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Abstract

Space plasmas are composed of charged particles that play a key role in electromagnetic dynamics. However, to date, there

has been no direct measurement of the distribution of such charges in space. In this study, three schemes for measuring charge

densities in space are proposed. The first scheme is based on electric field measurements by multiple spacecraft. This method is

applied to deduce the charge density distribution within Earth’s magnetopause boundary layer using Magnetospheric MultiScale

constellation (MMS) 4-point measurements, and indicates the existence of a charge separation there. The second and third

schemes proposed are both based on electric potential measurements from multiple electric probes. The second scheme, which

requires 10 or more electric potential probes, can yield the net charge density to first-order accuracy, while the third scheme,

which makes use of seven to eight specifically distributed probes, can give the net charge density with second-order accuracy.

The feasibility, reliability, and accuracy of these three schemes are successfully verified for a charged-ball model. These charge

density measurement schemes could potentially be applied in both space exploration and ground-based laboratory experiments.
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Key Points: 22 

Charge densities in geomagnetopause have been calculated using MMS electric field 23 

measurements. 24 

 25 

A method for extracting the charge density from 10-point electric potential 26 

measurements is presented. 27 

 28 

An additional scheme to measure the charge density using seven or eight electric 29 

potential probes is explored.   30 
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 43 

Abstract  44 

Space plasmas are composed of charged particles that play a key role in electromagnetic 45 

dynamics. However, to date, there has been no direct measurement of the distribution 46 

of such charges in space. In this study, three schemes for measuring charge densities in 47 

space are presented. The first scheme is based on electric field measurements by 48 

multiple spacecraft. This method is applied to deduce the charge density distribution 49 

within Earth’s magnetopause boundary layer using Magnetospheric MultiScale 50 

constellation (MMS) 4-point measurements, and indicates the existence of a charge 51 

separation there. The second and third schemes proposed are both based on electric 52 

potential measurements from multiple electric probes. The second scheme, which 53 

requires 10 or more electric potential probes, can yield the net charge density to first-54 

order accuracy, while the third scheme, which makes use of seven to eight specifically 55 

distributed probes, can give the net charge density with second-order accuracy. The 56 

feasibility, reliability, and accuracy of these three schemes are successfully verified for 57 

a charged-ball model. These charge density measurement schemes could potentially be 58 

applied in both space exploration and ground-based laboratory experiments. 59 

 60 

 61 
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 63 

 64 



 65 

1. Introduction 66 

 67 

Electromagnetic fields are omnipresent in space. They control the motion of 68 

plasmas, and the transportation, release, and transformation of energy in space, and 69 

thereby are the key driver of space weather hazards. Charges and electric currents 70 

(flows of charged particles) source the electromagnetic field, and therefore the 71 

distribution and motions of charges determine its form. Charge separations occur in 72 

electric double layers, which exist commonly in space plasmas (Block, 1975; Akasofu, 73 

1981; Raadu, 1989). Net charges can appear in plasma boundary layers (Parks, 1991), 74 

e.g., the magnetopause boundary layers and Alfvén layers (Hasegawa and Sato, 1989). 75 

Charge separations can also occur during ambipolar diffusion processes (Alfvén, 1963; 76 

Bittencourt, 2004), e.g., the Earth’s polar wind (Axford, 1968; Lemaire and Pierrard, 77 

2001; Yau et al., 2007). In macro-scale plasmas, flow shears or vorticities can 78 

accumulate these net charges, driving the field-aligned currents (Michael, 2014). 79 

Charge separations also play a key role in plasma instabilities, e.g., the Rayleigh-Taylor 80 

instability (Treumann and Baumjohann, 1997; Michael, 2014) and the tearing 81 

instability (Treumann and Baumjohann, 1997). 82 

The charge separations in space plasmas can appear at various spatial scales. The 83 

plasmas with no magnetic field are commonly electrically neutral when the spatial scale 84 

is much larger than the Debye length and the temporal scale is rather longer than the 85 

plasma oscillation time (Bittencourt, 2004). At the Debye length space scale or plasma 86 



oscillation time scale, the electrical neutrality would be violated and charge separations 87 

appear. On the other hand, the ambipolar diffusion takes place in inhomogeneous 88 

plasmas due to the different thermal velocities of the electrons and ions, and 89 

polarization electric fields will be created, which can span several Earth radii in the 90 

Earth’s polar wind regions (Axford, 1968; Lemaire and Pierrard, 2001). However, as 91 

results of the difference between the parameters of electrons and ions, the charge 92 

separations in magnetized plasmas at spatial scales much larger than the Debye length 93 

can take place. As for the magnetopause boundary layers, the protons of solar wind can 94 

penetrate more deeply into the magnetosphere than electrons because of their greater 95 

gyroradius. Therefore, the magnetosphere and magnetosheath sides of the 96 

magnetopause boundary layer are positively and negatively charged, respectively, and 97 

the width of the magnetopause boundary layer is at the order of proton gyroradius 98 

(several hundred Kilometers) (Parks, 1991; Kivelson and Russell, 1995). During the 99 

magnetospheric substorms, the plasmas are injected from the magnetotail into the inner 100 

magnetosphere, and the ions and electrons are energized and drift duskward and 101 

dawnward, respectively. As a result, the duskside and dawnside of the inner 102 

magnetosphere accumulate positive and negative charges, respectively, and a 103 

dawnward shielding electric field with a spatial scale of several Earth radius is 104 

established (Hasegawa and Sato, 1989).  105 

The acquisition of a spatial distribution of electric charge density is of critical 106 

importance for recognizing and understanding the dynamics of electromagnetic fields 107 

and plasmas in space. However, there is still no equipment available for directly 108 

measuring the net charge density in space, although measurements of the charge density 109 

in the atmosphere near the ground have been achieved. The difficulty of such 110 

measurements in space arises because the plasmas there are extremely thin, with only 111 



a few charged particles per 𝑐𝑚3, and the net charge density is even lower by several 112 

orders. According to Harris (1962), the maximum charge density within the 113 

magnetopause boundary layer is 2 2 2 2 2

max
2ne(1 V / c ) V / c − −  , where n is the 114 

number density of the plasmas, V is the drifting velocity of electrons and ions, c is the 115 

free speed of light in vacuum. According to Lee and Kan (1979), the main carriers of 116 

the current in the magnetopause are ions, whose temperature is about 300 eV and 117 

thermal velocity is estimated to be V 200km/s  . Assume 
3n 10cm−   in the 118 

magnetopause, then 3

max
10e/m  .  119 

Cluster mission has first achieved the four-point measurements on the electric field 120 

in space (Escoubet et al., 2001), with which the electric field structure of the 121 

magnetopause boundary layer has been revealed (Paschmann et al., 2005; Haaland et 122 

al., 2021 and references therein). The Magnetospheric MultiScale (MMS) constellation 123 

(Burch et al., 2016) can measure the 3-dimensional electric field vector at four locations 124 

in space so as to obtain the linear gradient of the electric field. By using this advantage, 125 

Tong, et al. (2018) have deduced the spatial distribution of net charge within a magnetic 126 

hole and found there are net positive charges in the center of the magnetic hole and an 127 

electron sheath around the hole. With a similar approach Argall et al. (2019) have 128 

investigated the distribution of charge density in the diffusion region of magnetic 129 

reconnection. However, we still have no independent charge density measurement 130 

equipment in space. In this article, we will explore how the charge density can be 131 

deduced based on multiple-probe electric potential measurements on board a single 132 

spacecraft. 133 

In Section 2, we first discuss the method for deducing the charge density from 4-134 

point electric field measurements, which has been applied to analyze the charge density 135 

distribution in the dayside magnetopause boundary layer during an MMS 136 



magnetopause crossing event. In Section 3, a method for deducing the charge density 137 

from ≥ 10 -point electric potential measurements is studied. Section 4 explores 138 

measurements of the charge density based on seven or eight electric potential probes. 139 

Section 5 gives a summary and some discussion.  140 

 141 

2. Deducing the charge density from multi-spacecraft electric field measurements 142 

The direct approach to obtain the net charge density is to sum up the charge 143 

densities of positively and negatively charged particles with the formula 144 

e i i

i

en q n = − + ,                                   (1) 145 

where en  and in  are the densities of the electrons and the i-th ion, respectively, and 146 

iq  is the charge of the i-th ion. However, the electric force is so strong that the plasmas 147 

are always quasi-neutral, and the separation between the two types of charges is very 148 

slight. Therefore, the charge densities in space plasmas are extremely small. It is almost 149 

impossible to determine the net charge density by measuring the densities of charged 150 

particles at the present stage of space exploration.  151 

The most feasible and practicable method at present is to deduce the net charge 152 

density by measuring the electric potentials or electric fields created by the net charges 153 

at high accuracies with well-developed technology (Mozer et al., 1967; Mozer, 1973; 154 

Paschmann et al., 1997; Pedersen et al., 1998; Michael, 2014). The Spin-plane Double 155 

Probes (SDPs) and Axial Double Probes (ADPs) (Torbert et al., 2016; Lindqvist et al., 156 

2016; Ergun et al., 2016) onboard the four spacecraft of the MMS constellation (Burch 157 

et al., 2016) yield four electric field vectors at four different locations separated by tens 158 



of kilometers. With the Gaussian theorem, 0 = E , we can get the charge density at 159 

the center of the constellation, as illustrated in Fig. 1. Suppose that the four spacecraft 160 

of the MMS constellation are located at four different positions ( 1,2, , 4)  = r . The 161 

barycenter of the MMS constellation is

4

c

1

1

4


=

 r r  . It is convenient to assume that 162 

c 0=r , so that the barycenter of the constellation is the origin of the frame of reference. 163 

The four spacecraft yield four electric fields, ( ), 1,2, , 4  = = E E r  . Under the linear 164 

assumption, the i-th component of the gradient of the electric field at the barycenter can 165 

be calculated as (Harvey, 1998; Chanteur, 1998)  166 

( )
4

1

i j jic
1

1
r R

4

−

 

=

 = E E ,                                  (2) 167 

where 

4

ij i j

1

1
R r r

4
 

=

=   is the volumetric tensor of the constellation (Harvey, 1998), and 168 

1

jiR−
 its inverse. By using the Gaussian theorem, we can get the charge density with 169 

the divergence of the electric field vector, i.e., 170 

3

0 0

1

i i

i

E  
=

=  = E ,                                  (3) 171 

The accuracy of the axial electric field measured by MMS is 1 𝑚𝑉/𝑚 (ADPs, Ergun 172 

et al.,2016), while the accuracy of the components of electric field in the spin plane is 173 

< 0.5 𝑚𝑉/𝑚  (SDPs, Lindqvist et al., 2016). The two corresponding errors can be 174 

denoted as 𝛿𝐸𝐴~1 𝑚𝑉/𝑚  and 𝛿𝐸𝑆~0.5 𝑚𝑉/𝑚 , respectively. It is known that the 175 

characteristic spatial scale of MMS is 𝐿 ≈ 20 𝑘𝑚. Therefore, the error of the charge 176 

density calculated from the MMS 4 point electric measurements is estimated to be 177 

𝛿𝜌 ≈ 휀0 (
𝛿𝐸𝐴

𝐿
+ 2

𝛿𝐸𝑆

𝐿
) ≈ 0.45 𝑒/𝑚3 which, as we will see in a case study, is much 178 

smaller than the observed charge density. The algorithm presented here is also evaluated 179 

and validated by a more sophisticated simulation shown in Figure S1 and S2 in the 180 



supporting information file (jgra55009-sup-0001-2021JA029511-si). 181 

 182 

 183 

Figure 1. A schematic view of the measurements of the electric field by the MMS 184 

constellation and the calculation of the charge density. 185 

 186 

Here we will explore the net charge distribution within the magnetopause 187 

boundary layer based on MMS electric measurements. It is well known that a charge 188 

separation occurs in the magnetopause, brought about by the effects of inertia (because 189 

there is a large difference between the masses of the electrons and ions). As a result of 190 

that, the net positive charges accumulate at the magnetospheric side and the net negative 191 

charges accumulate at the magnetosheath side of the magnetopause boundary. Because 192 

the MMS constellation has a rather small size (with the spacecraft separations being 193 

several tens of kilometers) and can be well-embedded in the magnetopause boundary, 194 

the charge density can be deduced from the MMS electric observations using the above 195 

method. We investigate one MMS magnetopause crossing event at 14:26:14 on 11 196 



November 2015 by examining the electric field and calculating the charge density, 197 

whose values during the crossing event are shown in Fig. 2. It can be seen that the 198 

rotational discontinuity (RD) appear at UT14:26:40 with the maximum magnetic 199 

rotation rates (Panel (d)) (Shen et al., 2007), minimum value of the gradient of the 200 

magnetic strength (Panel (e)), and smallest radius of curvature of the magnetic field 201 

lines (Panel (f)). As shown in Panel (g), a charge separation is evident within the 202 

magnetopause boundary, with the positive charges at the magnetospheric side and 203 

negative charges at the magnetosheath side. The maximum value of the charge density 204 

in the magnetopause is about 60 3e / m  , which is much larger than the error (𝛿𝜌 ≈205 

0.45 𝑒/𝑚3 )  as given above. It is evident that the electric neutrality is kept in the 206 

magnetosheath near to the magnetopause. These results are in agreement with the 207 

conventional kinetic models of the magnetopause boundary layers (Harris, 1962; Lee 208 

and Kan, 1979; Parks, 1991; Kivelson and Russell, 1995). 209 



 210 

Figure 2. The structure of the magnetopause during an MMS crossing event on 11 211 

November 2015. From top to bottom: (a) the magnetic flux density at the center of the 212 

constellation, (b)the electric-field at the center of the constellation ,(c) the electron and 213 

ion number densities measured by MMS-1 (Pollock et al., 2016), (d) the rotation rates 214 

of the magnetic field (Shen et al., 2007), (e) |∇|𝑩||, (f) the radius of curvature of the 215 

magnetic field lines (Shen et al., 2003), and (g) the charge distribution. The red vertical 216 

https://cn.bing.com/dict/search?q=red&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=vertical%20line&FORM=BDVSP6&cc=cn


line marks the largest rotation rates, and the black vertical dotted lines mark the largest 217 

and the smallest charge densities. 218 

 219 

3. Charge density measurements from 10 probes on board a spacecraft – Stiff 220 

Booms Method 221 

 222 

It is known that the linear gradient of a quantity can be estimated based on 4-point 223 

measurements (Harvey, 1998; Chanteur, 1998; Shen et al., 2003), while the quadratic 224 

gradient of a quantity can be calculated based on 10-point measurements (Chanteur, 225 

1998). In the low Earth Orbit missions DEMETER (Berthelier, et al., 2005) and 226 

Zhangheng-1 (Shen, et al., 2018), the electric field is measured with four probes 227 

mounted at the ends of four stiff booms. We suggest to construct an electric equipment 228 

composed of 10 or more electric probes so that both the electric field and charge density 229 

can be measured. In a previous investigation (Shen et al., 2021), a new algorithm was 230 

put forward to calculate the linear and quadratic gradients jointly based on 10 or more 231 

measurements. It can be applied to obtain the quadratic gradients (
2 ) from 10-point 232 

electric potential field ( ) measurements. Moreover, with the Poisson equation, 233 

2

0  = −  ,                                    (4) 234 

it yields the distribution of the electric charge density. For the processes with temporal 235 

variations, the general governing equation is the d'Alembert equation, 236 

2 2 2 1

0- tc    − − + = −  , instead. However, for slow varying structures or steady 237 

structures and low-frequency plasma waves with their motion speeds much less than c, 238 

https://cn.bing.com/dict/search?q=vertical%20line&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=marks&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=largest&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=vertical%20line&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=marks&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=largest&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=smallest&FORM=BDVSP6&cc=cn


the first term at the right hand side of the d'Alembert equation can be neglected.  239 

 We can check the feasibility of this 10 probe scheme. The electric field generated 240 

by a uniformly charged ball will be used to test this approach. Supposing that the radius 241 

of the ball is 𝑟0  and its charge density is 𝜌 , we get the electric potential field 242 

analytically as, 243 

 𝜑(𝐫) = {
−
1

6
휀−1𝜌𝑟2 +

1

2
𝑟0
2𝜌  𝑖𝑓  𝑟  ≤   𝑟0,

−
1

4𝜋

𝑄

𝑟
 𝑖𝑓  𝑟  >   𝑟0,

 , (5) 244 

where 𝑄 =
4

3
𝜋𝑟0

3𝜌 is the total charge and 𝑟 is the distance from the center of the ball 245 

to the measurement point. In the following modeling, constant values of 1 are assigned 246 

to 𝜌, 𝑟0, and 𝜖, i.e., 𝜌 = 𝑟0 = 𝜖 = 1. The positions of the 10 probes in the barycenter 247 

coordinates are generated randomly and presented in Tab. 1 and Fig. 3. The three 248 

characteristic lengths of the distribution of the 10 probes (Harvey, 1998; Robert, et al., 249 

1998) are 𝑎 = 0.10,    𝑏 = 0.06,  and 𝑐 = 0.03 . The reconstructed characteristic 250 

matrix 
MN  is 251 

(ℜ𝑀𝑁) =

(

  
 

12.73 −11.09 −5.05 5.22 2.74 1.61
−11.09 20.90 5.47 −6.71 −4.97 −2.28
−5.05 5.47 6.44 −2.49 −4.56 −2.27
5.22 −6.71 −2.49 12.83 −1.91 2.27
2.74 −4.97 −4.56 −1.91 9.09 0.86
1.61 −2.28 −2.27 2.27 0.86 2.68 )

  
 
10−3,    (6) 252 

 and its eigenvalues are given in Tab. 2. 253 

 254 

 255 

 256 

 257 

 258 



 259 

Table 1. The locations of the 10 probes in the barycenter coordinates . 260 

x y z 

-0.16474 0.520923 -0.07516 

-0.29774 -0.2433 -0.00151 

0.107263 -0.00029 0.243785 

-0.12458 -0.14707 0.116693 

-0.11324 0.080113 -0.22108 

0.505285 -0.29726 -0.0293 

0.055479 0.300437 -0.28976 

0.461577 -0.14647 -0.13865 

-0.2916 0.323618 0.339179 

-0.13771 -0.3907 0.055801 

 261 

Figure 3. The distribution of the 10 probes. 262 

 263 

 264 



Table 2. The eigenvalues of the characteristic matrix MN . 265 

0.03614 0.01326 0.00114 0.00235 0.00510 0.00668 

 266 

We first investigate the behavior of the resultants with the number of iterations. 267 

𝐷 is the local characteristic scale of the electric field structure and is set equal to 𝑟 in 268 

this model. It is assumed that the barycenter of the constellation is at [0.1,0,0], and the 269 

probe separations 𝐿 are reduced proportionally so that the relative measurement scale 270 

L/D= 0.026. The relative truncation error, 𝑋𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚/𝑋𝑟𝑒𝑎𝑙 − 1, is shown in Fig. 4. 271 

With increasing numbers of iterations, the errors decrease and finally converge to 272 

certain fixed values. In this calculation, the solution converges after 100 iterations. By 273 

testing various fields, we found that the number of iterations required for convergence 274 

varies. 275 

 276 

 277 

 278 

Figure 4. The relative errors of the linear (a) and the quadratic (b) electric potential 279 

gradients, i.e., 𝜕𝑥𝜙  and 𝜕𝑥𝜕𝑥𝜙 , calculated for different numbers of iterations at 280 

[0.1,0,0] within the uniformly charged ball. 281 



 282 

Secondly, we investigate the dependence of the truncation errors on the relative 283 

measurement scale L/D. We have tested six situations, with the barycenter of the 10 284 

probes located at three representative points within the ball, [0.1,0,0], [0.4,0,0], and 285 

[0.7,0,0], and three points outside the ball, [3,0,0], [5,0,0], and [8,0,0]. We scale up 286 

and down the size of the original 10 probes to adjust the characteristic size 𝐿  and 287 

therefore 𝐿/𝐷. 288 

 289 

Figure 5 shows the errors modeled in the ball. In general, the errors are less than 290 

10−5% for the linear gradients and less than 0.02% for the quadratic gradients. With 291 

the same number of iterations, 1000, the errors at different positions vary by an order 292 

of 2. The extremely accurate results arise from the fact that the charge density has been 293 

assume homogeneous and electric field is linear varying within the charged ball. A 294 

further check on the method for a charged ball model with a non-uniform charge density 295 

ball has been performed in the Supporting Information file (jgra55009-sup-0002-296 

2021JA029511-si). 297 

 298 



 299 

Figure 5. The variation of the errors of the calculation by using the 10-probe scheme 300 

with the relative measurement scale L/D for the case of a uniformly charged ball. The 301 

measurements are performed inside of the charged ball. The left panels, (a), (c), and (e), 302 

show the truncation errors for the non-vanishing component of the linear gradient by 303 

𝐿/𝐷 calculated for three different locations of the barycenter of the 10 probes inside 304 

the ball, [0.1,0,0],  [0.4,0,0],  and [0.7,0,0] . The right panels, (b), (d), and (f), 305 

illustrate the relative errors of the non-vanishing components of the quadratic gradient 306 



and charge density (dashed line) calculated for the same three locations of the 307 

barycenter. It is noted that 𝜙,1 ≡ 𝜕𝑥𝜙 and  𝜙,2,2 ≡ 𝜕𝑦𝜕𝑦𝜙, where a comma denotes 308 

partial differentiation. 309 

 310 

Figure 6 shows the modeling results outside of the ball. As L/D<0.01, the 311 

relative errors of the non-vanishing quadratic gradient components are below 2%. The 312 

attained linear and quadratic gradients are accurate to second order and first order, 313 

respectively. 314 

The same error analysis prodecure for the 10-probe scheme has been applied to 315 

another charged ball model in which the charge density is inversely proportional to the 316 

square of the distance from the ball center, as shown in Figure S3 and S4 in the 317 

Supporting Information file (jgra55009-sup-0002-2021JA029511-si), and a similar 318 

conclusion has been reached. 319 

 320 

 321 



 322 

Figure 6. The dependence of the truncation errors of the calculations by using the 10-323 

probe scheme on the relative measurement scale L/D for the case of a uniformly charged 324 

ball. The measurements are performed outside of the charged ball. The left panels, (a), 325 

(c), and (e), show the truncation error for the non-vanishing component of the linear 326 

gradient as a function of 𝐿/𝐷 calculated for three different locations of the barycenter 327 

of the 10 probes outside of the ball, [3,0,0], [5,0,0], and [8,0,0]. The right panels, (b), 328 

(d), and (f), illustrate the relative errors of the non-vanishing components of the 329 



quadratic gradient and the absolute value of the charge density (dashed line) calculated 330 

for the same three locations of the barycenter. It is noted that the real charge density 331 

outside of the ball is zero. 332 

 333 

 334 

Figure 7. The relation between the absolute error of the charge density and the number 335 

of measurement points at [3,0,0]. The relative measurement scale is chosen as 𝐿/𝐷 =336 

0.05  (left) and 𝐿/𝐷 = 0.01  (right). The dashed lines are fitted from the modeled 337 

errors. 338 

 339 

We further investigate the relationship between the accuracy of the density 340 

estimated and the number of the probes used. Figure 7 indicates that the accuracy of the 341 

charge density is not improved significantly as the number of probes is increased. 342 

Therefore, 10 probes with a proper spatial configuration will be sufficient for robust 343 

measurements of the charge density. 344 

This scheme is possible to be used for the net charge measurements on the low 345 

Earth orbits at the altitudes of several hundred kms, for which the 10 probes are 346 

mounted at the ends of 10 booms with different lengths, and the spacecraft can be either 347 



spinning or not. 348 

The feasibility of the measurements at the low attitude Earth orbits can be shown 349 

by including observational errors The accuracy of the probes is assumed at 350 

~ 10 0.5 / ~ 5L m mV m mV     . The electric potential at an arbitrary probe can 351 

be expanded as the following. 352 

2

0

1

2

1 1
~ ,

2

c

c E L L

   

 


= +   +   

−  +

x x x

 353 

where, x  is the distance of the probe from the center, which is at the scale of L; 354 

 = −E , and   is estimated by 
2

0/   = − . The second term at the right 355 

hand side (or the first order term) is the contribution of the electric field, which is about 356 

~ 600 / 10 ~ 6.0EL mV m m V  . The third term (or the second order term) is the 357 

contribution of the charge density, which is about 2

0

1 1
~ 50

2
L mV


if the typical 358 

value of the charge density at low Earth orbits is assumed to be 4 3~ 5 10 /e m  , which 359 

is about three order higher than those at the high Earth orbits. They are both much larger 360 

than the probe sensitivity ( 5mV ), so that at low Earth orbits  the charge density is 361 

observable with the approach described above.  362 

 363 

4. Measuring the charge density with seven or eight electric potential probes 364 

Only three diagonal components of the quadratic gradient of the electric potential 365 

are contained in the Poisson equation (
2 2 2

2
2 2 2x y z

    + + 
  

=  ). The 366 

three other cross-components of the quadratic gradient, x y   , y z   , and 
z x   , 367 



are of no use for computing the charge density, so three independent parameters can be 368 

neglected in this algorithm. Therefore, 10-3=7 probes are sufficient to acquire the data 369 

for the estimation of the Laplacian operator on the electric potential ( 2  ) as well as 370 

the charge density.  371 

  372 

4.1  Seven-probe scheme 373 

A seven-probe scheme, which is similar to the electric potential measurement of 374 

the MMS at high altitude orbits, is shown in Fig. 8. All probes are placed on three axes 375 

of the Cartesian coordinate system. The spatial parameters are 2 1 xx x L= − =  , 376 

2 1 yy y L= − =  , and 2 1 zz z L= − =  . By taking differences, the linear and quadratic 377 

gradients at second-order accuracy can be obtained to estimate the charge density at the 378 

center. 379 

 380 

 381 



  382 

Figure 8. A schematic view of the seven-probe measurement of the charge density. The 383 

probes are indicated by black dots. 384 

 385 

The linear and quadratic gradients along the x-axis are 386 
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Similarly, the linear and quadratic gradients along the y-axis are 388 
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The linear and quadratic gradients along the z-axis are 390 

z2 z1
z

2 z2 z1 0

2

(11)
2

( ) 2
= (12)

z

z

z

L

L

 


  


−
 =



+ −
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The linear and quadratic gradients are both accurate to second order. 392 

However, in actual measurements, the central probe is inside the spacecraft and 393 

cannot determine the electric potential accurately. To improve this measurement, the 394 

central probe is replaced by another two additional probes located on the z-axis. The 395 

algorithm for this is shown in the following section. It is noted the seven-probe scheme 396 

can be still applied to the electric field and charge density measurements in ground-397 

based laboratory experiments. 398 

 399 

4.2  Eight-probe scheme 400 

The eight-probe scheme is shown in Fig. 9 with 2 1 xx x L= − = ， 2 1 yy y L= − = ，401 

3 2 zz z L= − = ， and 4 1 z zz z L l= − = + . The algorithm is constructed as follows. 402 

 403 



 404 

Figure 9. A schematic view of the eight-probe measurement of charge density. 405 

 406 

 407 

The four electric potentials observed by the probes on the z-axis can be expressed as a 408 

Taylor series. By keeping the first five terms we get 409 

 410 
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z1 0 1 1 1 1
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  411 



Summing up the above four equations leads to 412 

2 2 2 2 2 4 4 4 4 4

z1 z2 z3 z4 0 1 2 3 4 1 2 3 4

1 1
( ) 4 ( ) ( )

2 4!
z zz z z z z z z z      + + + = + + + +  + + + +  . 413 

The electric potential at the center is therefore 414 

2 2 2 2 2 4 4 4 4 4

0 z1 z2 z3 z4 1 2 3 4 1 2 3 4

1 1 1
( ) ( ) ( ) (17)

4 8 96
z zz z z z z z z z      = + + + − + + +  − + + +    415 

Subtracting Eq. (13) from Eq. (16) and Eq. (14) from Eq. (15) gives 416 

3 3 3

z4 z1 4 1 4 1

3 3 3

z3 z2 3 2 3 2

1
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                  (18) 417 

or 418 
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                               (18’) 419 

Then, we get the linear gradient along the z-axis at the center as 420 

3 3

3 z4 z1 4 z3 z2

3 3

4 3 3 4

( ) ( )
=

2 2
z

z z

z z z z

   


− − −


−
                        (19) 421 

The expression above is of fourth-order accuracy. On the other hand, from Equation 422 

(18), the third-order derivative of electric potential along the z-axis is 423 

3 3 z4 z1 4 z3 z2

3 3

3 4 4 3

3 ( ) 3 ( )
=z

z z

z z z z

   


− − −


−
                     (20) 424 

The expression above is of second-order accuracy. 425 

Subtracting the sum of Eq. (14) and Eq. (15) from the sum of Eq. (13) and Eq. (16), we 426 

get 427 

2 2 2 2 2 4 4 4 4 4

z4 z1 z3 z2 1 4 2 3 1 4 2 3

1 1
( + ) ( + ) ( ) ( )

2 4!
z zz z z z z z z z     − = + − −  + + − − 

 428 



The second-order derivative is, therefore, 429 

4 4 4 4
2 4z4 z1 z3 z2 1 4 2 3

2 2 2 2 2 2 2 2

1 4 2 3 1 4 2 3

2( + ) ( )1

( ) 12
z z

z z z z
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− − + − −
 = − 

+ − − + − −                (21) 430 

The expression above is of second-order accuracy. 431 

Substituting Eq. (21) into Eq. (17), we get the corrected potential 0  at the center 432 

as 433 

2 2
2 2 41 2

0 z1 z2 z3 z4 z4 z1 z3 z2 1 22 2

1 2

1 1 1
( ) ( + )

4 4 24
z

z z
z z

z z
         

+
= + + + − − − + 

−
     (17’) 434 

The above expression is of fourth-order accuracy because the expression is 435 

truncated at the fourth-order term.  436 

Furthermore, by neglecting high order terms, we get the estimators for the 437 

potential and its linear and quadratic gradients at the center as 438 

2 z4 z1 z3 z2

3 3

z3 z2 z4 z1

2

2 2

0 z1 z2 z3 z4 z4 z1 z3 z2

( + ) ( + )
= (21')

(2 )

( ) ( ) ( )
(19 ')

2 ( )(2 )

( )1
( ) ( + ) (17 '')

4 4 )

z

z z z

z z z
z

z z z z z z

z z z

z z z

l L l

L l L

L L l l L l

L l L

l L l

   


   


        

 −


+
 + − − −
 =

+ +
 + +
 = + + + − − −

+ (2

 439 

As stated above, the second-order derivative along the z-axis is of second-order 440 

accuracy. The potential and its first-order derivative along the z-axis are of fourth-order 441 

accuracy.  442 

Similar to the seven-probe scheme, the first-order and second-order derivatives of 443 

the potential along the x- and y-axis are subjected to Eqs. (7)-(10). The central potential 444 

0  is calculated with Eq. (17’’). The first-order and second-order derivatives along the 445 

x- and y-axis are of second order accuracy. 446 



The electric field at the center is 447 

 y
ˆ ˆ ˆ

x x y z z  = −  −  − E e e e                                         (22) 448 

Using the Poisson equation (4), the charge density is obtained as 449 

2 2 2

0

y2 y1 0x2 x1 0 z4 z1 z3 z2
0 2 2

( )

( ) 2( ) 2 ( + ) ( + )
(23)

(2 )
x

x y z

y z z zL L l L l

    

        


= −  +  + 

 + −+ − −
= − + + 

+  

 450 

where 0  is given by Eq. (17’’). 451 

 452 

The eight-probe scheme will now be examined for the electric field produced by a 453 

uniformly-charged ball. 454 

The relationship between the relative truncation errors and the relative 455 

measurement scale, 𝐿/𝐷, is studied when we set 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 𝑙𝑧 and scale up and 456 

down the distances between the spacecraft to adjust 𝐿/𝐷. Due to the broken spherical 457 

symmetry, two points inside the ball, [0.5,0,0]  and [0.5,0.4,0.3] , and two points 458 

outside of the ball, [8,0,0] and [2,2,6], are chosen as the representative points. The 459 

modeled results are shown in Fig. 10. The quadratic gradient in the ball is close to a 460 

constant and the charge density here is a constant. The truncation errors given by the 461 

algorithm, as shown in Fig. 10 (a,b), are negligible in this case. The charge density 462 

outside the ball is zero, and the calculated density, amounting to 10−4 as shown by the 463 

dashed lines in Fig 10 (c,d), is fairly close to zero. Note that the scale is one in the 464 

modeled system. As 𝐿/𝐷 < 0.1, the truncation errors of the quadratic gradient are less 465 

than 2%. It can be seen that the relative errors of the quadratic gradient and hence the 466 

charge density are at second order in L/D. 467 



 468 

  469 

 470 

Figure 10. The dependence of the truncation errors of the calculations by using the 8-471 

probe scheme on the relative measurement scale L/D for the case of a uniformly charged 472 

ball. Panel (a) and (b) show the relative truncation errors of the quadratic gradient of 473 

the electric potential (solid lines) and the charge density (dashed lines) at [0.5,0,0] and 474 

[0.5,0.4,0.3] in the ball, respectively. Panel (c) and (d) show the relative truncation 475 

errors of the quadratic gradient of the electric potential (solid lines and left vertical axis) 476 

and the absolute errors of the charge density (dashed lines and right vertical axis) at 477 

[8,0,0] and [2,2,6] out of the ball. In panel (c), the orange line orange line is overlaied 478 

with the green line. In panel (d), the blue line is overlaied with the orange line. 479 

 480 



For real measurements in space, the distances between the probes along the z-axis, 481 

𝐿𝑧  and 𝑙𝑧 , are much smaller than those along the other axes, 𝐿𝑥  and 𝐿𝑦 . The 482 

truncation error in real case, therefore, should be less than evaluated when setting them 483 

all equal. 484 

An error analysis on the eight-probe scheme using the charged ball model of 𝜌 =485 

𝑏/𝑟2 is also conducted. The result as shown in Figure S5 in Supporting Information 486 

(jgra55009-sup-0002-2021JA029511-si) has further confirmed the accuracy of this 487 

algorithm.This 8 probe scheme is potentially applied for the net charge measurements 488 

on the high altitude orbits, for which the spacecraft is spinning thus that the four probes 489 

can stretch out at the ends of the four wire booms on the spin plane as shown in Fig. 9. 490 

Performing similar error analysis as in Section 3，it is found the sensitivity of the probes 491 

is required to reach 0.5mV, which still need technical efforts to achieve in the future. 492 

 493 

5. Summary and Discussions 494 

Preliminary explorations for measuring the net charge density in space have been 495 

presented in this paper. Three schemes for the charge density measurements have been 496 

developed. 497 

The first scheme deduces the charge density based on four spacecraft electric field 498 

measurements. Based on the electric fields (𝑬𝛼 , 𝛼 = 1,2,3,4) observed at the four 499 

spacecraft, we can obtain the gradient of the electric field at the barycenter of the 500 

constellation, (∇𝑬)𝑐, and furthermore, the divergence of the electric field, (∇ ⋅ 𝑬)𝑐. 501 

The Gaussian theorem yields the charge density as 𝜌 = 𝜖∇ ⋅ 𝑬. This algorithm requires 502 



the constellation not to be distributed in a plane or linearly. In other words, the three 503 

eigenvalues of the volumetric tensor of the constellation should be non-vanishing. 504 

Based on this algorithm, an analysis on the electric field data acquired during a dayside 505 

magnetopause crossing event by the MMS constellation shows a charge separation in 506 

the magnetopause boundary layer and that the positive charges are accumulated on the 507 

magnetospheric side while the negative charges are accumulated on the magnetosheath 508 

side. A normal electric field pointing at the magnetosheath is also discovered. This 509 

confirms a previous theoretical prediction (Parks, 1991; Kivelson and Russell, 1995). 510 

 511 

Another charge density measurement scheme is based on 10 or more electric 512 

potential probes. By using a newly-developed algorithm [Shen et al., 2021], the linear 513 

gradient, (∇𝜙)𝑐, and the quadratic gradient, (∇∇𝜙)𝑐, of the electric potential at the 514 

center of the probes can be calculated from the 𝑁 ≥ 10  electric potentials, 515 

𝜙𝛼(𝛼 = 1,2,⋯ , 𝑁), as measured at the N probes. Furthermore, the electric field and 516 

the net charge density at the center of the probes can be calculated using ( )c= − E  517 

and the Poisson equation, 𝜌 = −𝜖∇2𝜙, respectively. 518 

This scheme requires the probes to be distributed uniformly. In other words, the 519 

eigenvalues of the 6 × 6 matrix ℜ should be non-vanishing (Shen et al., 2021). The 520 

accuracy of the charge density estimated by the algorithm is of first order and that of 521 

the electric field is of second order. Modeling also shows that more probes lead to 522 

higher accuracy. 523 

 524 



Finally, two other schemes are presented to measure the electric charge density, 525 

which improve on the existing schemes for electric field observations onboard 526 

spacecraft. If one more electric potential probe is added in addition to the six electric 527 

potential probes of the electric field equipment on board the MMS spacecraft (that are 528 

distributed symmetrically on the three axes of the Cartesian coordinate system), the 529 

charge density can be derived along with the electric field vectors. The seventh probe 530 

is placed at the origin of the coordinate system. Due to the shielding potential of the 531 

spacecraft, this seven-probe scheme cannot be applied to measurements in space. 532 

However, it can be utilized in charge density measurements in ground-based laboratory 533 

experiments. Alternatively, by placing two more probes symmetrically on the two stiff 534 

booms in the six-point scheme of the MMS constellation, the eight-probe scheme will 535 

work for charge density measurements in space. The simulation test shows that the 536 

estimated electric field is of fourth-order accuracy and the charge density is of second-537 

order accuracy. The truncation errors contained in this scheme are much less than those 538 

in the 10 -probe scheme. The implementation of this scheme requires further 539 

development in the future. 540 

 541 
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 543 

 544 

 545 
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 680 

Figure Captions 681 

 682 

Figure 1. A schematic view of the measurements of the electric field by the MMS 683 

constellation and the calculation of the charge density. 684 

 685 

Figure 2. The structure of the magnetopause during an MMS crossing event on 11 686 

November 2015. From top to bottom: (a) the magnetic flux density at the center of the 687 

constellation, (b)the electric-field at the center of the constellation ,(c) the electron and 688 

ion number densities measured by MMS-1 (Pollock et al., 2016), (d) the rotation rates 689 

of the magnetic field (Shen et al., 2007), (e) |∇|𝑩||, (f) the radius of curvature of the 690 

magnetic field lines (Shen et al., 2003), and (g) the charge distribution. The red vertical 691 

line marks the largest rotation rates, and the black vertical dotted lines mark the largest 692 

and the smallest charge densities. 693 

 694 

Figure 3. The distribution of the 10 probes. 695 

 696 

Figure 4. The relative errors of the linear (a) and the quadratic (b) electric potential 697 

gradients, i.e., 𝜕𝑥𝜙  and 𝜕𝑥𝜕𝑥𝜙 , calculated for different numbers of iterations at 698 

[0.1,0,0] within the uniformly charged ball. 699 
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Figure 5. The variation of the errors of the calculation by using the 10-probe scheme 701 

with the relative measurement scale L/D for the case of a uniformly charged ball. The 702 

measurements are performed inside of the charged ball. The left panels, (a), (c), and (e), 703 

show the truncation errors for the non-vanishing component of the linear gradient by 704 

𝐿/𝐷 calculated for three different locations of the barycenter of the 10 probes inside 705 

the ball, [0.1,0,0],  [0.4,0,0],  and [0.7,0,0] . The right panels, (b), (d), and (f), 706 

illustrate the relative errors of the non-vanishing components of the quadratic gradient 707 

and charge density (dashed line) calculated for the same three locations of the 708 

barycenter. It is noted that 𝜙,1 ≡ 𝜕𝑥𝜙 and  𝜙,2,2 ≡ 𝜕𝑦𝜕𝑦𝜙, where a comma denotes 709 

partial differentiation. 710 

 711 

Figure 6. The dependence of the truncation errors of the calculations by using the 10-712 

probe scheme on the relative measurement scale L/D for the case of a uniformly charged 713 

ball. The measurements are performed outside of the charged ball. The left panels, (a), 714 

(c), and (e), show the truncation error for the non-vanishing component of the linear 715 

gradient as a function of 𝐿/𝐷 calculated for three different locations of the barycenter 716 

of the 10 probes outside of the ball, [3,0,0], [5,0,0], and [8,0,0]. The right panels, (b), 717 

(d), and (f), illustrate the relative errors of the non-vanishing components of the 718 

quadratic gradient and the absolute value of the charge density (dashed line) calculated 719 

for the same three locations of the barycenter. It is noted that the real charge density 720 

outside of the ball is zero. 721 

 722 



Figure 7. The relation between the absolute error of the charge density and the number 723 

of measurement points at [3,0,0]. The relative measurement scale is chosen as 𝐿/𝐷 =724 

0.05  (left) and 𝐿/𝐷 = 0.01  (right). The dashed lines are fitted from the modeled 725 

errors. 726 

 727 

Figure 8. A schematic view of the seven-probe measurement of the charge density. The 728 

probes are indicated by black dots. 729 

 730 

Figure 9. A schematic view of the eight-probe measurement of charge density. 731 

 732 

Figure 10. The dependence of the truncation errors of the calculations by using the 8-733 

probe scheme on the relative measurement scale L/D for the case of a uniformly charged 734 

ball. Panel (a) and (b) show the relative truncation errors of the quadratic gradient of 735 

the electric potential (solid lines) and the charge density (dashed lines) at [0.5,0,0] and 736 

[0.5,0.4,0.3] in the ball, respectively. Panel (c) and (d) show the relative truncation 737 

errors of the quadratic gradient of the electric potential (solid lines and left vertical axis) 738 

and the absolute errors of the charge density (dashed lines and right vertical axis) at 739 

[8,0,0] and [2,2,6] out of the ball. In panel (c), the orange line orange line is overlaied 740 

with the green line. In panel (d), the blue line is overlaied with the orange line. 741 
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