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Abstract

Sedimentary Ice Rafted Debris (IRD) provides critical information about the climate sensitivity and dynamics of ice sheets. In

recent decades, high-resolution investigations have revelated ice rafting events in response to rapid warming: such reconstructions

help us constrain the near-future stability of our planet‘s fast-changing cryosphere. However, similar efforts require laborious

and destructive analytical procedures to separate and count IRD. Computed Tomography (CT) holds great promise to overcome

these impediments to progress by enabling the micrometer scale visualization of individual IRD grains. This study demonstrates

the potential of this emerging approach by 1) validating CT counts in synthetic sediment archives (phantoms) spiked with a

known number of grains, 2) replicating published IRD stratigraphies, and 3) improving sampling resolution. Our results show

that semi-automated CT counting of grains in the common 150-500 μm size fraction reproduces actual particle numbers and

tracks manually counted trends. We also find that differences between manual and CT-counted data are explained by image

processing artifacts, offsets in sampling resolution and bioturbation. By acquiring these promising results using basic image

processing tools, we argue that our work advances and broadens the applicability of ultra-high resolution IRD counting with

CT to deepen our understanding of ice sheet-climate interactions on human-relevant timescales.
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Key Points:

 CT counting reproduces the known number of particles added to phantom archives.

 CT counting tracks the main trends in published IRD profiles from sediment archives.

 CT counting improves the sampling resolution to resolve higher-frequency variability.
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Abstract

Sedimentary Ice Rafted Debris (IRD) provides critical information about the climate sensitivity

and dynamics of ice sheets. In recent decades, high-resolution investigations have revelated ice

rafting events in response to rapid warming: such reconstructions help us constrain the near-

future  stability  of  our  planet`s  fast-changing  cryosphere.  However,  similar  efforts  require

laborious  and  destructive  analytical  procedures  to  separate  and  count  IRD.  Computed

Tomography (CT) holds great promise to overcome these impediments to progress by enabling

the  micrometer  scale  visualization  of  individual  IRD  grains.  This  study  demonstrates  the

potential of this emerging approach by 1) validating CT counts in synthetic sediment archives

(phantoms) spiked with a known number of grains, 2) replicating published IRD stratigraphies,

and  3) improving sampling resolution. Our results show that semi-automated CT counting of

grains in the common 150-500 µm size fraction reproduces actual particle numbers and tracks

manually counted trends. We also find that differences between manual and CT-counted data are

explained  by image processing  artifacts,  offsets  in  sampling  resolution  and bioturbation.  By

acquiring these promising results using basic image processing tools, we argue that our work

advances and broadens the applicability of ultra-high resolution IRD counting with CT to deepen

our understanding of ice sheet-climate interactions on human-relevant timescales.
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Plain Language Summary

Chunks of ice regularly break off glaciers floating in the ocean. These icebergs contain rock

fragments picked up during the journey from land to water. As icebergs drift into warmer waters

and melt,  this  rubble sinks  to  the bottom and settles  on the ocean floor.  Detection  of these

particles in marine sediments thus provide evidence that glacial ice reached down to sea-level.

The flux of this ice rafted debris (IRD) gives researchers information about the past behavior of

glaciers. As our planet warms, melting glaciers have become important drivers of sea-level rise.

IRD studies can therefore help us better adapt to rising sea levels. But to do so on timescales

relevant for humans, researchers have to extract thousands of samples from meters of sediment

and sieve out IRD grains before manually counting them. Faster approaches would greatly ease

the workload. In this study, we present a promising way to do so with the help from a medical

technique: Computed Tomography (CT). Our findings show it is possible to semi-automatically

count sand-sized grains from CT imagery without touching or destroying samples. We also show

that this can be done with simple processing steps accessible to non-experts. 
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1 Introduction

Along glaciated margins, the calving and rafting of melting icebergs from marine-terminating

glaciers deliver Ice Rafted Debris (IRD) to the open ocean  (Ruddiman, 1977). The presence and

concentration of IRD grains in marine sediment sequences provides critical information about ice

sheet  dynamics  (Andrews,  2000).  Over  the  past  decades,  such  investigations  have  revealed

enigmatic  phases  of  millennial-scale  ice  sheet  instability  –  notably  Heinrich  (H)  events,

Dansgaard-Oeschger (D-O) cycles and Bond events (Bond et al., 1992, Dansgaard et al., 1993,

Heinrich, 1988) – which have attracted significant research activity. Greater spatial coverage and

a higher sampling resolution of IRD reconstructions allow us to better understand the pattern,

pace and causes of these extreme events to better assess future ice sheet stability (e.g. Hemming,

2004). 

Such efforts are, however, hampered by the time-consuming laboratory work that is required to

separate IRD grains from background sediments, and subsequently count individual particles.

Typical steps include multiple rounds of manually weighing, and sieving material into different

grain size fractions. In addition, size requirements often limit the sampling resolution of records,

while the counting of split samples due to time constraints may introduce uncertainty (e.g. Van

der Plas & Tobi, 1965). Evidently, (semi)-automated non-destructive approaches have significant

potential to advance the field by  1) reducing analysis time,  2) improving sampling resolution,

and 3) preserving valuable core material for other analyses. Over the past decades, researchers

have proposed various approaches to do so, and key examples include the use of semi-automated

particle size counting or the investigation of 2-D and 3-D X-Ray images  (e.g., Andrews et al.,

1997, Becker et al., 2018, , Ekblom Johansson et al., 2020, Jennings et al., 2018, Grobe, 1987).
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However,  while  the  semi-automated  approach  (e.g.  Becker  et  al.  2018)  is  destructive  and

requires a series of manual steps, others only target the coarsest size fraction or rely on 2-D

imagery (e.g. Grobe, 1987) so that counts are not reported per weight or volume as is customary

in the literature. 

This study explores the potential of 3-D X-Ray Computed Tomography (CT) to overcome the

foresaid limitations.  This approach distinguishes grains from host sediment  based on density

differences. Recent increases in resolution and sampling size have shown great promise to detect

and count barely visible particles in sediment volumes  (e.g. Fouinat et al., 2017, Hodell et al.,

2017, Røthe et al., 2018). Here, we advance the ability of CT to semi-automatically detect and

count IRD particles by 1) designing an experiment based on synthetic sediment records spiked

with  varying,  but  known,  number  of  particles  of  the  commonly  analyzed  150-500 µm size

fraction, 2) validating our experimental findings by comparing CT and manual particle counts on

published conventionally analyzed IRD records, and  3) demonstrating that high-resolution CT

counts  capture  high-frequency  variability  that  is  not  captured  by  standard  manual  sampling

protocols. 

2 Materials and Methods

2.1 Experimental design

To explore the capability of CT to detect and count IRD particles within a sediment matrix, we

designed  a  controlled  experiment  using  synthetic  sediment  archives  (phantoms).  For  this

purpose, we filled 20 standard 8 cm3 plastic cubes with a calculated number of 150-500 µm
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grains  mixed  in  a  marine  sediment  matrix  (Fig.  1A).  To  cover  the  typical  range  of  IRD

concentrations identified in published reconstructions, we added circa 25, 100, 500, 1000 and

2000 grains per gram of dry weight (g-1 dry sediment). 

Figure 1. Imagery that highlights key steps of our experimental approach. (a) close-up of one of

the created synthetic records - phantoms. (b) a raw 0.25 cm2 2-D cross-section (orthoslice) from

one  of  our  phantoms  –  note  how  dense  radiopaque  (light)  clastic  particles  stand  out.  (c)

thresholded particles following iterative segmentation (see section 2.4). The histogram on the

right  shows  the  applied  CT  greyscale  value  thresholds.  (d)  Restoration  of  fuzzy  object

boundaries  (see  section  2.4).  (e)  Separation  of  adjoining  particles.  (f)  Individually  classified

(colored)  clastic  particles  in  a  1  cm3 3-D visualization  (reconstruction)  used  for  subsequent

sieving and counting. 

Counting three extracts of a known weight in triplicate, with the help of a Leica MZ6 optical

microscope under ×40 magnification, allowed us to establish a robust relation between weight
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and  particle  counts  whilst  quantifying  the  human  counting  error.  To  assess  the  effect  of

lithological differences on our results, we created four sets of phantoms that were each spiked

with bedrock types that are commonly found in major IRD source areas: quartz (density of 2.65

g/cm3), basalt (density of 3.0 g/cm3), dolomite (density of 2.8 g/cm3), and a 1:1:1 mixture of

these materials (e.g.,  Bond et al., 1992, Jullien et al., 2006). For this purpose, we respectively

relied on commercial  quartz sand, basaltic  floodplain sediments  from northern Iceland and a

dolomite  laboratory standard (see Fig. S1). The mineralogy of each material  was ascertained

using a Bruker D8 ADVANCE ECO X-Ray diffractometer, equipped with a 1.5418 Å Copper

(Cu) source operated at 40 kV/25 mA (see Fig. S2). Sensu Hemming (2004), we identify grains

larger than 150 µm as IRD-sized and consequently only added material retained on a 150 µm

mesh. To remove large visible grains, we also sieved out clasts larger than 2 mm. To assess the

ability of CT imagery to reproduce sample particle size distributions, we determined the particle

size distribution of each IRD-sized lithology in triplicate using a Mastersizer 3000. Samples were

measured for 20 seconds at a stirring speed of 2500 rpm with ultrasound applied for 40 seconds

prior to measurement.

The matrix of our phantoms derives from a pelagic multi core (GS15-198-62MC-F) retrieved off

the  Iceland Plateau  (70°01’N 13°33’W) at  1423 m water  depth  (Jansen & Cruise-Members,

2015). To avoid introducing noise to the experiment, all IRD-sized particles were removed a-

priori by sieving the sediment through a 63 µm mesh. Further, treatment with 1M acetic acid at

50 °C (until  reaction ceased) dissolved in-situ calcite  shells.  To each sample box, we added

approximately 6 grams of matrix mixed with 5 ml water to emulate the properties of natural

marine  sediments.  In  addition  to  the  aforementioned  known  number  of  IRD-sized  grains,
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phantoms were spiked with ~600 foraminifera shells of arbitrary species larger than 150 µm

from the Norwegian Sea (H. Halfidason, pers. comm.) to assess whether ubiquitous calcite shells

introduce noise to CT IRD counts. The potential error margin related to loss of material during

mixing and transfer of material was estimated at 0.31 g (2σ = 0.61g), by weighing the box after

finalizing it. Finally, we ascertained the Dry Bulk Density (DBD) of our phantoms following the

approach of Dean Jr (1974) to convert CT-counted particles per volume data to particles per

gram of dry weight conform most studies.

2.2 Natural marine sediment cores

To further test the potential of CT-based IRD-sized particle detection and counting, we applied

the insights gained from our phantom experiment on two published conventionally analyzed IRD

stratigraphies  (2  cm counting  resolution).  These  encompass  two segments  of  North  Atlantic

calypso cores that were extracted on-board the R/V G.O. Sars  ( Dokken & Cruise-Members,

2016, Jansen & Cruise-Members, 2015):  1) the 454-488.5 cm segment from core GS16-204-

22CC-A (58° 2.830'N, 47° 2.360'W: 3160 m water depth), which was previously investigated by

Griem et  al.  (2019),  and  2)  the  231-281  cm section  of  GS16-204-18CC (60°  1.840'N,  40°

33.450'W: 2220 m water depth) (Rutledal et al., 2020). As detailed in section 3.2, we manually

re-counted the 267.5-280 cm interval of the latter archive continuously at 0.5 cm resolution. Both

cores were primarily selected because they have been analyzed using standardized IRD counting

methods,  show distinct  variability,  focus on the 150-500 µm size range,  and the number of

counted particles falls within the range of our experimental design (<2000 IRD g -1 dry sediment).

To optimize scanning resolution by minimizing the distance between source and detector (see

van der Bilt et al. 2021), we extracted 2 cm wide u-channels from both sediment cores for CT
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scanning. As with our phantoms (see section 2.2), we relied on DBD measurements after Dean Jr

(1974) to convert CT-derived counts per volume to particles per gram dry weight. To this end,

we extracted  one sample near  the  top and bottom of the homogenous scanned section from

GS16-204-22CC, while  extracting four samples from the investigated segment  of GS16-204-

18CC due to  a  lithological  change at  259 cm core  depth  as  reported  in  Dokken & Cruise-

Members (2016).

2.3 CT scanning

Fundamentally, Computed Tomography (CT) can resolve objects based on differences in X-Ray

absorption:  X-Ray  photons  penetrate  light  (black;  radiolucent)  materials  with  ease,  while

radiation is absorbed by dense (white; radiopaque) matter like bone (Röntgen, 1896), or clastic

particles  (Fig.  1B).  The  degree  of  X-Ray  attenuation  is  captured  by  grayscale  values,  who

typically reflect material density (higher is denser). By rotating objects or an X-Ray source and

detector,  CT scanners generate large numbers of 2-D radiographs known as orthoslices from

various angles. These images can be reconstructed to create 3-D visualizations or reconstructions

(e.g.  Kalender,  2011).  In  contrast  with  more  established  2-D  X-Ray-based  IRD  detection

approaches (e.g. Grobe, 1987), this allows characterization and counting of particles per volume. 

For this study, CT scanning was performed using a ProCon CT-ALPHA-CORE system located

at the Earth Surface Sediment Laboratory (EARTHLAB) of the University of Bergen that is

customized for whole-core (max. 150 cm) analysis (see e.g. van der Bilt et al., 2018). This one-

of-its-kind 16-bit scanner is fitted with a 240 kV microfocus X-Ray source and 9 MP detector

that move vertically while the scanned object rotates. All presented scans were scanned at 800

µA and 100 kV with an exposure time of 334 ms to generate 1600 projections per rotation. This
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relatively high current helps us minimize the imprint of photoelectric effect  (Duliu, 1999). A

physical 0.5 mm Cu filter was applied to reduce beam hardening effects (see Brooks & Di Chiro,

1976), as well as ring artifact correction and median filtering. Using 2 cm wide u-channels and

boxes allowed us to optimize scanning resolution by minimizing the distance between source and

detector, producing imagery at ~21 µm isotropic voxel size. 

2.4 CT processing

After  scanning,  CT projections  were reconstructed for 3-D visualization  with the Fraunhofer

Volex  X-Ray  Office  software.  To  further  minimize  the  imprint  of  CT  artifacts  like  beam

hardening or  edge effects  (e.g.  Barrett  & Keat,  2004 and section 2.4),  we cropped ~ 1 cm3

volumes near the center of scanned boxes and 1 cm2 wide sections of the u-channels. This step

was  performed  in  duplicate  (henceforth  referred  to  as  samples  A  and  B)  to  assess  the

representativeness  of these 3-D cutouts.  All  subsequent  image analyses  were executed  using

version 9.1.1 of Thermo Scientific  Avizo.  To broaden the applicability  of our approach, we

relied on basic image processing techniques that are accessible to most geoscientists (see Fig.

S3). All applied tools and modules are highlighted in italics below and briefly described to help

users  execute  the  same  steps  in  other  often-used  image  processing  suites  like  ImageJ  or

VGStudio Max. We first  applied an iterative routine using the  Colormap editor  to highlight

clastic particles from background host sediments. This simple approach fundamentally relies on

the subtle but measurable density differences between both materials and the shape of the clastic

particles;  as can be seen in Fig. 1C, the porous (water-soaked) matrix is significantly lighter

(darker) than dense (white) clasts. We then isolated the designated CT density range using the

Interactive Threshold segmentation tool. As can be seen in Fig. 1B, this binary image does not
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adequately resolve the edge of clasts – a prerequisite when counting specific size fractions for

IRD analysis. The observed noise is introduced by partial volume effects: the inter-voxel blurring

of CT greyscale values along the steep density gradient between different materials (e.g. Glover

& Pelc, 1980, Schlüter et al., 2010). To overcome this issue, we restored object boundaries with

a combination of dilation and erosion using the Closing module as shown in Fig. 1D. Next, the

Separate Objects module was applied to make sure that adjoining or coagulating particles are

split as can be seen in Fig. 1E. 

Following the above steps to detect and resolve particles, we individually characterized them for

analysis with the Label Analysis module (Fig. 1F). During this step, the equivalent diameter and

shape properties of each object was calculated using the EqDiameter and Shape_Va3D measures,

along with the coordinates (BaryCentre) of grains. We used the  Shape_Va3D-measurement to

account for the fact that non-spherical objects may pass through a sieve mesh that is larger than

their equivalent diameter if oriented towards their smallest projection (see e.g. Retsch, 2009). To

do so, we normalized our 150 µm size threshold (see sections 2.1-2) against the degree of non-

sphericity reflected by Shape_Va3D values >1. 'Digital sieving' was performed using the Sieve

Analysis module  before  summing  up  particle  counts  for  each  phantom and  at  1  mm depth

intervals in scanned core sections. Finally, we performed basic geostatistical analyses like re-

sampling, correlation and linear regression using version 16 of the StataSE software.

3 Results and discussion

3.1 Experimental findings
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3.1.1 Particle size analysis

The correct  identification  of a known number of  particles  within a  specific  size range is  of

fundamental  importance  to  this  study.  Therefore,  we  compared  CT  particle  counts  on  all

phantoms  spiked  with  ~1000  grains  (>150  µm)  per  g-1 dry  sediment  to  laser  diffraction

measurements of pure extracts of each lithology used to spike these synthetic archives (section

2.1). Intercomparability is aided by the fact that both these approaches calculate the equivalent

diameter of a sphere with the same volume for each particle. CT counts were corrected with the

Shape_Va3D measure to account for the possibility that non-spherical objects may pass through

a sieve mesh that is larger than their equivalent diameter (see section 2.4 and Fig. S3). As can be

seen in Fig. 2, there is close agreement between CT and laser-derived Particle Size Distributions

(PSDs). These findings 1) strengthen our confidence that the CT processing steps applied in this

study accurately constrain the distribution of size fractions commonly targeted for IRD analysis

– a prerequisite for automatic counting, 2) open doors for future venture into non-destructive CT-

based particle size analysis, and 3) highlight differences between PSDs of the lithologies used to

spike our phantoms to help contextualize possible counting offsets in the following paragraphs.

Figure 2.  Comparing laser  diffraction (Mastersizer:  line)  and CT-derived (bars) particle  size

distributions for IRD-sized grains of each bedrock type used to spike our phantoms: basalt (a),
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quartz (b) and dolomite (c). The former data are expressed as a normalized volume (%), while

the latter are calculated as normalized counts (%). See section 2.1 for additional details.

3.1.2 Lithic grain counting

As shown in Fig. 3, all linear regression fits between manual and CT counts in our phantoms are

highly significant (R2 = 0.96-0.99, p = 0.00), regardless of the lithology of added grains. Besides

demonstrating the potential  of CT scanning to automatically  count IRD-sized particles,  these

findings also allay concerns that calcite shells introduce noise: the high reproducibility of lower

counts in particular show that the ~600 foraminifera shells added to each phantom were not CT-

counted. We attribute this to partial volume effects: while the density of calcium carbonate (2.7

g/cm3) is near-identical to that of the rock types of added grains (2.65-3 g/cm3), voxel blurring

with air-, water or matrix-filled chambers of foraminiferal tests yield a lower density (section

2.4).
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Figure 3. Linear regression fits (and summary statistics) between manual and CT counts of IRD-

sized (150-500 µm) particles in synthetic sediment records (phantoms) spiked with basalt (a),

Quartz (b), Dolomite (c) and a 1:1:1 mixture of each (d). See section 2.1 for additional details.

Our experimental findings compare favorably with previous efforts to (semi)-automatically count

particles. Fouinat et al. (2017), for example, applied a similar CT-based approach to count larger

mm-scale particles in a silty matrix, but derive a poorer fit (R2 = 0.66, p = 0.015). We argue that

this weaker correspondence can be primarily attributed to a lower scanning resolution of 0.25

mm versus 21 µm in our study (section 2.3). Becker et al. (2018) employed an approach based

on automated microscopy to derive a marginally lower goodness-of-fit (R2 = 0.94). However,
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this  approach  still  requires  destructive  (lower  resolution)  sampling  and  time-consuming  wet

sieving. 

However,  while  our  experimental  findings  are  promising,  systematic  offsets  exist  between

manual and CT counts. While highly significant, the slopes of all fits deviate from a 1:1 relation:

as seen in Fig. 3, these offsets often exceed calculated counting errors (sections 2.1 and 2.4) for

all lithologies, but especially for quartz. Here, we tentatively attribute these errors to a number of

analytical  sources.  Firstly,  differences  in  the  PSD  of  lithic  grains.  Assuming  a  unimodal

distribution (to estimate the proportion of sieved-out particles <150 µm – see section 2.1), a

significant percentage of grains may be included or excluded when object boundaries (and thus

diameters) are incorrectly resolved during CT processing (see section 2.4 and Figs. 1C-E). This

source of error may well explain why offsets are largest for quartz as 1) the median PSD of this

lithology sits closest to our 150 µm cut-off (Fig. 3B) so that small errors generate large count

uncertainties, and 2) density differences with host sediments are smallest, which complicates our

efforts to accurately resolve object boundaries based on CT greyscale values (see section 2.4). In

addition,  image  processing  may  also  impact  CT  particle  counts  by  erroneously  splitting

irregularly shaped grains into multiple objects with the  Separation module (see Fig. 1E). This

source of error may help explain the observed overestimation of basaltic grains by CT counting

(Fig. 3A). This notion is supported by 1) visual evidence of the irregular shape of these particles

(see Fig. S1), and 2) their comparatively large size (Fig. 2A), which increases the probability that

erroneously split particles are included in the counted >150 µm fraction. The applied  Closing

module (see section 2.4) might also have exacerbated this effect as it may expand the size of

particles by smoothing uneven surfaces or filling in hollow particles (see Figs. 1C-D).
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Figure 4. A comparison of manual and CT-derived counts of IRD-sized particles in two marine

sediment segments. For (a) GS16-204-22CC and (b) GS16-204-18CC. Highlighted uncertainty

intervals (grey) are based on the average offset in CT-derived grain counts between replicate 3-D

samples A and B (see section 2.4). Horizontal bars on manual count symbols mark the 0.5 cm

sampling width (see section 2.2). Red numerals indicate  the stratigraphic position of marked

features in the scanned core segments – 1) the NAAZ II tephra marker (Rutledal et al., 2020), 2)

a cm-scale drop stone, and 3) a visible lithological transition (Dokken & Cruise-Members, 2016).

3.2 Application on manually counted natural sediment archives. 

As can be seen in Fig. 4, our CT-based approach to count 150-500 µm particles capture most of

the main IRD peaks in the manually counted records. The strength of this relation is confirmed

by positive Spearman ρ  values of 0.75 (n=18, p=0.0003) for core GS16-204-22CC and 0.63

(n=25, p=0.0007) for core GS16-204-18CC – all calculated on evenly (0.5 cm) resampled data.

These findings clearly demonstrate the potential of our CT-based approach to semi-automatically
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detect  the  150-500  µm-sized  particles  that  are  typically  targeted  in  IRD  studies,  even  at

comparatively low concentrations (max. 1800 grains/gr). 

However, while certainly encouraging, the presented results also reveal substantial disparities.

These can partly be explained by differences in sampling resolution: grains were CT-counted at

0.1  cm intervals,  while  0.5  cm wide  samples  were  taken  every  2  cm for  manual  counts  –

smoothing out high-frequency (mm-scale) variability. As can be seen in Fig. 4B, an improved

0.5 cm sampling resolution greatly improves the agreement  between manual  and CT counts.

Indeed, correlation of both datasets using the most similar CT-derived grain numbers within the

0.5 cm sampling width of manual samples yields a Spearman ρ of 0.96 (n=18, p=0.0000) – a

result that equals the robustness of our experimental findings (see section 3.1.2). In addition, our

scanned u-channel from GS16-204-22C contains two features that are also highlighted using the

applied segmentation approach (see section 2.4) due to their highly similar density: the basaltic-

component of a NAAZ II tephra deposit and a large drop stone (see Fig. 4A: 1 and 2). The latter

is not CT-counted as its size falls outside our specified 150-500 µm grain range (see section 2.1),

but its size simply leaves less space for other particles within the 0.1 cm3 sample slice - creating

a distinct  minimum in counted particles.  The tephra is  captured by a sharp peak in the CT-

counted IRD record. To remedy this, the characteristically high concentration of particles (ash

shards) in tephra deposits may be highlighted using down-core variations in CT grayscale values

as outlined by van der Bilt et al. (2021). The structural offset between CT and manual counts,

which particularly affects GS16-204-18CC as seen in Fig. 4B, is more difficult to account for. As

both cores were counted by the same analyst and derive from the same area (see section 2.1), we

preclude differences in human counting error and lithology-specific analytical errors (see section

17

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357



manuscript submitted to Paleoceanography and Paleoclimatology

3.1.2) as plausible explanations. Because the bedrock geology of proximal IRD source areas in

the region is dominated by quartz-rich metamorphic bedrock types  (Dawes, 2009), it is worth

noting that  the offset  between evenly sampled CT and manual  counts in GS16-204-22CC is

identical (28%) to the difference found in our quartz-spiked phantoms. But why this mismatch

far greater in GS16-204-18CC, where our CT-based approach captures just 40% of manually

counted  grains  (Fig.  4B)?  We  argue  that  the  dissimilarity  between  both  datasets  may  be

attributed to disturbance introduced by bioturbation. In recent years, numerous researchers have

harnessed various imaging techniques to demonstrate that burrowing may extensively modify the

sediment structure and blur IRD signals (e.g., Dorador et al., 2014, Hodell et al., 2017). Indeed,

Rutledal  et  al.  (2020) relied  on  the  same threshold-based segmentation  routine  presented  in

section 2.4 to highlight the presence of air-filled burrows in GS16-204-18CC and GS16-204-

22CC. As can be seen in Fig. S4, these features are particularly extensive in the section of GS16-

204-18CC scanned for this study. Furthermore, closer inspection of the appended X-Ray images

shown in Fig. S4 reveals additional deformational structures that may represent infilled trace

fossils or burrows. As these features are distributed both horizontally and vertically, the lateral

offset between manually counted samples and scanned u-channels could have a major impact on

down-core IRD profiles. To test this, we compared our CT data from GS16-204-18CC to higher-

resolution manual counts performed on the same u-channel. As can be seen in Fig. 4B, the offset

between these data is significantly smaller and is similar (39%) to the difference found between

counts and scans in our quartz-spiked phantoms (28%).

4 Conclusions
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This  work underscores the potential  of CT scanning for semi-automated  and non-destructive

counting of IRD-sized (150-500 µm) grains in sediment archives. Notwithstanding analytical

errors that we ascribe to image processing artefacts, our experimental findings show that CT

numbers capture more than 95% of grain count variability in homogenous phantoms. Also, by

spiking each of these synthetic samples with a known number of foraminiferal tests, we allay

concerns that (often-ubiquitous) calcite shells of a similar size and density affect CT IRD counts.

Despite  evidence  of  bioturbation  and  differences  in  sampling  resolution,  CT-derived  counts

strongly  correlate  (ρ  =  0.63-0.75)  with  manual  IRD profiles  in  both  scanned  core  sections.

Moreover,  quadrupling our manual  counting resolution on CT-scanned u-channels minimizes

offsets between both datasets (ρ = 0.96). This somewhat surprising result suggests that mm-scale

CT variations capture a signal rather than noise and highlights how bioturbation may modify

IRD profiles. Importantly, all our results were acquired using basic image processing techniques

that can be quickly mastered by most geologists. Following from the above, we argue that the

presented CT-based counting approach significantly benefit  IRD investigations  by preserving

material,  improving  sampling  resolution,  and  optimizing  lab  workflows.  By  enabling  faster

detection of higher-frequency IRD events, these advances have significant potential to deepen

our understanding of climate-ice sheet interactions on human-relevant timescales.
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Figures S1 to S4 

Introduction  

This document contains four figures that help 1) visualize the presented CT-based 
counting workflow (Figure S1), 2) ascertain the minerology (and therefore density) 
of the lithologies used to spike our synthetic sediment sequences (Figure S2), 3) 
provide an overview of data processing steps of the presented CT-based workflow 
(Figure S3), and 4) visualize the imprint of (bio)disturbance on scanned cores.   
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Figure S1. Light microscope close-ups (×40 magnification) of grains from each of the 
lithologies used to spike the synthetic sediment archives in our experimental design.  
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Figure S2. XRD diffractograms of each of the lithologies used to spike our synthetic 
sediment archives, compared to reference stick patterns of the most diagnostic minerals 
based on a search/match operation using the ICCD 2007 database. Colors match Fig. S1.  
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Figure S3. A flowchart of the workflow employed in this study to identify, resolve and 
count IRD-sized particles from CT scans. Avizo operators are highlighted in italics: see 
section 2.4 and Fig. 1 in the main manuscript for additional details.  
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Figure S4. CT imagery of the scanned u-channels of sections from both cores used to 
recount manual IRD profiles using our CT-based approach. Please note that cracks and 
burrows were iteratively visualized using the segmentation approach also described in 
section 2.4. The 8-bit image was generated using histogram equalization in Avizo. 
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