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Abstract

Tropical mountain glaciers are an important water resource and highly impacted by recent climate change. Tropical mountain

glaciation also occurred in the recent and deep past, which presents opportunities for better validating paleoclimate simulations

in continental interiors and mountainous regions but requires bridging global model scales (100s of km) with the ˜ 1–10 km scale

of glaciers when paleotopography is poorly known. Here we hindcast tropical mountain glaciation in pre-industrial time by using

global climate model meteorology to force standalone simulations in its land component that use high resolution topography to

resolve selected tropical mountain glaciers. These simulations underestimate observed equilibrium line altitudes (ELA) by 249

± 330 m, but the simulated ELA and snow lines capture observed inter-mountain ELA variability. Error in large-scale model

precipitation and ELA reconstruction uncertainty are the main contributors to this bias.
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Key Points:7

• Global model-forced standalone land model framework developed for simulating8
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tion uncertainties13
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Abstract14

Tropical mountain glaciers are an important water resource and highly impacted by re-15

cent climate change. Tropical mountain glaciation also occurred in the recent and deep16

past, which presents opportunities for better validating paleoclimate simulations in con-17

tinental interiors and mountainous regions but requires bridging global model scales (100s18

of km) with the ≈ 1–10 km scale of glaciers when paleotopography is poorly known. Here19

we hindcast tropical mountain glaciation in pre-industrial time by using global climate20

model meteorology to force standalone simulations in its land component that use high21

resolution topography to resolve selected tropical mountain glaciers. These simulations22

underestimate observed equilibrium line altitudes (ELA) by 249 ± 330 m, but the sim-23

ulated ELA and snow lines capture observed inter-mountain ELA variability. Error in24

large-scale model precipitation and ELA reconstruction uncertainty are the main con-25

tributors to this bias.26

Plain Language Summary27

Shrinking glaciers in mountains near the Equator are commonly used to illustrate28

present day climate change caused by greenhouse gas emissions from burning fossil fu-29

els. These glaciers are not just picturesque but also can be an important source of wa-30

ter for humans. Geologists have found the traces of larger, lower elevation glaciers from31

the most recent ice ages and hundreds of millions of years ago. Global climate models32

can be used to assemble the characteristics of glaciers and other clues into an accurate33

picture of past climate, but global models consider what is happening at scales much big-34

ger than glaciers. We wanted to predict how low glaciers reach in elevation in a partic-35

ular global climate model experiment. We do this by taking the weather from the global36

model and putting it into a model that looks at processes similar in scale to glaciers. Our37

method underestimated glacier elevation but did get right how glacier elevation varied38

from mountain to mountain. Underestimating glacier elevation mainly resulting from over-39

estimating precipitation in the global model and possible errors in our knowledge of past40

glaciers. This technique can be used to understand past climates, particularly if we have41

independent information about precipitation near glaciers.42

1 Introduction43

Tropical mountain glaciers can be a striking part of the landscape, because their44

high reflectivity at all visible wavelengths and very nature as frozen water can starkly45

contrast with the red, brown, and green colors and warmer and/or drier climates at nearby46

lower elevations. Shrinking tropical mountain glaciers in the industrial era have been used47

to illustrate how anthropogenic climate change has affected an aesthetically compelling48

feature of the environment (e.g., Mote & Kaser, 2007; Thompson et al., 2011). But the49

shrinking of these glaciers has more practical consequences for those who depend on them50

for fresh water or other climate services, principally in the Andes (e.g., Vuille et al., 2008;51

Mölg et al., 2008; Drenkhan et al., 2015)52

Tropical mountain glaciers make such a good and potentially misleading (see Mote53

& Kaser, 2007) illustration of anthropogenic climate change, because they are highly sen-54

sitive to changes in temperature and precipitation. The equilibrium line altitude (ELA),55

the elevation at which long-term accumulation and ablation of ice balances, was typi-56

cally ≈ 1 km lower at the Last Glacial Maximum (LGM) than around 1850 CE (Porter,57

2001; Hastenrath, 2009). This change coincided with a 2–4 K change in tropical mean58

temperatures (Annan & Hargreaves, 2013), which was likely larger on mountains due to59

steeper lapse rates (Tripati et al., 2014; Loomis et al., 2017).60

The ELA is a global property of a glacier. In areas with steeper slopes, glaciers can61

flow quite deeply into valleys, emplacing terminal moraines at elevations > 1 km below62
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the ELA that is rigorously obtained by calculating the mean elevation of the entire mar-63

gin of the glacial front (Osmaston, 2004) and less rigorously by averaging the top and64

bottom elevation of the glacier (Porter, 2001).65

Mountain glaciers’ high climate sensitivity makes them potentially useful for val-66

idating paleoclimate simulations. The LGM is an obvious opportunity; sea surface tem-67

perature proxies are the gold standard for validation (e.g., Tierney et al., 2020), but moun-68

tain glacier properties are one of many ways simulations might be validated at higher69

elevations and continental interiors (e.g., Capron et al., 2019).70

Tropical mountain glaciers also could provide similar insight into deep time climates.71

Glaciation in tropical highland environments is recorded in Late Carboniferous strata72

(300 Ma) in both France and Colorado (e.g., Julien, 1895; Soreghan et al., 2014; Pfeifer73

et al., 2021, and references therein). These Carboniferous deposits seem to record ter-74

minal moraines at altitudes < 2000 m, suggesting ELA was at least similar to the LGM75

(Soreghan et al., 2014).76

However, global climate model (GCM) simulations using appropriate paleogeog-77

raphy and plausible greenhouse gas levels have been unable to reproduce stable glacia-78

tion at these elevations (Soreghan et al., 2008; Heavens et al., 2015), possibly they under-79

resolve glacial processes; even pre-industrial tropical glaciers typically were << 10 km80

in diameter (Kaser, 1999), which is small compared to the typical 200–400 km resolu-81

tion of deep time climate model simulations. Deep time GCMs generally predict snow-82

fall and have been coupled with models that simulate ice sheets (e.g., Hyde et al., 2000;83

Poulsen et al., 2007; Horton et al., 2012), but prognostic climate simulations of moun-84

tain glaciation are relatively rare and require some form of downscaling from global GCM85

resolution (e.g., Kotlarski et al., 2010; Shannon et al., 2019).86

Recently, a prognostic ice sheet model, the Community Ice System Model (CISM),87

was added as a fully coupled component to the Community Earth System Model (CESM)88

(Lipscomb et al., 2019). CISM takes ice mass balance information from the Community89

Land Model (CLM), which CLM predicts on the basis of atmospheric component (Com-90

munity Atmosphere Model: CAM) temperature and precipitation information downscaled91

into multiple elevation classes of potential glaciers. Thus, the ice mass balance of a large92

grid cell is considered at an elevation around 3000 m, 2500 m, etc. according to model93

settings. CISM then translates that ice mass balance onto a grid with resolution as fine94

as 4 km and simulates ice flow. CLM version 5 (CLM5) was specifically modified to im-95

prove representation of processes related to hydrology, snowfall, and ice mass balance96

(Lawrence et al., 2019). But CLM5 (with or without CISM) was not designed to sim-97

ulate mountain glaciation realistically because of concerns that under-resolving topog-98

raphy within the atmosphere model results in excessively warm climate and excessive99

runoff (UCAR, n.d.).100

In this study, we demonstrate that CLM5’s ice surface mass balance (SMB) capa-101

bilities can be successfully adapted to simulate tropical mountain glaciation in pre-industrial102

time: a necessary preliminary for validating global paleoclimate model simulations against103

tropical mountain glaciation information. Trying to connect global climate change quan-104

titatively with the response of tropical mountain glaciation is nothing new (see Mölg and105

Kaser (2011); Roe et al. (2021) and references therein). The unique feature of this study106

is modeling tropical mountain glaciation entirely within the framework of a latest gen-107

eration global climate model and its land component.108
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2 Methods109

2.1 CESM2 and CLM5 Simulations110

We performed standalone CLM5 simulations forced by a data atmosphere gener-111

ated by a standard CESM2 simulation on the National Center for Atmospheric Research112

(NCAR) supercomputer Cheyenne (CISL, 2019). Because this is a non-standard con-113

figuration of CLM5, we have archived example case directories, configuration procedure114

documentation, and input files for these simulations within the data archive associated115

with this study (Heavens, 2021). Except for some simulations described later, the CLM5116

code was modified to remove a step in the downscaling of downward longwave radiation117

at the surface (FLDS) that re-normalized the downscaled radiation fields between ele-118

vation classes. This change is consistent with each point in the land model being treated119

as a single elevation class and reduces mountain summit FLDS by ≈ 100 Wm−2.120

The CESM2 data atmosphere came from 30 years of a branch simulation from year121

1101 of the Climate Model Intercomparison Project 6 (CMIP6) standard pre-industrial122

control for CESM2 at f09 g17 resolution (0.9◦ × 1.25◦) (Danabasoglu et al., 2020). A123

pre-industrial control simulation is perpetually forced by greenhouse gas levels for the124

year 1850 CE and is intended to reproduce long-term average climate prior to industri-125

alization (Eyring et al., 2016). Standalone CLM5 simulations then were run in 11 lim-126

ited area domains roughly centered on past or presently glaciated tropical mountains with127

well-documented ELA estimates (Table 1). Two domains with LGM mountain glacia-128

tion but no pre-industrial mountain glaciation (Table 1) were simulated to make sure129

ELA was not substantially underestimated in pre-industrial climate and to set a base-130

line for a future study of LGM climate. The selected areas cover a meridional transect131

in the tropics of Central and South America as well as a few domains in Africa and the132

Maritime Continent to cover a range of observed ELA and proximity to the ocean. This133

choice of domains is meant to span the potential range of precipitation, though this choice134

cannot be rigorous because of the sparseness of precipitation measurements and the het-135

eorogeneity of precipitation in these areas (e.g., La Frenierre & Mark, 2017).136

Each domain was 2◦ in latitude and 1◦ in longitude. The selected domain size en-137

sured multiple glaciated mountains and topography < 2000 m could be included in the138

domain (except in the High Andes). The domain is similar in size to 1–2 global model139

grid cells in the CESM2 simulation.140

Each CLM5 simulation was initialized from high-resolution surface data and land141

domain files (nominally 100 points per degree) in which the global model resolution land142

surface properties except topography/slope were translated to the high-resolution do-143

main by nearest neighbor interpolation. High resolution topography, standard deviation144

of elevation, and slope data were then added using 30 arc-second resolution data from145

GMTED2010 (Danielson & Gesch, n.d.). (Fig. 1a). The topography was used to assign146

each grid point to one of 10 possible elevation classes and set its elevation. To ensure SMB147

could be calculated, glacial column coverage was set to a minimum of 1% (or greater where148

the original land surface dataset had greater glacial column coverage). This additional149

glacial column coverage replaced coverage by vegetation. Glacier region was set to 2 (Green-150

land). We have verified by appropriate simulations that using the different elevation class151

treatments available for glacier regions 2 and 3 (Antarctica) or using 50% glacial cov-152

erage does not affect the results of this type of simulation as long as the SMB and re-153

lated calculations are analyzed on the glaciated land units alone. In effect, these exper-154

iments impose a glacier of 50 m altitude (as evident from the documentation and ini-155

tial grid cell ice content variable, ICE CONTENT1) over a limited grid cell area, in cir-156

cumstances where glaciation has no or minimal impact on large-scale climate, and sim-157

ulate how it accumulates or ablates over a climatological normal period.158
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The experiments were cold started (because only physical climate was of interest)159

and used crop-biogeochemistry physics routines, because agricultural activity occurs in160

some of the domains and it was therefore necessary to include crop biomes. Lapse rate161

was set to the mean free air temperature lapse rate for the domain derived from the CESM2162

simulation. FLDS lapse rate was set to the standard CLM5 setting of 0.032 Wm−2 m−1
163

(Van Tricht et al., 2016; Lawrence et al., 2019). (Positive lapse rate is defined here as164

decreasing with height.)165

The mean free air lapse rate in each CLM5 domain was calculated by calculating166

the mean lapse rate in the troposphere as defined by WMO (1957) for every grid point167

of each monthly mean output file of the CESM2 simulation, interpolating this onto each168

CLM5 domain in the same way as the CLM5 boundary condition files, and then aver-169

aging over 30 years. The results in all cases are between 6 and 7 K km−1 (Table 2).170

To test sensitivity to FLDS, two simulations were performed in domain 4 (Table171

1) with lapse rates of 6 and 7 K km−1 without modifying the FLDS downscaling in CLM5.172

Two additional simulations in domain 4 were performed with the FLDS downscaling mod-173

ified and temperature lapse rates of 7 K km−1 and 4.5 K km−1 to span the reported mean174

lapse rates for proximal areas of the Andes (Córdova et al., 2016; Navarro-Serrano et al.,175

2020).176

2.2 Analysis177

The results of each simulation then were analyzed to extract ELA and ELA-related178

metrics. ELA, strictly speaking, is the elevation where ablation and accumulation are179

in balance, that is, where long-term SMB is equal to zero. Following Vizcáıno et al. (2014),180

SMB = SNOW + RAIN −RUNOFF − SUBLIMATION (1)181

This balance can be expressed in CLM5 output variables restricted to glaciated land182

units only.183

SMB = SNOW ICE + RAIN ICE −QRUNOFF ICE −QFLX SUB SNOW ICE
(2)184

where the quantities in brackets correspond to the terms of Eq. 1 and SNOW ICE,185

RAIN ICE, QRUNOFF ICE, and QFLX SUB SNOW ICE are variables output by CLM5.186

From this point onward, we will use SMB to mean the integrated SMB over the 30 year187

period of each simulation (Fig. 1b).188

The mean annual precipitation for each domain coming from the data atmosphere189

was calculated by calculating the 30 year mean of (RAIN FROM ATM+SNOW FROM ATM).190

We also estimated a freezing zone elevation by taking the 30 year mean of the downscaled191

2 m air temperature variable over ice, TSA ICE and calculating the minimum elevation192

where this mean was < 273.15 K.193

ELA in the absence of flow (ELAnoflow) was estimated by dividing the domain into194

connected regions with SMB > 0. ELA then was defined as the minimum altitude of195

each region. By determining the maximum altitude of each region, it was possible to as-196

sign each region to a mountain with observed ELA estimates. In some cases, however,197

two mountain peaks with estimates were in the same connected region.198

An ELA metric accounting for flow (ELAflow) was calculated by first estimating199

the minimum possible elevation of a terminal moraine originating from each connected200

regions with SMB > 0. The product of SMB and area for each connected region as well201

as the path with steepest slope connected to the maximum altitude of the region were202
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determined. The product of SMB and area in the ablation region along this path were203

integrated and subtracted from the sum of SMB and area in the accumulation zone formed204

by the connected regions. This is equivalent to determining how low in elevation could205

the accumulated ice go if ice were continuously delivered along a one grid cell wide val-206

ley originating from the region. ELAflow then was estimated as the average of the peak207

altitude of the region and the elevation of the terminal moraine in line with a typical tech-208

nique for estimating ELA in the field (Porter, 2001). This type of calculation is illustrated209

in Figs. 1c–d.210

The snow line has been used to approximate ELA under some circumstances (Porter,211

2001). So for comparison, two estimates of the permanent snow line also were calculated.212

SL and SL1m were defined as the minimum altitude at which snow and snow of 1 m depth213

were present in each month during the last month of the simulation, respectively. These214

metrics were calculated for the whole domain by averaging the minimum elevation where215

snow is present and the maximum elevation where snow is absent by analogy with the216

glaciation-threshold method (Porter, 2001). In each case, snow depth was normalized217

by the fraction of glacial coverage to obtain the true snow depth in the glacial column.218

Note that SL1m tends to highlight a small range of elevation where snow depth rapidly219

increases: a true snow line. Thus, choosing a much higher depth criterion only would marginally220

change ELA. In one simulation, SL1m is 4362 m, but SL10m is only 4405 m (Fig. S1).221

3 Results222

The results of this analysis are given in Table 2. The non-glaciated mountains of223

Ajusco, Cerro Chrirripo, and Kinabalu all are hindcast as non-glaciated. However, the224

simulations also hindcast Mts. Kenya and Ngaliema as being non-glaciated. This is most225

likely a resolution problem. For Mt. Ngaliema, uncertainty in the observed ELA is large226

and the upper bound of ELA it implies is greater than the height of Mt. Ngaliema re-227

solved by the model (Table 2). For Mt. Kenya, the observed ELA is within 100 m of the228

model-resolved height (Table 2). The model domains do not resolve the highest peaks229

in several other cases, but the highest elevation in the model is typically significantly greater230

than the ELA. A similar resolution problem makes it difficult to resolve Kilimanjaro’s231

Kibo and Mawenzi peaks, so Kibo peak only will be considered in the remainder of the232

analysis.233

For ten sufficiently resolved mountains with observed glaciation, the bias (∆) in234

the simulated ELA for each of the metrics was estimated by taking the mean and stan-235

dard deviation of the difference between the estimated and observed ELA (Fig. S2). ELAnoflow236

underestimates observed ELA by 249 ± 330 m. Accounting for flow (ELAflow) reduces237

the underestimate to 235 m but greatly widens the uncertainty. But as noted by Porter238

(2001), the method used to derive ELA from terminal moraine elevation may overesti-239

mate ELA by up to 150 m, making ELAflow no superior to that derived based on SMB240

alone. The average simulated snow line is 1084 m below the observed ELA. However,241

requiring 1 m of permanent snow depth reduces this underestimate to 324 m with com-242

parable uncertainty to ELA, suggesting that the snow line illustrated in Fig. S1 is a good243

approximation to ELA rather than a snow line based on a minimal amount of snow. The244

magnitude and variability of biases in all ELA metrics are large enough that they ex-245

ceed the largest reported uncertainties in observed ELA.246

The simulated ELA metrics follow the variability in observed ELA (Fig. S2). Higher247

observed ELA usually results in higher simulated ELA, suggesting that the simulated248

ELA is capturing the variability in observed ELA but underestimating its magnitude.249

For example, the correlation between ELAnoflow and SL1m and observed ELA is r=0.94250

and r=0.94 respectively (n=10), which is significant to p<0.001. This correlation is weaker251

for the other metrics but is still significant to p<0.01. Because of its intuitiveness and252

correlation with observed ELA, we consider ELAnoflow to be the most useful ELA met-253

–7–
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Figure 1. Example CLM5 standalone simulation and its analysis, as labeled: (a) Topo-

graphic grid (m). Mountains of interest are labeled, but only Chimborazo and Antisana have

ELA estimates; (b) Net SMB for the simulation (m). Connected regions (accumulation zones)

are indicated by contours; (c) Topographic map (m) showing the accumulation zone for Antisana

in black and the steepest path from the peak used to find the minimum elevation for a termi-

nal moraine in blue; (d) SMB vs. topography for the entire domain with relevant estimates and

observations for Antisana labeled.
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ric, and we will focus on attribution of its bias in the remainder of this study. Global254

variability in ELAnoflow is explained by precipitation coming from the GCM, with which255

it is strongly correlated (r=-0.91, p<0.001) (Fig. 2a). This strong relationship between256

precipitation and ELAnoflow contrasts with the insignificant correlation between ELAnoflow257

and freezing zone elevation (r= 0.12) and the narrow range in freezing zone elevation258

(Fig. S3). Modeled air temperatures can average below freezing > 1000 m below the hind-259

cast ELAnoflow (Fig. S3).260

Two possible sources of bias in ELA are the major free parameters of the exper-261

iments, the temperature and FLDS lapse rates, particularly in domain 4. We first con-262

sider temperature lapse rate. In domain 4, ELA is underestimated by ∼ 400 m (Table263

2). Estimates of the mean near-surface lapse rate over the Andes in or near domain 4264

vary from ∼ 4.5–6.9 K km−1 (Córdova et al., 2016; Navarro-Serrano et al., 2020) (a much265

larger range than would be expected for the change in free air lapse rate between 1850266

and the present day), which would be consistent with ELAnoflow of 4288–5178 m for Chimb-267

orazo and 4237–5161 m on Antisana (Table 2). Thus, the gentler lapse rates of Córdova268

et al. (2016) would explain 778 m of bias, (173% of the total) at Chimborazo, and 810269

m (225% of the total) at Antisana.270

Despite being derived from observations over Greenland (Van Tricht et al., 2016),271

the FLDS lapse rate agrees well with available observations in domain 4. Annual mean272

FLDS on Antisana was 283 Wm−2 during 2005–2006 (Wagnon et al., 2009). We used273

the assumed FLDS lapse rate to translate between the elevation of these observations274

and the elevation of the nearest grid point in the high resolution grid (∼ 300 m). We then275

compared the annual mean FLDS at the nearest grid point in the CESM2 simulation with276

the annual mean FLDS for the period sampled by Wagnon et al. (2009) in the CESM2277

CMIP6 historical simulation (b.e21.BHIST.f09 g17.CMIP6-historical.003) at the same278

grid point. This comparison implies FLDS was 1.4 Wm−2 greater during 2005–2006 than279

around 1850. With all of these adjustments made, the expected annual mean FLDS in280

standalone CLM5 simulations at Wagnon et al. (2009)’s observation site on Antisana should281

be 275 Wm−2, 8 Wm−2 lower than observed. This is equivalent to a +8% error in the282

assumed FLDS lapse rate. If the standard CLM5 downscaling is used, the annual mean283

FLDS is 381.41 Wm−2. At a temperature lapse rate of 7 K km−1, the sensitivity in ELAnoflow284

to FLDS is 9.2 m (Wm−2)−1, explaining an ELAnoflow underestimate of 77 m, 21% of285

∆ELAnoflow at Antisana. (Interpolating the results of the standard CLM5 downscal-286

ing simulations to 6.56 K km−1 and differencing with the 6.56 K km−1 lapse rate mod-287

ified downscaling simulation for domain 4 only changes this result to 87 m and 24%).288

Another possible source of bias is data atmosphere precipitation bias. Meteorolog-289

ical observations from the Quito Observatory in domain 4 start from 1894 and suggest290

mean annual precipitation for pre-industrial climate was 1000 mm (Domı́nguez-Castro291

et al., 2018), ∼ 2200 mm less than provided by the data atmosphere and equivalent to292

66 m of SMB. If this excess SMB is removed from the domain 4 simulation and re-analyzed,293

ELAnoflow increases to 4760 m (+360 m, 80% of the bias) on Chimborazo and 4680 m294

(+329 m, 90% of the bias) on Antisana (Fig. 2b).295

4 Discussion296

Where it resolves glaciers, our hindcasting framework typically underestimates ELA,297

naively implying a cold bias in simulating tropical mountain climates. This result is some-298

what surprising in light of the concern of (UCAR, n.d.) that CLM5 mountain glaciation299

simulations would be biased warm. However, hindcast ELA in the tropics seems largely300

controlled by precipitation rather than temperature (Figs. 2a-b; S3). Mean air temper-301

atures are generally below freezing above 4100 m elevation, but substantial precipita-302

tion (ideally snowfall, which does not immediately contribute to runoff) is required to303
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Figure 2. (a) ELAnoflow (m) vs. precipitation coming from the data atmosphere (mm); (b)

Bias in ELAnoflow (m) vs. precipitation coming from the data atmosphere (mm); The abbrevia-

tions used are given in Table 2.
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outpace melting and sublimation due to absorption of shortwave and longwave radia-304

tion as well as temperatures rising above freezing seasonally.305

Thus, ELA bias either could be entirely explained by the wide possible difference306

between near-surface temperature lapse rate and free air lapse rate, or by excess precip-307

itation coming from CESM2. But the strong dependence of hindcast ELA on precipi-308

tation suggests the latter is more likely. Moreover, lapse rate bias would explain too much309

of the ELA bias, requiring some other compensating factor to be invoked. Using near-310

surface lapse rate information in CLM5 probably would be the correct protocol if pre-311

cipitation type strongly depended on near-surface air temperature, but precipitation type312

is initially set by cloud temperature, which may be better extrapolated from the free air313

lapse rate. CESM2 is considered highly skillful among CMIP6 models in simulating pre-314

cipitation in the tropical Andes, but still seems to have significant bias locally (Almazroui315

et al., 2021). In some cases, ELA bias cannot be easily attributed to precipitation bias.316

Precipitation at Iztaccihuatl (Fig. 2a) is realistic or slightly excessive for the area around317

Mexico City (Lemos-Espinal & Ballinger, 1995), but there is a positive bias in ELA of318

∼ 100 m (Fig. 2b). Biases of this magnitude may come from ELA reconstruction un-319

certainty (including the possibility that the glaciers not being really at equilibrium) (Porter,320

2001; Hastenrath, 2009). ELA uncertainty estimates for other peaks are up to ± 150 m321

(Table 2). Kibo has the opposite problem, a large negative bias in ELA at low mean an-322

nual precipitation (Fig. 2b). But, here, too, ELA reconstruction may be at issue. The323

adjoining Mawenzi Peak has an observed ELA of 5030 m (378 m below Kibo), which would324

explain 120% of the bias.325

It thus appears that correcting for model precipitation and ELA uncertainty makes326

our hindcasting framework a success. However, while freezing zone elevation is proba-327

bly relatively similar across the tropics for pre-industrial climate, it likely changes as global328

climate warms and cools, driving ELA change. Therefore, paleoclimate model valida-329

tion experiments that use tropical mountain glacier information will have to rely on lo-330

cal precipitation proxy information to distinguish global-scale temperature bias from lo-331

cal precipitation bias.332

5 Summary333

In this study, we have shown how downscaling CESM2 global simulations in CLM5334

can hindcast tropical mountain glaciation in pre-industrial climate. This technique may335

be broadly valuable for paleoclimate model validation for models analogous in capabil-336

ity to CESM2 and CLM5 for any period with identified tropical mountain glaciation. Note,337

however, that tropical mountain glaciation information should be interpreted in tandem338

with proximal, independent precipitation proxy data to avoid mistaking a local signal339

in precipitation for a global signal in temperature.340
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X - 2 HEAVENS: DOWNSCALING CESM2 IN CLM5 FOR TROPICAL GLACIERS
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Figure S1. Snow depth over glaciers in the standard hindcast simulation (modified downscaling

of downward longwave radiation and free atmosphere tropospheric lapse rate) for domain 4. Snow

depth-based ELA criteria are indicated with vertical lines.
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Figure S2. Comparison of different ELA estimates (m) with observed ELA (m) and their

uncertainties (m) for mountains with both observed and simulated ELA. Mountain names on

the x-axis are abbreviated and in the same order as Table 2. The estimated mean bias and 2σ

uncertainty in each metric is listed next to the legend.
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Figure S3. ELAnoflow (m) vs. freezing zone elevation (m) for each mountain with observed

and simulated ELA. The abbreviations used are given in Table 2
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