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Abstract

A growing number of studies are concluding that the resilience of the Arctic sea ice cover in a warming climate is essentially

controlled by its thickness. Satellite radar and laser altimeters have allowed us to routinely monitor sea ice thickness across most

of the Arctic Ocean for several decades. However, a key uncertainty remaining in the sea ice thickness retrieval is the error on

the sea surface height (SSH) which is conventionally interpolated at ice floes from a limited number of lead observations along

the altimeter’s orbital track. Here, we use an objective mapping approach to determine sea surface height from all proximal

lead samples located on the orbital track and from adjacent tracks within a neighborhood of 10s of kilometers. The patterns

of the SSH signal’s zonal, meridional, and temporal decorrelation length scales are obtained by analyzing the covariance of

historic CryoSat-2 Arctic lead observations, which match the scales obtained from an equivalent analysis of high-resolution sea

ice-ocean model fields. We use these length scales to determine an optimal SSH and error estimate for each sea ice floe location.

By exploiting leads from adjacent tracks, we can increase the SSH precision estimated at orbital crossovers by a factor of three.

In regions of high SSH uncertainty, biases in CryoSat-2 sea ice freeboard can be reduced by 25% with respect to coincident

airborne validation data. The new method is not restricted to a particular sensor or mode, so it can be generalized to all present

and historic polar altimetry missions.
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Key Points: 18 

 Lead observations from neighboring altimeter tracks are exploited to improve the sea surface height 19 

calculated at ice-covered locations 20 

 The interpolation is constrained with sea surface decorrelation length- and time-scales from 21 

CryoSat-2 data and ice-ocean model simulations 22 

 Altimeter sampling of multi-track leads improves the precision of Arctic sea ice freeboards by 20% 23 

and can increase accuracy by up to 25% 24 
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Abstract 26 

A growing number of studies are concluding that the resilience of the Arctic sea ice cover in a warming 27 

climate is essentially controlled by its thickness. Satellite radar and laser altimeters have allowed us to 28 

routinely monitor sea ice thickness across most of the Arctic Ocean for several decades. However, a 29 

key uncertainty remaining in the sea ice thickness retrieval is the error on the sea surface height (SSH) 30 

which is conventionally interpolated at ice floes from a limited number of lead observations along the 31 

altimeter’s orbital track. Here, we use an objective mapping approach to determine sea surface height 32 

from all proximal lead samples located on the orbital track and from adjacent tracks within a 33 

neighborhood of 10s of kilometers. The patterns of the SSH signal’s zonal, meridional, and temporal 34 

decorrelation length scales are obtained by analyzing the covariance of historic CryoSat-2 Arctic lead 35 

observations, which match the scales obtained from an equivalent analysis of high-resolution sea ice-36 

ocean model fields. We use these length scales to determine an optimal SSH and error estimate for each 37 

sea ice floe location. By exploiting leads from adjacent tracks, we can increase the SSH precision 38 

estimated at orbital crossovers by a factor of three. In regions of high SSH uncertainty, biases in 39 

CryoSat-2 sea ice freeboard can be reduced by 25% with respect to coincident airborne validation data. 40 

The new method is not restricted to a particular sensor or mode, so it can be generalized to all present 41 

and historic polar altimetry missions. 42 

  43 
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Plain Language Summary 44 

Arctic Ocean sea ice thickness has been measured with satellite altimeters for several decades by 45 

stitching together observations of the sea level at open water leads or ‘cracks’ in the ice. The height 46 

difference between the sea ice surface and sea level, known as the freeboard, can then be converted to 47 

an estimate for the ice thickness. However, open water lead observations can be hundreds of kilometers 48 

apart along the satellite’s orbit, so here we develop a new method which also uses leads on nearby 49 

orbits to improve the sea level estimate at ice-covered locations. This requires us to understand how 50 

rapidly the Arctic sea level varies over space and time, which we do using ESA’s CryoSat-2 satellite 51 

radar altimeter. With an optimal processing method that exploits 10-100s of times more observations 52 

than normal, we can treble the precision of the sea level estimated ‘under’ sea ice. Up to 25% 53 

improvement in sea ice freeboard further indicates that the new method could upgrade current and 54 

historic altimetry-derived Arctic sea ice thickness records. 55 

  56 
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1. Introduction 57 

Sea ice extent in the Northern Hemisphere has been declining at an increasingly alarming rate for more 58 

than two decades now (Parkinson & DiGirolamo, 2016). Recent studies have recognized that trends 59 

and interannual variations in ice extent are extremely sensitive to the pan-Arctic distribution of sea ice 60 

thickness (Rae, et al., 2014; Castro‐Morales, et al., 2014). The transition from a sea ice cover 61 

dominated by thicker, multi-year ice in the 1980s to an ice cover dominated by thinner, first-year ice in 62 

the present day (Tschudi, et al., 2016) has amplified interannual fluctuations in the sea ice extent 63 

(Stroeve, et al., 2018). It has been demonstrated that seasonal forecasts for the sea ice area can be 64 

strikingly improved by initializing numerical models with ice thickness observations (Msadek, et al., 65 

2014; Massonnet, et al., 2015; Allard, et al., 2018; Blockley & Peterson, 2018; Fritzner, et al., 2019; 66 

Schröder, et al., 2019). 67 

Sea ice thickness has been estimated with satellite radar altimeters, including ERS-1/-2 and Envisat 68 

RA-2, and laser altimeters, including ICESat, for more than three decades (Quartly, et al., 2019). With 69 

the launch of the European Space Agency (ESA) CryoSat-2 mission in 2010 (Wingham, et al., 2006) 70 

and the National Aeronautics and Space Administration (NASA) ICESat-2 mission in 2018 (Markus, et 71 

al., 2017), we are now in a position to monitor Arctic sea ice thickness up to 88 degrees latitude, 72 

covering the full basin on a monthly basis. These missions can provide sea ice thickness information 73 

for climate monitoring and sea ice trend analysis (Kwok, 2018), assimilation into Numerical Weather 74 

Prediction (NWP) systems (Blockley & Peterson, 2018), evaluating risk for polar marine vessels 75 

(Rinne & Similä, 2016), and predicting light-availability under sea ice for Arctic primary production 76 

(Stroeve, et al., 2021). The value of these sea ice thickness observations to the scientific community 77 

and commercial sector, e.g. shipping companies navigating Arctic routes, offshore marine operators 78 

and insurers (Melia, et al., 2016; Aksenov, et al., 2017), along with the success of the CryoSat-2 79 

mission (Parrinello, et al., 2018), have motivated the European Commission to support the 80 

development of the satellite CRISTAL: Copernicus Polar Ice and Snow Topography Altimeter. If 81 

approved, the CRISTAL mission will carry a dual-frequency altimeter to measure the sea ice thickness 82 

and overlying snow depth simultaneously (Kern, et al., 2020). 83 

Sea ice thickness can be estimated from measurements of the ice freeboard – the height of a sea ice floe 84 

above sea level – taken by a satellite radar or laser altimeter, such as CryoSat-2 or ICESat-2. Sea ice 85 

freeboard is converted to thickness with estimates for the sea ice density, and the depth and density of 86 
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snow accumulating at the ice surface. Since the level sea ice floes are typically no more than five 87 

meters in thickness (Laxon, et al., 2013), small variations in the measured sea ice floe height, sea 88 

surface height, or estimated snow depth or density can readily introduce systematic uncertainty in the 89 

derived ice thickness order 10-30% (Landy, et al., 2020). Methodological differences in the processing 90 

chain or in the auxiliary observations used in various algorithms can therefore lead to systematic 91 

differences in derived sea ice thickness of more than a meter (Sallila, et al., 2019). This is large enough 92 

to obscure long-term climate trends in the Arctic sea ice thickness (Kwok & Cunningham, 2015).  93 

One of the largest sources of uncertainty in sea ice thickness estimates from altimetry is introduced in 94 

the measurement of the sea surface height (SSH). The SSH is defined as the ocean free surface 95 

elevation with respect to a reference ellipsoid at a sea ice floe and is conventionally interpolated for all 96 

ice-covered locations from sea surface tie-points located at the closest leads, i.e. openings in the sea ice 97 

pack, along the altimeter’s orbital track (Laxon, et al., 2003; Kwok, et al., 2007). Uncertainty in the 98 

SSH can be estimated from height variations derived from altimeter returns at leads within a moving 99 

window applied along the track (Ricker, et al., 2014) (further details in Section 2). However, distances 100 

between an ice-covered sample and its closest lead can exceed 200 km along track, particularly in the 101 

compact pack ice (concentration >98%) of the Central Arctic Ocean (Wernecke & Kaleschke, 2015). In 102 

these cases, the SSH uncertainty is constrained only by the deviation of the interpolated sea surface 103 

from the local mean measured elevation and can reach 50 cm, varying considerably across the Arctic 104 

(Ricker, et al., 2014). Importantly, these interpolation uncertainties are highly correlated over distances 105 

of hundreds of kilometers (Tilling, et al., 2018), owing to the sparse distribution of leads along track 106 

(Wernecke & Kaleschke, 2015) and long-wavelength errors in the orbital or geophysical (e.g. earth and 107 

ocean tides) corrections used to process the altimeter observations (Wingham, et al., 2006). So, these 108 

errors only reduce in quadrature with the averaging of multiple tracks, rather than the total number of 109 

samples (Tilling, et al., 2018; Lawrence, et al., 2018). Averaged to a 25-km grid, the SSH error ranges 110 

from approximately 1 to 12 cm. 111 

For several applications, including the reconciliation of sea ice mass balance, polar sea level, climate, 112 

and oceanography for scientific purposes and for commercial activities such as operational navigation, 113 

accurate determination of the SSH and its uncertainty in ice-covered waters are crucial. In regions with 114 

low lead density and high SSH uncertainty, derived freeboards can include long-distance spatially 115 

correlated biases (Xia & Xie, 2018). Such biases may either amplify or cancel each other out in 116 

different locations, for instance when estimating snow depth from centimeter-scale differences between 117 
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radar and laser sea ice freeboards (Kwok, et al., 2020). Here, we present a new approach for the 118 

accurate determination of the SSH which exploits all available lead observations from both the orbital 119 

track in focus and additional neighboring tracks. Although we use CryoSat-2 observations to 120 

demonstrate the method, the approach can be applied to any contemporary or historical satellite laser or 121 

radar altimetry mission (both pulse-limited and SAR). In Section 2 we give an overview of the 122 

conventional approaches for estimating the SSH and its uncertainty in sea ice-covered regions. Here we 123 

also discuss sources of random and systematic error in SSH observations. In Section 3 we introduce the 124 

satellite and airborne data sets used within our study. In Section 4 we analyze multi-year mean patterns 125 

of the Arctic Ocean SSH’s spatial and temporal decorrelation length scales from CryoSat-2 lead 126 

observations. We then compare these length scales to patterns derived from a high-resolution, 127 

nominally 1/12 deg. (~ 4km in the Arctic), simulation of a coupled sea ice-ocean model within the 128 

NEMO (Nucleus for European Modelling of the Ocean) framework, where the sea ice component is 129 

LIM2 (Louvain-le-Neuve sea ice model version 2) and the ocean component is OPA (Ocean 130 

Parallélisé). We combine these length scales with the error estimates for SSH observations in Section 5 131 

to determine the optimal instantaneous SSH at sea ice samples, through objective analysis of all 132 

proximal lead observations on both the track in focus and neighboring tracks. Section 6 compares the 133 

new SSH mapping scheme with a conventional scheme for March 2013. Section 7 validates our results 134 

both at orbital crossovers of the CryoSat-2 satellite and with coincident airborne observations of the sea 135 

ice freeboard. In Section 8 we discuss the theoretical limitations of the objective mapping technique 136 

and prospects for utilizing the method for multiple altimetry missions. Section 9 presents conclusions 137 

of the study. 138 

2. Estimating Sea Surface Height in Sea Ice-Covered Locations 139 

Satellite altimeter returns from leads within the sea ice pack are identified by their reflectivity and 140 

roughness, in the case of laser altimetry (Kwok, et al., 2007; Kwok, et al., 2019), or by their microwave 141 

scattering properties in the case of radar altimetry (Laxon, et al., 2003; Laxon, et al., 2013). The 142 

classification algorithms for identifying leads are generally based on thresholds of parameters for the 143 

returning laser or radar echo (Quartly, et al., 2019). These algorithms vary in complexity, depending on 144 

the number of parameters used, e.g. between 1 and 5+ (Ricker, et al., 2014; Wernecke & Kaleschke, 145 

2015; Lee, et al., 2016; Meloni, et al., 2020), and can use machine learning for the training of 146 

thresholds (Lee, et al., 2016; Paul, et al., 2018). Alternative algorithms use, for instance, neural 147 

networks to classify echoes based on their shape (Poisson, et al., 2018). For CryoSat-2, returns from 148 
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leads typically make up 1 to 15% of all the valid samples (Wernecke & Kaleschke, 2015; Passaro, et 149 

al., 2018), with higher densities of returns in zones of first-year ice at the pack ice margins where the 150 

sea ice concentration is lower. The mean distance from a sea ice sample to the nearest lead along track 151 

is approximately 30 ± 60 km (based on our processing chain, see Section 3). However, interpolation 152 

distances for the SSH between lead samples actually depend on the ‘strictness’ of the waveform 153 

classifier, with a trade-off between the number of lead samples available and the precision/accuracy of 154 

those height observations. For instance, in the performance analysis of (Wernecke & Kaleschke, 2015) 155 

the most liberal classifier produced a lead sample density of 26% but included 13% false positive leads 156 

and high variance between proximal SSH observations. With the same dataset, a conservative classifier 157 

produced a sample density of only 1% but included zero false positives and low variance between 158 

observations. 159 

Linear interpolation (Ricker, et al., 2014; Lee, et al., 2016; Landy, et al., 2017; Guerreiro, et al., 2017; 160 

Xia & Xie, 2018) or regression (Kwok, et al., 2007; Tilling, et al., 2018; Lawrence, et al., 2018) is used 161 

to estimate the SSH between lead tie-points (Fig. 1). A low-pass filter can be used to smooth the final 162 

surface at clusters of leads, where noise may introduce artificially rough sea surface topography. Data 163 

may be discarded where insufficient lead returns are available to reliably interpolate the SSH at a sea 164 

ice location (Tilling, et al., 2018). Uncertainty on the derived SSH is estimated from the root-mean 165 

square (RMS) height of lead returns within a moving window (25 km for instance) along track (Ricker, 166 

et al., 2014), or by analyzing the RMS of SSH pairs at orbital crossovers (Tilling, et al., 2018). For 167 

CryoSat-2, the uncertainty on a single SSH measurement has been estimated in the range of 2-50 cm. 168 

However, this uncertainty is likely to be correlated over wavelengths >100 km owing to the length-169 

scale of the SSH interpolation, to the typical distances between lead observations and to errors in the 170 

satellite orbit determination or geophysical corrections (Wingham, et al., 2006). Consequently, random 171 

errors in the SSH observations in sea ice zones cannot simply be reduced by accumulating observations 172 

of the leads along the track. 173 

In the current approach for estimating SSH from pulse-limited radar altimeters, significant positive 174 

biases can also be added to the radar range when leads located outside the nadir point of the satellite 175 

‘snag’ the radar (Armitage & Davidson, 2014). This sea surface elevation bias ranges from -1 to -4 cm, 176 

depending closely on the strictness of the lead classification algorithm, and results in a 10-40 cm 177 

overestimate in sea ice thickness if uncorrected (Armitage & Davidson, 2014). The bias can be reliably 178 

removed by using information on the interferometric phase difference of the radar wave travel-time to 179 
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an off-nadir lead scatterer (Di Bella, et al., 2018; Di Bella, et al., 2020); however, of all the radar 180 

altimeters only the CryoSat-2 mission has had this capability, and only operating over a small part of 181 

the Arctic Ocean. Taking advantage of the interferometric SARIn-mode, around 35% of the lead 182 

returns discarded in SAR-mode can be retained, leading to a ~40% reduction in SSH uncertainty (Di 183 

Bella, et al., 2018). 184 

3. Data & Preprocessing 185 

3.1. CryoSat-2 Level 2 Processing 186 

We use Baseline-C Level 1B CryoSat-2 waveform observations, details in (Bouffard, et al., 2018), for 187 

the period between October 2010 and April 2019 obtained from the official ESA science server 188 

(accessed in June 2019 at https://science-pds.cryosat.esa.int). SAR- and SARIn-mode observations are 189 

retracked by fitting waveforms to echoes simulated from a numerical model for the delay-Doppler SAR 190 

altimeter waveform (Landy, et al., 2019), using the Lognormal Altimeter Retracking Model (LARM) 191 

algorithm described in (Landy, et al., 2020). A local interpolation of the mean sea surface (MSS) is 192 

then removed from the profile of surface heights. The MSS model is a 10-km field obtained from the 193 

linear interpolation of all CryoSat-2 lead observations between 2010 and 2019. We apply a three-194 

parameter classification routine to separate CryoSat-2 returns from sea ice and leads, based on the 195 

calibrated backscattering coefficient (𝜎0), the pulse peakiness (PP) and the waveform stack standard 196 

deviation (Laxon, et al., 2013; Ricker, et al., 2014; Paul, et al., 2018), as described in (Landy, et al., 197 

2020). Surface heights at leads referenced to the MSS, i.e. sea level anomaly (SLA) observations, are 198 

retained at this point for further analysis. 199 

To obtain estimates for the radar freeboard, the long-wavelength (>200 km) median profile (which we 200 

assume contains residual error from the satellite orbital determination and/or geophysical corrections 201 

(Kwok & Cunningham, 2015) or largest-scale features of the dynamic ocean topography) is removed 202 

from each CryoSat-2 elevation track. SSH is estimated at sea ice locations by linear interpolation 203 

between lead tie-points (Landy, et al., 2017). We apply a 25-km low-pass filter to smooth sea surface 204 

topography at dense lead clusters and estimate the SSH uncertainty from the RMS height of leads 205 

within a 50 km window (Ricker, et al., 2014). Radar freeboard is then estimated from the sea ice floe 206 

elevation minus the SSH, and the ‘single-shot’ uncertainty on a freeboard measurement is the root-207 

sum-square of the SSH uncertainty and speckle noise (which is 11.6 cm for SAR-mode and 15.3 cm for 208 

SARIn-mode (Wingham, et al., 2006)). 209 

https://science-pds.cryosat.esa.int/
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Furthermore, we use the SSH observations at leads within the sea ice pack to estimate monthly fields of 210 

the Arctic Ocean mean geostrophic current, following the method of (Armitage, et al., 2017). Dynamic 211 

ocean topography (DOT) within the sea ice-covered zone is estimated from the difference between 212 

CryoSat-2 SSH observations and the GOCO5S geoid (Kvas, et al., 2019), referenced to the same WGS-213 

84 ellipsoid. The DOT therefore contains the long-term offset of the SLA with respect to the geoid. 214 

Estimates of the DOT greater than ±2 m are removed before the remaining estimates are sampled onto 215 

a 25-km Northern Hemisphere EASE2 grid and smoothed with a 300-km width Gaussian convolution 216 

filter. We calculate gradients of the smoothed DOT grid along zonal and meridional axes and convert 217 

these to 𝑢 and 𝑣 vectors of the surface geostrophic current following (Armitage, et al., 2017). For the 218 

purposes of this study, we calculate the average ‘climatological’ October-April Arctic Ocean surface 219 

current over the entire CryoSat-2 2010-2019 period and mask the region north of 87° latitude due to 220 

measurement noise (Fig. 2). The climatological field illustrates the major components of the long-term 221 

Arctic Ocean circulation in the winter, including the Beaufort Gyre, Transpolar Drift, East Greenland 222 

and Baffin Island currents, along with the Atlantic and Pacific inflows to the Arctic. 223 

3.2. Airborne OIB Ku-Band Data Level 2 Processing 224 

To validate the CryoSat-2 sea ice freeboard observations derived from our new method, we use 225 

geolocated Level 1B echograms from the Center for Remote Sensing of Ice Sheets (CReSIS) 226 

ultrawideband (UWB) Ku-band airborne radar altimeter, operated on Arctic campaigns by NASA 227 

Operation IceBridge (OIB), to generate airborne estimates of radar freeboard coinciding with the 228 

satellite. The data were accessed from https://data.cresis.ku.edu/#KBRA in January 2020. We selected 229 

five airborne campaigns in 2011, 2012 and 2014 (all in March) that were flown to coincide in space 230 

and time with CryoSat-2 overpasses and covered both first-year and multi-year sea ice in the Chukchi 231 

and Lincoln Seas, respectively. The CReSIS Ku-band radar has a central frequency of 15 GHz 232 

(Rodriguez-Morales, et al., 2013) and therefore should, in theory, produce a comparable estimate for 233 

the radar scattering horizon over snow-covered sea ice to the 13.6 GHz CryoSat-2 radar (Willatt, et al., 234 

2011). The flat-surface range resolution of the UWB radar is approximately 4.9 cm in snow and the 235 

sensor has an along track sample spacing of approximately 5 m (Paden, et al., 2017). 236 

Our processing methodology for the CReSIS radar is built on the algorithm detailed in (Landy, et al., 237 

2020) to derive snow-ice interface elevation, with several additional steps required to determine the sea 238 

ice radar freeboard which we introduce here. We exclude all aircraft segments where the variability of 239 

the detrended aircraft altitude is >0.6 m, or where the mean aircraft pitch or roll is >6°. The local 240 

https://data.cresis.ku.edu/#KBRA


 

10 

 

CryoSat-2 MSS is removed from the retracked elevation profile. Radar returns from leads are classified 241 

by thresholding waveforms with 𝜎0 and PP above dynamic thresholds (Fig. 3a). Each threshold is 242 

determined from the 99
th

 percentile of 𝜎0 or PP samples, but are no higher than 34 dB or 0.25, 243 

respectively, calculated recursively over groups of twelve radar segments (60 km total length). The 244 

SSH is estimated at ice floes using the method described in Section 3.1 and radar freeboard is obtained 245 

from ice floe elevations minus the SSH (Fig. 3b). We exclude all samples located more than 5 km from 246 

their nearest lead to prevent the introduction of correlated freeboard biases away from leads. A single 247 

airborne freeboard estimate is calculated per ~300 m coinciding CryoSat-2 footprint (Fig. 3b) following 248 

(Di Bella, et al., 2018). 249 

3.3. Auxiliary data 250 

The EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) global sea ice 251 

concentration climate data record (OSI-450) daily EASE2 gridded observations (accessed from 252 

ftp://osisaf.met.no/reprocessed/ice/conc/v2p0 in January 2020) (Lavergne, et al., 2019), are used to 253 

filter valid CryoSat-2 observations from the sea ice zone. The OSI SAF global sea ice type record 254 

(OSI-403-c) daily polar stereographic gridded observations (accessed from 255 

ftp://osisaf.met.no/archive/ice/type in June 2019) (Breivik, et al., 2012), are used to identify whether 256 

CryoSat-2 or OIB airborne observations are located over first-year or multi-year sea ice. 257 

4. Correlation length scales for the Arctic sea level anomaly from satellite altimetry 258 

To determine which leads can be used for interpolating the local SLA at sea ice floe locations, we must 259 

first define the typical spatial and temporal length scales of the Arctic SLA. The CryoSat-2 lead 260 

observations present several challenges for accurately resolving characteristic wavelengths of the SLA 261 

signal. Generally, the observations are strongly clustered into groups of 1-10 consecutive valid specular 262 

lead returns along the track. The distances between clusters of valid lead returns can also be in excess 263 

of 100 km along track, using our lead classification routine. Adjacent tracks are sampled every 1-2 264 

hours and generally spaced hundreds of kilometers apart. Consequently, at small time and distance 265 

lags, we are limited by these sampling considerations and cannot accurately resolve the higher-266 

frequency scales of the SLA. One might expect this to include SLA signatures of ocean circulation 267 

features (such as mesoscale eddies and meanders) caused by instability of ocean currents at the scale of 268 

the local, first-mode Rossby deformation radius, estimated to be around 5-15 km in the Arctic (Nurser 269 

& Bacon, 2014). These mesoscale features can alias the SLA signal, increasing the uncertainty in SLA 270 

ftp://osisaf.met.no/reprocessed/ice/conc/v2p0
ftp://osisaf.met.no/archive/ice/type in June 2019
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predicted for nearby leads. However, through the present analysis we will demonstrate that the Arctic 271 

Ocean SLA spatial decorrelation length scales are generally much larger than the local Rossby 272 

deformation radius.  273 

Using CryoSat-2 observations for the Arctic SLA at leads within the sea ice pack, we map the winter 274 

decadal average spatial (in zonal and meridional directions) and temporal decorrelation length scales of 275 

the Arctic Ocean SLA signal. We map the length scales onto a 50 km EASE2 grid (Brodzik, et al., 276 

2012) covering the Northern Hemisphere above 50 degrees latitude. We select a minimum lag distance 277 

of 2.5 km and lag time of 0.5 days based on the sampling limits of the CryoSat-2 data, although 278 

following our analysis the smallest scales identified were several times larger than these values. The 279 

covariance 𝜌 of the SLA at lag distance or time 𝑟 is defined as: 280 

𝜌(𝑟) =  
1

𝑛(𝑟) − 1
∑[𝑧(𝑥𝑖) − 𝑧̅][𝑧(𝑥𝑖 + 𝑟) − 𝑧̅]

𝑛(𝑟)

𝑖=1

 (1) 

Where 𝑛 is the number of paired observations at lag distance or time 𝑟, 𝑧 is the instantaneous SLA, 𝑥𝑖 281 

is the location or time of observation 𝑖. The SLA signal is modelled with a Gaussian function, 282 

following previous studies in the equatorial oceans, e.g. (Jacobs, et al., 2001). This model can account 283 

for non-zero covariance between observation pairs within the few shortest lag bins, which we expect 284 

due to the uncorrelated speckle noise properties of 20 Hz CryoSat-2 observations, and asymptotic limit 285 

at the covariance amplitude, i.e. the random variance of the field. We fit the following Gaussian model 286 

to the empirical zonal, meridional, and time-dependent covariance functions obtained from Eq. (1):  287 

𝜌(𝑟) =  (𝑎 − 𝑠)𝑒
−

3𝑟2

𝐿2 + 𝑠 (2) 

Where 𝑎 is the covariance amplitude, 𝑠 is the covariance at 𝑟 = 0, and 𝐿/√3 is the e-folding scale of the 288 

SLA. 𝐿 is the ‘effective range’, which defines the lag where 𝜌 drops to 5% of the covariance amplitude 289 

and is applied as the first zero-crossing of the imposed SLA signal decorrelation in Eq. 6 (Section 5). 290 

The model in Eq. (2) is fit to the empirical covariance functions with a bounded nonlinear least-squares 291 

optimization algorithm. The lower bound for 𝑠 is zero and 𝐿 is bounded at the maximum lag distance or 292 

time. The quality of fit is determined from the optimized coefficient of determination between 293 

empirical and model covariance functions. 294 
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4.1. Spatial and temporal length scales 295 

To obtain spatial patterns for the characteristic SLA spatial length scale over the entire Arctic Ocean, 296 

we perform the following analysis at monthly intervals for the entire Oct-Apr 2010-2019 CryoSat-2 297 

lead observation dataset. For every cell of the 50-km EASE2 grid we identify all SLA observations in 298 

the month within 500 km. Lag distances are employed at 5 km intervals from 2.5 to 502.5 km, 299 

including pairs from the same and different tracks. A time limit of 3 days between observation pairs is 300 

imposed to maximize the likelihood that observations are correlated in time (Pujol, et al., 2016) with 301 

sufficient observations remaining available for analysis. By doing this we are limiting the chances of 302 

decorrelation in time but searching for spatial correlations over a very wide range. The derived length 303 

scales are therefore representative of averaged conditions over a 3-day time window. We construct a 304 

matrix of the zonal and meridional distances of all valid observation pairs and sample the covariance 305 

for each lag bin along both directional axes using Eq. (1). We then fit the Gaussian model in Eq. (2) to 306 

each empirical function and determine the e-folding length, covariance amplitude and minimum 307 

covariance for the grid cell. Only grid cells with a model r
2
 fit >0.3 are retained. 308 

To determine the SLA temporal length scales, we again perform the following analysis at monthly 309 

intervals of the CryoSat-2 data. For every cell of the grid, we identify all SLA observations within 100 310 

km and ±30 days of the 15
th

 of the month. The spatial limit of only 100 km is chosen to maximize the 311 

likelihood that observations are correlated in space (Pujol, et al., 2016), with sufficient observations 312 

remaining available for analysis. By doing this we are limiting the chances of decorrelation in space but 313 

searching for temporal correlations over a very wide range. The derived time scales are therefore 314 

representative of averaged conditions over a 100 km radius.  Since the orbit time for a single CryoSat-2 315 

pass over the Arctic Ocean is a matter of minutes, we do not analyze the time-dependent correlation 316 

between SLA observations along the track. In contrast, we apply a low-pass median filter to 317 

observations within 100-km window clusters along the orbital track, to reduce the impact of small-scale 318 

signal noise along track on the time-dependent decorrelation of the SSH between tracks. Lag times are 319 

employed at 1-day intervals from 0.5 to 30.5 days. We construct a matrix of the time difference 320 

between all valid observation pairs and sample the covariance for each lag bin using Eq. (1). Applying 321 

Eq. (2) we then fit the Gaussian model to each empirical function and again determine the e-folding 322 

length, covariance amplitude and minimum covariance for the grid cell. Only grid cells with a model r
2
 323 

fit >0.3 are retained. 324 
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4.2. Mean decorrelation scales for the sea level anomaly  325 

From the analysis of monthly-mean SLA covariance fields, we find no clear seasonal or interannual 326 

patterns in the variability of both the spatial and temporal correlation scales. Therefore, as a first 327 

estimate we calculate 2010-2019 ‘climatological’ zonal, meridional, and temporal decorrelation length 328 

scales from the weighted mean of the e-folding lengths of all 62 fields (i.e., the total number of 329 

analyzed months), with the optimized model fit statistics providing the weights. We use these 330 

climatological scales for all remaining analysis. Another reason why climatological scales must be used 331 

is because there are typically too few lead observations proximal to sea ice samples from which to 332 

calculate local contemporary spatiotemporal correlation length scales, which can lead to high 333 

uncertainty in the derived SLA. Finally, we smooth the climatological fields with a 3 x 3 grid cell 334 

median filter to remove a few remaining anomalies. 335 

The derived zonal, meridional, and temporal e-folding scales compare closely to the estimates of 336 

(Pujol, et al., 2016) obtained from multiple altimeter missions for sub-polar oceans. For example, 337 

(Pujol, et al., 2016) estimated zonal length scales of 45-100 km for the latitude band between 50 and 70 338 

degrees north, which are comparable to our estimates of 40-120 km for the Arctic peripheral seas, the 339 

Barents, Kara, and Laptev Seas (Fig. 4a and b). Temporal scales (for the same latitude band) of 3-7 340 

days (Pujol, et al., 2016) are marginally higher than our estimates from CryoSat-2 of 1-5 days for the 341 

peripheral seas (Fig. 4c). Our estimates for the zonal and meridional decorrelation scales (Fig. 4a and 342 

b) match patterns for the first-mode baroclinic Rossby radius obtained from hydrographic observations 343 

(Nurser & Bacon, 2014), with higher scales in the Western Arctic (Beaufort Sea region) than on the 344 

eastern side north of Svalbard (Fig. 4a and b). However, the CryoSat-2 e-folding scales of 50-200 km 345 

are an order-of-magnitude higher than the baroclinic deformation radius (see Section 4.4) supporting 346 

the sub-polar observations of (Chelton, et al., 2011). For instance, (Chelton, et al., 2011) show that 347 

eddies can be three times larger than the Rossby radius, suggesting that deformation radii cannot be 348 

directly associated with the size of eddies. Our CryoSat-2 data appear to characterize mesoscale 349 

anomalies at a scale between baroclinic instabilities and larger features of the geostrophic circulation 350 

field. However, the CryoSat-2 data do appear to resolve smaller 10s km features of the SLA signal over 351 

the shelf seas, for instance. The SLA decorrelation timescales (Fig. 4c) match the typical 1-7 day 352 

synoptic period of passing weather systems (Hutchings, et al., 2011).  353 

Variations in the characteristic spatial and temporal length scales of the SLA are controlled by the 354 

Arctic Ocean’s bathymetry, with shallower bathymetry on the shelves introducing additional tidal 355 

signals to the SSH that may be uncorrected and cause the signal to decorrelate more rapidly (Armitage, 356 
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et al., 2017). Generally, the patterns of the zonal and meridional length scales are quite similar, 357 

although it is particularly evident in the Siberian Seas and also in Hudson Bay and the Greenland Sea 358 

that the meridional scale is significantly shorter than the zonal scale (Fig. 4a and b). This makes sense 359 

as the SSH will be less well correlated across the shelf-break than along it and emphasizes the need to 360 

apply these two scales independently in the analyses below. It is also interesting that the space and time 361 

decorrelation scales appear to be considerably longer in regions covered by ice for most of the year (i.e. 362 

the perennial ice zone) than areas of the marginal ice zone (MIZ) with lower sea ice concentrations.  363 

The covariance amplitude (Fig. 5a) characterizes the standard deviation of the SLA outside the 364 

correlation timescale shown in Figure 4c, i.e. the variability present in the SSH signal over long time 365 

periods. It ranges from approximately 6 cm over the Central Arctic Ocean to 15+ cm on the shelf seas. 366 

If the SSH is estimated at a location from leads exclusively outside the correlated zone, the uncertainty 367 

on the SSH estimate can be no better than this value, which is a salient point because the conventional 368 

methods for interpolating SLA (Section 2) have often used length scales well above those shown in 369 

Figure 4. The covariance at zero lag ranges from around 2 cm over the central ocean to 6 cm on the 370 

shelf seas (Fig. 5b). These values represent the characteristic uncertainty on an estimate for the SSH 371 

using only lead observations in the immediate vicinity of a location and close in time, from all available 372 

tracks. Generally, this includes only a small number of lead observations but with a low sample 373 

variance, and the Arctic Ocean mean of 3.8 cm is similar to the estimate of ~4 cm SSH uncertainty 374 

derived from orbit crossover analysis (Tilling, et al., 2018). 375 

4.3. Interpreting the decorrelation scales 376 

We can expect the ocean surface to be ‘flat’ over a length scale defined by the first mode baroclinic 377 

Rossby radius of vertical deformation, which characterizes the approximate scale of boundary currents, 378 

eddies, and fronts. In the weakly-stratified Arctic Ocean and shallow shelf seas, the baroclinic Rossby 379 

radius has been determined as only 2-16 km from a climatology of hydrographic observations (Nurser 380 

& Bacon, 2014). This is around an order-of-magnitude smaller than the length scales over which SLA 381 

is conventionally interpolated along the altimeter’s orbital track when deriving sea ice freeboard (see 382 

Section 2). Therefore, small-scale dynamic features of the ice-covered Arctic Ocean surface 383 

topography cannot reliably be resolved from dispersed lead observations in along-track altimeter data 384 

(let alone in adjacent time-lagged tracks). However, sea ice floes can interact with and suppress 385 

dynamic features such as eddies (Meneghello, et al., 2017), so the SLA in ice-covered waters may – in 386 
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reality – covary over much longer distances than the baroclinic Rossby radius predicts (Chelton, et al., 387 

2011; Nurser & Bacon, 2014). 388 

To examine whether this is likely to be the case, we have further analyzed the covariance of SSH fields 389 

from a 1/12° global simulation (the ORCA0083-N06 run) of the coupled ocean-sea ice model OPA-390 

LIM2 (Madec, et al., 1998; Fichefet & Morales Maqueda, 1997; Goosse & Fichefet, 1999), applying an 391 

identical method to the one we applied here for CryoSat-2 (Fig. S3) every 5 days between 2011 and 392 

2015. The model uses the quasi-uniform, tri-polar ORCA grid (Madec & Imbard, 1996) to avoid the 393 

singularity associated with convergence of meridians at the north pole. The grid has 75 vertical levels 394 

and a lateral resolution of 2-5 km in the Arctic region (Fig. S1), which should be sufficient to capture 395 

decorrelation length scales of the SLA of order 10s km, indicative of dynamic features (such as eddies, 396 

e.g. see Fig. S2) that we may be missing with CryoSat-2. The uniform model SSH fields also do not 397 

suffer from the same nonuniform clustered sampling limitations of the altimeter data. This 398 

configuration of NEMO has been widely used for Arctic Ocean studies, e.g. (Bacon, et al., 2015; 399 

Tsubouchi, et al., 2018; Kelly, et al., 2019). The SLA is calculated from the SSH fields with reference 400 

to a mean sea surface height model derived from all time slices between 2011 and 2015. 401 

We find the smallest e-folding length scales from NEMO are 10-20 km in the North Atlantic (Fig. S4, 402 

which suggests the model can resolve small-scale dynamical features if they are present. Patterns of the 403 

zonal and meridional length scales are remarkably similar to CryoSat-2, with the largest scales in the 404 

Central Arctic and much smaller scales in the sub-polar seas. The range of length scales between 405 

NEMO and CryoSat-2, of around 20-200 km, are almost identical. There are relatively higher length 406 

scales in the East Siberian Sea, Central Arctic and Hudson Bay, and relatively lower scales in the 407 

Southern Beaufort Sea and Baffin Bay, between NEMO and the CryoSat-2 data. These model findings 408 

support previous idealized simulations of the Beaufort Gyre that resulted in eddies emerging with about 409 

100 km scale (Manucharyan & Spall, 2016). Large-scale variability can still dominate the SLA due to 410 

basin and gyre scale mechanisms that exaggerate the correlation lengths (Jacobs, et al., 2001). To 411 

examine whether our CryoSat-2 observations may be picking up only the largest gyre-scale features of 412 

the SSH, we try low-pass filtering the NEMO SLA to remove features greater than 250 and 125 km and 413 

recalculating the length scales (Fig. S5). Even after removing features >125 km, the derived scales 414 

remain 20-100 km within the Arctic and do not reduce to Rossby-like radii (despite these decorrelation 415 

scales appearing at other locations, such as the North Atlantic where the model grid is actually 416 

coarsest). This implies that length scales obtained from our analysis of the NEMO and CryoSat-2 data 417 

without filtering are the dominant length scales of the SLA. 418 
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The covariance amplitudes of the NEMO SLA also has a similar pattern to those derived from CryoSat-419 

2 (Fig. S4) but are consistently ~5 cm lower reflecting the absence of measurement noise in model SSH 420 

fields. The NEMO amplitudes also underestimate the high CryoSat-2 amplitudes measured in Hudson 421 

Bay and the Canadian Arctic, for example. One final notable result from the NEMO analysis is that 422 

length scales are almost always higher when a grid cell is ice-covered than ice-free. Presence of sea ice 423 

reduces covariance amplitudes by 65% and increases decorrelation scales by 20% on average when we 424 

test the same locations with and without sea ice (Fig. S6). This may partly explain the enhanced 425 

decorrelation scales measured by CryoSat-2 in the perennially ice-covered Central and Western Arctic. 426 

The apparent decorrelation length and time scales observed by CryoSat-2 are also supported by 427 

previous observations of sea ice motion from ice-mounted buoy arrays. Multi-scale drifter arrays 428 

deployed in the Beaufort Sea as part of the 2007 SEDNA experiment showed little coherence in ice 429 

deformation patterns across spatial scales of 10-100 km, with coherence only appearing at scales 430 

exceeding 100 km (Hutchings, et al., 2011). The observed coherence between buoys is also typically 431 

only lost over synoptic time periods longer than 3-8 days (Hutchings, et al., 2011). These evident 432 

spatial scales of coherent sea ice motion are >10 times larger than the first mode baroclinic Rossby 433 

radius of deformation, reflecting more closely the apparent decorrelation scales of the SSH signal 434 

observed by CryoSat-2 (Figure 4). For example, we find characteristic scales for the SSH signal of 100-435 

150 km and 2-5 days in the Beaufort Sea. 436 

5. Objective mapping for estimating the SLA at sea ice floes 437 

We use an objective mapping methodology to estimate the instantaneous sea level anomaly at all sea 438 

ice floe locations along the CryoSat-2 altimeter track. The method is a suboptimal space-time objective 439 

analysis based on the Gauss-Markov theorem (Le Traon, et al., 1998) that takes into account both 440 

random uncorrelated errors of the altimeter range measurement (e.g. speckle noise) and long-441 

wavelength along-track correlated errors such as those related to the satellite orbit or L1B tidal 442 

corrections (Wingham, et al., 2006). The SLA is obtained at any location from the best linear estimate 443 

of a given irregularly distributed sample of CryoSat-2 SLA observations at proximal leads (on the 444 

orbital track in focus and adjacent tracks), their errors, and an assumed covariance function of the SLA 445 

space-time signal.  446 

The best least-squares linear estimator 𝜃𝑒𝑠𝑡 and associated error field 𝜖2 for the a priori unknown sea 447 

level anomaly at a sea ice floe location are (Le Traon, et al., 1998; Ducet, et al., 2000; Pujol, et al., 448 

2016): 449 
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𝜃𝑒𝑠𝑡 =  ∑ ∑ 𝐴𝑖𝑗
−1𝐶𝑥𝑗Φ𝑜𝑏𝑠

𝑛

𝑗=1

𝑛

𝑖=1

 (3) 

𝜖2 =  𝐶𝑥𝑥 − ∑ ∑ 𝐶𝑥𝑖𝐶𝑥𝑗𝐴𝑖𝑗
−1

𝑛

𝑗=1

𝑛

𝑖=1

 (4) 

Where Φ𝑜𝑏𝑠 is an observation, i.e. the true SLA Φ𝑖 and its observation error 𝜀𝑖. 𝑨 is the covariance 450 

matrix of all 𝑛 selected observations, and 𝑪 is the covariance vector between the observations and field 451 

to be estimated: 452 

𝐴𝑖𝑗 = 〈Φ𝑜𝑏𝑠Φ𝑜𝑏𝑠〉 = 〈Φ𝑖Φ𝑗〉 + 〈𝜀𝑖𝜀𝑗〉 

𝐶𝑥𝑖 = 〈𝜃(𝑥)Φ𝑜𝑏𝑠〉 = 〈𝜃(𝑥)𝜀𝑖〉 
(5) 

Where 𝜃(𝑥) is the SLA at the ice floe location 𝑥. The zonal, meridional, and temporal decorrelation 453 

scales and propagation velocities characteristic of the SSH signal to be retrieved are defined by the 454 

covariance function (Arhan & De Verdiére, 1985): 455 

𝐶(𝑟, 𝑡) = [1 + 𝑎𝑟 +
1

6
(𝑎𝑟)2 −

1

6
(𝑎𝑟)3] 𝑒−𝑎𝑟𝑒

−
𝑡2

𝑇2 

𝑎 = 3.337 

𝑟 =  √(
𝑑𝑥 − 𝑃𝑥𝑑𝑡

𝐿𝑥
)

2

+ (
𝑑𝑦 − 𝑃𝑦𝑑𝑡

𝐿𝑦
)

2

 

(6) 

𝑑𝑥, 𝑑𝑦 and 𝑑𝑡 are the distance in space (zonal and meridional directions) and time to the observation or 456 

estimator location under consideration, 𝐿𝑥, 𝐿𝑦 and 𝑇 are the zonal, meridional, and temporal 457 

decorrelation length scales defined by the effective range in Eq. (2) (Section 4.3), and 𝑃𝑥 and 𝑃𝑦 are 458 

propagation velocities of the SSH signal in zonal and meridional directions (Section 3.1). We use the 459 

long-term average propagation velocities, obtained from the climatological geostrophic currents 460 

(Figure 2), for 𝑃𝑥 and 𝑃𝑦. This covariance function has been regularly applied to model the SSH signal 461 

in sub-polar seas (Le Traon, et al., 1998; Le Traon, et al., 2003; Pujol, et al., 2016) and its properties 462 

are illustrated in Figure 6. The observation errors have two components: an uncorrelated random 463 

component with variance 𝑏2 which contributes to the diagonal of the 〈𝜀𝑖𝜀𝑗〉 matrix and a long-464 

wavelength correlated component 𝐸𝐿𝑊. The latter is added to non-diagonal terms of the 〈𝜀𝑖𝜀𝑗〉 matrix as 465 

𝛿𝑖𝑗𝑏2 + 𝐸𝐿𝑊 if observations 𝑖 and 𝑗 are on the same track, where 𝛿𝑖𝑗 is the Kronecker delta. The field 466 

𝜖2 is expressed as a fraction of the error variance, so a final estimate for the total SSH uncertainty 𝜃𝑢𝑛𝑐 467 

is obtained from: 468 
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𝜃𝑢𝑛𝑐 = √𝜖2𝑏2 (7) 

Which can be related directly to estimates for the sea level uncertainty at sea ice floes obtained through 469 

conventional methods, such as from the root-mean square of lead elevations within a defined window 470 

along the altimeter track. 471 

For each CryoSat-2 return classified as a sea ice floe along track, we first sample the zonal, meridional, 472 

and temporal decorrelation length scales, and geostrophic currents, from the mean fields shown in 473 

Figures 1 and 3 at this ‘estimator location’. We identify all available SSH observations (leads) within 474 

three times the spatial and temporal correlation scales from this location, including observations both 475 

on and off the estimator track. However, only one of four observations is retained outside one 476 

correlation length to reduce the size of the matrix inversion, i.e. (Pujol, et al., 2016). The number of 477 

valid observations meeting these criteria can still exceed 10,000 for locations close to the pole. 478 

Therefore, we determine the covariance vector between all observations and the estimator location 479 

using Eq. 6 and retain only 𝑁 points with highest absolute correlation |𝐶|. Increasing 𝑁 theoretically 480 

improves the accuracy of the retrieved SSH and reduces the uncertainty, but we use 𝑁 = 2001 hereafter 481 

for this study in order to limit the size of the matrix to be inverted in Eq. 3. One month of CryoSat-2 482 

Arctic Ocean observations takes approximately four days to process on a 56 core 256 GB RAM cluster 483 

with this criterion. 484 

The covariance matrix in Eq. 5 is constructed between all SLA observations. The ‘single-shot’ random 485 

error 𝑏 associated with a 20 Hz CryoSat-2 observation is 11.6 cm for SAR mode and 15.3 cm for 486 

SARIn mode (Wingham, et al., 2006). This is combined with the long-wavelength error 𝐸𝐿𝑊 estimated 487 

as 25% of the signal variance 𝐸𝐿𝑊 = 0.25𝑉𝑎𝑟(Φ𝑜𝑏𝑠), based on results from previous studies (Le Traon, 488 

et al., 1998; Ducet, et al., 2000; Le Traon, et al., 2003), to construct the error matrix in Eq. 5. An 489 

optimal estimate for the SLA at the sea ice floe is then obtained from the integrated inverse sum of the 490 

observation covariance and error matrices, through Eq. (3), and the SSH uncertainty is obtained from 491 

Eqs. (4) and (7). Finally, after deriving individual SLA estimates for every CryoSat-2 footprint 492 

classified as sea ice along a track, we smooth the resulting profile with a low-pass filter whose window 493 

is limited to the mean of the local SSH e-folding scales 
(𝐿𝑥+𝐿𝑦)

2√3
. This removes noise introduced by 494 

anomalous leads for a few samples. 495 

6. Results from March 2013 496 
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We compare our results obtained for the SLA at sea ice floes with a conventional method and the new 497 

objective mapping approach for March 2013. The conventional method applied uses the external 498 

DTU18 MSS model for deriving SLA, linear interpolation between leads along track, smoothed with a 499 

low-pass filter, with the SSH uncertainty obtained from the RMS height of leads within a 25-km 500 

moving window along track (Landy, et al., 2017). 501 

6.1. Case study track on March 3
rd

  502 

We first select a single ascending-orbit CryoSat-2 SAR-mode track at 03:46:51 on 3
rd

 March 2013 to 503 

illustrate the advantages of the new method. This track crosses the Arctic Ocean from the Lincoln Sea 504 

to the East Siberian Sea. Although the Eastern Arctic sector of the track contains dense lead clusters, 505 

our waveform classification algorithm produces only five valid lead returns for the remaining 1800 km 506 

(Fig. 7a). This track represents a case with particularly low lead density and requires interpolation of 507 

the SLA over distances of up to 500 km to ice floes from their nearest lead (if all floes are to be 508 

included in the analysis). Owing to the low lead density, uncertainty on the derived SLA is >6 cm for 509 

the majority of the track (Fig. 7a), representing 20-50% of the final derived radar freeboard (Fig. 7d). 510 

In areas with sparse leads, the estimated SLA can be tied to single lead observations (Fig. 7a) despite 511 

each observation having a random uncertainty up to ~15 cm (Wingham, et al., 2006) and possible bias 512 

>4 cm (Armitage & Davidson, 2014). 513 

By applying the objective mapping approach, we sample up to 2001 local observations at leads for 514 

every sea ice floe along track and estimate the SLA from the optimal interpolation of them all. Figure 515 

7b illustrates the covariance between the location of every 80
th

 sea ice floe along track and its local 516 

sample of SSH observations. Generally, the SLA of the distribution of lead observations around a 517 

single ice floe ranges from approximately -0.2 to +0.2 m but is higher in the shallower East Siberian 518 

Sea sector (1800-2500 km along profile). For this track, 56% of all SLA observations used in the 519 

analysis are within half the distance of both 𝐿𝑥 and 𝐿𝑦 correlation length scales and 83% of 520 

observations are within the whole distance of 𝐿𝑥 and 𝐿𝑦. 521 

The final optimal interpolation (Fig. 7c) predictably coincides with most of the lead observations on the 522 

focus track because they have a time lag close to zero. However, the covariance matrix between the up 523 

to 2001 neighboring lead observations in a local sample provides a weighting on the SLA estimate that 524 

reduces the influence of anomalous observations, i.e., leads with high estimated measurement error 525 

with respect to their neighbors. For instance, the objective SLA estimate is 5 cm lower than the lead at 526 

(i) in Figure 7c, indicating this SLA observation may contain significant error. Single isolated leads or 527 
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lead clusters do not over-influence the objective SLA estimate (Fig. 7c) in the same way they can for 528 

the conventional method (Fig. 7a). In such instances where the objective analysis indicates a lead is 529 

under- or over-estimated, as it does at (i), the derived radar freeboards between the new and 530 

conventional approaches contain long wavelength correlated offsets, typically of between -20 and +20 531 

cm (Fig. 7d). The uncertainty estimate for the objective analysis (from Eq. 7) is generally <2 cm, 532 

representing <15% of the final derived radar freeboard (Fig. 7d), because the SLA is estimated from 533 

tens-to-hundreds of times more observations than in the conventional approach (Fig. 7c). The 534 

uncertainty is notably higher at (ii) in Figure 7c because 𝐿𝑥 and 𝐿𝑦 are <150 km at this location, so the 535 

number of available SLA observations is significantly lower than the maximum 2001 permitted and 536 

their variance is larger (Fig. 7b). 537 

The new scheme for determining SLA enables the radar freeboard to contain greater along-track 538 

variability than the conventional scheme (Fig. 7d) because the estimated SLA is not fixed over long 539 

(>100 km) distances along track by isolated single or clusters of leads. The new scheme appears to be 540 

particularly successful resolving discontinuities in SLA (and its uncertainty) at the shelf break and 541 

other areas of complex bathymetry. For instance, the SLA does not become aliased when there are 542 

insufficient leads to resolve the detailed ocean surface topography, e.g., at (iii) in Fig. 7a and c. 543 

6.2. Analysis of entire month  544 

We complete the same comparison between the conventional SLA estimated from a linear interpolation 545 

along-track and from the objective analysis of all proximal leads from adjacent tracks, for every 546 

CryoSat-2 SAR and SARIn mode track in March 2013. Pairwise differences in the radar freeboard 547 

obtained from the conventional and objective methods are normally distributed (Fig. 8a and b) but 548 

comprise long-wavelength (10-500 km) correlated offsets between the methods in either direction. 549 

(Note we do not discard any freeboard observations based on their distance to the nearest along-track 550 

lead for this analysis). The radar freeboards can diverge by >5 cm along large segments of individual 551 

tracks (Fig. 8a), where the conventional SLA estimate is poorly constrained through biased 552 

observations or a low density of lead observations along track (Section 6.1). The conventional method 553 

is essentially as likely to underestimate the objectively mapped SLA as overestimate it (Fig. 8a). On 554 

average, the conventional method underestimates the objective mapping method by ~1 cm (Fig. 8b), 555 

constituting an estimated sea ice thickness difference of only ~10 cm. However, the mean absolute 556 

radar freeboard difference is 3.3 cm, which represents a 27% local uncertainty on the mean freeboard 557 

and constitutes >30 cm uncertainty in sea ice thickness estimated from these freeboards. The biases 558 
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between SSH mapping techniques appear to be independent of location, although there is a pattern of 559 

positive freeboard differences (mean = +2.5 cm) in the multi-year ice zone north of Canada and the 560 

largest differences are evident in coastal regions (Fig. 8a). These areas coincide with shallower tidal 561 

zones that have high SLA variability over short temporal and spatial scales (e.g. Fig. 5) and/or have the 562 

lowest available density of SSH observations at leads (Wernecke & Kaleschke, 2015). 563 

By utilizing many times (typically 1-2 orders-of-magnitude) more SSH observations to determine the 564 

optimal SSH at a sea ice floe, the objective mapping method produces a factor of three reduction in the 565 

estimated SSH uncertainty (Fig. 8c). The objective analysis accounts for uncorrelated random errors in 566 

the observations, as well as long-wavelength correlated errors along the altimeter’s orbital track caused 567 

by observation biases or errors in the orbit determination or geophysical corrections. Their reduction to 568 

the error estimate at a single ice floe scales directly with the number of observations and tracks, 569 

weighted by the covariance of the observations to the floe location and the covariance matrix between 570 

neighbors (Section 5). This objective estimate for the uncertainty is therefore based entirely on the 571 

observations themselves and does not suffer from the assumptions or conditions of the conventional 572 

method, for instance that the SSH uncertainty is uniform across the Arctic or depends only on the RMS 573 

of SSH observations along track (Section 2). 574 

7. Validation of SLA and radar freeboard estimates 575 

7.1. Analysis at orbital crossovers 576 

As a first assessment of the precision of the new objective mapping method for deriving SLA at ice 577 

floes we identify all crossovers of the CryoSat-2 orbit over the Arctic Ocean sea ice pack in March 578 

2013. Around 13,000 unique crossovers are identified where orbits intersect within 24 hours and valid 579 

CryoSat-2 measurements for each track are no more than 5 km apart. The crossover locations are 580 

clustered around the north pole, because the polar-orbiting satellite disproportionally crosses itself 581 

within a small region north of ~84 degrees latitude; however, there are rings of crossovers at around 66 582 

and 79 degrees too (Fig. 9c). 583 

All pairwise differences in the SLA or radar freeboard estimated at crossover locations are normally 584 

distributed (Fig. 9). The widths of the distributions represent a combination of random noise in the 585 

measurements, orthogonal sensing footprints for crossing orbits, aliased tidal signals, and – in the case 586 

of the radar freeboards – additional errors relating to ice motion and possibly radar signal penetration 587 

e.g. (Willatt, et al., 2011). The new objective mapping scheme reduces the RMS of the SSH estimated 588 
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at crossover locations by 70% compared to the conventional approach, from 4.6 down to 1.4 cm (Fig. 589 

9a). The RMS of crossovers for the conventional scheme is close to the 4 cm reported by (Tilling, et 590 

al., 2018). It is not surprising that the RMS is reduced through objective analysis, as the SSH is 591 

estimated at ice floes from all available leads on all proximal tracks. However, with our new scheme 592 

the SSH compared at a crossover is still, in all cases, from an optimal interpolation of nearby 593 

observations rather than actual lead observations, so the improvement remains impressive. The 594 

objective mapping scheme reduces the RMS of the radar freeboard measured at crossover locations by 595 

19% compared to the conventional approach, from 6.9 down to 5.5 cm (Fig. 9b). The improved SSH 596 

estimation reduces a portion of the radar freeboard uncertainty. However, because the new scheme 597 

reduces the RMS of radar freeboard at crossovers by significantly less than it reduces the RMS of SSH 598 

at crossovers, this suggests around three quarters of the total uncertainty in freeboard measurements at 599 

crossovers is ice-related (i.e. including the effects of ice motion, signal penetration, speckle noise and 600 

retracking uncertainties).  601 

7.2. Independent validation of radar freeboards 602 

We use independent radar freeboards derived from the CReSIS airborne Ku-band radar flown on OIB 603 

Arctic campaigns (Section 3.2) to compare the accuracies of the conventional and objective SSH 604 

mapping techniques. The Ku-band radar freeboards are used here rather than the official OIB L4 total 605 

(snow plus sea ice) freeboard and thickness product, so that we do not have to correct freeboards for 606 

snow depth and delayed radar wave propagation through the snow layer (Landy, et al., 2020). The OIB 607 

L4 snow depths contain known biases (Newman, et al., 2014) and fixed snow densities may introduce 608 

further systematic uncertainties (Mallett, et al., 2020). So, we use airborne radar freeboards to mimic 609 

the CryoSat-2 radar measurements as closely as possible and limit the chances of introducing further 610 

systematic biases into our comparisons. Satellite radar freeboards are obtained with both the objective 611 

and conventional SSH interpolation methods along CryoSat-2 tracks coinciding with five processed 612 

OIB campaigns in 2011, 2012 and 2014. Of the five coinciding tracks, three produced similar radar 613 

freeboard profiles between the objective and conventional methods suggesting that the conventional 614 

along-track approach was sufficient to resolve the SSH in these cases. The more sophisticated but less 615 

computationally efficient objective analysis is not always necessary. However, for two of the 616 

campaigns, on 26
th

 March 2012 (CryoSat-2 in SARIn mode, with a 1-hour time difference between 617 

aircraft and satellite passes) and on 26
th

 March 2014 (SAR mode, with a 4.5-hour time difference), 618 

satellite radar freeboards from the objective analysis and conventional approaches diverged 619 
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significantly. Here, we want to analyze which, if either, method accurately reproduces the airborne 620 

radar freeboards. 621 

The OIB campaign on 26
th

 March 2012 measured mostly multi-year sea ice with some first-year ice in 622 

the ‘Wingham Box’ (Fig. 10). The SSH estimated for this track with objective analysis was between 4 623 

and 10 cm lower (Fig. 10a) than the SSH estimated with the conventional along-track approach but, 624 

owing to a low density of leads in the region, both methods included a relatively high uncertainty 625 

estimate (Fig. 10b). (Note the uncertainty in Figure 10a and b characterizes the precision of the 626 

estimated SSH, whereas the remaining analysis here characterizes its accuracy). Figure 10c illustrates 627 

the airborne and two satellite radar freeboard profiles, after a moving average filter with 2 km width is 628 

applied. There is some correlation between the airborne and satellite observations in places, but it is 629 

very clear that the distribution of radar freeboards from the objective mapping method matches the 630 

airborne observations far better than the distribution obtained from the conventional along-track 631 

method (Fig. 10d and e). The conventional method appears to underestimate the airborne freeboards by 632 

8.9 cm (mean difference, MD), because it overestimates the SSH (Fig. 10b). In comparison, the MD 633 

between the objectively mapped CryoSat-2 freeboards and OIB is -3.4 cm. The accuracy of the new 634 

method (RMSE = 11.2 cm) is improved by around 25% versus OIB relative to the conventional method 635 

(RMSE = 14.9 cm), at the 2-km length-scale of our averaged freeboard observations. 636 

The OIB campaign on 26
th

 March 2014 measured predominantly multi-year ice in the Lincoln Sea (Fig. 637 

11). The SSH estimated for this track with objective analysis was between 0 and 8 cm lower (Fig. 11a) 638 

than the SSH estimated with the conventional along-track approach and both methods produced lower 639 

uncertainty estimates at one end of the section, owing to a cluster of leads to the north (Fig. 11b). 640 

Figure 11c illustrates the airborne and two satellite radar freeboard profiles, after a moving average 641 

filter with 2 km width is applied. Like in the 2012 comparison, the CryoSat-2 freeboards from each 642 

method exhibit long-wavelength (>100 km) correlated differences (Fig. 11b). Again, it is clear that the 643 

distribution of radar freeboards from the objective mapping method match the airborne observations 644 

better than the distribution obtained from along-track interpolation between leads (Fig. 11d and e). The 645 

conventional method underestimates radar freeboard by MD = 11.1 cm, in comparison to 4.8 cm for the 646 

new method. The accuracy of the objective mapping method (RMSE = 13.8 cm) is improved by around 647 

20% versus OIB relative to the conventional method (RMSE = 17.1 cm), at the 2-km length-scale of 648 

our averaged freeboard observations. 649 
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Our independent evaluation of the CryoSat-2 radar freeboards for both OIB campaigns demonstrates 650 

that long-wavelength errors, caused for example by a low density of valid lead returns along track, off-651 

nadir lead errors, or errors in the L1B CryoSat-2 orbital/geophysical corrections, can introduce 652 

significant biases into derived radar freeboards using the conventional SSH mapping approach. In both 653 

cases where the conventional and objective SSH mapping techniques diverged, the objective estimate 654 

more accurately reproduced the radar freeboards observed from OIB aircraft observations. 655 

8. Discussion 656 

8.1. Prospects for further improvement 657 

There are several avenues worth exploring to further improve the objective mapping of SSH in ice-658 

covered seas. It may be valuable to use leads at adjacent tracks for mapping SLA at ice floes with 659 

ICESat-2, because regions of sea ice further than 10 km from their nearest lead reference along track 660 

are currently discarded (Kwok, et al., 2019). This leaves some areas such as the densely-concentrated 661 

multi-year ice of the Central Arctic occasionally missing valid observations e.g., (Petty, et al., 2020). 662 

However, the higher density of SSH observations from ICESat-2 may enable an improved 663 

characterization of the spatiotemporal characteristics of the SLA signal, and possibly also its seasonal 664 

variation, for other altimetry missions. It may also enable discarded ICESat-2 segments in lead-sparse 665 

regions like the Canadian Arctic Archipelago or Lincoln Sea to be retained (Kwok, et al., 2019). Now 666 

that Sentinel-3A and -3B are operating together with CryoSat-2 over a portion of the Arctic Ocean 667 

(Lawrence, et al., 2019), there is strong potential for characterizing the SLA signal in more detail 668 

combining all three sensors. Moreover, CryoSat-2 has been maneuvered to coincide more frequently 669 

with the ground track of ICESat-2 (as part of the CRYO2ICE Project) which could enable the direct 670 

intercomparison of SLA characteristics.  671 

It is unlikely our assumption that systematic error between altimeter tracks is a maximum 25% of the 672 

signal variance holds in all situations (Section 5). The systematic offset between tracks will be greater 673 

when (i) orbital errors are higher (Wingham, et al., 2006), (ii) geophysical corrections for tides and 674 

atmospheric effects are lower quality or aliased by the satellite orbit, and/or (iii) target-dependent 675 

biases such as the snagging of off-nadir leads (Di Bella, et al., 2018) or variable radar penetration 676 

depths into snow e.g. (Willatt, et al., 2011) are greater. The objective SLA mapping results would be 677 

improved if the long-wavelength correlated component 𝐸𝐿𝑊 in Eq. (5) was determined from these error 678 

contributions or their spatiotemporal variability. 679 
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Finally, our current implementation of the objective mapping scheme takes approximately five days to 680 

process one month of CryoSat-2 SLA estimates at ice floes over the Arctic Ocean. This is around 3-4 681 

orders-of-magnitude longer than conventional along-track SSH interpolation methods. However, it may 682 

be possible to obtain results with similar accuracy but only processing one in 𝑛 sea ice floe samples 683 

along track, or using a reduced sample size of SSH observations, with considerable improvements in 684 

computation speed. Equivalent results may also be possible but using faster and less data intensive 685 

optimization algorithms. 686 

8.2. Implications of the new method for deriving inter-mission data products and to the 687 

reanalysis of historic altimeter missions 688 

The depth of snow on Arctic sea ice has been estimated from the offset between laser freeboards from 689 

ICESat-2 (Kwok, et al., 2020) or radar freeboards from the Ka-band AltiKa (Lawrence, et al., 2018) 690 

and radar freeboards from CryoSat-2. Whilst we do not expect errors in the determination of SLA to 691 

introduce pan-Arctic uniform biases between satellites (Fig.7b), the along-track correlated errors from 692 

interpolation between leads (Fig. 7a) could realistically introduce local biases to the derived inter-693 

mission snow depths. These biases may either amplify or cancel each other out. Objective mapping 694 

therefore offers the prospect of combining SSH observations from multiple altimeter missions (Le 695 

Traon, et al., 2003; Pujol, et al., 2016): calculating constant inter-mission biases if present but, more 696 

importantly, preventing local biases where leads are sparse or have high uncertainty. Errors will be 697 

limited at mission crossover locations (Fig. 9) and systematic uncertainties should also be reduced on 698 

gridded freeboard differences. 699 

The objective SLA mapping scheme offers most improvement over conventional techniques where sea 700 

ice concentrations are highest and/or SLA observations at leads have largest height uncertainty. For 701 

instance, the most obvious changes in gridded freeboard in Figure 8a occur in the perennially-ice 702 

covered zone north of Greenland and Canada. Historic pulse-limited radar altimeter missions, such as 703 

Envisat or ERS-1 and -2 (and the ongoing mission AltiKa), have an effective footprint of 2-8 km and 704 

are therefore more sensitive to ‘snagging’ than the SAR-focused CryoSat-2 (Section 2). The 705 

instruments on ERS-1/-2 also had a larger bandwidth than recent missions, meaning their range 706 

resolution was lower with specular lead reflections more likely to be aliased in the recorded 707 

waveforms. By estimating the optimal local SLA from a greater number of proximal lead observations, 708 

accumulated from multiple tracks, our new scheme should effectively reduce the random uncertainty 709 

from noise and waveform aliasing and the systematic uncertainty from snagging. Since a higher 710 
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number of leads are used for each SLA interpolation, a more conservative lead classification can be 711 

employed for a smaller sample of higher accuracy SLA observations. Improvements on the 712 

conventional SLA interpolation schemes for these missions should, in theory, be larger than we have 713 

found for CryoSat-2. 714 

9. Conclusions 715 

The conventional method for estimating sea ice freeboard with altimetry uses only lead observations 716 

along the satellite orbital track to interpolate the local sea surface height at ice floes. The SSH 717 

uncertainty is typically estimated from the root-mean-square of lead height observations within a 718 

moving window along track. Here we have introduced a new method to determine the optimal 719 

interpolation of local SLA at sea ice floes using all valid proximal lead observations both on the orbital 720 

track in focus and other adjacent tracks. The objective mapping method assumes that spatial and 721 

temporal properties of the SLA in ice-covered waters can be predicted with a characteristic Gaussian 722 

covariance function. The decorrelation length scales and signal propagation velocities that constrain 723 

this function in the Arctic Ocean are obtained by analyzing historic SLA measurements acquired by the 724 

CryoSat-2 radar altimeter from lead locations between 2010 and 2019. The best linear least-squares 725 

solution for the SLA at each ice floe is determined from all valid SLA observations, weighted by their 726 

covariance with the floe location, their covariance with neighbors (i.e. to identify anomalies), and their 727 

random and systematic observation errors.  728 

By exploiting a greater number of leads for interpolating the SLA, it is possible to use a stricter pulse 729 

peakiness classification threshold – discarding more ambiguous lead waveforms without compromising 730 

the height estimate and its uncertainty. For instance, the objective mapping method can effectively 731 

reduce off-nadir lead biases on the derived CryoSat-2 SLA when corrections from the interferometric 732 

phase are not available. Applying the new method to the Arctic Ocean in March 2013, our results 733 

demonstrate that the SSH uncertainty can be reduced by around three times in comparison to 734 

conventional uncertainty estimates. The root-mean square of interpolated SSH pairs at orbital 735 

crossovers is reduced by a factor of three and radar freeboard crossover RMS is reduced by 20%. 736 

Where independent airborne observations are available and the coinciding new and conventional SSH 737 

estimates from CryoSat-2 give different results, we find the objective method improves satellite-738 

derived freeboard accuracy by 20-25%. The new method is also capable of resolving much finer-scale 739 

detail of the SSH signal in areas of complex ocean topography such as the circumpolar shelf break. 740 

However, inversion of the SSH observation matrix is computationally expensive, so our current 741 



 

27 

 

software takes around five days on a cluster to process SSH at ice floes for one month of pan-Arctic 742 

CryoSat-2 data. 743 

Objective SSH mapping produces the largest improvements at local scales and may therefore enable 744 

accurate sea ice freeboards to be estimated at kilometer-scale resolutions along the satellite track. With 745 

CryoSat-2 maneuvered to align with ICESat-2 from August 2020, it will be valuable to inter-compare 746 

the SSH between these two satellites and test whether objective mapping can reduce local biases in the 747 

freeboard offsets. Furthermore, the scheme offers considerable potential for new missions such as 748 

CRISTAL and for reprocessing ice freeboards from historic pulse-limited radar altimetry missions, 749 

including AltiKa, Envisat, ERS-1 and -2, where SSH observations are more likely to have off-nadir 750 

lead biases, higher noise and are regularly spaced >100 km along track. 751 

  752 
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Figure 1. Schematic diagram illustrating the conventional and proposed new methods for interpolating 939 

the sea surface height at sea ice locations. In the conventional approach only the four leads along the 940 

central track (yellow footprints) are used to interpolate SSH at the sea ice floe location (green 941 

footprint). In the proposed approach, all 14 leads (yellow plus blue footprints) acquired within ±2 days 942 

at neighboring tracks inside a prescribed sea surface height covariance limit (green circle) around the 943 

ice floe are used to compute the SSH. Background is a SAR image from Sentinel-1. 944 

Figure 2. Mean October-April surface geostrophic currents [km/day] for the sea ice-covered region of 945 

the Arctic Ocean 946 

Figure 3. (a) Echogram from the OIB Ku-band radar over MYI in the Lincoln Sea on March 26
th

 2014, 947 

compensated for aircraft altitude changes and relative to the WGS-84 ellipsoid, including the retracked 948 

elevation of the snow-sea ice interface, samples classified as leads, and an estimate for the sea surface 949 

height. (b) Radar freeboards derived from the difference between snow-ice interface elevation and sea 950 

level, averaged onto the footprint locations of a coincident CryoSat-2 overpass. 951 

Figure 4. Mean e-folding decorrelation length scales of the Arctic Ocean sea level anomaly (SLA) for 952 

(a) the zonal direction, (b) meridional direction, and (c) time, calculated from the full 2010-2019 953 

archive of CryoSat-2 sea surface height estimates at leads. (d) First mode of the annual-mean baroclinic 954 

Rossby radius derived from the Polar Science Center Hydrographic Climatology and reproduced from 955 

(Nurser & Bacon, 2014).  956 

Figure 5. Mean (a) covariance amplitude and (b) covariance at zero lag for the time-dependent sea 957 

surface height signal obtained from CryoSat-2 2010-2019. These maps illustrate the standard deviation 958 

of the SLA outside the correlation timescale (Fig. 4c) and, in contrast, the measurement noise when 959 

there is no time lag, respectively. 960 

Figure 6. Theoretical covariance function of the sea surface height (SSH) signal imposed within the 961 

objective mapping method (a) as a function of time and distance, and (b) distance only for 𝑡 = 0. Here 962 

𝐿𝑥 = 𝐿𝑦 = 200 km, 𝑇 = 10 days, 𝑃𝑥 = 𝑃𝑦 = 0. 963 

Figure 7. a) Profile of retracked surface elevation estimates from a SAR-mode CryoSat-2 track on 3
rd

 964 

March 2013 (03:46:51 UTC), with respect to the locally computed mean sea surface (i.e. SLA), with an 965 

estimate for the local instantaneous sea level and uncertainty derived from a conventional approach. (b) 966 

Covariances between the CryoSat-2 observation location and nearby leads on- and off-track, with the 967 
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final objective estimate for the sea level and uncertainty. (c) Final objective sea level and uncertainty 968 

over the CryoSat-2 elevation estimates, as in (a), and inset map of the track location (annotations 969 

referred to in text). (d) Sea ice radar freeboards derived with the conventional and new objective 970 

methods for deriving the SSH, and the long wavelength correlated differences between them.  971 

Figure 8. Pan-Arctic analysis of the conventional and new methods for deriving ice freeboards in 972 

March 2013. (a) 25-km gridded distribution of CryoSat-2 radar freeboards from the objective mapping 973 

SSH method minus the conventional approach, including the limit of the multi-year sea ice area in 974 

black. (b) Radar freeboard differences between the two methods, from the raw along-track CryoSat-2 975 

sea ice observations. (c) Ratio of the SSH uncertainty estimate from the objective mapping method to 976 

the conventional along-track uncertainty estimate, also from the along-track observations.  977 

Figure 9. Analysis of paired (a) sea surface height and (b) radar freeboard differences at orbital 978 

crossover locations of CryoSat-2 in March 2013. All crossover locations within one day and a 979 

maximum distance of 5 km are illustrated in (c).  980 

Figure 10. a)  Profile of retracked surface elevation estimates from a SARIn-mode CryoSat-2 track on 981 

26
th

 March 2012 (15:45:42 UTC), with respect to the mean sea surface (i.e. SLA); covariances to local 982 

lead observations on- and off-track; and the objective sea level and uncertainty estimates. (b) 983 

Conventional and objective SSH estimates with their uncertainty (precision) envelopes. (c) Coincident 984 

radar freeboards from the CReSIS airborne Ku-band radar and CryoSat-2 processed with the two 985 

methods, including a map of the coinciding section (in red) inset. (d) and (e) Probability density 986 

functions (PDFs) of the airborne and satellite radar freeboard observations, processed with 987 

conventional and objective methods for deriving the SSH. 988 

Figure 11. a)  Profile of retracked surface elevation estimates from a SAR-mode CryoSat-2 track on 989 

26
th

 March 2014 (09:06:49 UTC), with respect to the mean sea surface (i.e. SLA); covariances to local 990 

lead observations on- and off-track; and the objective sea level and uncertainty estimates. (b) 991 

Conventional and objective SSH estimates with their uncertainty (precision) envelopes. (c) Coincident 992 

radar freeboards from the CReSIS airborne Ku-band radar and CryoSat-2 processed with the two 993 

methods, including a map of the coinciding section (in red) inset. (d) and (e) Probability density 994 

functions (PDFs) of the airborne and satellite radar freeboard observations, processed with 995 

conventional and objective methods for deriving the SSH. 996 
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