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Abstract

A single week-long warm event in midwinter in Svalbard flooded an inefficient en- and subglacial drainage system and led to a
2.5x velocity increase that remained in effect for the remainder of the winter - more than 3 months. Because of the long winter
season, changes in winter velocity have a large impact on the annual average velocity. As the climate warms and surface melt
and rain events increase during winter months, sustained high winter glacier velocities are likely to occur more often. Increasing
glacier velocity near the terminus leads to additional ice entering the fjord, and an increase of ice dynamics contribution to sea
level rise during winter.
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Abstract15

A single week-long warm event in midwinter in Svalbard flooded an inefficient en- and16

subglacial drainage system and led to a 2.5x velocity increase that remained in effect for17

the remainder of the winter - more than 3 months. Because of the long winter season,18

changes in winter velocity have a large impact on the annual average velocity. As the19

climate warms and surface melt and rain events increase during winter months, sustained20

high winter glacier velocities are likely to occur more often. Increasing glacier velocity21

near the terminus leads to additional ice entering the fjord, and an increase of ice dy-22

namics contribution to sea level rise during winter.23

Plain Language Summary24

Most glacial field studies occur in summer due to the difficulties of winter polar field-25

work. However, because of this long Arctic winter season, changes in the winter ice speed26

can cause large changes in annual average speed. The causes of these changes are gen-27

erally well-understood and linked to water inputs to the inside and the base of the glacier.28

We installed a pressure transducer in an ice cave, and combined with a model, weather29

stations, and GPS measuring ice speed, we show that a single week-long warm event in30

the winter led to a more than doubling of the winter velocity for more than 3 months.31

In a warming climate, more winter melt and rain is likely to occur, and may lead to in-32

creased winter glacier velocity, additional ice entering fjords, and increased rates of sea33

level rise.34

1 Introduction35

Glacier velocity changes are primarily driven by internal drainage system (IDS) hy-36

drologic changes (Anderson et al., 2004; Bingham et al., 2006; Brinkerhoff et al., 2016;37

Hooke et al., 1997; Iken & Bindschadler, 1986; Jansson, 1995; Mair et al., 2003; Willis,38

1995). In the spring, warming atmospheric temperatures start melting the glacier sur-39

face, and snowfall becomes rain. As the meltwater and rain enters an inefficient subglacial40

system, effective basal pressure decreases and ice velocity increases. Eventually, larger41

volumes of basal water carve large subglacial channels that efficiently exhaust the wa-42

ter, and a mid-to-late summer slowdown may occur. Minimum velocity is often in the43

early fall when the surface runoff stops and water leaves the subglacial system more quickly44

than the creep closure of the large subglacial conduits, leading to high effective pressure.45

Throughout the winter, velocity starts to increase again as subglacial conduits shrink46

and decrease the effective basal pressure. There may also be some delayed water from47

the upper part of the glacier that impacts winter velocity (Joughin et al., 2008; Stevens48

et al., 2016; Vijay et al., 2019).49

Overlaid on the seasonal cycle, short-term velocity increases are generally associ-50

ated with lake drainage, rain, or excessive warm events – all of which can generate suf-51

ficient surface meltwater that, when delivered to the bed, can temporarily overwhelm52

even large subglacial channels (Anderson et al., 2014; Bartholomaus et al., 2008; Doyle53

et al., 2015; Hart et al., 2019; Schoof, 2010).54

Because the IDS is less efficient in the winter or early spring, less water is needed55

in these seasons to fill it, overwhelm it, and cause an ice dynamics response. This prop-56

erty is the cause of spring velocity spikes observed on temperate and polythermal glaciers57

and ice sheets (Bingham et al., 2006; I. Hewitt, 2013; Kessler & Anderson, 2004; Mair58

et al., 2003), and why many surge events, correlated with high basal water pressures, start59

in winter (Harrison & Post, 2003; Kamb et al., 1985; Lingle & Fatland, 2003; Sund et60

al., 2014).61
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Although glacier studies usually occur during summer months, likely due to the62

difficulties of Arctic winter fieldwork, there is an increasing body of literature highlight-63

ing the importance of variability in winter motion (e.g., Burgess et al., 2013; Hart et al.,64

2019; Schoof et al., 2014; Sole et al., 2013). Because the Arctic winter (and associated65

slower glacier velocities) is longer than the Arctic summer (and associated glacier veloc-66

ity increase), an increase in winter ice velocity can have a disproportionately large in-67

crease in annual average ice velocity.68

Here we add to the growing body of winter velocity studies by presenting a time69

series of 2016 and 2017 winter observations at a polythermal high Arctic glacier. Data70

include water level from inside an englacial channel, velocity measurements of the glacier71

surface, automatic weather station (AWS) data, remote sensing synthetic aperture radar72

(SAR) images of the glacier surface, and a regional short-range high-resolution weather73

model.74

2 Study area75

Hansbreen is a 15.6 km long polythermal tidewater glacier, with a mean ice thick-76

ness of 171 m (Grabiec et al., 2012), situated at 77° 04’N, 15° 38’E in southwest Spits-77

bergen (Figure 1a). It flows towards the south, extending from 664 m altitude to sea level,78

with a ca. 150 m yr−1 velocity at the terminus and a 55–70 m yr−1 velocity 3.7 km up-79

stream (B laszczyk et al., 2009). It is climatically, environmentally, and glaciologically80

similar to other Svalbard tidewater glaciers (Grabiec et al., 2012; Hagen et al., 1993, 2003).81

In the past, water level measurements have been collected directly from within its moulins82

(Schroeder, 1998a, 2007; Vieli et al., 2004) indirectly via ground-penetrating radar (GPR)83

(Jania et al., 2005), and there have been several en- and sub-glacial explorations quan-84

tifying bed properties (Benn et al., 2009; Chen et al., 2018; Gulley et al., 2012, 2014; Mankoff85

et al., 2017)86

This study focuses on measurements from inside an englacial system called Crys-87

tal Cave (CC, Figure 1), which has been active since at least 1967 (Benn et al., 2009;88

Turu, 2012; Schroeder, 1998a, 1998b). Crystal Cave is know to recharge from four moulins89

and may be occasionally supplied during high discharge events by one additional moulin90

and one supraglacial stream (Figure 1b) flowing at the interface of the Tuva nunatak and91

the Tuvbreen glacier (Figure 1a). A subglacial model shows the presence of a subglacial92

channel nearby CC’s entrance (Decaux et al., 2019) and GPR measurements confirm its93

connection with the subglacial drainage network (Pälli et al., 2003).94

3 Methods95

3.1 Velocity96

We measured velocity with a Global Navigation Satellite Systems (GNSS) receiver97

Leica Geosystems GPS1200 (L1/L2), that sampled every 3 hours at stake 4MONIT (Fig-98

ure 1a). Daily speed was calculated from daily displacement of the stake. We define the99

baseline velocity as the mean velocity from December 1 2016 through February 1 2017.100

The velocity has also been surveyed for decades at a stake network along Hansbreen’s101

center line (stakes 2 through 11 in Figure 1a) but with a lower temporal resolution. GNSS102

positions were recorded (with the same receiver model as at stake 4MONIT) weekly for103

stakes 2 through 5, and monthly for stakes 6 through 11, depending on weather condi-104

tions. The minimum observation time at those stakes is between 20 and 30 minutes. Speed105

is reported in meter per day even when measured over longer time periods.106

Post-processing of all GNSS measurements is done at the Polish Polar Station with107

Leica Geo Office software by using the reference station (Leica GRX1200 Pro) located108
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Figure 1. (a) Map showing the locations of the glacier Hansbreen in Svalbard (insert map),

the two automatic weather stations (AWS), the 10 velocity stakes, Crystal Cave, subglacial chan-

nels from Decaux et al. (2019) and the ELA for 2016 (the accumulation area being above the

ELA and ablation area being below the ELA). The background map is an WorldView-2 satellite

image acquired on 21 August 2015 combined with an ASTER satellite image acquired on 17 Au-

gust 2020 and the coordinate system used is WGS 1984 UTM zone 33N. (b) Vertical profile of

englacial channel Crystal Cave from April 2017 with sensors locations.

at the Polish Polar Station. The estimated error is between ±0.025 - 0.005 m day−1 and109

is more than an order of magnitude lower than our measurements.110

3.2 Englacial water pressure111

Englacial water pressure was recorded by placing HOBO 250-Foot Depth Water112

Level Data Loggers inside the the Crystal Cave system (Figure 1b). Data loggers recorded113

pressure and temperature every 30 minutes, have a resolution of 2.55 kPa for a typical114

error of 3.8 cm water level, and were resampled to daily average values in post-processing.115

Sensors were placed in vertical sections of the cave by drilling anchor points into116

the ice roof above the vertical shaft, then hanging cables down in the center of conduit117

(Figure 1b). Stabilization cables were used to keep sensors from attaching to and freez-118

ing into ice walls by attaching the sensor to three horizontal cables anchored into the ice119

walls at ca. 120 degrees apart. Although we installed two sensors in CC using this method,120

the upper one was quickly buried due to the cave surface melting down and drifting snow121

(Figure 1b).122
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Here, we report data from the lower senor installed in CC 28 m above the glacier123

bed (measured) and 46 m below the ice surface (estimated) (Figure 1b) in ice estimated124

to be 74 m thick. We calculate the flotation fraction k as the ratio between water pres-125

sure (Pw) and ice overburden pressure (Pi) (Flowers & Clarke, 1999) following equation126

1 and 2:127

k =
Pw

Pi
, (1)

with:128

Pw = ρwgzw and Pi = ρigzi, (2)

where ρw is the water density (1000 kg m−3), ρi is the ice density (917 kg m−3), g is the129

acceleration due to gravity (9.81 m s−2), zw and zi are respectively water level above the130

bedrock (measured in the cave in m) and ice thickness (74 m).131

3.3 Weather132

3.3.1 Observed133

A nearby weather station, 1.8 km away from CC, provides air temperature from134

the glacier surface at ca. 165 m a.s.l (AWS1 in Figure 1a). Air temperature, sampled135

every 10 minutes with ±0.1° C accuracy, comes from a Campbell Scientific 107, and is136

averaged to daily resolution in post-processing. Precipitation measurements were made137

at AWS2 at ca. 10 m a.s.l (Figure 1a), located at the Polish Polar Station ca. 1.6 km138

from the glacier front, with a Hellmann rain gauge D-200 that measured both solid and139

liquid precipitation. Results were converted into liquid water equivalent in millimeters.140

Because the measurements are carried out at 0600 UTC+1, the precipitation day is de-141

fined as beginning at 0600 UTC+1 on the observed day and ending 0600 UTC+1 on the142

day after. Therefore, precipitation measurements are temporally offset by 6 hours.143

3.3.2 Modeled144

Meteorological data from the AROME-Arctic model were to provide a spatially broader145

view of weather events than can be provided by the point-measurements from the AWS.146

The AROME-Arctic model is a regional short-range high-resolution forecasting system147

for the European Arctic with a 2.5 km grid resolution developed by the Norwegian Me-148

teorological Institute (Køltzow et al., 2019; Müller et al., 2017). Forecasted surface vari-149

ables (e.g., 2 m temperature, 2 m humidity) are interpolated over the grid based on op-150

timal interpolation (Giard & Bazile, 2000). Alexander et al. (2020) validated the fore-151

casted weather with observed weather for the Svalbard airport for the observation pe-152

riods in 2016 and 2019. The airport observations show good agreement with the clos-153

est grid point of the model in the general trends of both air temperature and rainfall.154

Here we used hourly model data to calculate average daily temperature and net precip-155

itation. Because we present daily average results, it is possible to have liquid rain on a156

day when the daily average temperature is below zero.157

3.4 Satellite data158

In addition to point-observations of rain and warm events from the AWSs, and re-159

gional model results, we also show remotely sensed rain in synthetic aperture radar (SAR)160

data following methods from Winsvold et al. (2018). For the study period, Sentinel-1 A161

radar images (from orbit 37 with a repeat cycle of 12 days) were converted to radiomet-162

rically calibrated backscatter images. We applied a backscatter terrain correction using163
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the digital elevation model ASTER 1sec GDEM, and then converted the linear backscat-164

ter values to decibels (dB; Figure 3a-e).165

Figure 2. Time series of air temperature at AWS1 (positive red line and negative black line),

precipitation (solid, mixed and liquid) at AWS2 (blue area), water level above the bedrock at CC

and flotation fraction (k) (blue line) glacier speed at 4MONIT stake (grey line), and glacier speed

at all other stakes (bottom panel) during the winter 2016/2017.

4 Results166

During our study period, from 2016-12-01 through 2017-05-29, daily average tem-167

peratures recorded at AWS1 were below 0° C except for two periods, of which only one168

was longer than two days. From AWS2 and AROME-Arctic model, both of these warm169

events included rainfall events (Figures 2 and 3).170
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4.1 Temperature and hydrology171

We highlight the week-long warm period (6 days 20 hours and 30 minutes) with172

a maximum of 3° C and mean of 1.5° C in early February 2017 (Figure 2). During this173

period, rain fell over the entire glacier surface (Figure 3). Prior to this warm event, the174

glacier surface is relatively dry (Figure 3a,b), and water level was below the sensor (less175

than 28 m above the bed) and therefore not shown in figure 2. On 16 February 2017,176

five days after the winter melt/rainfall event, the entire glacier surface is wetter (Fig-177

ure 3c). Beginning 64.5 hours after the first melt day (temperature > 0° C) water rose178

over 3 days to more than 60 m above the glacier bed, remained there for more than 9179

days, then rapidly dropped below the sensor for about 7 days, and returned to a level180

around 38 m above the bedrock (k around 0.55), and remained there for the duration181

of the record, until June 2017 (Figure 2). Several weeks after the warm event, the glacier182

surface is drier (Figure 3d, e).183

4.2 Velocity184

The velocity record at 4MONIT begins at ca. 0.07 m day−1 and climbs slowly to185

just under 0.1 m day−1 from 1 December 2016 through 10 February 2017. Coincident186

with the water level increase, velocity increased to more than 400 % of the baseline ve-187

locity, then dropped to ca. 200 % and then remained near 250 % of the baseline veloc-188

ity for the duration of the record, until June 2017.189

The lower ablation area of the glacier (stakes 2 through 4) reacted similarly to stake190

4MONIT (Figure 2). The upper ablation area (stakes 5 through 7) also exhibited an in-191

crease in average winter velocity after the warm event. The accumulation area (stakes192

8 to 11) did not respond to the event (Figure 2).193

5 Discussion194

Because of the length of Arctic winter vs. summer the annual velocity is primar-195

ily controlled by the winter velocity (Table 1). Therefore, persistent high winter veloc-196

ities represent a substantial dynamic response and potential significant source of addi-197

tional sea level rise. The occurrence of winter warm events (Pitcher et al., 2020; Wu, 2017)198

and winter rain events (Nowak & Hodson, 2013) in the Arctic is increasing (Graham et199

al., 2017;  Lupikasza et al., 2019; Moore, 2016; Peeters et al., 2019; Sobota et al., 2020;200

Vikhamar-Schuler et al., 2016). Winter warm events may have a larger influence on the201

annual average velocity of the glacier than a warm event or a rain event in summer - in202

the case presented here, a brief winter warm event increased glacier velocity more than203

200 % over the baseline velocity for several months. Until enough winter water enters204

the glacier system to cause efficient drainage channels, it is likely that small volumes of205

winter water, spread over the entire glacier, will act analogous to a ”spring event”, in-206

ducing an increase in ice velocity (Bingham et al., 2006; Kessler & Anderson, 2004; Mair207

et al., 2003), with no subsequent decrease, as shown here. This persistent doubling ve-208

locity from the baseline only occurs in the ablation area (Figure 2), as the IDS does not209

exist in the accumulation area (Decaux et al., 2019).210

The winter warm event described here supplied the entire glacier with a both melt-211

water and rain (Figure 2 and 3) resulting in wetting of the entire glacier surface (Fig-212

ure 3c). We are not able to determine using the SAR images if the lowermost part of Hans-213

breen has been influenced by this event (Figure 3c) due to crevasses causing an increase214

in backscatter coefficient (Forster et al., 1996). After the warm event and coincident rise215

in water level (Figure 2), the water briefly drops below the sensor (< 28 m above the bed),216

then returns to 38 m above the bed, followed by a slight decrease in water level and slight217

increase in velocity. We hypothesize that the volume of meltwater generated by the warm218

event was large enough to briefly reopen the IDS. If so, then some water likely evacu-219
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Figure 3. Sentinel-1A backscatter (dB) images from five different days for Hansbreen (a-e).

Blue color indicates lower backscatter values showing wetter conditions. The three graphics rep-

resent the rainfall modeled by the AROME-Arctic model for seven locations shown on the map

(c) by the corresponding numbered purple points for the study period. Winter melt event studied

is highlighted in blue on each time series and images (a-e) are placed on the timeline of the first

panel.

Stake 3 Stake 4 Stake 5

Annual (2009-18) 0.37 0.21 0.15

Winter (2009-18) 0.36 0.20 0.15

Summer (2009-18) 0.40 0.22 0.17

Table 1. 10 years average velocity for stakes 3, 4 and 5 in m.d-1. Winter represents the period

from October to May and summer the period from June to September.

ated out the glacier front, after which the remaining water was captured within in the220

IDS due to creep-closure of subglacial channels (Duval, 1977; Duval et al., 1983; Glen,221
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1955). It is likely creep closure explains the 10 m water level increase (from the sensor222

at 28 m above the bed to the final ca. 38 m above the bed; Figure 2) observed at the223

end of February. This upwelling, together with a re-pressurisation of the subglacial sys-224

tem, explains the velocity increases (Davison et al., 2019). After this upwelling ends in225

early March, the slow decrease in water level is due to water leaving this cave system.226

It is not likely that water is directly draining out the front of the glacier into the fjord,227

because a decrease in subglacial water volume would likely cause a decrease in ice ve-228

locity, not an increase as shown here. Therefore, the local decrease in water level is likely229

due to creep closure of the system, pushing water to the surrounding bed, and decreas-230

ing the effective pressure (Cowton et al., 2016; I. J. Hewitt, 2011; Werder et al., 2013),231

after which it may or may not leave the glacier. Water transfer from a channelized sys-232

tem to the surrounding bed increases the water pressure within the distributed system233

at the base of the glacier, leading to an increase in ice velocity (Cowton et al., 2016; Mair234

et al., 2002). This warm winter event may have also influenced the velocity of the fol-235

lowing 2017 summer, which had an average near-terminus velocity 18 % higher than the236

last 10 years (0.47 m.d−1 compare to 0.40 m d−1) (Table 1).237

If we assume stake 2 as representative of the front velocity (Figure 1a), its winter238

baseline velocity (from 2016-12-01 to 2017-02-01) is ca. 0.19 m day−1. After the warm239

winter event its average velocity is ca. 0.34 m day−1 until the end of the accumulation240

season (end of May). The velocity increase from this warm event, lasting more than 3241

months, is ca. 0.15 m day−1. If the ice front did not move and velocity can be directly242

related to calving, then 80 % more ice entered the fjord in the 2016/2017 winter than243

if this 1-week warm event had not occurred, or ca. 20 % (ca. 5 Mt) more ice compared244

to the annual average. Here the annual increase is only 20 % from the 80 % winter in-245

crease, because the anomaly only occurs for 3 winter months.246

Data gaps and velocity spikes - We show two gaps in the temperature record (du-247

ration of 6 days and 5 days), due to a sensor malfunction, during which precipitation events248

occur in December 2016 (Figure 2). There is no observed water level fluctuations (wa-249

ter level remained within 28 m of the bed) and no coincident velocity increase. There-250

fore, we assume that temperatures remain below 0° C. In addition, there are 3 one-day-251

long velocity increases prior to the February event, with coincident AROME-Arctic model252

rain events (Figure 3). We assume the cause of these short-term velocity increases is from253

these rain events. However, they have no lasting impact observed in our data.254

Our dataset also highlights winter water storage with implications for observed win-255

ter discharge (e.g., Hodge, 1974; Hodgkins, 1997; Hodson et al., 2005; Jansson et al., 2003;256

Wadham et al., 2000). Our observed water level remains more or less steady at 38 m above257

the bedrock with k values around 0.55 (Figure 2), providing evidence of multi-month stor-258

age of large volumes of water. However, water can move dynamically and discharge to259

the distributed system, from the channelized one, while appearing more or less steady260

at the location of the logger, if the subglacial system closes equal to the volume discharged.261

We note that Pitcher et al. (2020) attribute their winter Greenland glacier discharge to262

storage of summer runoff, but acknowledge a warm event 10 days prior to their one day263

observation. Our data suggests that winter warm events may fill the system and could264

be the cause of winter discharge.265

Similarly, Vijay et al. (2019) identified “type-3” glaciers in Greenland which are266

characterized by winter speedup events associated with subglacial meltwater activity. They267

assign the meltwater to different sources: basal meltwater, ocean water infiltrating into268

the subglacial system, and meltwater that did not evacuate through channels during the269

melt season and was retained in the firn and ice body. We suggest that in addition to270

these sources, winter warm events of which there are an increasing number in Greenland271

(Oltmanns et al., 2019), may create “type-3” glaciers.272
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The observations here are not unique to this glacier or Svalbard. After a warm win-273

ter event in Iceland, a Glacsweb wireless probe installed at the Skálafellsjökull glacier274

bed by Hart et al. (2019) observed a similar water pressure pattern. After an initial wa-275

ter pressure increase attributed to the warm winter event, they recorded a sharp water276

pressure decline followed by a slow rise on subsequent days until the next melt event (Hart277

et al., 2019). Other Arctic glaciers may also be susceptible to these events. As the cli-278

mate warms, precipitation onto the Greenland ice sheet is likely to shift towards a higher279

fraction of rain in the total precipitation (Bintanja & Andry, 2017; Boisvert et al., 2018;280

Lenaerts et al., 2020; Screen & Simmonds, 2012). If glacier dynamics models do not take281

into account the increase in off-season rain shown by regional climate models, then they282

may not properly model the magnitude of dynamic changes, with related limitations in283

their ability to properly estimate sea level rise.284

6 Conclusions285

We show an Arctic glacier, as a result of a single week-long winter warm event, has286

its average winter velocity in the ablation area more than quadruple (temporarily) and287

remain at more than double the baseline for the remainder of the winter. The velocity288

increase appears to be sustained by englacial and subglacial water storage. Within 10289

days of the event a nearly steady state is reached, albeit with a small decrease in water290

level and continued small increase in ice velocity for the remainder of the winter. We at-291

tribute this to water transfer out of subglacial conduits to the distributed system at the292

base of the glacier.293

Warm winter events in the Arctic are being reported more often, and predicted to294

occur more often in a warming climate. We show these warm events can lead to large295

and sustained increases in ice velocity. Arctic tidewater glaciers are currently the most296

significant contributor to eustatic sea level rise. Further studies linking the atmosphere,297

ice velocity, and the winter subglacial hydrologic system are needed to quantify this con-298

tribution to sea level rise.299
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B., . . . Forster, R. R. (2020). Direct observation of winter meltwater504

drainage from the greenland ice sheet. Geophysical Research Letters, 47 (9),505

e2019GL086521.506

Schoof, C. (2010). Ice-sheet acceleration driven by melt supply variability. Nature,507

468 (7325), 803–806.508

Schoof, C., Rada, C., Wilson, N., Flowers, G., & Haseloff, M. (2014). Oscillatory509

subglacial drainage in the absence of surface melt. The Cryosphere, 8 (3), 959–510

976.511

Schroeder, J. (1998a). Hans glacier moulins observed from 1988 to 1992, svalbard.512

Norwegian Journal of Geography , 52 (2), 78–88.513

Schroeder, J. (1998b). Indications of climate change from moulin evolution.514

Salzburger Geographische Materialien, 28 , 27–33.515

Schroeder, J. (2007). Moulins of a subpolar glacier seen as a thermal anomaly. In516

Karst and cryokarst: Joint proceedings of the 25th speleological school and 8th517

international glackipr symposium (pp. 65–74).518

Screen, J. A., & Simmonds, I. (2012). Declining summer snowfall in the arctic:519

Causes, impacts and feedbacks. Climate dynamics, 38 (11-12), 2243–2256.520

Sobota, I., Weckwerth, P., & Grajewski, T. (2020). Rain-on-snow (ros) events and521

their relations to snowpack and ice layer changes on small glaciers in svalbard,522

the high arctic. Journal of Hydrology , 590 , 125279.523

Sole, A., Nienow, P., Bartholomew, I., Mair, D., Cowton, T., Tedstone, A., & King,524

M. A. (2013). Winter motion mediates dynamic response of the greenland ice525

sheet to warmer summers. Geophysical Research Letters, 40 (15), 3940–3944.526

Stevens, L. A., Behn, M. D., Das, S. B., Joughin, I., Noël, B. P., van den Broeke,527
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