� (g). Lagrangian stationary and317

non-stationary contributions directly reflect Eulerian ones. If +̃=B � +̃B, Eulerian is318

nonstationary. Amplitudes and non-stationarity timescales are expected to be similar319

in both perspectives. If +̃=B � +̃B, Eulerian signal is stationary.320

• Strong advection, :2f2 � 1 : the Lagrangian perspective will deform the Eulerian321

one. :+̄)̄ will control the form of the Lagrangian envelope. If :+̄)̄ � 1 the322

exponential decay of the Lagrangian autocorrelation scales is quadratic in g with323

decay time scale 1/:+̄ : �̃! (g) ∼ +̃2
B cos(lg) × 4−:2+̄2g2 . If :+̄)̄ � 1 the slow flow324

decorrelation induces a linear exponential decay with decay time scale 1/:2+̄2)̄ :325

+̃2
B cos(lg) × 4−:2+̄2)̄g

326

This predicted form of the autocorrelation in the Lagrangian framework is in qualitative327

agreement with the Lagrangian autocorrelations shown on Fig. 5 and 6. In particular,328

the stationary part of the fitted Lagrangian autocorrelation becomes negligible in a large329

region around the jet latitude. The fact that it is not zero at the very south and very330

north of the domain is due to the fact that the parameter :+̄)̄ is very small in this region,331

associated with a very slow decay of the Lagrangian envelop (see also Fig. 3), which332

implies a non-vanishing stationary fraction as recovered by the model fit from eq. (8).333

b. Comparison of fitted autocovariances to predicted Lagrangian ones334

The predicted Lagrangian autocovariance’s envelope (Fig. 7 right column) is computed335

from the fitted Eulerian autocovariance envelope (Fig. 7 left column) following Eq. (18)336

so that it may be compared to the fitted Lagrangian one (Fig. 7 middle column). For337

all simulations ((0, (2 and (4 shown in Fig. 7, first, second and third line respectively),338
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the Eulerian autocorrelation envelope’s decay rate increases from south to north and with339

the jet’s strength as commented previously. This is expected of a loss of stationarity340

as the wave propagates northward. For the fitted Lagrangian autocorrelation however,341

low values of the envelop are reached for small time lags in the jet due to the advection342

in the area. In the northern part the Lagrangian envelope exhibits slower decay rates343

that tend to Eulerian ones. The predicted Lagrangian autocorrelation envelope reaches344

values inferior to 0.1 for time lags smaller than 5 days in the center of the domain which345

is consistent with what is observed in the fitted Lagrangian autocorrelation in a strong346

advection area. In northern and southern area, the advection impact represented in the347

predicted autocorrelation also fits what is observed in fitted Lagrangian autocorrelation348

with decay rates qualitatively close to the Eulerian ones. This decay seems however349

slightly overestimated (values smaller than 0.2 for g>30 days when similar values are350

not reached in Eulerian or Lagrangian fits). Overall, following Eq. (18), the differences351

between Lagrangian and Eulerian can be qualitatively explained as the effect of drifters352

being advected by the slow motion.353

Depending on the significance of Eulerian non-stationarity and the relative importance354

of )̃!/)̃� and :2f2()̃!) (Fig. 8b and c, respectively), the Lagrangian non-stationarity355

timescale is likely due to Eulerian non-stationarity or drifters strong advection by slow356

motion. For simplification sake, both terms will be referred to as A� ()̃!) and A03E ()̃!)357

respectively.358

In the southern area, the ratio of Eulerian nonstationary and stationary amplitudes359

(Fig. 8a) is smaller than one for all simulations, internal tides area stationary. The advection360

is weak, A03E ()̃!) � 1. The Eulerian nonstationary timescale has no significant impact on361

the form of envelope in this area and its estimation is expected not to be significant. A�362

is found larger than one is this area, however a Lagrangian timescale larger than Eulerian363

one cannot be explained by our model. As stipulated previously, this can be due to364
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an underestimation of the Eulerian timescale. It also could be caused by an estimation365

error of Lagrangian nonstationary timescale and/or the result of an inappropriate form366

of decay employed for the fit (e.g. linear exponential decay vs quadratic) for Lagrangian367

autocovariance as the slow motion decorrelation timescale is of the order of the time368

window size (40 days).369

Northern and central areas illustrate the two different regimes for internal tides non-370

stationarity in Lagrangian data, described in the previous subsection. In the north, ratio371

of nonstationary and stationary amplitudes is larger than one for (2, (3 and (4, where372

nonstationary amplitudes dominates. For least energetic slowmotion ((0 and (1) stationary373

tide still dominates but with significant nonstationary contribution. The advection term,374

A03E is small in the north and A� values are around 1 : the Lagrangian autocovariance is375

close to the Eulerian one, following eq.(18). The non-stationarity captured in Lagrangian376

perspective corresponds to the one in Eulerian perspective. In the jet, the ratio of Eulerian377

nonstationary and stationary amplitudes increases with nonstationary component not yet378

dominant. In the same area, A� is small as the Lagrangian timescale is small in front of379

the Eulerian one, the decorrelation is faster in Lagrangian perspective than in Eulerian380

one. This coincides with A03E around 1, the internal tides’ non-stationarity captured in the381

Lagrangian perspective is due to advection by slow motion. We call this non-stationarity,382

apparent non-stationarity.383

5. Discussion384

a. Lagrangian apparent non-stationarity385

We now discuss the reported alteration of the internal tide surface signature in the386

Lagrangian perspective in themore general context of observation of ocean high-frequency387

dynamics. Low mode internal tides have by definition large vertical scales – similar to388

that of the background flow. Advection by the slow flow is of particular importance for389
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discussing the Eulerian/Lagrangian distorsion, even though it does not fully capture the390

interaction between the slow flow and the internal tide (Dunphy et al. 2017; Savage et al.391

2020). A vertical mode expansion of equations of motions linearized around the slow392

background flow shows that advection of the internal tide mode is driven by a non-trivial393

weighted average of the background flow.394

This effective advection is expressed as �−1
∫ 0
−� q

2
=U3I (Kelly and Lermusiaux 2016),395

where q= is the standard pressure mode for an internal wave with vertical mode number =396

(see also Duda et al., for a more technical approach).397

Thus, for a surface intensified background flow, the flow advecting the drifter (at the398

surface) and the one advecting the internal tide mode is different, explaining why the399

Lagrangian observer renders a distorted view of the internal wave signal.400

For the simulation with moderate jet intensity S2, for instance, the mode 1 effective401

advection velocity (computed, but not shown) is of order 0.2 ms−1 at its maximum, while402

the surface velocity is typically greater than 1 ms−1: the Eulerian distortion, driven by the403

effective advection velocity, is therefore smaller than the Lagrangian distortion, driven by404

the difference between this effective advection and the surface velocity transporting the405

drifter.406

This somewhat justifies a central approximation of the theoretical model derived in407

section a, where we neglected the advection of the wave by the slow flow.408

For small scale internal waves on the other hand, ray theory can be used to describe409

their propagation through the background flow (Broutman et al. 2004). This approach410

shows that wave packets are advected by the local flow, which is associated with a Doppler411

shifting of the Eulerian frequency: l = l̂+k ·U, where l and l̂ are respectively the wave412

absolute (or Eulerian) and intrinsic (as measured in a frame of reference moving with the413

slow flow) frequencies, k is the wave vector, and U is the slow flow.414
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Ignoring advection of the drifter by the wave current, the signal measured by the drifter415

coincideswith thewave field in the frame comovingwith themeanflowwith least distortion416

in the Lagrangian frame of reference.417

This situation is opposite to the configuration investigated here, as Lagrangian auto-418

correlation exhibits faster decrease with time lag compared to Eulerian auto-correlation,419

and the theoretical model proposed here would obviously not be relevant.420

In a realistic configuration, the range of validity of each of these two regimes (e.g. small421

vs large scale waves) remains to be quantified.422

b. On internal tide non-stationary spatial envelope423

Another assumption of the theoretical model is that the spatial envelope of the wave is424

spatially uniform but temporally variable. In reality the envelope of the wave propagates425

with the internal tide group speed resulting in spatial variability if a temporal one is426

admitted. We assume the typical size of the envelope should however scale as the product427

of the group velocity and the Eulerian non-stationary time scale and that this will in428

general be larger than several wavelengths. The apparent non-stationarity relies on the429

conversion of the spatial variability at the scale of a wavelength and thus do not expect430

the spatial variability of the envelope would affect the form (10) at first order. Synthetic431

experiments could help verify this point. If necessary, the spatial inhomogeneities of432

the wave envelop could be included in the model, at the cost of adding complexity. This,433

however, requires additional to characterize these spatial inhomogeneities ( through spatio-434

temporal autocovariance), which has not been reported in the context of internal tides – to435

our knowledge.436

c. Autocorrelations models and sationary/non-stationary decomposition437

Several ad-hoc choices have been made regarding the shape of internal tide and slow438

motion autocorrelation. Limits to these choices are visible on Figure 4c for slow motions439
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and are speculated to affect estimates of internal tide nonstationary time scales in the440

southern part of the domain. The internal tide envelope autocorrelation initially chosen441

included a single exponential decaying term instead of the sum of stationary/nonstationary442

contributions. We abandoned eventually this choice as it does not naturally lead to the443

decomposition of the signal into stationary/non-stationary contributions as well as was444

required to consider time scales overly large in stationary cases (>1000 days). One445

may also have fitted the more general form (Eq.(18)) to Lagrangian autocorrelations, for446

example, and evaluated its relevance compared to the single linear term exponential form.447

This would add one more parameter to estimate however and would require to determine448

whether this more general form leads to an improvement which we felt was a study on its449

own. We did not attempt to do this eventually in favor of a more qualitative assessment450

of the theory. Determining what form is more appropriate to describe the Eulerian and451

Lagrangian internal envelope autocorrelation is a study on its own that would best reserved452

to realistic configurations.453

6. Conclusion454

In order to investigate the use of Lagrangian data to characterize internal tides propagat-455

ing through a turbulent jet, we compare Eulerian and Lagrangian internal tides character-456

istics in an idealized simulation. Characteristics of mode-1 internal tides were estimated457

via fitting data in both perspectives and an internal tide autocovariance envelope including458

the sum of a constant stationary contribution and an exponentially decaying nonstationary459

one.460

Near their generation site and far from the jet, internal tides are found to be nearly461

stationary in Eulerian perspective. As internal tides propagate through the jet (i.e.462

energetic area), the drifters are strongly advected by slow motions which causes463

Lagrangian non-stationary timescales to be lower than Eulerian ones. We call this464
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phenomenon, found in Lagrangian perspective, apparent non-stationarity. After crossing465

the jet, internal tides propagate in an area of weaker energy but have lost stationarity.466

Internal tides non-stationary amplitude is significant there and even dominates in the most467

energetic cases. In this area, the intrinsic non-stationarity captured in Eulerian diagnostics468

is present similarly in Lagrangian amplitudes and timescales. Regardless of slow motion469

amplitude or Eulerian stationarity of internal tides the total amplitude (stationary and470

nonstationary components) is successfully recovered in Lagrangian perspective. The471

deformation of internal tides characteristics in Lagrangian perspective was qualitatively472

predicted by a theoretical model for Lagrangian autocovariances (eq.(18)). This model473

modifies Eulerian autocovariances to take into account the advection of drifters.474

475

One of the main result of this study is the estimation of the total amplitude in Eulerian476

and Lagrangian perspectives using autocovariances and parametric fit instead of non-477

parametric spectral analysis. This method has the advantage to avoid the dependence478

on an arbitrary choice of frequency band. Indeed, in spectral analysis the chosen band479

has a strong impact on evaluating the energy contribution of motions identified by their480

frequency (Yu et al. 2019). This choice is further complicated by the variation of the width481

of tidal peaks depending on the internal tides’ stationarity and drifters advection by slow482

motion, in the case of Lagrangian spectra. Parametric spectral analysis could be explored483

as an alternative to free from this constraint. The efficiency of our method should also be484

investigated in a more realistic set-up.485

Lagrangian diagnostics and their comparison to Eulerian ones should help to assess486

how drifters data could be used, notably in the context of SWOT. As Lagrangian and487

Eulerian total amplitudes were found to be similar, Lagrangian estimates could help to488

identify where the internal tides contribution to ocean surface energy would be significant.489

This leading to where balanced flow and internal tides could be entangled in SWOT490
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data. It involves however a transition from internal tides kinetic energy amplitude to491

pressure, which should be investigated. In areas of weak advection, we might be able492

to separate stationary and non-stationary amplitudes in Lagrangian data. The theoretical493

model developed in this study should help to define regimes for which this separation is494

possible. Areas of high non-stationary internal tides contribution and therefore of difficult495

prediction of internal tides may thus be flagged. Note that these specific regions are also496

the ones where we found a correct estimation of non-stationarity timescales. Again these497

preliminary results should be investigated in a realistic set-up, numerical model or in situ498

data.499

This potential information brought by Lagrangian data could also be complementary500

material to map internal tides. Mappings of internal tides have been studied from altimetry501

(Zaron 2017, 2019). Drifters data, via an estimation of total amplitude, might contribute502

to this mapping, setting at least an upper limit to stationary and nonstationary amplitudes.503

A direct decomposition of total amplitude in stationary and nonstationary components504

may also be derived, in some cases, from drifters data, as noted previously.505

As anticipated in other studies (Zaron and Elipot 2020), apparent non-stationarity was506

found in our Lagrangian data and predicted by our theoretical model, in areas of strong507

advection. Areas and regimes for which Lagrangian perspective would deform internal508

tides characteristics may be flagged. It could have consequences on the use of Lagrangian509

filtering to filter out tidal signal from surface data. Indeed, low decorrelation timescales510

translate in the frequency domain by a broadening of tidal peaks which is expected to511

complicate the separation of motions by their frequency.512

The estimation of internal tides contribution in ocean surface energy through the total –513

and, in some cases, of stationary and nonstationary – amplitudes from drifters data might514

also help to validate realistic models resolving high frequency variability.515
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In the shorter term, a natural extension of our study is to apply our findings to the516

analysis of actual drifter trajectories or numerically predicted ones in realistic simulations.517

Eulerian outputs from a realistic simulation (LLC4320) have already been compared to518

drifters data (Yu et al. 2019). A future study will aim at applying our findings to simulated519

drifter trajectories from the same numerical simulation. Similar methods applied to520

energetic regions of the globe would allow us to test our method and analytical models to521

more realistic set-ups in particular to compare Lagrangian and Eulerian amplitudes and522

non-stationarity timescales.523
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Figure 1. (a) : Mean field of zonal (blue line), meridional (orange line), total (green) and low-passed

(red) velocity amplitudes ; (b) : Zonal velocity at t=750 days (color) with positions of 1/4 of the drifters

at the same time represented by black dots.
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Figure 2. Trajectories of 3 drifters in three different area of the domain (north (a and b), central

(c and d) and south (e and f)) over a period of 40 days and corresponding time series. Left column

: Trajectory of each the drifter (black line) with the zonal velocity in the background. The red circle

represents the position of the drifter at t0 and the blue diamond the position at mid period. A black

straight line is plotted representing a quarter of the wavelength. Right column : Zonal velocity time

series along the drifter trajectory in red and at a fixed position (blue diamond in the left figure) in blue.
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Figure 3. Autocorrelation of u (a and b) and v (c and d) computed from Lagrangian outputs (a

and c) and Eulerian one (right column : b and d). The y-axis corresponds to the y bins in which the

autocorrelation have been averaged. In the x-axis is the time lag. Horizontal black lines indicate the

three latitudes of interest discussed in the paper (see Figs. 2 and 4)
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Figure 4. Autocorrelation at fixed bin in three different area : north (a and b), center (c and d) and

south (e and f) of the domain). The Eulerian and Lagrangian autocorrelation derived from our data

are represented respectively in blue and red. The autocorrelation corresponding to the best fit of our

theoretical model with the autocovariance are plotted in grey dashed lines. Corresponding values of

the fitted parameters are indicated in each panel.
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Figure 5. Estimated eulerian (blue lines) and Lagrangian (red lines with circular markers) non-

stationarity, )̃ (a) and decorrelation of the balanced flow,) (b) timescales and fast and slow components

amplitudes, +̃=B (c), +̃B (d) and+ (e). The estimates are found by fitting the theoretical model (Eq.(18))

to the autocorrelation of u (dashed lines) and v (continuous lines).
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Figure 6. Estimated parameters for five simulations. (a) Lagrangian and Eulerian internal tides

nonstationary timescales, )̃ . (c), (d) and (e) : Fast components nonstationary and stationary velocity

amplitudes, +̃=B and +̃B and total amplitude,
√
+̃2
=B + +̃2

B . Slow component velocity amplitude, + (b) is

also represented. Timescales lower than 1 day and larger than 40 days were not allowed by our fitting

procedure.
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Figure 7. Amplitude of the envelop of fast oscillation in autocorrelation functions for 3 simulations

(corresponding to rows). From top to bottom the jet’s strength increases. The envelope of the

fitted Eulerian (left column) and Lagrangian (middle column) autocorrelation as well as the predicted

Lagrangian autocorrelation (right column) are plotted.
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Figure 8. Ratio +̃=B/+̃B (a) and )̃!/)̃� (b) as well as the term in the exponential (Eq. (18)), :2f()̃!),

(c) are represented.
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