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Abstract

The all-sky Infrared (IR) radiance assimilation from geostationary satellites has been a prime research area in the numeri-

cal weather prediction (NWP) modeling. In this study, the variational data assimilation system of the weather research and

forecasting (WRF) model has been customized to assimilate all-sky assimilation of water vapour (WV) radiance from Imager

onboard two geostationary Indian National Satellites (INSAT-3D and INSAT-3DR). This study also integrated different hy-

drometeors (like cloud, rain, ice, snow and graupel) as control variables in the WRF variation assimilation system. To do this,

parallel experiments were performed by carrying out model simulations with and without INSAT WV radiance assimilation

during July 2018. Results of these simulations suggested that the WRF model analyses for all-sky assimilation are closer to

the brightness temperature (TB) of channel-1 (183.31 ± 0.2 GHz) of SAPHIR (Sondeur Atmosphérique du Profil d’Humidité

Intertropicale par Radiométrie) sensor onboard Megha-Tropiques satellite and channel-3 (183.31 ± 1.0 GHz) of MHS (Microwa-

ve Humidity Sounder) sensor onboard National Oceanic and Atmospheric Administration (NOAA-18/19) and Meteorological

Operational Satellite (MetOp-A/B/C) satellites. Furthermore, noteworthy changes are noticed in hydrometeors analyses with

all-sky assimilation and the number of assimilated observations are increased significantly (around 2.5 times). The short-range

predictions from all-sky assimilation runs revealed notable positive impact as compared to clear-sky assimilation runs when

verified with SAPHIR and MHS TB, and NCEP (National Centers for Environmental Prediction) final analysis.
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Abstract 10 

The all-sky Infrared (IR) radiance assimilation from geostationary satellites has 11 

been a prime research area in the numerical weather prediction (NWP) modeling. In 12 

this study, the variational data assimilation system of the weather research and 13 

forecasting (WRF) model has been customized to assimilate all-sky assimilation of 14 

water vapour (WV) radiance from Imager onboard two geostationary Indian National 15 

Satellites (INSAT-3D and INSAT-3DR). This study also integrated different 16 

hydrometeors (like cloud, rain, ice, snow and graupel) as control variables in the WRF 17 

variation assimilation system. To do this, parallel experiments were performed by 18 

carrying out model simulations with and without INSAT WV radiance assimilation 19 

during July 2018. Results of these simulations suggested that the WRF model 20 

analyses for all-sky assimilation are closer to the brightness temperature (TB) of 21 

channel-1 (183.31 ± 0.2 GHz) of SAPHIR (Sondeur Atmosphérique du Profil 22 

d’Humidité Intertropicale par Radiométrie) sensor onboard Megha-Tropiques satellite 23 

and channel-3 (183.31 ± 1.0 GHz) of MHS (Microwave Humidity Sounder) sensor 24 

onboard National Oceanic and Atmospheric Administration (NOAA-18/19) and 25 

Meteorological Operational Satellite (MetOp-A/B/C) satellites. Furthermore, 26 
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noteworthy changes are noticed in hydrometeors analyses with all-sky assimilation 27 

and the number of assimilated observations are increased significantly (around 2.5 28 

times). The short-range predictions from all-sky assimilation runs revealed notable 29 

positive impact as compared to clear-sky assimilation runs when verified with SAPHIR 30 

and MHS TB, and NCEP (National Centers for Environmental Prediction) final analysis.  31 

 32 
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1. Introduction 52 

 The advances in the numerical weather prediction (NWP) model represent a 53 

significant revolution in the scientific knowledge and technological advances in the last 54 

decades (Bauer et al. 2011a,b, 2015, 2021). The technical advancements has brought 55 

sea changes in the measurements of various parameters used in NWP model. Not 56 

only ground based measurements but also satellite measurements are increased 57 

significantly in both space and time. As a matter-of-fact, around 90-95% data 58 

assimilated in the NWP model are contributed by space-borne sensors. However, 59 

these satellite observations are still only 2 to 5% of measurements available globally 60 

and provided by satellites. The vast number of satellite data are not yet employed in 61 

the NWP model due to concurrent limitations of data assimilation methods like 62 

constraints of  Gaussian assumption, uncorrelated observations, complex non-63 

linearity, etc. (Kumar and Shukla, 2019). Condition of uncorrelated observations 64 

warrants data thinning whereas avoidance of surface channels due to unknown 65 

emissivity imposes the restriction of using channels that are sensitive to temperature 66 

(CO2 and O2 band) and water vapour (WV) (H2O band) absorption, etc. in the 67 

assimilation system. Additionally, Around 75% of satellite measurements are 68 

discarded due to cloud contamination and unknown surface emissivity (Bauer et al. 69 

2011a).   70 

 71 

Presently, the Infrared (IR) measurements from satellites are assimilated with clear-72 

sky limitations, and cloud removal or correction for IR radiance became a critical step 73 

for operational assimilation (Kumar and Shukla, 2019 and references therein). This 74 

cloud correction procedure also introduced representative error in the NWP model 75 

(Errico et al. 2007). The restriction of clear-sky assimilation is not due to insignificance 76 
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of cloud-affected measurements, but mainly due to insufficient treatment of clouds in 77 

the radiative transfer (RT) models and inaccurate cloud parameters as first guess. 78 

Further, the intricacies of cloud affected IR radiances are exacerbated due to complex 79 

non-linearity in the cloud process. Furthermore, cloud parameters are not considered 80 

as part of control variables in most of the assimilation systems. The major cause of 81 

neglecting cloud parameters as control variables are due to large errors in the first-82 

guess. In the last decade, the cloud and precipitation prediction from the NWP model 83 

has achieved a reasonable degree of realism that opens possibilities to explore impact 84 

of cloud-influenced radiance from IR and microwave (MW) sensors (Janisková, 2015), 85 

majorly high temporal and spatial resolution measurements from geostationary 86 

platform. Geer et al. (2019) discussed that the all-sky IR assimilation has not so far 87 

been operational at any weather forecasting centers that conveys requirements of new 88 

observations in critical cloud-affected regions and avoids cloud removing/clearing 89 

needs in future. Furthermore, the all-sky assimilation helped to avoid biases caused 90 

by undetected clouds that can affect the clear-sky assimilation (Geer et al. 2017, 91 

2018). 92 

 93 

Bauer et al. (2010) and Geer et al. (2010) demonstrated first successful direct 94 

assimilation of all-sky MW imager observations in the European Centre for Medium-95 

Range Weather Forecasts (ECMWF) assimilation system. Authors also discussed the 96 

major concerns in the cloud and precipitation assimilation that include discontinuity in 97 

space and time, constraints of the present assimilation system that linearized the 98 

nonlinear processes, etc. Bauer et al. (2011b) reviewed development in the cloud 99 

affected satellite measurements in the operational NWP centers. Authors also 100 

discussed the need of the total moisture (e.g. WV, cloud liquid, cloud ice, and 101 



5 
 

hydrometeors) as a control variable and generation of their background error 102 

covariance using National Meteorological Center (NMC; Parrish and Derber, 1992) 103 

method. Geer et al. (2017, 2018) highlighted that the cloud and precipitation data 104 

cannot be assimilated when missing in model first guess due to zero gradient problem 105 

and non-Gaussian distribution of error. Montmerle et al. (2010) also emphasized the 106 

necessity of background error modelling for clouds and precipitation parameters by 107 

ensemble forecast differences method. Zhang and Guan (2017) included cloud liquid, 108 

ice, and rain-water content as control variables in the assimilation of cloud-affected 109 

MW satellite measurements and found improvement in the model analysis. Chen et 110 

al. (2015) also suggested that the initialization of the cloud components in the NWP 111 

model is requisite because these quantities are resultant of atmospheric moisture and 112 

hydrometeor transport and complicated nonlinear physical processes associated with 113 

cloud development and decay. These previous studies highlighted that the inclusion 114 

of the different hydrometeors as control variables with their background error 115 

covariance is one of the major steps towards all-sky assimilation.  116 

 117 

Recently, the efforts for assimilation in the NWP model has been more focused 118 

towards using clouds affected IR radiance, after remarkable success of the all-sky MW 119 

sensors and its operational implementation in many weather forecasting centers (e.g. 120 

Bauer et al., 2010; Geer et al., 2010; McNally, 2009; Pavelin et al., 2008; Eresmaa, 121 

2014). Zhu et al. (2016) discussed operational assimilation of all-sky MW sensors in 122 

the National Oceanic and Atmospheric Administration (NOAA) National Centers for 123 

Environmental Prediction (NCEP) models. Various experiments have been performed 124 

in the last decade to explore the potential of assimilating all-sky IR radiance in the 125 

NWP model, majorly from geostationary satellites. Otkin (2010) assimilated window 126 
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channel radiance for both clear-sky and cloudy-sky conditions at convection permitting 127 

scale and suggested that both observations are crucial for the NWP prediction. 128 

Okamoto et al. (2012) suggested to make use of a symmetric parameter, which is 129 

based upon observed and simulated cloud radiances. The use of symmetric parameter 130 

provided a better Gaussian form of background departure (observation minus 131 

background; O-B). Okamoto et al. (2014) and Harnisch et al. (2016) also proposed to 132 

use climatological error models for IR radiance as a function of different cloud-affected 133 

parameters. Zhang et al. (2018) assimilated all-sky IR observations from 134 

Geostationary Operational Environmental Satellite (GOES)-16 Advanced Baseline 135 

Imager (ABI) sensor using ensemble based data assimilation at convection allowing 136 

horizontal resolution. Zhang et al. (2016) also studied the potential impact of 137 

assimilating GOES-R radiance for tropical cyclone analysis using Ensemble Kalman 138 

Filter (EnKF) method. Minamide and Zhang (2018) explored the assimilation impact 139 

of all-sky IR radiance from the Himawari-8 satellite using the EnKF at convective scale 140 

for predicting super typhoon Soudelor. Authors suggested that the hourly update 141 

assimilation system improves initial intensity as well as spatial distribution of 142 

convective activities. Honda et al. (2018a) assimilated every 10-minutes all-sky 143 

radiance from Himawari-8 satellite for a case study of heavy rainfall. Honda et al. 144 

(2018b) also assimilated all-sky Himawari-8 IR radiance for soudelor typhoon, and 145 

found improved tropical cyclone structure and intensity prediction. Recently, Otkin and 146 

Potthast (2019) used an ensemble method to assimilate all-sky IR radiance from 147 

Spinning Enhanced Visible and InfraRed Imager (SEVIRI) sensor with different bias 148 

correction predictors and suggested improvement in short range forecasts.  149 

 150 



7 
 

The critical elements of all-sky IR/MW assimilations are inclusion of hydrometeor 151 

profiles in the RT model, use of cloud parameters as control variable, generation of 152 

cloud analysis increments using background error covariance for hydrometeors, 153 

radiance data information is mapped onto not only temperature and moisture fields, 154 

but also for different hydrometeors using Radiative Transfer Model (RTM) jacobians, 155 

etc. In the present study, first time all-sky IR WV radiance from the Indian 156 

geostationary satellites are assimilated in the weather research and forecasting (WRF) 157 

model with inclusion of hydrometeor profiles as control variables and their background 158 

errors using NMC method. Previously, Singh et al. (2016) assimilated clear-sky WV 159 

radiance from the INSAT-3D satellite in the WRF model and demonstrated positive 160 

impact on short-range weather prediction. In this study, three parallel experiments are 161 

performed during the entire month of July 2018 to understand the importance of all-162 

sky assimilation. The WV channel data of Imager onboard INSAT-3D and INSAT-3DR 163 

satellites are described in section 2, and details about the WRF model and variational 164 

assimilation system are provided in section 3. Results and discussions are included in 165 

section 4, and concluded in the last section.    166 

 167 

2. Data Description 168 

2.1. INSAT-3D and INSAT-3DR Satellite 169 

 The Indian geostationary satellites INSAT-3D (Kumar and Shukla, 2019) and 170 

INSAT-3DR (Sankhala et al. 2020) are positioned at 82° E and 74° E at equator over 171 

the Indian Ocean, respectively. Both satellites carried two meteorological payloads 172 

including a very high-resolution radiometer (VHRR) also called Imager and an 18-173 

channels IR sounder. The WV (6.5 - 7.1 um) channel is available in Imager, in addition 174 

to visible, short-wave IR, mid-IR, and two thermal IR channels. The INSAT-3D and 175 
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INSAT-3DR satellites collectively provide WV imagery at every 15 minutes in 176 

staggered mode at 8 km nominal spatial resolution. The calibration procedure of the 177 

multi-spectral Imager observations from INSAT-3D and INSAT-3DR satellites are 178 

broadly based on Weinreb et al. (1997). It is important to note that satellite instruments 179 

like INSAT-3D/3DR, which are in geostationary orbit and are three axis stabilized, face 180 

the problem of mid-night calibration. During mid-night, the Sun positioned directly 181 

opposite to the satellite and the Sun radiations intrude into the satellite aperture, and 182 

thus disturb the thermal equilibrium of the cavity of the satellite platform. IR 183 

instruments on-board are severely affected by such intrusion. This kind of problem 184 

was also observed in Kalpana-1 satellite (Shukla et al. 2012). The problem of direct 185 

sun radiation intrusion is more severe in INSAT-3D/3DR satellites because of its larger 186 

aperture size in comparison to Kalpana-1 satellite. Due to mid-night calibration issues 187 

a few acquisitions are discarded (or not taken) in case of INSAT-3D/3DR satellites. In 188 

the present study, WV channel radiance of INSAT-3D and INSAT-3DR satellites 189 

around 0300 UTC are used for assimilation study. This WV Imager radiance is 190 

available from satellite data archival centre at Space Applications Centre (SAC), Indian 191 

Space Research Organization (ISRO), Ahmedabad (http://www.mosdac.gov.in). 192 

 193 

3. Methodology  194 

 The Advanced Research WRF (Skamarock et al. 2008) model version 4.2 and 195 

its three-dimensional variational (3D-Var) data assimilation system are used in this 196 

study to assess the impact of all-sky and clear-sky WV radiance assimilation. The 197 

diverse physics schemes are available in the WRF model for the treatment of 198 

convection and mesoscale precipitation systems, shortwave and longwave radiation, 199 

boundary layer processes, etc. The cumulus convection parameterization and 200 
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planetary boundary layer of Kain–Fretcsh (KF) and Yonsei University (YSU) schemes, 201 

respectively are selected in this study. The rapid RT model for general circulation 202 

models (GCMs) (RRTMG) scheme is used for long-wave and short-wave radiation. 203 

The microphysics scheme used in this study is WRF Single-Moment 6-class (WSM6) 204 

scheme for microphysics. These schemes are selected based on their performances 205 

over the south Asia region (Kumar et al. 2014; Singh et al. 2016 and references 206 

therein).  More details of design of experiments are available in Sankhala et al. (2020) 207 

and Kumar and Shukla (2019).  208 

 209 

In the present study, three parallel assimilation experiments are performed with and 210 

without WV radiance assimilation from INSAT-3D and INSAT-3DR satellites during the 211 

entire month of July 2018. All set of experiments assimilated control observations that 212 

include conventional observations (like Synop, Sonde, Pilot, Ship, Aircraft, Buoy, etc.), 213 

atmospheric motion vectors from geostationary satellites, refractivity measurements 214 

from Global Positioning System (GPS) Radio Occultation (RO) available from NCEP 215 

Global Telecommunications System (GTS) at 0300 UTC. The 9-hour WRF model 216 

forecast, valid at 0300 UTC, is used as first guess for all sets of experiments. This 217 

procedure avoids the uncertainties whether these datasets are used in a global model 218 

assimilation system or not. The NCEP Global Data Assimilation System (GDAS) 219 

analysis at 0.25° × 0.25° spatial resolution is used to generate the lateral boundary 220 

conditions. The 48 hours WRF model forecasts are performed daily from 0300 UTC 221 

during 01-31 July 2018. The WRF model simulations are performed using a single 222 

domain having 12 km spatial resolution without cyclic assimilation. The model domain 223 

consists 700 × 700 grids covering regions of Latitude 25.7° S – 43.7° N and Longitude 224 

varies from 44.3° E to 119.7° E. The WCNT experiment defined as control run that 225 
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assimilated control observations only, and no satellite radiances are assimilated in this 226 

experiment. The clear-sky and all-sky WV radiance from INSAT-3D and INSAT-3DR 227 

satellites are assimilated in the WCLR and WCLD experiments, respectively in 228 

addition to control observations.  229 

 230 

The WRF 3D-Var data assimilation system is employed in this study for INSAT WV 231 

assimilation (Singh et al. 2016). A 1-h time window (+30-minutes) has been selected 232 

around the model initial time for assimilating control and satellite observations. Prior 233 

to data assimilation, all satellite data underwent a process of quality check to avoid the 234 

possibility of assimilating spurious observations. A strict quality control is performed, 235 

in which observations that differed from the model's first guess by more than three 236 

times the observational errors are removed. Here, observation error in the WV channel 237 

is assumed uncorrelated in space and time and the observational error covariance 238 

matrices are diagonal matrices with fix variance of 2.5 K for WV channel as diagonal 239 

element that may be a scope for future research to include separate observation errors 240 

for clear and cloudy radiance. The variational bias correction available in the WRF 241 

model is implemented to correct the biases in the radiance. In this study, the 242 

Community Radiative Transfer Model (CRTM; Han et al. 2006), a fast RT model, 243 

implemented in the WRF model, has been used for simulating the brightness 244 

temperature (TB) of WV channels of INSAT-3D and INSAT-3DR satellites. The CRTM 245 

model is a fast RT model developed by Joint Center for Satellite Data Assimilation 246 

(JCSDA). The CRTM model is widely used for data assimilation as a forward operator, 247 

and computation of gradient for various control variables (Zhang et al. 2018). To 248 

simulate the BT within WRF model, it uses the successive order of interaction (SOI) 249 

forward solver (Heidinger et al. 2006) using the OPTRAN (Optical Path Transmittance) 250 
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code.  For all-sky assimilation, a particle filter based cloud detection scheme for IR 251 

radiance with considering of cloud effects in CRTM calculations are implemented that 252 

are available in the WRF assimilation system (Xu et al. 2016).  In this study, 253 

cloud_cv_options=2 is considered which needs individual hydrometeor control 254 

variables with statistical error covariances. For this selection, in addition to standard 255 

control variables of stream function, unbalanced velocity potential, unbalanced 256 

temperature, unbalanced surface pressure and pseudo relative humidity, five different 257 

hydrometeors (cloud, rain, ice, snow, graupel) are also included as control variables 258 

for generalized background error covariance. The details of implementing generalized 259 

background error covariance are available in Descombes et al. (2015). Differences of 260 

12- and 24-hour forecasts during the entire month of July 2018 are used to determine 261 

the background error covariance matrix by NMC method. In this study, cross-262 

correlation for cloud and rain is considered with moisture, whereas no cross-263 

correlation is considered for snow, ice and graupel mixing ratio. 264 

 265 

4. Results and discussions 266 

4.1. Impact in analysis 267 

 Figure 1 shows the spatial distribution of WV channel observations from the 268 

INSAT-3D satellite for a sample day at 0300 UTC 01 July 2018. The WV TB from 269 

INSAT-3D satellite used in WCLR and WCLD runs are shown in figure 1(a) and figure 270 

1(d), respectively. The CRTM model is used to prepare simulated TB from the WRF 271 

model analysis, and further defined as simulated analyzed TB.  Figure shows that a 272 

large number of observations are rejected in WCLR run (Fig. 1a), and this reduction 273 

is more prominent over land area. However, few WV observations are also rejected in 274 

the WCLD run (Fig. 1d) that are majorly due to strict quality control in variational 275 
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method. For such cases, simulated WCLD analyzed TB is far from INSAT-3D WV TB. 276 

These data gap regions in WCLD run suggested that the WRF simulated TB with the 277 

CRTM model is still have differences with satellite measurements beyond the 278 

permissible limits due to various limitations of the NWP and RT model and satellite 279 

observations. It also indicates towards the need of separate observation error for clear 280 

and cloudy measurements. The first guess simulated WV TB for WCLR (Fig. 1b) and 281 

WCLD (Fig. 1e) runs showed that the WRF model is able to capture the spatial 282 

distribution of observed TB. The simulated TB matches relatively well over the ocean 283 

as compared to land due to imprecise land surface emissivity input in the RT 284 

modelling. The simulated analyzed TB from the WCLR (Fig. 1c) and WCLD (Fig. 1f) 285 

runs clearly represented that the model analyses are closer to the INSAT-3D observed 286 

TB as compared to first guess, which demonstrated the successful assimilation of the 287 

WV TB in the WRF model. For all-sky (clear-sky) assimilation, the values of root-mean-288 

square difference (defined as RMSD) is changed from 2.39 (1.42) K in background 289 

departure to 0.62 (0.59) K in analysis departure (observation minus analysis; O-A). 290 

Slightly larger values of mean difference (defined as BIAS) are found in WCLD 291 

analysis (-0.22 K) as compared to WCLR analysis (-0.19 K). It is important to note that 292 

the WCLD analysis is closer to cloud-affected satellite observation, which is generally 293 

not made use in clear-sky assimilation.  294 

 295 

Figure 2 shows the spatial distribution of the mean first-guess and analysis departure 296 

for WCLR and WCLD runs during 1-31 July 2018 (total 31 sample days) for WV 297 

channel of INSAT-3D data. The spatial distribution of mean first guess departure in 298 

WCLR (Fig. 2a) and WCLD (Fig. 2b) runs showed almost similar distribution over the 299 

northern India and adjoining regions. However, large differences are seen over the 300 
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Indian Ocean that are mainly due to inclusion of cloud-affected radiance in WCLD 301 

runs. The mean analysis departure is reduced significantly for both WCLR (Fig. 2c) 302 

and WCLD (Fig. 2d) runs. It suggested that the INSAT-3D observed WV channel is 303 

successfully assimilated in the WRF model. The distribution of first guess and analysis 304 

departure for 1-31 July 2018 showed that the values of BIAS is reduced significantly 305 

from 0.19 K and -0.25 K in WCLR and WCLD first-guess departure to approximate 306 

zero in the analyses departure. The values of RMSD are reduced from 2.40 (1.33) K 307 

in WCLD (WCLR) first-guess to 0.60 (0.54) K in the analysis for INSAT-3D satellite. 308 

Similar statistics are found for INSAT-3DR satellite. These analyses clearly suggested 309 

that the WRF model analyses are closer to the satellite observed TB for WV channel. 310 

Both, first-guess and analysis departure follows the Gaussian distribution for WCLD 311 

runs that suggested that incorporation of the hydrometeors as control variables do not 312 

influence the constraints of variational method (figure not shown). Few observations 313 

are rejected in the strict quality control, and varying observation errors for cloud-314 

affected radiance may include these measurements and may be a scope for future 315 

research. 316 

 317 

The temporal distribution of number of observations, domain average values of BIAS 318 

and RMSD for WCLR (in black colour) and WCLD (in grey colour) runs are shown in 319 

figure 3. The left (right) panel shows statistics for the INSAT-3D (INSAT-3DR) satellite. 320 

Figures 3(a) and 3(d) show the number of observations assimilated in the WCLR and 321 

WCLD runs from the INSAT-3D and INSAT-3DR satellites, respectively. Figure shows 322 

that more clear-sky observations are assimilated from the INSAT-3DR satellite 323 

(around 9820) as compared to INSAT-3D satellite (around 7630). However, no 324 

significant differences are found for the number of observations assimilated with all-325 
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sky for both satellites. The less value of BIAS is found in the analysis (dashed line) as 326 

compared to first-guess (solid line) for both WCLR and WCLD runs of INSAT-3D (Fig. 327 

3b) and INSAT-3DR (Fig. 3e) satellites. For both satellites, WCLD (WCLR) first-328 

guesses have a negative (positive) value of BIAS for most of the days. The RMSD 329 

values are reduced significantly for WCLD and WCNT analyses for both satellites. No 330 

significant differences are found between INSAT-3D (Fig. 3c) and INSAT-3DR (Fig. 331 

3f) satellites. Furthermore, a slightly larger value of RMSD is found in WCLD analysis 332 

(0.73 K) as compared to WCNT analysis (0.52 K). These results clearly suggested 333 

that the all-sky observations are successfully assimilated in the WRF model with 334 

additional control variables of hydrometeors. 335 

 336 

Figure 4 shows the spatial distribution of the anomaly in WCLD and WCNT analyses 337 

(defined WCLD minus WCNT) for different parameters at 500 hPa during July 2018. 338 

The spatial distribution of anomaly for WV mixing ratio (Fig. 4a) shows significant 339 

differences over the model domain. These differences are majorly over the mid- and 340 

high vertical levels (around 600 to 200 hPa) which are majorly due to sensitivity of 341 

INSAT-3D/3DR WV channel over these atmospheric layers (Kumar et al. 2012). Due 342 

to multivariate nature of variation assimilation, mean departure for temperature (Fig. 343 

4b), zonal winds (Fig. 4c) and meridional winds (Fig. 4d) are also changed spatially 344 

over the model domain. These differences are larger over the land for zonal and 345 

meridional winds. These differences are also available at different vertical levels that 346 

are more dominant in the upper atmosphere (above 400 hPa) (figure not shown due 347 

to brevity). Furthermore, the control variables of different hydrometeors also show 348 

significant differences in different atmospheric layers. The spatial distribution of cloud 349 

mixing ratio (Fig. 4e) and rain-mixing ratio (Fig. 4f) show major differences over the 350 
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landmass and the Bay of Bengal regions. These differences are high in the lower 351 

layers of the atmosphere (figure not shown due to brevity). The spatial distribution of 352 

snow (Fig. 4g), ice (Fig. 4h), and graupel (Fig. 4i) mixing ratio shows noteworthy 353 

changes at 500 hPa over model domain. In general, due to absence of these 354 

hydrometeors as control variables, these changes are not possible in the model 355 

analysis. The changes in snow, ice and graupel mixing ratio are prominent over mid- 356 

and upper-atmospheric layers.  357 

 358 

To evaluate the impact of INSAT-3D/3DR WV radiance assimilation in the WCLR and 359 

WCLD runs as compared to WCNT runs, the WRF model analyses are also compared 360 

with satellite observations that are not used for data assimilation. The channel-1 361 

(183.31 + 0.2 GHz) TB from SAPHIR (Sondeur Atmosphérique du Profil d’Humidité 362 

Intertropicale par Radiométrie) sensor onboard Megha-Tropiques satellite (Fig. 5) and 363 

channel-3 (183.31 + 1.0 GHz) of MHS (Microwave Humidity Sounder) onboard NOAA-364 

18/19 and Meteorological Operational Satellite (MetOp)-A/B/C (Fig. 6) are used here. 365 

The selected WV channel of SAPHIR and MHS sensors are also sensitive to upper 366 

atmospheric layers (500 to 150 hPa) and can be utilized to evaluate the WCLR and 367 

WCLD analyses. The mean SAPHIR TB observations are shown in figure 5(a). Due to 368 

the low-inclination (~20°) orbit of Megha-Tropiques satellite, the WRF model analyses 369 

are compared upto ~30° N of the study domain. It shows less value of TB over the 370 

Indian landmass and adjoining oceanic regions that generally occurred during the 371 

summer monsoon period. The RMSD in the WCNT analysis simulated TB against 372 

SAPHIR observations are shown in figure 5(b). Large differences are found over the 373 

active monsoon regions, mainly the Bay of Bengal, Indo Gangetic Plain, and ITCZ 374 

(Inter Tropical Convergence Zone) regions. Slightly larger RMSD values are found 375 
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over land, coastal and adjoining oceanic regions. An improvement parameter is 376 

defined here to understand the impact of WCLR or WCLD experiments over WCNT 377 

experiments. The improvement parameter for clear-sky and all-sky are defined as  378 

  𝛼𝐶𝐿𝑅 = √∑ (𝐵𝑇𝑊𝐶𝑁𝑇 − 𝐵𝑇𝑆𝐴𝑇)2𝑁
𝑖=1 −  √∑ (𝐵𝑇𝑊𝐶𝐿𝑅 − 𝐵𝑇𝑆𝐴𝑇)2𝑁

𝑖=1       (1) 379 

  𝛼𝐶𝐿𝐷 = √∑ (𝐵𝑇𝑊𝐶𝑁𝑇 − 𝐵𝑇𝑆𝐴𝑇)2𝑁
𝑖=1 − √∑ (𝐵𝑇𝑊𝐶𝐿𝐷 − 𝐵𝑇𝑆𝐴𝑇)2𝑁

𝑖=1       (2) 380 

The improvement parameter for clear-sky and all-sky analyses are defined as 𝛼𝐶𝐿𝑅 381 

and 𝛼𝐶𝐿𝐷, respectively. The parameters 𝐵𝑇𝑆𝐴𝑇, 𝐵𝑇𝑊𝐶𝑁𝑇, 𝐵𝑇𝑊𝐶𝐿𝑅, and 𝐵𝑇𝑊𝐶𝐿𝐷 are TB 382 

from satellite, and simulated TB from WCNT, WCLR, and WCLD runs, respectively. 383 

The N is the total number of sample days that are 31 in this study. The positive 384 

(negative) values of improvement parameter shows improvement (degradation) of WV 385 

assimilation over WCNT experiments. The spatial distribution of improvement 386 

parameter for WCLR and WCLD runs are shown in figure 5(c) and figure 5(d), 387 

respectively. In general, both clear-sky and all-sky assimilation has a positive impact 388 

on the WRF model analyses. However, small degradation is also seen over the 389 

western part of India and Arabian Sea in WCLR runs, and southern India and Bay of 390 

Bengal regions in WCLD runs. The positive improvements are more prominent over 391 

the ITCZ regions in WCLD runs. Results suggest larger improvement in WCLD runs 392 

as compared to WCLR runs that show the importance of all-sky assimilation in the 393 

model analyses. It is also interesting to note that larger improvements are seen over 394 

the land in the WCLD runs as compared to WCLR runs. Furthermore, results are 395 

extended for high-latitude regions that are not possible with SAPHIR observation. For 396 

this purpose, similar analyses are also prepared with channel-3 measurements of 397 

MHS sensors that are also sensitive to upper layers of atmospheric moisture. The 398 

mean value of MHS measured TB is shown in figure 6(a) that re-confirm the low values 399 
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of TB over core monsoon regions as shown in figure 5(a) for SAPHIR data. The WCNT 400 

simulated TB has a large value of RMSD over the landmass, ITCZ, and Bay of Bengal 401 

regions (Fig. 6b). A noteworthy high RMSD is seen over the northern part of the 402 

domain majorly over Jammu and Kashmir and nearby regions. The spatial distribution 403 

of improvement parameter shows positive impact of clear-sky assimilation over the 404 

oceanic regions. Moreover, large RMSD errors over the ITCZ regions are also 405 

improved with assimilation of clear-sky TB (Fig. 6c). However, the value of 406 

improvement parameter is slightly negative over Indian landmass. The improvement 407 

parameter for all-sky assimilation are noteworthy positive over the ITCZ regions. 408 

Furthermore, WCLD analyses have shown larger impact over the landmass as 409 

compared to WCLR analyses. These large improvements in WCLD analyses are 410 

majorly due to cloud-affected radiance that are not used for WCLR runs. Overall, these 411 

results based on one-month experiments suggested that all-sky assimilation is 412 

successfully implemented in the WRF model with additional control variables of 413 

different hydrometeors. Moreover, the verifications of the WRF model analyses with 414 

independent MW satellite observations suggested that the WCLD analyses are more 415 

realistic and accurate as compared to WCLR and WCNT analyses. These positive 416 

impacts in model analyses are further evaluated for short-range weather prediction in 417 

the section 4.2. 418 

 419 

4.2. Impact in forecast  420 

 To assess the impact of clear-sky and all-sky assimilation, three-hourly 421 

forecasts from the WRF model (upto 48 hours) are compared with SAPHIR and MHS 422 

observed TB, and NCEP final moisture analyses. The distribution of number of 423 

observations used for improvement parameter computation are shown in figure 7(a) 424 
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and figure 8(a) for SAPHIR and MHS sensors, respectively. The number of 425 

observations are almost twice in MHS due to availability on various platforms and 426 

global coverage. Figure 7(b) clearly shows that the value of RMSD in WCNT runs 427 

increases with forecast lengths. Minimum RMSD error is found in first 12 hours 428 

forecasts and reaches maximum after 24 hours. However, the RMSD in WCNT shows 429 

diurnal variations in errors when compared with MHS observations (Fig. 8b). The 430 

maximum errors are observed at 0900 UTC (in 06-hour forecasts) and 2100 UTC (in 431 

18-hour forecasts), when the number of MHS observations are least. Similar to 432 

SAPHIR comparison, the RMSD values are increased with forecast lengths in figure 433 

8(b). The percentage improvement parameter for WCLR and WCLD forecasts against 434 

WCNT forecasts are shown in figure 7(c) and figure 7(d), respectively for SAPHIR 435 

observations, and in figure 8(c) and figure 8(d), respectively for MHS observations. 436 

Results show that clear-sky assimilation has positive impact on short range prediction, 437 

this positive improvement is more prominent when all-sky observations are assimilated 438 

in the WRF model. This improvement is higher than 5-10% for short-range forecasts 439 

when compared with SAPHIR observations. Figures 8(c,d) show that the value of 440 

positive improvement is reduced rapidly after a few hours and neutral to marginal 441 

positive impact is seen for both WCLR and WCLD runs. The possible cause of this 442 

reduction in positive improvement may be due to strict quality control in data 443 

assimilation. Kumar et al. (2014) also mentioned that the strict quality control in data 444 

assimilation improves short-range forecast only. Another possible reason may be due 445 

to identical lateral boundary conditions without cyclic assimilation that may also 446 

influence the longer forecasts.  447 

 448 
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The spatial distribution of the mean WV mixing ratio at upper vertical level (300 hPa) 449 

from the NCEP final analysis and 12-hour forecasts from the WCNT runs are shown 450 

in figure 9(a) and figure 9(b), respectively. Figure shows that the WCNT runs are able 451 

to capture spatial distribution of upper level moisture with few differences over the 452 

central India and orographic regions. The spatial distribution of percentage 453 

improvement parameter for WCLR runs show almost neutral impact of clear-sky 454 

assimilation, except in the northern part of the study domain (Fig. 9c). The spatial 455 

distribution of percentage improvement parameter in WCLD runs against WCNT runs 456 

suggested noteworthy improvements over the central India, northern and western 457 

Arabian Sea regions. Few pockets of positive improvement can also be seen over the 458 

Indian Ocean. Vertical profile of improvement suggests that the maximum positive 459 

impact occurs over the upper layer of atmosphere (Fig. 10). These positive 460 

improvements reduce with forecast lengths for WCLD runs (Fig. 10b). These positive 461 

improvements are less in magnitude for WCLR runs (Fig. 10a) and majorly exist over 462 

the mid-layer of atmosphere (600 to 250 hPa) for all forecast lengths upto 48 hours. 463 

The magnitude of negative impact is also seen at surface and upper layers (around 464 

100 hPa) in all-sky assimilation. This negative impact is almost negligible for clear-sky 465 

assimilation. Overall, these results suggested that the WRF model predictions improve 466 

with all-sky assimilation as compared to clear-sky assimilation.  467 

 468 

 469 

 470 

 471 

 472 

 473 
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5. Conclusion 474 

 In this study, the assimilation of clear-sky and all-sky IR observations from WV 475 

channel of Imager onboard INSAT-3D and INSAT-3DR satellites are assimilated in the 476 

WRF model using variational method. The different hydrometeors are considered as 477 

individual control variables to understand the importance of clouds as control 478 

variables. The background error covariance matrix for different control variables using 479 

the NMC method is implemented in the 3D-Var assimilation system. The changes in 480 

different hydrometeors analyses suggested that this assimilation system is able to 481 

modify the initial state of hydrometeors in the WRF model. It is clearly demonstrated 482 

that the all-sky analyses are closer to the independent satellite observations as 483 

compared to analyses from WCLR and WCNT runs. This study demonstrats that the 484 

all-sky IR WV observations are able to improve the moisture information over the study 485 

domain that are very crucial over the south-Asia regions. Overall, results suggested 486 

that the analysis as well as forecasts from the WCLD runs are closer to observations 487 

and final analysis as compared to WCLR and WCNT runs. Results show the potential 488 

of assimilating all-sky measurements from IR sensors on-board geostationary 489 

satellites. This study did not consider the importance of frequent sampling from 490 

geostationary satellites that may be a scope for further research using WRF four-491 

dimensional variational (4D-Var) or four‐dimensional ensemble variational (4DEnVar) 492 

in future. Additional research is needed to understand the degradation of positive 493 

impact with forecast lengths in all-sky assimilation.  494 

 495 

 496 

 497 

 498 
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Figure captions 716 

Figure 1: Spatial distribution of INSAT-3D WV TB observations assimilated in the (a) 717 

WCLR and (d) WCLD runs, simulated TB from (b) WCLR first guess, (c) WCLR 718 

analysis, (e) WCLD first guess, and (f) WCLD analysis on a sample day 01 July 2018.  719 

 720 

Figure 2: Spatial distribution of average first-guess departure for (a) WCLR and (b) 721 

WCLD runs, and analysis departure for (c) WCLR and (d) WCLD runs during 1-31 July 722 

2018. 723 

 724 

Figure 3: Temporal distribution of number of observations assimilated in WCLR and 725 

WCLD runs for (a) INSAT-3D and (d) INSAT-3DR satellites, BIAS in first-guess and 726 

analysis for (b) INSAT-3D and (e) INSAT-3DR satellites, and RMSD in first-guess and 727 

analysis for (c) INSAT-3D and (f) INSAT-3DR satellites during July 2018. The WCLR 728 

and WCLD runs are defined as CLR and CLD, respectively. First-guess and analysis 729 

are shown as solid-line and dash-line, respectively. 730 

 731 

Figure 4: Spatial distribution of anomaly (WCLD – WCNT) analyses for variables (a) 732 

humdity (g Kg-1), (b) temperature (°C), (c) Zonal wind (m s-1), (d) meridional wind (m 733 

s-1), (e) cloud mixing ratio (mg Kg-1), (f) rain mixing ratio (mg Kg-1), (g) snow mixing 734 

ratio (mg Kg-1), (h) ice mixing ratio (mg Kg-1), and (i) graupel mixing ratio (mg Kg-1) 735 

variables at 500 hPa during July 2018. 736 

 737 

Figure 5: Spatial distribution of (a) mean SAPHIR channel-1 TB, (b) RMSD in the 738 

WCNT simulated TB against SAPHIR, improvement parameter (K) in (c) WCLR and 739 
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(d) WCLD simulated analyzed TB against WCNT simulated analyzed TB during entire 740 

month of July 2018. 741 

 742 

Figure 6: Spatial distribution of (a) mean MHS channel-3 TB, (b) RMSD in the WCNT 743 

simulated TB against MHS, improvement parameter (K) in (c) WCLR and (d) WCLD 744 

simulated analyzed TB against WCNT simulated analyzed TB during entire month of 745 

July 2018. 746 

 747 

Figure 7: Spatial distribution of (a) number of SAPHIR observations used for 03-hourly 748 

forecasts verifications, (b) RMSD in WCNT forecasts simulated TB against SAPHIR, 749 

percentage improvement parameter in (c) WCLR and (d) WCLD forecasts simulated 750 

TB against WCNT forecasts simulated TB during 1-31 July 2018.  751 

 752 

Figure 8: Spatial distribution of (a) number of MHS observations used for 03-hourly 753 

forecasts verifications, (b) RMSD in WCNT forecasts simulated TB against MHS, 754 

percentage improvement parameter in (c) WCLR and (d) WCLD forecasts simulated 755 

TB against WCNT forecasts simulated TB during 1-31 July 2018. 756 

 757 

Figure 9: Spatial distribution of WV mixing ratio from (a) NCEP final analysis, and (b) 758 

12-hour forecast from WCNT runs, percentage improvement parameter for (c) WCLR 759 

and (d) WCLD runs against WCNT runs at 300 hPa during July 2018.  760 

 761 

Figure 10: Time-Height plot of percentage improvement parameter for different 762 

forecast lengths for (a) WCLR and (d) WCLD runs against WCNT runs, when 763 

compared with NCEP final analysis during the entire month of July 2018.  764 
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