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Abstract

The paper presents a combined numerical - deep learning (DL) approach for improving wind and wave forecasting. First, a

DL model is trained to improve wind velocity forecasts by using past reanalysis data. The improved wind forecasts are used

as forcing in a numerical wave forecasting model. This novel approach, used to combine physics-based and data-driven models,

was tested over the Mediterranean. It resulted in 10% RMSE improvement in both wind velocity and wave height forecasts

over operational models. This significant improvement is even more substantial at the Aegean Sea from May to September,

when Etesian winds are dominant, improving wave height forecasts by over 35%. The additional computational costs of the

DL model are negligible compared to the costs of either numerical models. This work has the potential to greatly improve the

wind and wave forecasting models used nowadays by tailoring models to localized seasonal conditions, at negligible additional

computational costs.
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Key Points:5

• A deep learning recurrent-convolutional model to improve wind and wave forecast6

is designed. The model is trained to improve wind forecast based on past reanal-7

ysis data. The resulting improved wind field prediction is used as an input for the8

wave forecasting model.9

• Even without prior physical knowledge, the model manages to improve both wind10

and wave forecasts RMSE by ∼10% over the Mediterranean, and ∼35% over the11

Aegean Sea during Etesian wind.12

• The presented model has negligible additional computational costs, and can be13

generalized to a global grid or specialized to a high-resolution local grid.14
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Abstract15

The paper presents a hybrid numerical - deep learning (DL) approach for improving wind16

and wave forecasting. First, a DL model is trained to improve wind velocity forecast by17

using past reanalysis data. The improved wind forecast is used as a forcing for WAVE-18

WATCH III numerical wave forecasting model. This novel approach to combine physics-19

based and data-driven models was tested over the Mediterranean. It resulted in root mean20

squared error (RMSE) of ∼10% lower in both wind velocity and significant wave height21

forecasts over standard operational models. This significant improvement is even more22

substantial when examining the local region of the Aegean Sea during May to Septem-23

ber, when the Etesian wind is dominant, improving wave height forecasts RMSE by over24

35%. The additional computational costs of the new DL model are negligible compared25

to the costs of either numerical models. This work has the potential to revolutionize the26

weather forecasting models used nowadays by tailoring models to localized seasonal con-27

ditions, with negligible additional computational costs. The derived methodology can28

also be applied to various other fields, where the deep learning model can learn to pre-29

dict measured or simulated results from an initial, less accurate model.30

Plain Language Summary31

Modern wave forecasting originated in the D-Day invasion, while attempting to pre-32

dict the optimal date for departure. In the decades since it has come a long way, and33

currently forecasting models are sets of complicated, physics-based equations. Similar,34

and even more complex models are used to make wind forecasts, which are needed as35

inputs for the wave models. This work presents a deep learning model improving the wind36

forecast, and consequently improving also the wave forecast. The novel approach of com-37

bining deep learning and classical forecasting models was tested over the Mediterranean38

Sea, and resulted in ∼10% improvement in both wind and wave forecasts over current39

operational model. This significant improvement is even more substantial when exam-40

ining the local region of the Aegean Sea during May to September, when the Etesian wind41

is dominant, improving wave height forecasts by over 35%. This work has the potential42

to revolutionize the weather forecasting models used nowadays by tailoring models to43

localized seasonal conditions, with negligible additional computational costs. The derived44

methodology can also be applied to various other fields, where the deep learning model45

can learn to predict measured or simulated results from an initial, less accurate model.46

1 Introduction47

Wind velocity accuracy has been established as one of the most significant factors48

in achieving an accurate ocean waves forecast (Bidlot et al., 2002). For this reason, op-49

erational wave forecasting models aim to use the most accurate wind fields available, with50

a high resolution in both space and time. The models producing the wind fields are highly51

computationally expansive, simulating many layers in the atmosphere. The results of the52

wind models are later reanalyzed to assimilate measurements taken by various instru-53

ments such as satellites, radars and point measurement devices. The reanalysis data is54

used to assess, study and improve the forecast ability (Hersbach et al., 2020).55

Traditionally, wave forecasting models, such as WAM (Hasselmann et al., 1988),56

WAVEWATCH III (Tolman, 1991) or SWAN (Booij et al., 1999), use wind forecast as57

an input. Although the driving force for wave generation is surface wind, the parame-58

ter used by most models is wind velocity at 10m above the sea surface (U10), as this prop-59

erty is easier to measure and predict. This means only a single property at a single level60

of the atmospheric model actually affects the wave model. A semi-empirical source term61

is used by wave models to convert U10 to wave action forcing (Janssen & Janssen, 2004;62

Ardhuin et al., 2010). Optimizing atmospheric models is highly complex, both in terms63

of computational costs and in terms of improved physical equations accounting for mul-64
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tiple flow parameters. Thus a model which can optimize U10 independently, decoupled65

from the physics-based model and with low computational costs is very desirable.66

In the last few years deep learning (DL) models have been used in multiple fields67

to solve complex, highly nonlinear problems (Wang et al., 2019; Brunton et al., 2020).68

These DL models are data-driven, meaning they generally do not possess any prior phys-69

ical knowledge, but are instead trained to predict a given “ground-truth” data. After70

the model is trained using a training dataset to achieve good performance, it is verified71

over an independent test dataset. The training process usually requires more significant72

computational resources, though still relatively small compared to numerical models. Af-73

terwards, the resulting model can be used to produce accurate predictions at very min-74

imal computational cost. As was shown in (Reichstein et al., 2019), these methods are75

highly relevant for geophysical problems, and have already been used to make indepen-76

dent, data-driven wind forecasts (Scher & Messori, 2019; Weyn et al., 2019, 2020; Rasp77

& Thuerey, 2020; Rasp et al., 2020; Arcomano et al., 2020).78

The presented paper uses a DL model with a U10 wind velocity forecast as an in-79

put, and predicts the reanalysis data, considered “ground-truth”. This improved wind80

prediction is used as an input to a numerical wave model. Unlike previous works, the81

current model focuses on improving forecast produced by a numerical atmospheric model,82

and thus is able to achieve much higher accuracy. To the best of our knowledge this is83

the first attempt to create such a hybrid numerical - deep learning model.84

2 Model Database - ECMWF Wind Velocity85

The datasets used in this paper are ECMWF Era5 single-level forecast (FC) and86

reanalysis (REAN) databases (Hersbach et al., 2020), with the parameters of wind ve-87

locity vectors in the zonal and meridional directions at 10m height (u10, v10). The FC88

data was used as the deep learning model’s (DLM) input and the REAN as the “ground-89

truth”. The FC is initiated from a wind analysis every 12 hours at 06:00 and 18:00, and90

consists of 18 hourly steps. This means there is an overlap between consecutive forecasts.91

In this work the time steps 7-18 were chosen, as these had the largest errors. The REAN92

data is an hourly high-resolution model incorporated with measurements.93

The spatial grid chosen was of the Mediterranean region, with longitude between94

30.2−45.7N and steps of 0.5N , and latitude between −2.1−36.0E and steps of 0.3E.95

This results in a base 2 grid of dimensions 32× 128, making it efficient for processing96

with a DLM.97

3 Recurrent-Convolutional Model98

In Roitenberg and Wolf (2019) a general DLM architecture for spatio-temporal fore-99

casting problems was introduced and tested for public transportation demand. This model100

was used as a base for a new DLM, by removing the encoder and making several adjust-101

ments to the decoder part (Fig. 1). The new DLM begins with an input sequence of FC102

instances. Next is an encoder comprised of convolutional layers with gradually increas-103

ing width and dilation. Increasing the width allows each layer to capture more informa-104

tion, while larger dilation allows a wider receptive field taking into account the effects105

of farther spatial information. Using dilation instead of more traditional approaches of106

strided convolution or pooling layers keeps the original input dimensions, and thus pre-107

vents spatial information loss (Yu & Koltun, 2015).108

Following the encoder, Convolutional Gated Recurrent Unit (CGRU) (Ballas et al.,109

2015) layers were used. These layers combine the ability of the GRU layer (Chung et al.,110

2014) to learn temporal connections with the convolutional layer capability of spatial mod-111

elling. This is done by replacing the matrix multiplication of a GRU with a convolution,112
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and the parameter matrices and vectors with smaller kernels. Each instance of the in-113

put sequence is introduced separately to the encoder and to the following CGRU, and114

the last output of the CGRU is concatenated with the last input instance into it. This115

forms a skip connection over the CGRU, allowing both to bypass it where needed, and116

to add a residual to improve it. Using residual connections was shown to be extremely117

effective in improving the learning ability of the neural networks compared to modelling118

absolute values (Littwin & Wolf, 2016).119

Finally, the new decoder consists of convolution layers mirroring the structure of120

the encoder in width and dilation. The output of the decoder was summed with the last121

input instance to the model, forming another residual connection.122

Figure 1. Model architecture from bottom left: input (purple) in the form of a sequence of

FC instances with c channels (variables) is passed one at a time to the encoder (orange), com-

prised of convolutional layers with increasing filters and dilation. The output of the encoder is

fed to a CGRU (blue). The last output of the resulting sequence is concatenated with the last

input into it, and introduced to the decoder (green), comprised of convolutional layers mirroring

the encoder. The final result is summed with the last instance of the input sequence to form a

residual connection (purple).

4 Deep Learning Wind Prediction Experiments123

Four types of wind input to the DLM were tested for effectiveness in producing a124

better wind input for wave forecasting. The input data for all experiments consisted of125

12 consecutive hourly time steps from the FC dataset. The target was the REAN at the126

time of the last input. This effectively means improving the wind field at a given time127

t by using time steps (t−11, t). The network hyper-parameters were initially set to those128

of Roitenberg and Wolf (2019). A short training period of the years 2010 − 2011 and129

validation period of the year 2012 was used to test changes to the architecture. Due to130

long run times even for these short periods, an extensive architectural grid search was131

not conducted. The chosen architecture (shown in Fig. 1) consisted of a four convolu-132

tional layers encoder with (8, 16, 64, 128) filters and a dilation of (1, 2, 4, 8), followed by133

a single CGRU layer with input and output dimensions of 128. The decoder consisted134

of four convolutional layers with (128, 32, 16, 2) filters and (8, 3, 2, 1) dilations. The datasets135

were split to a train / validation / test sets with the following temporal range:136

1. A training set between the years 2001− 2016137

–4–
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Table 1. Wind velocity RMSE

Model Property DLM RMSE FC RMSE RMSE improved

UMag, sec. 4.1
U [m/s] 0.5999 0.6673 10.1%
u10[m/s] 0.7075 0.7291 2.97%
v10[m/s] 0.7065 0.7278 2.88%

UVec, sec. 4.2
U [m/s] 0.615 0.6673 7.8%
u10[m/s] 0.6616 0.7291 9.26%
v10[m/s] 0.6594 0.7278 9.39%

UDir, sec. 4.3

cos θ 0.2307 0.2469 6.55%
sin θ 0.229 0.2463 7.04%

u10[m/s] 0.6906 0.7291 5.28%
v10[m/s] 0.69 0.7278 5.19%

UFrc, sec. 4.4
U [m/s] 0.6162 0.6673 7.65%
u10[m/s] 0.663 0.7291 9.06%
v10[m/s] 0.6613 0.7278 9.14%

2. A validation set of the year 2000138

3. A test set of the year 2017139

The DLM was trained and evaluated using an NVidia GeForce GTX 2080 Ti GPU with140

12GB memory. The Fastai API (Howard & Gugger, 2020) was used with Pytorch API141

as a base. The model was optimized using ADAM (Kingma & Ba, 2015). Weight decay142

was set to 1E − 3, and the mini-batch size was 16. A changing learning rate with the143

1-cycle approach of (Smith, 2018) was used, and each model was trained for 8 cycles of144

2 epochs. The max learning rate started at 1E − 3, and divided by the cycle number145

as learning progressed. After training, the validation set was used to identify the cycle146

with best performance. The weights of this cycle defined the new DLM, and its perfor-147

mance was evaluated on the test set. The resulting RMSE in space and time of all wind148

input types are shown in Table 1 and compared to the original FC data.149

150

4.1 Input type 1: Wind Velocity Magnitude151

The first experiment optimized prediction of wind velocity magnitude (UMag), de-152

fined as U =
√
u210 + v210. The magnitude was chosen as it seemed easier to predict, be-153

ing always positive, non-directional and independent property in space. This resulted154

with input and output tensors with dimensions of (time = 12, c = 1, lat = 32, lon =155

128). The resulting U was also transformed back to the form of u10 and v10 using the156

original FC direction. As expected, U improved significantly, as it is the main objective157

of the UMag DLM. It is interesting that the resulting u10 and v10 are improved by a158

much smaller percentage.159

4.2 Input type 2: Wind Velocity Vector160

The second experiment was performed to test the DLM’s ability to improve the wind161

velocity vector (UVec) directly. The input was set as the FC u10 and v10, and the out-162
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put as the matching prediction, resulting with (12, 2, 32, 128) tensors. Although the im-163

provement in the main objective of each DLM is smaller, the resulting wind vector im-164

provement is almost three times as much as that of the UMag model.165

4.3 Input type 3: Wind Direction Vector166

The third experiment was predicting the direction of the wind velocity vector (UDir).167

The directional unit vector was defined as168 (
cos θ
sin θ

)
=

(
u10/U
v10/U

)
,

and was set as both the input and output of the DLM. The test set output was multi-169

plied by U to produced a wind velocity vector. Examining the results of this DLM found170

it similar to the UVec model with smaller improvement.171

4.4 Input type 4: Wind Friction Velocity Vector172

Lastly, an experiment was done to try and make a connection between a physical173

wave forecasting model and the DLM for wind prediction. The wave model uses the wind174

input through a source term (ST) which converts it to wave energy. Such ST combine175

analytical and empirical derivations, with a varying degree of complexity. The relatively176

simple wind friction velocity vector (UFrc) of WAM 3 (WAMDI Group, 1988)177

u∗ =

(
u10
√

0.8 + 0.065u10
v10
√

0.8 + 0.065v10

)
,

was used in the DLM cost function. which should make it better fitting as an input to178

the ST. This still lacks the local wave action spectrum used in the source term, but as179

they are the result of an independent model with high computational cost, such a cou-180

pled model was not tested. This DLM’s results were almost identical to the UVec model.181

5 Wave forecasting with deep learning wind prediction182

The effects of the new DLM output (the wind velocity prediction) on ocean waves183

forecasting was examined by using it as a forcing of the WAVEWATCH III v6.07 (WW3)184

model. WW3 ran with an unstructured grid of the eastern (Levant) area of the Mediter-185

ranean Sea, using 36 directions, 36 frequencies in the range 0.04−0.427Hz and a time186

step of dtglobal = 10min. The wind forcing source term of Ardhuin et al. (2010) was187

used, alongside a linear wind interpolation. Six input configurations were tested: ECMWFs188

FC and REAN, and the four DLM outputs. WW3 ran separately with each forcing for189

the year 2017. The resulting wave forecast mean field parameters of significant wave height190

(Hs), mean wave direction (dir) and mean wave period (Tm0,−1) are shown in Table 2.191

All DLM outperformed the FC, as expected. Surprisingly, UMag had the best perfor-192

mance for both wave height and period, while UVec results with a better mean direc-193

tion. UDir was outperformed by the other models and UFrc was almost identical to UVec194

with slightly worse results. Thus, only UMag and UVec are shown in the following anal-195

ysis.196

197

A spatial map of Hs time-mean RMSE differences can be seen in Fig. 2. The RMSE198

difference was taken as RMSEFC−RMSEDLM , meaning the new DLM has better per-199

formance where positive and vice versa. It is immediately apparent that both DLM out-200

perform the original FC in the eastern part of the basin, especially in the Aegean Sea201

where the local improvement is ∼20%. The FC slightly outperforms the DLM at the west-202

ern part. The better performance of UMag can be attributed to more accurate results203
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Table 2. Model wave mean parameters RMSE

Property FC UMag (%improved) UVec (%) UDir (%) UFrc (%)

Hs[m] 0.0765 0.0676 (11.6%) 0.0698 (8.7%) 0.0762 (0.4%) 0.0705 (7.8%)

Dir[deg] 44.4 42.8 (3.4%) 42.2 (4.9%) 43.8 (1.3%) 42.5 (4.3%)

Tm0,−1[sec] 0.309 0.283 (8.4%) 0.286 (7.4%) 0.307 (0.05%) 0.287 (7.1%)

over the western half, as well as better performance along the coastal area. This spatial204

deviation suggests that applying a mask during the training process or combining the205

prediction with FC might be beneficial.206

A temporal comparison of spatial-mean RMSE of the DLM and FC is given in Fig.207

3. This shows that the main improvement of both DLM was during the spring to autumn208

period, most prominently during the summer months (implying correction of the Ete-209

sian wind). The current model can be used as is, or as a seasonal model, alongside a sep-210

arate seasonal model trained specifically for the winter season or even for stormy con-211

ditions. Such models can work as an ensemble to produce better results.212
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Figure 2. Time-mean RMSE difference map of significant wave height Hs for: (a) FC RMSE

- UMag RMSE; (b) FC RMSE - UVec RMSE. FC with larger error in red, DLM in blue.

6 Summary and discussion213

In this work a novel hybrid model was presented combining numerical, physics-based214

models with a deep learning, data-driven model (DLM) to improve wind and waves fore-215
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Figure 3. Spatial-mean RMSE of significant wave height Hs 24hrs moving average of: FC

(thick teal); UMag (medium orange); UVec (thin purple). The right axis is the REAN Hs in

dashed red line, for reference.

casting accuracy. The DLM’s input was ECMWF’s Era5 forecast (FC), which was fit-216

ted to the matching reanalysis (REAN) data. This model consisted of convolutional en-217

coder and decoder, with a convolutional gated recurrent unit in between. The DLM’s218

output was used as a forcing for a wave forecasting model (WAVEWATCH III), and the219

resulting significant wave height, mean wave direction and mean wave period were ex-220

amined. The new model showed significant improvement in all wind and wave param-221

eters.222

The presented DLM was used to improve wind velocity, but could easily be trained223

to improve any other parameter of the atmospheric model, such as geopotential height224

or temperature. It could also be trained over different locations, or as a global model.225

Furthermore, another very interesting usage is training towards seasonal localized mod-226

els. These could be optimized over specific time periods and locations where weather con-227

ditions are hard to predict, and make significant improvement. One such example is shown228

in this work at the Aegean Sea, where the Etesian wind is dominant during mid-May to229

mid-September. Even without training specifically for this task, the presented model im-230

proves the significant wave height forecast over the Aegean Sea at this period by ∼35%.231

Another benefit of the new model is very minimal computational cost, which is neg-232

ligible when compared to either the numerical wind or wave forecasting models. Further-233

more, it could easily be implemented, as it does not require any adjustment to any of234

the currently used operational models, while providing significant improvement in fore-235

casting results.236
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Abstract12

The paper presents a combined numerical - deep learning (DL) approach for improving13

wind and wave forecasting. First, a DL model is trained to improve wind velocity fore-14

casts by using past reanalysis data. The improved wind forecasts are used as forcing in15

a numerical wave forecasting model. This novel approach, used to combine physics-based16

and data-driven models, was tested over the Mediterranean. It resulted in ∼10% RMSE17

improvement in both wind velocity and wave height forecasts over operational models.18

This significant improvement is even more substantial at the Aegean Sea from May to19

September, when Etesian winds are dominant, improving wave height forecasts by over20

35%. The additional computational costs of the DL model are negligible compared to21

the costs of either numerical models. This work has the potential to greatly improve the22

wind and wave forecasting models used nowadays by tailoring models to localized sea-23

sonal conditions, at negligible additional computational costs.24

Plain Language Summary25

Modern wave forecasting originated in the D-Day invasion, while attempting to pre-26

dict the optimal date for departure. In the decades since, it has advanced and currently27

forecasting models are sets of complicated, physics-based equations. Similar, and even28

more complex models are used to make wind forecasts which are needed as inputs for29

the wave models. This work presents a deep learning model improving the wind fore-30

cast, and consequently improving also the wave forecast. The novel approach of com-31

bining deep learning and classical forecasting models was tested over the Mediterranean32

Sea, and resulted in ∼10% improvement in both wind and wave forecasts over the cur-33

rent operational model. This significant improvement is even more substantial when ex-34

amining the local region of the Aegean Sea during May to September, when the Etesian35

wind is dominant, improving wave height forecasts by over 35%. This work has the po-36

tential to revolutionize the weather forecasting models used nowadays by tailoring mod-37

els to localized seasonal conditions, with negligible additional computational costs. The38

derived methodology can also be applied to various other fields, where the deep learn-39

ing model can learn to predict measured or simulated results from an initial, less accu-40

rate model.41

1 Introduction42

Wind velocity accuracy has been established as one of the most significant factors43

in achieving an accurate ocean waves forecast (Bidlot et al., 2002). For this reason, op-44

erational wave forecasting models aim to use the most accurate wind fields available, with45

a high resolution in both space and time. The models producing these wind fields are46

highly computationally expansive, simulating many layers in the atmosphere. These at-47

mospheric models are assimilated with data acquired by measurement instruments to48

create reanalysis results. The reanalysis data is used to assess, study and improve the49

forecast ability (Hersbach et al., 2020).50

Traditionally, wave forecasting models, such as WAM (Hasselmann et al., 1988),51

WAVEWATCH III (Tolman, 1991) or SWAN (Booij et al., 1999), use wind forecast as52

an input. Although the driving force for wave generation is surface wind, the parame-53

ter used by most models is wind velocity at 10m above the sea surface (U10), as this prop-54

erty is easier to measure and predict. This means only a single property at a single level55

of the atmospheric model actually affects the wave model. A semi-empirical source term56

is used by wave models to convert U10 to wave action forcing (Janssen & Janssen, 2004;57

Ardhuin et al., 2010). Optimizing atmospheric models is highly complex, both in terms58

of computational costs and in terms of improved physical equations accounting for mul-59

tiple flow parameters. Thus, a model which can optimize U10 independently, decoupled60

from the physics-based model and with low computational costs, is very desirable.61
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In the last few years, deep learning (DL) models have been used in multiple fields62

to solve complex, highly nonlinear problems (Wang et al., 2019; Brunton et al., 2020).63

These DL models are data-driven, meaning they generally do not possess any prior phys-64

ical knowledge, but are instead trained to predict a given “ground-truth” data. After65

the model is trained using a training dataset to achieve good performance, it is verified66

over an independent test dataset. The training process usually requires more significant67

computational resources, though it is still relatively small compared to numerical mod-68

els. Afterwards, the resulting model can be used to produce accurate predictions at very69

minimal computational cost.70

DL methods are highly relevant for geophysical problems (Reichstein et al., 2019),71

and can be used for various functions. First, DL is used for making forecasts directly,72

which are data-driven and independent of physical equations and numerical models (Scher73

& Messori, 2019; Weyn et al., 2019, 2020; Rasp & Thuerey, 2020; Rasp et al., 2020; Ar-74

comano et al., 2020). Second, these are used in hybrid numerical-DL models, where the75

DL model usually replaces some functions or parameterization of the numerical model76

in order to increase computational efficiency (Krasnopolsky et al., 2005; Krasnopolsky77

& Fox-Rabinovitz, 2006; Krasnopolsky et al., 2010; Schneider et al., 2017; Gentine et al.,78

2018; Rasp et al., 2018; Pathak et al., n.d.; “Prognostic Validation of a Neural Network79

Unified Physics Parameterization”, 2018; Brenowitz & Bretherton, 2019; Wikner et al.,80

2020). Finally, machine learning (ML) and DL methods are used for post-processing and81

measurement assimilation (Vannitsem et al., 2020; Haupt et al., 2021). These usually82

use an ensemble as an input to a ML model based on random forest or a fully-connected83

neural network (NN) (Zjavka, 2015; Rasp & Lerch, 2018), while recently some work has84

been done using convolutional NN (Grönquist et al., 2020; Veldkamp et al., 2020).85

The presented paper uses a DL model with U10 wind velocity forecasts as the in-86

put, and predicts the reanalysis data, considered as “ground-truth”. This is a form of87

post-processing, and is intended to improve wind prediction used as an input to a nu-88

merical wave model. Unlike previous works, the current model focuses on using advanced89

DL architecture to improve forecasts using only the predicted variable as input. This al-90

lows the DL model to be used in wave forecasting as a wind pre-process source term. To91

the best of our knowledge, this is the first attempt to create such an integrated numer-92

ical - deep learning process to improve wind forecasting in view of operational wave fore-93

casting needs.94

2 Model Database - ECMWF Wind Velocity95

The datasets used in this paper are ECMWF ERA5 reanalysis (REAN) and the96

forecasts (FC) which were used as initial model for the reanalysis (Hersbach et al., 2020).97

ERA5 was chosen as it was found to be a very accurate reanalysis for surface winds (Ramon98

et al., 2019). The parameters of wind velocity in the zonal and meridional directions at99

10m height (u10, v10) were used, where FC data was used as the DLM input and the100

REAN as the ”ground-truth”.101

The FC is initiated from a wind analysis every 12 hours at 06:00 and 18:00, and102

consists of 18 hourly steps. This means there is an overlap between consecutive forecasts.103

In this work the time steps 7-18 were chosen, as these were furthest from the initial anal-104

ysis and had the largest errors. The REAN data is an hourly high-resolution model in-105

corporated with measurements.106

The spatial grid chosen was of the Mediterranean region, with longitude between107

30.2−45.7N and steps of 0.5N , and latitude between −2.1−36.0E and steps of 0.3E.108

This results in a base 2 grid of dimensions 32× 128, making it efficient for processing109

with a DLM.110
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3 Recurrent-Convolutional Model111

In Roitenberg and Wolf (2019) a general DLM architecture for spatio-temporal fore-112

casting problems was introduced and tested for public transportation demand. This model113

was used as a base for a new DLM, by removing the encoder and making several adjust-114

ments to the decoder part (Fig. 1). The new DLM begins with an input sequence of FC115

instances. Next is an encoder comprised of convolutional layers with gradually increas-116

ing width and dilation. Increasing the width allows each layer to capture more informa-117

tion, while larger dilation allows a wider receptive field, taking into account the effects118

of further spatial information. Using dilation instead of more traditional approaches of119

strided convolution or pooling layers keeps the original input dimensions, and thus pre-120

vents spatial information loss (Yu & Koltun, 2015).121

Following the encoder, Convolutional Gated Recurrent Unit (CGRU) (Ballas et al.,122

2015) layers were used. These layers combine the ability of the GRU layer (Chung et al.,123

2014) to learn temporal connections with the convolutional layer capability of spatial mod-124

elling. This is done by replacing the matrix multiplication of a GRU with a convolution,125

and the parameter matrices and vectors with smaller kernels. Each instance of the in-126

put sequence is introduced separately to the encoder and to the following CGRU, and127

the last output of the CGRU is concatenated with the last input instance into it. This128

forms a skip connection over the CGRU, allowing both to bypass it where needed, and129

to improve it by adding a residual. Using residual connections was shown to be extremely130

effective in improving the learning ability of the neural networks compared to modelling131

absolute values (Littwin & Wolf, 2016).132

Finally, the new decoder consists of convolution layers mirroring the structure of133

the encoder in width and dilation. The output of the decoder was summed with the last134

input instance to the model, forming another residual connection.135

Figure 1. Model architecture from bottom left: input (purple) in the form of a sequence of

FC instances with c channels (variables) is passed one at a time to the encoder (orange), com-

prised of convolutional layers with increasing filters and dilation. The output of the encoder is

fed to a CGRU (blue). The last output of the resulting sequence is concatenated with the last

input into it, and introduced to the decoder (green), comprised of convolutional layers mirroring

the encoder. The final result is summed with the last instance of the input sequence to form a

residual connection (purple).
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Table 1. Wind velocity RMSE

Model Property DLM RMSE FC RMSE RMSE improved

UMag, sec. 4.1
U [m/s] 0.5999 0.6673 10.1%
u10[m/s] 0.7075 0.7291 2.97%
v10[m/s] 0.7065 0.7278 2.88%

UVec, sec. 4.2
U [m/s] 0.615 0.6673 7.8%
u10[m/s] 0.6616 0.7291 9.26%
v10[m/s] 0.6594 0.7278 9.39%

UDir, sec. 4.3

cos θ 0.2307 0.2469 6.55%
sin θ 0.229 0.2463 7.04%

u10[m/s] 0.6906 0.7291 5.28%
v10[m/s] 0.69 0.7278 5.19%

UFrc, sec. 4.4
U [m/s] 0.6162 0.6673 7.65%
u10[m/s] 0.663 0.7291 9.06%
v10[m/s] 0.6613 0.7278 9.14%

4 Deep Learning Wind Prediction Experiments136

Four types of wind input to the DLM were tested for effectiveness in producing a137

more accurate wind input for wave forecasting. The input data for all experiments con-138

sisted of 12 consecutive hourly time steps from the FC dataset. The target was the REAN139

at the time of the last input. This effectively means improving the wind field at a given140

time t by using time steps (t−11, t). The network hyper-parameters were initially set141

to those of Roitenberg and Wolf (2019). A short training period of the years 2010−2011142

and validation period of the year 2012 was used to test changes to the architecture. Due143

to long run times even for these short periods, an extensive architectural grid search was144

not conducted. The chosen architecture (shown in Fig. 1) consisted of a four convolu-145

tional layers encoder with (8, 16, 64, 128) filters and a dilation of (1, 2, 4, 8), followed by146

a single CGRU layer with input and output dimensions of 128. The decoder consisted147

of four convolutional layers with (128, 32, 16, 2) filters and (8, 3, 2, 1) dilations. The datasets148

were split into a training set between the years 2001−2016, a validation set of the year149

2000 and a test set of the year 2017. The validation set was used for hyperparameter tun-150

ing and internal model verification. It was separated from the test set to prevent sim-151

ilarities between the two. The presented results refer only to the test set. The DLM was152

trained and evaluated using an NVidia GeForce GTX 2080 Ti GPU with a 12GB mem-153

ory. The Fastai API (Howard & Gugger, 2020) was used with Pytorch API as a base.154

The model was optimized using ADAM (Kingma & Ba, 2015). Weight decay was set to155

1E−3, and the mini-batch size was 16. A changing learning rate with the 1-cycle ap-156

proach of (Smith, 2018) was used, and each model was trained for 8 cycles of 2 epochs.157

The max learning rate started at 1E−3, and was divided by the cycle number as learn-158

ing progressed. After training, the validation set was used to identify the cycle with best159

performance. The weights of this cycle defined the new DLM, and its performance was160

evaluated on the test set. The resulting RMSE in space and time of all wind input types161

are shown in Table 1 and compared to the original FC data. Additional statistics and162

figures are available in the supporting information.163

164
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4.1 Input type 1: Wind Velocity Magnitude165

The first experiment optimized prediction of wind velocity magnitude (UMag), de-166

fined as U =
√
u210 + v210. The magnitude was chosen as it seemed easier to predict, be-167

ing always positive, non-directional and independent property in space. This resulted168

with input and output tensors with dimensions of (time = 12, c = 1, lat = 32, lon =169

128). The resulting U was also transformed back to the form of u10 and v10 using the170

original FC direction. As expected, U improved significantly, as it is the main objective171

of the UMag DLM. It is interesting that the resulting u10 and v10 are improved by a172

much smaller percentage.173

4.2 Input type 2: Wind Velocity Vector174

The second experiment was performed to test the DLM’s ability to improve the wind175

velocity vector (UVec) directly. The input was set as the FC u10 and v10, and the out-176

put as the matching prediction, resulting with (12, 2, 32, 128) tensors. Although the im-177

provement in the main objective of each DLM is smaller, the resulting wind vector im-178

provement is almost three times as much as that of the UMag model.179

4.3 Input type 3: Wind Direction Vector180

The third experiment was predicting the direction of the wind velocity vector (UDir).181

The normalized directional vector (unit vector) was defined as182 (
cos θ
sin θ

)
=

(
u10/U
v10/U

)
, (1)

and was set as both the input and output of the DLM. The test set output was multi-183

plied by U to produce a wind velocity vector. Examining the results of this DLM found184

it similar to the UVec model with smaller improvement.185

4.4 Input type 4: Wind Friction Velocity Vector186

Finally, an experiment was carried out to try and make a connection between a phys-187

ical wave forecasting model and the DLM for wind prediction. The wave model uses the188

wind input through a source term (ST) which converts it to wave energy. Such a ST com-189

bines analytical and empirical derivations, with a varying degree of complexity. The rel-190

atively simple wind friction velocity vector (UFrc) of WAM 3 (WAMDI Group, 1988)191

u∗ =

(
u10
√

0.8 + 0.065u10
v10
√

0.8 + 0.065v10

)
, (2)

was used in the DLM cost function. which should make it better fitting as an input to192

the ST. This still lacks the local wave action spectrum used in the source term, but as193

they are the result of an independent model with high computational cost, such a cou-194

pled model was not tested. This DLM’s results were almost identical to the UVec model.195

5 Wave forecasting with deep learning wind prediction196

The effects of the new DLM output (the wind velocity prediction) on ocean waves197

forecasting was examined by using it as a forcing of the WAVEWATCH III v6.07 (WW3)198

model. WW3 ran with an unstructured grid of the eastern (Levant) area of the Mediter-199

ranean Sea, using 36 directions, 36 frequencies in the range 0.04−0.427Hz and a time200

step of dtglobal = 10min. The wind forcing source term of Ardhuin et al. (2010) was201

used, alongside a linear wind interpolation. Six input configurations were tested: ECMWFs202

FC and REAN, and the four DLM outputs. WW3 ran separately with each forcing for203

the year 2017. The resulting wave forecast mean field parameters of significant wave height204
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Table 2. Model wave mean parameters RMSE

Property FC UMag (%improved) UVec (%) UDir (%) UFrc (%)

Hs[m] 0.0765 0.0676 (11.6%) 0.0698 (8.7%) 0.0762 (0.4%) 0.0705 (7.8%)

Dir[deg] 44.4 42.8 (3.4%) 42.2 (4.9%) 43.8 (1.3%) 42.5 (4.3%)

Tm0,−1[sec] 0.309 0.283 (8.4%) 0.286 (7.4%) 0.307 (0.05%) 0.287 (7.1%)

(Hs), mean wave direction (dir) and mean wave period (Tm0,−1) are shown in Table 2.205

All DLM outperformed the FC, as expected. Surprisingly, UMag had the best perfor-206

mance for both wave height and period, while UVec results with a better mean direc-207

tion. UDir was outperformed by the other models and UFrc was almost identical to UVec208

with slightly worse results. Thus, only UMag and UVec are shown in the following anal-209

ysis.210

211

A spatial map of Hs time-mean RMSE differences can be seen in Fig. 2. The RMSE212

difference was taken as RMSEFC−RMSEDLM , meaning the new DLM has better per-213

formance where positive and vice versa. It is immediately apparent that both DLM out-214

perform the original FC in the eastern part of the basin, especially in the Aegean Sea215

where the local improvement is ∼20%. The FC slightly outperforms the DLM at the south-216

western part. This spatial difference is correlated to a much higher RMSE in the orig-217

inal FC data at the eastern half, specifically in the Aegean Sea (see Fig. S8). The large218

RMSE results in larger gradients while training the DLM, and thus greater improvement.219

The improved performance of UMag can be attributed to more accurate results over the220

western half, including improved performance along the coastal area. This spatial de-221

viation suggests that applying a mask during the training process or combining the pre-222

diction with FC might be beneficial.223

A temporal comparison of spatial-mean RMSE of the DLM and FC is given in Fig.224

3. This shows that the main improvement of both DLM was during the spring to autumn225

period, most prominently during the summer months (implying correction of the Ete-226

sian wind). Examining the Aegean Sea during the Etesian results in a staggering 35%227

RMSE improvement. The current model can be used as is, or as a seasonal model, along-228

side a separate seasonal model trained specifically for the winter season or even for stormy229

conditions. Such models can work as an ensemble to produce better results.230

6 Summary and discussion231

In this work a novel deep learning model for wind velocity post-processing was pre-232

sented. The model allows to improve wind and waves numerical, physics-based models’233

accuracy by using a deep learning, data-driven model (DLM). The DLM’s input were234

the forecasts (FC) which were used in ECMWF ERA5 reanalysis (REAN), and the ”ground-235

truth” was the REAN data itself. This model consisted of a convolutional encoder and236

decoder, with a convolutional gated recurrent unit in between. The DLM’s output was237

used as a forcing for a wave forecasting model (WAVEWATCH III), and the resulting238

significant wave height, mean wave direction and mean wave period were examined. The239

new model showed significant improvement in all wind and wave parameters.240

The presented DLM was used to improve wind velocity, but could easily be trained241

to improve any other parameter of the atmospheric model, such as geopotential height242
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Figure 2. Time-mean RMSE difference map of significant wave height Hs for: (a) FC RMSE

- UMag RMSE; (b) FC RMSE - UVec RMSE. FC with larger error in red, DLM in blue.

or temperature. It could also be trained over different locations, or as a global model.243

Furthermore, another very interesting usage is training towards seasonal localized mod-244

els. These could be optimized over specific time periods and locations where weather con-245

ditions are hard to predict, and result in significant improvement. One such example is246

shown in this work at the Aegean Sea, where the Etesian wind is dominant during mid-247

May to mid-September. Even without training specifically for this task, the presented248

model improves the significant wave height forecast over the Aegean Sea at this period249

by ∼35%.250

Another benefit of the new model is very minimal computational cost, which is neg-251

ligible when compared to either the numerical wind or wave forecasting models. Further-252

more, it could easily be implemented, as it does not require any adjustment to any of253

the currently used operational models, while providing significant improvement in fore-254

casting results.255
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