Characterization of Irreversible Land Subsidence in the Yazd-Ardakan Plain, Iran from 2003-2020 InSAR Time Series

Sayyed Mohammad Javad Mirzadeh¹, Shuanggen Jin², Esmaeel Parizi³, Estelle Chaussard⁴, Roland Burgmann⁵, Jose Manuel Delgado Blasco⁶, Meisam Amani⁷, Han Bao⁸, and Seyyed Hossein Mirzadeh⁹

¹Shanghai Astronomical Observatory, Chinese Academy of Sciences
²Shanghai Astronomical Observatory, Chinese Academy of Sciences
³University of Tehran
⁴University of Oregon
⁵University of California, Berkeley
⁶University of Jaen
⁷Woo plc
⁸University of California Los Angeles
⁹Ministry of Road and Urban Development

November 24, 2022

Abstract

Groundwater extraction at rates exceeding recharge is occurring throughout Iran for agricultural and industrial activities, resulting in land subsidence in many areas, particularly the Yazd-Ardakan Plain (YAP) in the dry and desert regions of central Iran. In this study, Interferometric Synthetic Aperture Radar (InSAR) time series analysis and statistical models are used to characterize the controls on land subsidence in the YAP, from 2003 to 2020. Our results reveal the existence of a northwest-southeast elongated area of 363 experiencing subsidence at rates up to 15 cm/yr. In the YAP, the international Airport, railway, transit road, and several industrial and historical sites are threatened by the differential subsidence. Well data confirm that groundwater levels have decreased by 18 meters between 1974 and 2018, driving the compaction of sediments within the underlying aquifer system. Our statistical analysis shows that the thickness of a shallow, clay-rich aquitard layer controls the extent of the observed subsidence and an Independent Component Analysis of the InSAR time series shows that inelastic compaction dominates. This work reveals that in central Iran, current groundwater extraction practices are not sustainable and result in permanent subsidence, ground fractures with impact on infrastructures, and a permanent decrease in water storage capacity.

JGR-Solid Earth Supporting Information for

Characterization of Irreversible Land Subsidence in the Yazd-Ardakan Plain, Iran from 2003-2020 InSAR Time Series

Sayyed Mohammad Javad Mirzadeh^{1,2}, Shuanggen Jin^{1,3}, Esmaeel Parizi⁴, Estelle Chaussard^{5,11}, Roland Bürgmann⁶, Jose Manuel Delgado Blasco⁷, Meisam Amani⁸, Han Bao⁹, and Seyyed Hossein Mirzadeh¹⁰

¹Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China

²School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China

³School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

⁴Physical Geography Department, University of Tehran, P.O. Box 14155-6465, Tehran, Iran

⁵Department of Earth Sciences, University of Oregon, Eugene, OR, USA

⁶Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720-4767, USA

⁷Grupo de Investigación Microgeodesia Jaén (PAIDI RNM-282), Universidad de Jaén, 23071 Jaén, Spain

⁸Wood Environment & Infrastructure Solutions, Ottawa, ON, Canada, K2E 7L5

⁹Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA, USA

¹⁰Faculty of Architecture and Urban Planning, University of Art, Tehran 1136813518, Iran

¹¹Curently unaffiliated

Contents of this file

Tables S1 to S5

Introduction

The following tables illustrate results mentioned in the manuscript as follow:

- Table S1: Long-term groundwater balance of the YAP aquifer.
- Table S2: Number or extent of infrastructures located in the YAP.
- Table S3: Envisat acquisitions in ascending and descending orbits.
- Table S4: Sentinel-1 acquisitions in ascending and descending orbits.
- Table S5: Infrastructure subjected to different subsidence classes.

Recharge Components $(\times 10^6 m^3/yr)$	Recharge Components $(\times 10^6 m^3/yr)$	Discharge Components $(\times 10^6 m^3/yr)$
Recharge from Domestic and Industrial returns	70.78	Drainage into Surface Flows
Recharge from Irrigation returns	84.14	Evaporation from Groundwater
Stream-bed Percolation	80.58	Withdrawal Through Pumping wells, Qanats
Recharge from Rainfall	11.53	
Lateral Sub-surface Inflows	10.51	Lateral Sub-surface Outflows
Sum of Inputs	257.64	Sum of Outputs

Table S1. Long-term groundwater balance of the aquifer of Yazd-Ardakan Plain (YAP) (Iran's WRM Co., 2014).

Name	Number/Length (Unit)
Industrial Zone	21
Factory	69

Historical Site	18
Airport	1
Main Road	$750.33 \ (\mathrm{km})$
Power Line	$1562.5 \ (km)$
Power Station	1
Power Post	36
Railway	$297.01 \ (km)$
Railway Station	14

Table S2. Number or extent of the main infrastructures located in the YAP. See Figure 1 for locations.

Ascending	Ascending	Descending	Descending
2004-09-06	2009-08-31	2003-03-26	2005-07-13
2004-10-11	2009-12-14	2003-08-13	2005-10-26
2004-11-15	2010-02-22	2003-09-17	2006-02-08
2005-04-04	2010-05-03	2003 - 11 - 26	2006-12-20
2005-06-13	2010-07-12	2004 - 05 - 19	2009-08-26
2005-10-31		2004-06-23	2009-12-09
2006-01-09		2004-07-28	2010-02-17
2006-02-13		2004-09-01	2010-04-28
2006-04-24		2004 - 12 - 15	2010-06-02
2007-01-29		2005-02-23	2010-07-07
2007-03-05		2005-03-30	2010-10-20
2008-04-28		2005-06-08	

 Table S3. Envisat acquisition dates in ascending and descending orbits.

Asconding	Asconding	Asconding	Desconding	Desconding	Desconding
20141014	20170612	20181110	20141010	20170527	20181120
20141014	20170012	20101110	20141010	20170327	20101130
20141107	20170624	20181122	20141103	20170608	20181212
20141201	20170706	20181204	20141127	20170620	20181224
20150118	20170718	20181216	20141221	20170702	20190105
20150211	20170730	20181228	20150114	20170714	20190117
20150307	20170811	20190109	20150207	20170726	20190129
20150331	20170823	20190121	20150315	20170807	20190222
20150424	20170904	20190202	20150408	20170819	20190318
20150518	20170916	20190214	20150502	20170912	20190330
20150611	20170928	20190226	20150526	20170924	20190411
20150705	20171010	20190310	20150619	20171006	20190423
20150729	20171022	20190322	20150713	20171018	20190505
20150822	20171103	20190403	20150806	20171030	20190517
20151009	20171115	20190415	20150830	20171111	20190529
20151102	20171127	20190427	20151017	20171205	20190622
20151126	20171209	20190509	20151110	20171217	20190716
20151220	20171221	20190521	20151204	20171229	20190809
20160113	20180102	20190602	20151228	20180110	20190821
20160301	20180114	20190614	20160121	20180122	20190902
20160325	20180126	20190626	20160214	20180203	20190926
20160418	20180207	20190708	20160309	20180215	20191008
20160512	20180219	20190720	20160402	20180227	20191020

20160605	20180303	20190801	20160426	20180311	20191101
20160629	20180315	20190813	20160520	20180323	20191113
20160723	20180327	20190825	20160613	20180404	20191125
20160816	20180408	20190906	20160707	20180428	20191207
20160909	20180420	20190918	20160731	20180510	20191219
20161003	20180502	20190930	20160824	20180522	20191231
20161027	20180514	20191012	20160917	20180603	20200112
20161120	20180526	20191024	20161011	20180615	20200124
20161214	20180607	20191105	20161104	20180627	20200217
20170107	20180619	20191117	20161128	20180709	20200229
20170131	20180701	20191129	20161222	20180721	20200324
20170212	20180713	20191211	20170115	20180802	
20170224	20180725	20191223	20170208	20180814	
20170308	20180806	20200104	20170220	20180826	
20170320	20180818	20200116	20170304	20180907	
20170401	20180830	20200128	20170316	20180919	
20170413	20180911	20200209	20170328	20181001	
20170425	20180923	20200221	20170409	20181013	
20170507	20181005	20200304	20170421	20181025	
20170519	20181017	20200316	20170503	20181106	
20170531	20181029	20200328	20170515	20181118	

Table S4. Sentinel-1 acquisition dates in ascending and descending orbits.

Type of Displace-	Disp.								
ment	Rate (D)	Industrial		Historical		Power	Main	Power	
(Dataset)	$(\mathrm{cm/yr})$	Zone	Factory	Site	Rural	Post	Road	Line	Ra
		(Number)	(Number)	(Number)	(Number)	(Number)	(km)	(km)	(kı
Vertical (Envisat)	1 [?] D [?] 5	2	3	14	45	1	20.2	56.9	4.2
	5 < D [?] 10	1	2	1	22	2	23.2	42.7	n/
	D > 10	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/
Horizontal (Envisat)	D [?] -1	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/
	-1 < D [?] 1	7	28	17	284	22	228.2	655.1	85
	> 1	n/a	n/a	n/a	3	1	4.9	3.3	n/
Vertical (Sentinel- 1)	1 [?] D [?] 5	1	3	13	74	1	28.5	99.13	6.8
)	5 < D [?] 10	2	6	n/a	22	1	20.3	37.5	n/
	D > 10	n/a	n/a	n/a	7	1	9.2	5.2	n/
Horizontal (Sentinel- 1)	D [?] -1	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/
	-1 < D [?] 1	7	28	17	287	23	233.1	658.4	85

(Dataset)	(cm/yr) D > 1	Zone n/a	Factory n/a	Site n/a	Rural n/a	Post n/a	Road n/a	Line n/a	Re / n/
ment	Rate (D)	Industrial	T	Historical		Power	Main	Power	Б
Type of Displace-	Disp.								

Table S5. List of infrastructures subjected to various classes of the vertical and horizontal displacements.

Hosted file

supinfo_figures.docx available at https://authorea.com/users/547191/articles/602672characterization-of-irreversible-land-subsidence-in-the-yazd-ardakan-plain-iran-from-2003-2020-insar-time-series

1 2	Characterization of Irreversible Land Subsidence in the Yazd-Ardakan Plain, Iran from 2003-2020 InSAR Time Series					
3 4 5	Sayyed Mohammad Javad Mirzadeh ^{1,2} , Shuanggen Jin ^{1,3} , Esmaeel Parizi ⁴ , Estelle Chaussard ^{5,11} , Roland Bürgmann ⁶ , Jose Manuel Delgado Blasco ⁷ , Meisam Amani ⁸ , Han Bao ⁹ , and Seyyed Hossein Mirzadeh ¹⁰					
6	¹ Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China					
7 8	² School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China					
9 10	³ School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China					
11	⁴ Physical Geography Department, University of Tehran, P.O. Box 14155-6465, Tehran, Iran					
12	⁵ Department of Earth Sciences, University of Oregon, Eugene, OR, USA					
13 14	⁶ Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720-4767, USA					
15 16	⁷ Grupo de Investigación Microgeodesia Jaén (PAIDI RNM-282), Universidad de Jaén, 23071 Jaén, Spain					
17	⁸ Wood Environment & Infrastructure Solutions, Ottawa, ON, Canada, K2E 7L5					
18	⁹ Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA, USA					
19	¹⁰ Faculty of Architecture and Urban Planning, University of Art, Tehran 1136813518, Iran					
20	¹¹ Currently unaffiliated					
21						
22	Corresponding author: sgjin@shao.ac.cn; sg.jin@yahoo.com (S. Jin)					
23						
24	Key Points:					
25 26	• Vertical and horizontal deformation in Yazd-Ardakan Plain, Iran, is obtained by Envisat and Sentinel-1 InSAR time series					
27 28	• The rates and spatial extent of subsidence are controlled by the confining clay layer thickness					
29 30 31	• An Independent Component Analysis shows that the subsidence is irreversible and inelastic compaction dominates					

32 Abstract

Groundwater extraction at rates exceeding recharge is occurring throughout Iran for agricultural and industrial activities, resulting in land subsidence in many areas, particularly the Yazd-Ardakan Plain (YAP) in the dry and desert regions of central Iran. In this study, Interferometric Synthetic Aperture Radar (InSAR) time series analysis and statistical models are used to characterize the controls on land subsidence in the YAP, from 2003 to 2020. Our results reveal the existence of a northwest-southeast elongated area of 363 km^2 experiencing subsidence at rates up to 15 cm/yr. In the YAP, the international Airport, railway, transit road, and several industrial and historical sites are threatened by the differential subsidence. Well data confirm that groundwater levels have decreased by 18 meters between 1974 and 2018, driving the compaction of sediments within the underlying aquifer system. Our statistical analysis shows that the thickness of a shallow, clay-rich aquitard layer controls the extent of the observed subsidence and an Independent Component Analysis of the InSAR time series shows that inelastic compaction dominates. This work reveals that in central Iran, current groundwater extraction practices are not sustainable and result in permanent subsidence, ground fractures with impact on infrastructures, and a permanent decrease in water storage capacity.

67 **1 Introduction**

Deserts and semi-deserts currently occupy more than one-third of the global land surface 68 69 (Laity, 2009). In these areas, recent climatic changes (i.e. increasing temperature and decreasing precipitation) occur at a faster rate than in other environments (Porter et al., 2014). These 70 71 changes result in the loss of valuable topsoil by wind erosion, soil salinization, loss of sparse vegetation, and dropping groundwater levels (Laity, 2009). In addition, the population growth 72 73 and industrial and urban developments in desert areas have resulted in increasing exploitation of underground water resources (Avtar et al., 2019), which leads to land subsidence. Land 74 subsidence is well-known in desert and semi-desert areas such as the Las Vegas Valley, Nevada, 75 USA (Amelung et al., 1999), the Avra Valley, Arizona, USA (Hanson et al., 1990), the Mojave 76 77 Desert, California, USA (Galloway et al., 1998), in Mexico's San Luis Potosi' state and Mexico City (Chaussard et al., 2021; Julio-Miranda et al., 2012), in the South Kordofan state, Sudan 78 79 (Gido et al., 2020), in areas of Saudi Arabia (Amin and Bankher, 1997), and in the Kerman and Yazd regions of Iran (Motagh et al., 2008). Several environmental effects are associated with 80 land subsidence, including damage to infrastructure and buildings, accelerated erosion along 81 earth fissures, drainage systems, degradation and contamination of groundwater, and socio-82 economic impacts (Abidin et al., 2001; Chaussard et al., 2021; Conway, 2016). Therefore, it is 83 important to monitor and investigate both the temporal variability and spatial extent of land 84 subsidence to establish a continuous monitoring system and to assist in the development of a 85 sustainable water management program (Baum et al., 2008; Emil et al., 2018). 86

Although ground-based geodetic surveys such as precise differential leveling and Global 87 Navigation Satellite System (GNSS) positioning (Jin and Su, 2020) are accurate techniques for 88 monitoring land subsidence, these approaches are time-consuming and costly and thus spatially 89 90 limited (Galloway and Burbey, 2011). Remote sensing techniques can be used to map and measure the subcentimeter ground displacement at high spatial resolution (tens to hundreds 91 meters) over large areas (tens to thousands of square kilometers), and are thus well suited for 92 monitoring land subsidence (e.g. Chaussard et al. (2013); Chaussard et al. (2014b)). 93 94 Interferometric synthetic aperture radar (InSAR) enables quantifying surface topography and its changes over large regions (Bürgmann et al., 2000). InSAR uses several Synthetic Aperture 95 96 Radar (SAR) images of the same area acquired at different times by a single antenna or at the 97 same time by two antennas separated in an along-track direction. InSAR has offered insights into

the hydrogeological and geological processes in deforming aquifers (Bell et al., 2008; Bozzano
et al., 2015; Chaussard et al., 2017; Hoffmann et al., 2001; Hu et al., 2018; Ojha et al., 2018;
Schmidt and Bürgmann, 2003).

In Iran, intense irrigation of agricultural areas, industrial needs, and rapid urban 101 development are the main sources of groundwater over-drafting and cause the resulting depletion 102 of water reservoirs (e.g., Anderssohn et al. (2008)). Throughout the country, the volume of 103 annual groundwater extraction increased from 20 billion m^3 in 1960 to more than 53 billion m^3 104 in 2003 (World Bank, 2005). Land subsidence is documented in more than 300 plains or 105 sedimentary basins of Iran (Amighpey and Arabi, 2016; Anderssohn et al., 2008; Babaee et al., 106 2020). For example, Motagh et al. (2017) explored land subsidence in the Rafsanjan plain 107 through InSAR time series analysis using Envisat, ALOS-1, and Sentinel-1 datasets between 108 109 2004 and 2016. Their study showed subsidence exceeding 30 cm/yr. Haghighi and Motagh (2019) reported three distinct subsidence features with rates up to 25 cm/yr in the capital of Iran, 110 111 Tehran, using 2003-2017 time series analysis of the Envisat, TerraSAR-X, ALOS, and Sentinel-1 data, and showed that inelastic (permanent) compaction dominated in this aquifer. 112

The Yazd-Ardakan Plain (YAP) is one of the main strategic regions in Iran in terms of 113 aggregation of infrastructures, industrial sites, and transportation corridors (Fig. 1, Table S2) 114 (Esfanjary, 2018). Increasing demand for water resources in recent decades, due to population 115 growth and industrial and agricultural developments, has led to groundwater depletion and 116 117 subsidence (Amighpey and Arabi, 2016). In this study, we quantify the spatiotemporal evolution of land subsidence in the YAP using InSAR time series analysis to resolve the underlying 118 controls on subsidence rates and spatial extent. The Small BAseline Subset (SBAS) time series 119 technique (Berardino et al., 2002; Hooper, 2008) was implemented using both the Envisat and 120 Sentinel-1 datasets to derive time-dependent subsidence between 2003 and 2020. InSAR time 121 122 series results were then analyzed with an Independent Component Analysis (ICA) to separate contributions from elastic (i.e., reversible) and inelastic (i.e. irreversible) deformation (Chaussard 123 and Farr, 2019). Finally, hydrogeological and geological parameters were combined using 124 statistical and artificial intelligence (AI) methods to quantify the dominant control on the 125 observed deformation in the YAP aquifer. 126

127 2 Yazd-Ardakan Plain

The Yazd-Ardakan Plain (YAP) is located between 53.65 and 54.77 E longitude and 31.55 and 32.50 N latitude in the central part of the province of Yazd (Fig. 1). The elevation in this region rises from 997 m to 2677 m above sea level from the north towards the south.

131

Figure 1. (a) Location of Yazd-Ardakan Plain (YAP) in Iran, indicated with a red rectangle. (b) Topography of the YAP with black dots showing the cities of Ardakan, Meybod, Ashkezar, Shahedieh, Yazd, Hamidia, Zarch, Taft, and Mehriz. (c) Main infrastructures, industrial and historical sites located in the YAP (see Table S2).

132

The YAP is a dry desert with average annual evaporation of ~ 2900 mm and average 133 annual rainfall of ~ 130 mm (TAMAB, 2004) based on recorded data during 1969 to 2011. 134 Within the YAP, there is no year-round surface water and, accordingly, cities have relied on 135 groundwater delivered through ganats (a system of connected underground wells). The YAP 136 aquifer covers an area of 2618.57 km^2 (Fig. 2a). This confined aquifer is topped by a tens-of-137 meters thick clay-rich aquitard layer in the central part of the valley (light-blue in Fig. 2b). 138 Groundwater levels are measured monthly by the Iran Water Resources Management (TAMAB, 139 2004) using 81 piezometers, which reveal maximum and minimum depths to water levels of 140 141 164.6 m and 8.12 m, respectively (Regional Water Company of Yazd, 2014). Approximately 282

million m^3 of groundwater are being extracted annually from 1194 pumping wells, leading to a 142 net storage loss of ~ 65.93 million m^3 per year (TAMAB, 2004). This large net storage loss has 143 led the Water Resource Company of Ministry of Energy to label the YAP as a "forbidden" 144 aquifer, a term used to refer to the most imperiled aquifers in Iran (Regional Water Company of 145 Yazd, 2014). Table S1 provides the discharge and recharge components of the groundwater 146 balance of the YAP, which shows that the primary source of aquifer discharge is withdrawal 147 through wells, ganats, and springs at 323.14 million m^3 per year (Fig. S1). A key contribution to 148 149 aquifer recharge comes from return of wastewater from the agricultural sector at 84.14 million m^3 per year, while recharge by precipitation amounts to only 11.53 million m^3 per year and loss 150 by evaporation from groundwater was estimated to be insignificant (Regional Water Company of 151 Yazd, 2014). 152

Figure 2a shows the Jurassic to Quaternary lithologies observed in the YAP. Quaternary sediments cover the largest part of the YAP with 74.6% of this area, consisting of sand dunes, alluvium, and sabkha (salty silts, clays, and salt flats). The Dehshir fault, a 400 km-long NNWtrend strike-slip fault (Walker and Jackson, 2004) with an estimated right-lateral slip rate of 2 mm per year (Walker et al., 2009), is bounding the YAP to the southwest (red line on Fig. 2a).

Figure 2. (a) Geological map of the YAP, modified from the Geological Survey of Iran (1997). Black lines represent the confined aquifer boundary. Brown lines show the locations of crosssections (A-A' and B-B'). Red and green dots show the locations of piezometers and exploration wells, respectively. Black dots, labeled by Sta.1 to Sta. 8, show the location of synoptic stations, Aqda, NasrAbad, Ardakan, Meybod, Sadoogh, Yazd, Taft, and Mehriz. Outline of frames from Sentinel-1 and Envisat tracks in the ascending and descending orbit directions are shown with the blue and red rectangles, respectively. (b) Geologic cross-section of the YAP aquifer along the A-A' relying on data from the exploration wells shown in (a). They show that the geological materials of the aquifer are mostly unconsolidated sediments (clay and sand: orange; sand and gravel: yellow; clay, sand, and gravel mix: cyan; and gravel and clay: purple), and their thickness decreases from the south (left) to the north (right). The thickness of the topmost clay unit (blue) represents the confining aquitard layer.

159

160 **3 Datasets and Methods**

- 161 3.1 Datasets
- 162 3.1.1 SAR satellite data

We used 248 Sentinel-1 images acquired in Interferometric Wide-swath (IW) mode, from the Alaska Satellite Facility (ASF), and 40 Envisat ASAR images in StripMap (SM) mode from the European Space Agency (ESA). Sentinel-1 images were acquired from October 2014 to March 2020 from both descending and ascending orbits (Fig. 2a) with a resolution of 5×20 m (Range × Azimuth). The Envisat ASAR images were acquired from March 2003 to October 2010 and from September 2004 to July 2010 from the descending and ascending orbits, respectively (Fig. 2a), with a spatial resolution of 8×4 m (Range × Azimuth).

170 3.1.2 Hydrological data

We used monthly data from 23 piezometers to assess groundwater level (GWL) 171 172 variations between 2004 and 2018 (Fig. 2a). We used an Inverse Distance Weighted (IDW) (ESRI, 2012; Gong et al., 2014) approach to produce a map of annual GWL changes (Fig. S4c). 173 The Kernel Density method (Trabelsi et al., 2016) was used to map the density of pumping wells 174 (Fig. S4b) and annual pumping volume (Fig. S4d) by interpolation of 1194 pumping wells data 175 176 (Fig. S4f). Aquifer transmissivity is one of the most important variables affecting yields of a pumping well. It is equal to the product of the aquifer thickness (m) and hydraulic conductivity 177 (K) and describes an aquifer's capacity to transmit water (Cheremisinoff, 1998; Sterrett, 2007). 178 A transmissivity map (Fig. S4e) was generated by interpolation of transmissivity point data from 179 180 the pumping test (Parizi et al., 2019; Regional Water Company of Yazd, 2014).

181 3.1.3 Geological data

Stratigraphic data within the YAP (Fig. 2a) is derived from the geological map at a scale of 1:100000, provided by the Geological Survey and Mineral Explorations of Iran (GSI) (Geological Survey of Iran, 1997). The logs of 26 exploration wells (Fig. 2a; TAMAB (2004)), were utilized to derive the spatial distribution and thickness of clay sediments (Fig. S4a) with an Inverse Distance Weighted (IDW) approach (ESRI, 2012; Gong et al., 2014).

187 3.1.4 Weather data

Time-series of Land Surface Temperature (LST) were generated using the MODIS/Terra product MOD11_L2 swath that provides daily LST and emissivity values with a resolution of 1 km in a 1200 km \times 1200 km grid. Time series of precipitation were generated using the daily precipitation data of eight stations (see their locations in Fig. 2a), distributed in the YAP (Iran Meteorological Organization, 2018). The Temperature-Vegetation-soil Moisture Dryness Index (TVMDI) was computed using (1) LST data, (2) Soil Moisture (SM) data, and (3) Perpendicular

194 Vegetation Index (PVI) in the form of TVMDI = $\sqrt{LST^2 + SM^2 + (\frac{\sqrt{3}}{3} - PVI)^2}$, used to assess 195 the pattern of dryness over the study area (Amani et al., 2017). 196 3.2 Methods

197 3.2.1 InSAR processing

The InSAR Computing Environment (ISCE) software was used to produce over 970 and 198 280 Sentinel-1 and Envisat interferograms, respectively (see Fig. 3). Temporal and perpendicular 199 baseline thresholds were set to 1800 days and 1070 m for the Envisat data. For Sentinel-1 data, 200 interferograms were formed between each epoch and the four preceding and four subsequent 201 epochs. To reduce the speckle noise and increase processing speed, the interferograms were 202 resampled to ~ 90 m and ~ 30 m for the Envisat and Sentinel-1 datasets, respectively. The 203 topographic phase was removed using the 1-arcsec Shuttle Radar Topography Mission (SRTM) 204 Digital Elevation Model (DEM) (Jarvis et al., 2008). The statistical-Cost Network-Flow 205 206 Algorithm for Phase Unwrapping (SNAPHU) was used for phase unwrapping (Chen and Zebker, 2003). As deformation rates before and after large data gaps in 2007 were consistent, a joint rate 207 (linear fit + offset) was calculated for the descending Envisat dataset (Fig. S3). A similar 208 approach was also used to combine the individual Envisat time series into a single time series, 209 210 assuming constant subsidence rates, as suggested by individual time series.

We used the Small BAseline Subset (SBAS) time series method (Berardino et al., 2002) 211 implemented in the Miami INsar Time-series software in PYthon (MintPy) (Yunjun et al., 2019) 212 to invert a network of interferograms and retrieve surface displacement through time. In MintPy, 213 average spatial coherence thresholds of 0.87 and 0.77 (Fig. 3) were used to remove outliers 214 affected by unwrapping errors (Tizzani et al., 2007) for the Envisat ascending and descending, 215 respectively. The tropospheric delay was corrected using PyAPS (Jolivet et al., 2014; Jolivet et 216 al., 2011) and the ECMWF Reanalysis v5 (ERA-5) weather model with a spatial resolution of 31 217 km (Hersbach et al., 2020). Regional phase ramps caused by long-wavelength tropospheric and 218 ionospheric delays and orbital errors were removed by a linear ramp calculated at each 219 acquisition. The empirical model of Marinkovic and Larsen (2013) was used to correct the Local 220 Oscillator Drift (LOD) of the ASAR instrument and to improve the geo-location accuracy of the 221 Envisat interferograms. Finally, the displacement time series were all referenced to a single pixel 222 223 that exhibits high coherence (cross in Fig. 5).

Figure 3. Envisat and Sentinel-1 interferograms visualized in the spatial and temporal baseline domains and color-coded by average spatial coherence. (a) Envisat ascending, (b) Envisat descending, (c) Sentinel-1 ascending, and (d) Sentinel-1 descending. Dashed lines in (a) and (b) illustrate Envisat interferograms dropped when applying the average spatial coherence thresholds. Solid lines show interferograms inverted to retrieve the time series of surface deformation.

Ascending and descending time series were combined to calculate the vertical and eastwest components, assuming no contributions from the north-south component (Wright et al., 2004), by minimizing

$$\begin{bmatrix} v_e \\ v_u \end{bmatrix} = U \cdot \begin{bmatrix} d_e \\ d_u \end{bmatrix} - R_{LOS}$$

where $d = (d_e, d_u)^T$ is the 2D deformation vector (east-west, vertical); (v_e, v_u) are the observation residuals, and $U = \begin{bmatrix} \sin(\theta_A) \cdot \cos(\theta_A) & \cos(\theta_A) \\ \sin(\theta_D) \cdot \cos(\theta_D) & \cos(\theta_D) \end{bmatrix}$ is a matrix, including the Line-Of-Sight (LOS) vectors, where θ is the incident angle value for each Distributed Scatterer (DS) and ϕ is the satellite-heading angle for each orbit. R_{LOS} contains the LOS measurements for the ascending and descending orbits. If the covariance matrix for errors in the LOS measurements is 234 Σ_R , by minimizing the observation residuals, the deformation vector 235 $d = -(U^T \cdot \Sigma_R^{-1} \cdot U)^{-1} \cdot U^T \cdot \Sigma_R^{-1} \cdot R$ can be calculated with a weighted least-squares inversion. The 236 covariance matrix for the vector components is $\Sigma_d = (U^T \cdot \Sigma_R^{-1} \cdot U)^{-1}$ and, as errors in LOS 237 measurements are independent in the ascending and descending measurements, we get

$$\Sigma_d = \sigma^2 (U^T . U)^{-2}$$

where $\sigma^2 = \begin{bmatrix} \sigma_A^2 & 0 \\ 0 & \sigma_D^2 \end{bmatrix}$; and σ_A^2 and σ_D^2 are the standard deviations for the ascending and descending orbits, respectively. The square root of the diagonal terms of Σ_d gives a standard displacement errors that can be considered as uncertainties in space over the YAP. InSAR uncertainties in time were calculated by averaging a 31x31 pixels window near the reference point at each time step of the ascending and descending time series for both the Envisat and Sentinel-1 datasets.

3.2.2 GWL changes and ground displacement

To assess the potential relationship between the GWL changes and the observed 245 deformation, we gather time series of vertical displacement and of GWL at the locations of 246 247 piezometers. To generate time series of vertical displacement from the LOS Sentinel-1 ascending and descending time series, we calculate the pixel-wise horizontal-to-vertical ratios from the 248 mean horizontal and vertical velocity maps and multiplied the LOS deformation at each pixel by 249 the corresponding ratio (assuming that the ratio of horizontal-to-vertical displacement at each 250 pixel is constant throughout the Sentinel-1 observation period). During the period of record, 251 converted-vertical displacements are computed in two-week intervals while the GWL change are 252 only available monthly. Due to this temporal sampling difference, we choose to compare 253 duration curves of converted-vertical displacements to GWL changes. 254

A duration curve illustrates the data variability in the frequency domain by illuminating 255 the proportion of the data that exceeds the given value of data. Duration curves are widely used 256 to characterize the streamflow variability over different time steps (e.g., daily, monthly, and 257 yearly) (Castellarin et al., 2004; Ghotbi et al., 2020a; Ghotbi et al., 2020b; Vogel and Fennessey, 258 1994). The duration curves of GWL changes and vertical displacement (referred to hereafter as 259 GDC for Groundwater Duration Curves and DDC for Displacement Duration Curves, 260 respectively) are computed from the 2014-2018 data. For computing the GDC, monthly GWL 261 changes are sorted in decreasing order and are each attributed a rank (e.g. rank m = 1, 2, ..., n) 262

with the rank n corresponding the smallest GWL change. The probability of the ranked GWL 263 change (i.e., GWL_i where i = 1, 2, ..., n) is a probability that GWL is greater than the given 264 ranked value (GWL_i), and is computed with the Weibull method i.e., $P_i = \frac{m}{n+1}$ (Vogel and 265 Fennessey, 1994). The GDC shows GWL_i as a function of P_i with the central part of duration 266 curves (i.e., 30th to 70th percentiles) representing the long-term variability (Sawicz et al., 2011) 267 while other parts of duration curves are related to the high and low variabilities of the GWL 268 changes and vertical displacement. As such, to quantify the long-term variability from duration 269 curves, we compute the corresponding slope S_{DC} (Yadav et al., 2007): 270

$$S_{DC} = \frac{Y_{30\%} - Y_{70\%}}{0.70 - 0.30}$$

where $Y_{30\%}$ and $Y_{70\%}$ are the values (e.g., GWL_{30} and GWL_{70} GWL or D_{30} and D_{70}), corresponding to the 30rd and 70th percentiles of exceedance probability, respectively.

273 3.2.3 Statistical modeling methods

To explore the controls on the land subsidence rates and extent, we compare the observed 274 deformation to deformation simulated from potential predictor variables (clay layer thickness, 275 276 density of pumping wells, GWL changes, annual pumping volume, and transmissivity; Fig. 4; (SHIBASAKI, 1969)) through (1) a Multi-Linear Regression (MLR) approach and (2) a Support 277 Vector Machine Regression (SVR) (Abdollahi et al., 2019; Tien Bui et al., 2018; Vapnik, 1995) 278 approach. A MLR, with Y and X_i , representing the observed response (land subsidence) and the 279 potential predictor variables, respectively, and a_0 a regression constant and a_i the coefficients of 280 the model follows: 281

$$Y = a_0 + a_1 \times X_1 + a_2 \times X_2 + \ldots + a_i \times X_i$$

We use the Statistics and Machine Learning Toolbox of MathWorks and a linear epsiloninsensitive SVR (ε -SVR) approach, also known as *L*1 loss (MathWorks, 2019). In ε -SVR, training data include the values of potential predictor variables and the observed response (Fig. 4) with the goal of finding a function f(x) which can be linear, quadratic, cubic, fine-gaussian, medium-gaussian, or coarse-gaussian (MathWorks, 2019) that deviates from the observed response values (y_n) by a value no greater than ε for a multivariate set of the potential predictor variables (x_n) (Chen et al., 2006).

Figure 4. Schematic representation of the datasets used in the statistical methods to explore the controls on the subsidence rates and extent to the potential predictor variables (e.g., clay layer thickness, density of pumping wells, annual pumping volume, GWL change, and transmissivity (see Fig. S4)).

- 290
- 291

3.2.4 Elastic vs. inelastic aquifer response

Determining whether land subsidence is irrecoverable (inelastic) or recoverable (elastic) 292 is important for water resources management strategies. Chaussard and Farr (2019) proposed a 293 new method to isolate elastic from inelastic behavior with an Independent Component Analysis 294 (ICA), which is a statistical and computational technique for separation of independent sources 295 linearly mixed in a signal (Gualandi et al., 2017). We used the fixed-point algorithm, FastICA 296 (Hyvärinen and Oja, 1997) and constrain the number of independent components (ICs) and their 297 order of importance with a Principal Component Analysis (PCA) and the truncation of variance 298 rule (Cattell, 1966; Chaussard et al., 2017). We apply the ICA to the Sentinel-1 data which has 299 1,408,439 samples (pixels) per epoch and 129 and 118 epochs (acquisitions between 2014 and 300 2020) for the ascending and descending orbits, respectively. Following a PCA, only one 301 component was retained, explaining ~ 99.5% of the eigenvalues (compared to 99.6% with two 302 components). For each IC we show (1) an eigenvalue time series, representing the magnitude of 303 304 the component at each epoch and (2) a score map scaled by the contribution of retained components to the original data, highlighting the pixels with the observed eigenvalue time series. 305

306 4 Results and analysis

307

4.1 Spatial pattern of subsidence

Figure 5 shows the mean vertical and horizontal velocity maps in the YAP, decomposed 308 by the mean LOS velocity from ascending and descending orbits. The most significant 309 subsidence feature is an elongated northwest-southeast zone, south of Meybod and north of 310 Ashkezar (dark circles in Figs. 5a and b). This zone of subsidence, referred to as the Main 311 Subsidence Feature (MSF), covers an area of 234.45 km^2 (Fig. 5) and is seen in both Envisat 312 and Sentinel-1 datasets. While the overall shape and boundary of the MSF are consistent over the 313 17 years of InSAR data, the displacement rates and spatial extent appear to have changed over 314 time. The MSF extent has grown westward and toward the Yazd and Meybod cities in the 315 Sentinel data, with a subsidence rate of $\sim 2 \text{ cm/yr}$ in areas that appeared stable in the Envisat data 316 (indicated with the arrows in Fig. 5b). A differential vertical velocity map between the Envisat 317 and Sentinel data (Fig. 6a) confirms that the subsidence has expanded laterally along the 318 southern and western boundaries of the MSF. In Figure 6a, both an increase and a decrease in the 319 trend of subsidence by 2 cm/yr and 0.8 cm/yr are seen in the northeast and southwest parts of the 320 MSF, respectively, while a new subsidence area is detected southeast of Yazd city (red polygon 321 in Fig. 5b). Figure 6b shows a good agreement between the Envisat and Sentinel vertical motions 322 (with a correlation of 0.95 and a standard deviation of 0.7 cm/yr), while Figures 6c and 7c-d 323 show that Sentinel-1 and Envisat horizontal motions differ significantly, likely due to the greater 324 uncertainties of the Envisat data (Fig. 3). The 2014-2020 Sentinel-1 data reveals eastward ground 325 motion of 1.5 cm/yr on the western side of the MSF and westward motion at 1.2 cm/yr on the 326 eastern side of the MSF (Fig. 5d). Although Figure S4b shows that the distribution of pumping 327 wells is low between these areas with opposite horizontal motions, the volume of water extracted 328 appears to be sufficient to create this inner zone of contraction (Helm, 1994). 329

Figure 5. Annual mean deformation rate maps of the vertical component from (a) Envisat and (b) Sentinel-1 data, and the horizontal component from (c) Envisat and (d) Sentinel-1 data. Red colors show downward and eastward movements in the vertical and horizontal maps, respectively. Blue colors show westward movement in the horizontal component and areas of little or no deformation in the vertical maps. The black and red circles indicate cities and the Yazd Sadooghi International Airport (YSIA), respectively. The dashed lines show the locations of the two profiles (A-A') and (B-B') in Fig. 7. The cross indicates the reference pixel located in a stable area. The black and red polygons on (a) and (b) indicate the Main Subsidence Feature (MSF) and a new subsidence area to the southeast of Yazd city, respectively. The arrows in (b) indicate the direction of growth of the two subsiding areas.

Figure 6. (a) Differential vertical velocity map between the Envisat and Sentinel data (Fig 5a and 5b). The black polygon shows the boundary of the MSF. Comparison between Envisat and Sentinel-1 (b) vertical velocities and (c) horizontal velocities over the MSF. The differential vertical rates fall within a three-sigma range of \pm 1.5 cm/yr (dash-dotted lines), while the Sentinel-1 and Envisat horizontal motions do not appear correlated.

The profiles in Figure 7a-b confirm that the Envisat and Sentinel-1 data detect similar 333 vertical deformation rates and extents. Significant differences include greater 2014-2020 334 (Sentinel-1) subsidence rates (1) on profile A-A' between 5 and 10 km (Fig. 7a, shaded area), 335 and (2) on profile B-B' between 0 and 7 km (Fig. 7b, shaded area), highlighting the expansion of 336 the subsiding area towards the south. In addition, both profiles show that in the center of the 337 MSF subsidence rates accelerated by about 5 cm/yr between the Envisat and Sentinel-1 data. A 338 localized area with almost 14 cm/yr of subsidence is observed for thirty pixels of the Sentinel-1 339 data (peak in Fig. 7b) and may represent a sinkhole or a collapsing structure, but optical data did 340 not allow us to confirm this interpretation. Figure 7c confirms the existence of eastward motion 341 on the west side of the MSF and a westward motion on the east side in the Sentinel-1 data. 342 Figure 7d shows no clear east-west deformation in the N-S oriented profile and further illustrates 343 the greater noise content of the Envisat data. The uncertainties of both vertical and horizontal 344 rates along the profiles are shown in the inset plots, with Sentinel-1 data having a standard 345 deviation of about 1 mm/yr along both profiles, and Envisat of 2 to 4 mm/yr (see Fig. S5 for 346 maps of uncertainties). Over the entire study area, uncertainties are mostly < 2 mm/yr with 347 means of 0.6 and 0.4 mm/yr for the Envisat and Sentinel-1 vertical components, and 0.4 and 0.3 348 mm/yr for the Envisat and Sentinel-1 horizontal components, respectively (Fig S5). Similarly, 349 the uncertainties for both individual ascending and descending epochs of the Envisat and 350 351 Sentinel-1 data are mostly < 2 mm (Fig. S6).

352

Figure 7. Mean vertical (a, b) and horizontal (c, d) velocities derived from Envisat (blue) and Sentinel-1 (red) data along the profiles (A-A') and (B-B') (locations shown in Fig. 5). The insets show the corresponding three-sigma uncertainties. The shaded areas highlight significantly different signals in the 2003-2010 Envisat and 2014-2020 Sentinel-1 data mentioned in the text.

4.2 Infrastructure monitoring

Comparison of our data with optical imagery reveal that land subsidence at varying rates 355 occurs in agricultural lands, urban areas, and industrial areas, potentially affecting factories and 356 infrastructures, such as roads and power grids. Table S4 provides a list of the infrastructures 357 located in subsiding areas. One of the most important infrastructures in the YAP is the Bandar 358 359 Abbas-Yazd-Ardakan Transit road. Figure 8b-e highlights the mean vertical and horizontal velocities along different sections of the road as seen in the Sentinel-1 data. Section (A) 360 experiences rapid subsidence over a 40 km section with a peak subsidence rate of 14 cm/yr, 361 without significant horizontal motion. 1.5 km south-southwest of this section and 2 km northeast 362

of nearest residential areas (red circle in Fig. 8a), differential subsidence led to multiple ground fissures (Fig. 9). Section (**B**) experiences vertical displacement along a 25 km long section with a peak value of 13 cm/yr and no significant horizontal deformation. Section (**C**) experiences subsidence in the northernmost 10 km with a peak of 1.7 cm/yr and no significant horizontal motion.

Another important transportation structure is the 85-km-long Tehran-Bandar Abbas railway connecting the Yazd province to the Provinces of Isfahan and Kerman. This section, known as the Santo section, is one of the most trafficked rail lines of Iran. Figure 8e reveals two ~20 km-long subsiding sections with rates of 1.7 and 1.4 cm/yr, respectively, and no significant horizontal deformation. Subsidence of up to 2 cm/yr is also observed near the Yazd Sadooghi International Airport (YSIA) (see location in Fig. 5), which served 431,500 passengers in 2012, making it the 11th airport in Iran (Iranian Students' News Agency, 2013).

Figure 8. (a) Locations of the Bandar Abbas-Yazd-Ardakan Transit road sections (shown by the red, blue, and black lines), and of the railway (dashed black line). Blue and red symbols indicate the locations of time series (Fig. S7) and ground observation sites (Fig. 9), respectively. Mean Sentinel-1 vertical (red) and horizontal (blue) velocities for (b) Section (**A**), (c) Section (**B**), (d) Section (**C**) of the Badar Abbas-Yazd-Ardakan transit road, and (e) the Tehran-Bandar Abbas railway. The insets show the corresponding uncertainties. Black points in (a) indicate the mean Sentinel-1 vertical and horizontal velocities for the projected location of ground observation site on Section (**A**).

Figure 9. Photograph looking South taken from the location of the red circle on Figure 8a illustrating the fissures that have developed as a result of the observed differential subsidence (the person shows the scale).

378 **5 Discussion**

5.1 Potential causes of land subsidence

To gain further insights into the controls that hydrogeological and geological parameters may have on the rate and extent of the land subsidence, we carry out the following analysis.

382 5.1.1 Hydrogeological conditions

Figure S9a-b shows that between 2004 and 2019, a 3.2°C increase (0.2 °C/yr) in the 383 average LST occurred in the region. Figure S9b shows that the LST was consistently higher 384 385 throughout 2019 compared to 2004 (with the exception of January). Figure S9c shows that 386 precipitation in 2018 amounted to approximatively only half of the 2003 precipitation (Sharafi and Karim, 2020), and while annual precipitation is highly variable, there is an overall trend 387 towards decreasing rainfall in recent decades. These climatic changes (increased temperature and 388 decreased precipitation) have likely led to an increased degree of dryness (Fig. S10b), which in 389 390 turn influences natural recharge and discharge from evapotranspiration.

In addition, the Statistics Center of Iran reported a significant population growth of 392 3.67% per year between 1956 and 2016 (Fanni, 2006) in the cities located in the YAP (Fig. 1b 393 and S2), leading to increased agricultural and industrial activities (e.g., tile and steel) (see Figs. 394 1c), which influences groundwater usage (Fig. S1). GWL fluctuations in the aquifer over 44 395 years (1974-2018) (Fig. 10) reveal an average 18 m drop in the YAP aquifer (Fig. 10a). Figure 10b shows that 4,010 million cubic meters were extracted from the aquifer during this period
with 90%, 6.2%, and 3.8% used by the agriculture, urban, and industry sectors, respectively (Fig.
S1b-e) (Iran's WRM Co., 2014).

399

Figure 10. (a) Average annual accumulated groundwater level changes (AGLC) in meters (mean lowering of groundwater level of aquifer) and (b) total annual accumulated groundwater volume changes (AGVC) in million cubic meters, for the YAP aquifer system between 1974 and 2018 (Iran's WRM Co., 2014).

400

To assess the potential relationship between the GWL changes and observed deformation, the time series of converted-vertical displacement (see section 4.2) and GWL changes were determined at sites P1-P4 (locations shown in Fig. 8a). The converted-vertical displacement time series from the ascending data do not differ significantly from vertical time series converted from the descending data (Fig. S7). We use the ascending, converted-vertical displacement time series, which has 11 more acquisitions than the descending data, to compare to the GWL fluctuations in the probability and time domains (see method in section 4.2, Fig. S8).

Correlation values of 0.67 and 0.81 are observed between the converted-vertical displacements and the GWL changes at P1 and P4, respectively (Fig. S7), suggesting that GWL changes may influence the subsidence rates. At P2, although the time series of GWL changes and converted-vertical displacements have a correlation of 0.7, their trends differ significantly more than those observed at P1 and P4. Finally, at P3, the correlation between the convertedvertical displacements and the GWL changes is only of 0.21 (Fig. S7), suggesting that other factors also influence the subsidence rates.

Figure 11 shows the exceedance probability (EP) analysis of converted-vertical displacements and GWL changes. The duration curves of converted-vertical displacements (DDC) and GWL changes (GDC) mirror each other at P1 and P4, confirming that, at those locations, the GWL changes and subsidence rates are related. In contrast, at P2, the slopes S_{DC} of the GDC and DDC do not track one another, suggesting that other factors affect the subsidence rates. At P3, for EP < 0.2, the S_{DC} of the GWL changes is greater than that of the convertedvertical displacements, while for EP > 0.2, the S_{DC} for the GDC is smaller. These observations suggest that the subsidence rates at P2 and P3 cannot be predicted solely from the observed GWL changes. P2 and P3 are located in the area with the thickest clay deposits (Fig. S4a), which may also influence the subsidence rates.

Figure 11. (a) Mean 2014-2020 Sentinel-1 vertical velocity map. The cross and black circles indicate the reference pixel and the P1-P4 site locations, respectively. (b-e) Duration curves of GWL changes (GDC, red) and converted-vertical displacements (DDC, blue) for P1 to P4 (b to e, respectively).

426

427 5.1.2 Geological settings

We explored the potential influence of the shallow clay layer thickness on the subsidence 428 rates and extent. The clays thickness increases towards the center of basin, reaching 134 meters 429 (Fig. S4a). We separate the clay thickness (C) observed throughout the YAP into five classes (C 430 ≤ 20 m, 20 m $< C \leq 40$ m, 40 m $< C \leq 60$ m, 60 m $< C \leq 80$ m, and C > 80 m (Table 1)) and 431 compare the observed maximum and mean vertical velocities observed in areas of the valley 432 corresponding to each class (Table 1). The maximum vertical velocities (>10 cm/yr) observed in 433 the Envisat and Sentinel-1 data are located in areas with clay thicknesses >80 m. In contrast, 434 435 areas with clay thicknesses less than 20m show subsidence rates lower than 6 cm/yr. These

436	observations suggest	that the	clay	thickness	is	an	important	factor	influencing	the	subsidence
437	rates and extent.										

ciay unexilesses.						
Clay Layer	Datasat	Statistical Parameters (cm/yr)				
(m)	Dataset	Max	Mean	Std		
C < 20	Envisat	5.1	0.7	0.6		
$C \leq 20$	Sentinel	5.7	0.9	0.7		
-20 < C < 40	Envisat	5.6	0.6	0.9		
$20 \le C \le 40$	Sentinel	5.6	0.8	1.1		
40 < C < 60	Envisat	6.2	1.0	1.2		
$40 < C \le 60$	Sentinel	6.1	1.3	1.4		
-60 < C < 80	Envisat	7.2	0.8	1.2		
$00 < C \leq 80$	Sentinel	6.4	1.1	1.4		
C > 90	Envisat	10.8	4.4	2.8		
C > 80	Sentinel	14.6	4.9	2.8		

Table 1. Maximum and mean vertical velocities observed in areas with various clay thicknesses

439

5.2 Relative control on the rates and extent of observed land subsidence

To quantify the relative importance of hydrological and geological parameters previously 440 described (i.e., the clay layer thickness, annual pumping volume, GWL changes, density of 441 pumping wells, and transmissivity) on the observed land subsidence rates and extent, we used 442 MLR and SVR approaches (linear and non-linear regression methods, see method section 4.3; 443 Figure 12, and Table 2). Due to the low spatial resolution of climate parameters (LST and 444 445 precipitation), we do not use those variables in the MLR and SVR approaches. To estimate the goodness of fit and compare the results with each other, we use the Relative RMSE (RRMSE 446 447

 $\frac{1}{average (mean vertical velocity)}$) and r-squared (R^2) values.

Figure 12 shows that the single-variable MLR and SVR approaches, with the clay layer 448 thickness as a potential predictor, have the highest R^2 and lowest RRMSE of all single-variable 449 analyses, suggesting that the clay layer thickness has the strongest influence on the land 450 subsidence rates (RRMSEs of 0.95 to 1.32 and R^2 of 0.42 to 0.67). Among the bivariate 451 analyses, incorporating the clay layer thickness and the density of pumping wells improves the 452 R^2 by 26% and 34% for the Envisat data (MLR and SVR, respectively) and 15% and 25% for 453

the Sentinel-1 data (MLR and SVR, respectively); and decrease the RRMSE by 10% and 30% for the Envisat data and 8% and 29% for the Sentinel-1 data (Table 2). These results suggest that the density of pumping wells is the second most influential parameter after the clay thickness. Figure 12 further confirms that the multi-variable analyses in which the clay layer thickness is considered as a potential predictor variable perform best.

Figure 12. Spider plots illustrating the values of Relative RMSE (RRMSE) (a and c) and r-squared (R^2) (b and d) for all single- and multi-variable MLR and SVR analyses using several potential predictor variables (i.e., C: Clay Layer Thickness (m), A: Annual Pumping Volume (m^3 /yr), D: Density of Pumping Well (Number/ km^2), G: Groundwater Level (GWL) Change (m/yr), T: Transmissivity (m^2 /day)) and the observed land subsidence from the Envisat (a,b) and Sentinel-1 datasets (c,d).

460

In addition, Table 2 shows that the SVR method performs better than the MLR method, 461 decreasing the RRMSE between the predicted and observed subsidence by 66% for the Envisat 462 and 77% for the Sentinel-1 datasets and increasing the R^2 by 58% for the Envisat and 61% for 463 the Sentinel-1 datasets over the MLR approach. The better performance of the SVR is likely due 464 to its nonlinearity, which is more accurate but also difficult to interpret (MathWorks, 2020). 465 Including all potential predictor parameters, instead of only the clay layer thickness, decreases 466 the value of RRMSE by 66% for the Envisat and 76% for the Sentinel-1 datasets in the SVR; and 467 17% for the Envisat and 15% for the Sentinel-1 datasets in the SVR. These results suggest that 468 within the YAP, all parameters likely influence in various proportions the subsidence rates and 469 extent, with the clay thickness being the dominant control. 470

Table 2. Results of a Multi-linear regression (MLR) approach and a support vector machine regression (SVR) approach considering the mean vertical velocity (MVV) as a response variable and the other variables as potential predictor variables (Fig. S4). The r-squared (R^2) and Relative RMSE are used to estimate the goodness of fit. In the SVR, the kernel functions (i.e., Gaussian or Radial Basis Function (RBF), Linear, Quadratic, and Cubic) determine the applied nonlinear transformation to the data before the SVM is trained (MathWorks, 2020).

Variables	Regression Type	Dataset	Model Type * / Kernel Function	<i>R</i> ²	RRMSE
С	MLR	Envisat	$MVV = -0.026 \times C + 0.054$	0.42	1.32
	SVR		Fine Gaussian	0.61	1.08
	MLR	Sentinel-1	$MVV = -0.039 \times C - 0.015$	0.47	1.20
	SVR		Fine Gaussian	0.67	0.95
C D	MLR	Envisat	$MVV = -0.028 \times C - 0.820 \times D + 0.547$	0.53	1.18
	SVR		Fine Gaussian	0.82	0.75

	MLR	Sentinel-1	$MVV = -0.042 \times C - 1.032 \times D + 0.649$	0.54	1.11
	SVR		Fine Gaussian	0.84	0.67
C D A	MLR	Envisat	$MVV = -0.025 \times C - 0.860 \times D$ - 1.612E-6 \times A + 0.191 \times G + 0.0002 \times T + 0.693	0.60	1.09
G K	SVR		Fine Gaussian	0.95	0.37
	MLR	Sentinel-1	$MVV = -0.039 \times C - 1.143 \times D -2.076E-6 \times A + 0.489 \times G + 0.0004 \times T + 0.887$	0.61	1.02
	SVR		Fine Gaussian	0.98	0.23

^{*} MVV: Mean Vertical Velocity (*cm/yr*), *C*: Clay Layer Thickness (*m*), *A*: Annual Pumping Volume (*m³/yr*), *D*:
 Density of Pumping Well (*Number/km²*), *G*: Groundwater Level (GWL) Change (*m/yr*), *T*: Transmissivity (*m²/day*).
 473

We performed a sensitivity analysis to quantify the relative importance of each potential predictor variables to the predicted land subsidence using the MLR method (Li and Merchant, 2013; Parizi et al., 2019) as follow:

$$PV(j) = \frac{AV_{rw}(j) - AV_{rw}}{AV_{rw}} \times 100$$

where *PV* is the percentage of variation in the predicted subsidence; $AV_{rw}(j)$ is the predicted annual subsidence (with j representing each potential predictor variable), and AV_{rw} is the predicted annual land subsidence considering all potential predictor variables. Figure 13 shows that the clay thickness is the dominant parameter in explaining the variability of land subsidence rates. The pumping well density is the second most influential parameter, and other parameters have a significantly lower relative importance. In other words, for a similar distribution of pumping wells and annual pumping volume, thicker clays experience greater compaction.

Figure 13. Percentage of variation (PV) of land subsidence explained by each of the potential predictor variables used in the MLR method.

486 5.3 Elastic vs. inelastic behavior

When an aquifer system experiences greater groundwater-level lowering than previously 487 experienced (i.e. the stress exceeds the pre-consolidation stress), pore spaces collapse 488 489 permanently, resulting in inelastic deformation (Carlson et al., 2020), which may manifest itself in the formation of surface fissures and cracks in areas of large differential compaction. Because 490 the inelastic compressibility of aquitards is one to three orders of magnitude larger than the 491 elastic compressibility of aquitards and aquifers (Pavelko, 2004; Riley, 1998), most inelastic 492 493 deformation occurs in aquitard layers (Chaussard et al., 2014a; Chaussard et al., 2017). To evaluate the proportion of elastic to inelastic surface deformation, we applied the ICA approach 494 495 of Chaussard and Farr (2019) to the Sentinel-1 converted-vertical deformation time series (Fig. 14). The eigenvalue of one component (IC1) corresponds to 99.5% of the sum of all the non-zero 496 eigenvalues, while a second component (IC2) retains only 0.1% of the eigenvalues. The spatial 497 extent of the IC1 positive score values is comparable to the mean vertical Sentinel-1 velocity 498 map (Fig. 5b), while the IC1 eigenvector time series highlights a nearly linear trend between 499 2014 and 2020 with a slope of -2.1 (in eigenvector/year units) (-15.7 in cm/yr units) (Fig. 14a). 500 While IC1 is the only statistically significant component, we show the results of IC2 for 501 reference. The IC2 score map shows negative values in the north and south and positive values in 502 the west (Fig. 14c), and an eigenvector time series with a slight downward trend and a slope of -503 0.3 (in eigenvector/year units) (-0.001 in cm/yr unit) (Fig. 14a). The long-wavelength spatial 504 signal observed in the IC2 score map, combined with the low slope observed in the eigenvector 505

time series suggest that IC2 likely captures noise associated with orbital errors that were not 506 entirely accounted for in the processing. As no clear seasonality or short term deformation is 507 observed, the ICA suggests that all the deformation observed in the YAP is inelastic and 508 captured by IC1. This is in agreement with observations made in the Mexico City Valley 509 (Chaussard et al., 2021) and contrasts with observations made in the Central Valley and the 510 Santa Clara Valley aquifers, California, USA where multiple short-term elastic deformation 511 signals were isolated (Chaussard and Farr, 2019; Chaussard et al., 2017; Chaussard et al., 512 2014b). 513

Figure 14d suggests a positive correlation between the spatial extent of positive IC1 score 514 values (subsidence) and the clay layer thickness, while Figure 14e suggests a positive correlation 515 between the extent of the northern area with positive score values in IC1 (subsidence) and the 516 517 area with maximum GWL decline (blue in Fig. 14e). Figure 14d also reveals that GWL declines ≥ 0.5 m/yr exist in the entirety of the area experiencing subsidence (positive score values in 518 519 IC1). These observations suggest that the amplitude of the land subsidence is controlled by the thickness of the clay layer once a threshold of GWL decline is reached. These results confirm 520 521 that (1) the deformation in the YAP is irreversible in locations where a minimum GWL is reached, leading to stress exceeding the pre-consolidation stress (which accounts for 85% of 522 spatial extent of the subsiding area), and (2) in those locations the subsidence rates are constant 523 and mostly controlled by the clays-layer thickness. As clay compaction lags behind the 524 525 groundwater levels lowering (due to clays' low hydraulic conductivity), the continuous linear 526 subsidence suggests that the clay compaction has not yet "caught-up" with the current and continuously evolving stress in the aquifer system, as observed in Mexico City (Chaussard et al., 527 2021). The aquitard is draining naturally at constant rates, resulting in the observed mostly 528 constant subsidence rates that can be predicted from the aquitard thickness. 529

Figure 14. (a) Eigenvector time series analysis of IC1 (black) and IC2 (blue) derived from the converted-vertical-ascending Sentinel-1 data (see Fig. S11 for corresponding results for the converted-vertical-descending orbit Sentinel-1 data). (b, c) Score maps of (b) IC1 and (c) IC2. Black dots show the locations of the points with time series shown in Figure S7. (d) Map of the clay thickness interpolated between exploration wells (pink dots). (e) 2014-2020 mean GWL change map interpolated between piezometers (pink dots).

532 6 Conclusions

An InSAR time series analysis of Envisat and Sentinel-1 data in the YAP from 2003 to 533 534 2020 reveals land subsidence at rates up to 15 cm/yr within an elongated northwest-southeast zone of approximately 234.45 km^2 . While the overall shape of the subsiding area did not change 535 over the past 17 years, it grew laterally. Our data also reveals eastward motion at ~1.5 cm/yr and 536 westward motion at ~ 1.2 cm/yr on the western and eastern sides of the subsiding area, 537 respectively, as a result of the radial strain changes across the subsiding zone. Over 25 km of the 538 Bandar Abbas-Yazd-Ardakan Transit road is affected by subsidence rates up to 5 cm/yr and the 539 nearby airport (YSIA) is subsiding at ~2 cm/yr. While the YAP experienced a significant 540 lowering in the groundwater levels in the past decades, regression analyses and duration curves 541 of GWL changes and displacements at sites P2 and P3 show that the thickness of a shallow clay 542 543 layer has the greatest correlation with the observed subsidence rates. Finally, an Independent Component Analysis (ICA) reveals that all the subsidence observed in the YAP is inelastic and 544 thus irreversible and is caused by clay compaction. The clay layer aquitard is draining at constant 545 rates, resulting in the observed, effectively linear subsidence rates. These results highlight the 546

- need to develop and enforce sustainable water management strategies to protect the infrastructure
- 548 and groundwater resources in central Iran.

549 Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) Project (Grant No. 12073012) and the CAS-TWAS President's Fellowship supporting the first author as an International Ph.D. student. Chaussard is supported by a National Aeronautics and Space Administration Grant Number 80NSSC19K0741.

The Envisat original data are copyrighted by the European Space Agency (ESA) and were 554 provided freely through the ESA archive (https://esar-ds.eo.esa.int/oads/access/). The Sentinel-1 555 dataset are made available by the ESA and distributed and archived through the Alaska Satellite 556 Facility (ASF) (https://www.asf.alaska.edu/sentinel/). Land Surface Temperature (LST) data was 557 obtained from the Google Earth Engine (GEE) Data Catalog 558 (https://developers.google.com/earth-engine/datasets). The ERA5 data and Shuttle Radar 559 Topography Mission (SRTM) Digital Elevation Model (DEM) data were provided through the 560 Copernicus Climate Data Store (https://cds.climate.copernicus.eu/#!/home) and the NASA's 561 Land Processes Distributed Active Archive Center (LP DAAC), located at the USGS Earth 562 Resources Observation and Science (EROS) Center (https://e4ftl01.cr.usgs.gov/MEASURES/), 563 respectively. The hydrological and geological data (i.e., groundwater level, logs of exploration 564 wells, pumping wells, and precipitation) were obtained from the Geological Survey and Mineral 565 Explorations of Iran (GSI) (https://gsi.ir/en) and Regional Water Company of Yazd 566 (https://www.yzrw.ir/?l=EN). The authors would like to thank the Geological Survey & Mineral 567 Explorations, Forests, Range, and Watershed Management Organization, Iran's Water Resources 568 Management Company, and Mr. Kamal Karimi Zarchi who helped us to visit the Yazd-Ardakan 569 Plain and collect the valuable ground observations of fissures and cracks for this study. The 570 Miami INsar Time-series software in PYthon (MintPy), InSAR Computing Environment (ISCE) 571 software, and Python 3 Atmospheric Phase Screen (PyAPS) are the open-source and available on 572 (https://github.com/insarlab/MintPy), (http://earthdef.caltech.edu/#), 573 and 574 (https://github.com/isce-framework/isce2), respectively.

575

576 **References**

- 577 Abdollahi, S., Pourghasemi, H. R., Ghanbarian, G. A., and Safaeian, R.: Prioritization of effective factors in the 578 occurrence of land subsidence and its susceptibility mapping using an SVM model and their different kernel 579 functions, Bulletin of Engineering Geology and the Environment, 78, 4017-4034, 2019.
- Abidin, H. Z., Djaja, R., Darmawan, D., Hadi, S., Akbar, A., Rajiyowiryono, H., Sudibyo, Y., Meilano, I., Kasuma,
- 581 M., and Kahar, J.: Land subsidence of Jakarta (Indonesia) and its geodetic monitoring system, Natural Hazards, 23, 365-387, 2001.
- 583 Amani, M., Salehi, B., Mahdavi, S., Masjedi, A., and Dehnavi, S.: Temperature-vegetation-soil moisture dryness 584 index (tvmdi), Remote sensing of environment, 197, 1-14, 2017.
- 585 Amelung, F., Galloway, D. L., Bell, J. W., Zebker, H. A., and Laczniak, R. J.: Sensing the ups and downs of Las
- Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation, Geology, 27, 483-486,
 1999.
- Amighpey, M. and Arabi, S.: Studying land subsidence in Yazd province, Iran, by integration of InSAR and
 levelling measurements, Remote Sensing Applications: Society and Environment, 4, 1-8, 2016.
- 590 Amin, A. and Bankher, K.: Causes of land subsidence in the Kingdom of Saudi Arabia, Natural Hazards, 16, 57-63,
- 591 1997.

- 592 Anderssohn, J., Wetzel, H.-U., Walter, T. R., Motagh, M., Djamour, Y., and Kaufmann, H.: Land subsidence pattern
- 593 controlled by old alpine basement faults in the Kashmar Valley, northeast Iran: results from InSAR and levelling, 594 Geophysical Journal International, 174, 287-294, 2008.
- 595 Avtar, R., Tripathi, S., Aggarwal, A. K., and Kumar, P.: Population–Urbanization–Energy Nexus: A Review, 596 Resources, 8, 136, 2019.
- 597 Babaee, S., Mousavi, Z., Masoumi, Z., Malekshah, A. H., Roostaei, M., and Aflaki, M.: Land subsidence from
- 598 interferometric SAR and groundwater patterns in the Qazvin plain, Iran, International Journal of Remote Sensing, 599 41, 4780-4798, 2020.
- 600 Baum, R. L., Galloway, D. L., and Harp, E. L.: Landslide and land subsidence hazards to pipelines, Geological 601 Survey (US)2331-1258, 2008.
- 602 Bell, J. W., Amelung, F., Ferretti, A., Bianchi, M., and Novali, F.: Permanent scatterer InSAR reveals seasonal and 603 long-term aquifer-system response to groundwater pumping and artificial recharge, Water Resources Research, 44,
- 604 2008.
- 605 Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E.: A new algorithm for surface deformation monitoring based
- on small baseline differential SAR interferograms, IEEE Transactions on geoscience and remote sensing, 40, 2375-606 607 2383. 2002.
- 608 Bozzano, F., Esposito, C., Franchi, S., Mazzanti, P., Perissin, D., Rocca, A., and Romano, E.: Understanding the
- 609 subsidence process of a quaternary plain by combining geological and hydrogeological modelling with satellite 610 InSAR data: The Acque Albule Plain case study, Remote Sensing of Environment, 168, 219-238, 2015.
- 611 Bürgmann, R., Rosen, P. A., and Fielding, E. J.: Synthetic aperture radar interferometry to measure Earth's surface topography and its deformation, Annual review of earth and planetary sciences, 28, 169-209, 2000. 612
- Carlson, G., Shirzaei, M., Ojha, C., and Werth, S.: Subsidence-Derived Volumetric Strain Models for Mapping 613
- Extensional Fissures and Constraining Rock Mechanical Properties in the San Joaquin Valley, California, Journal of 614 Geophysical Research: Solid Earth, 2020. e2020JB019980, 2020. 615
- Castellarin, A., Galeati, G., Brandimarte, L., Montanari, A., and Brath, A.: Regional flow-duration curves: reliability 616 for ungauged basins, Advances in Water Resources, 27, 953-965, 2004. 617
- Cattell, R. B.: The scree test for the number of factors, Multivariate behavioral research, 1, 245-276, 1966. 618
- 619 Chaussard, E., Amelung, F., Abidin, H., and Hong, S.-H.: Sinking cities in Indonesia: ALOS PALSAR detects rapid 620 subsidence due to groundwater and gas extraction, Remote sensing of environment, 128, 150-161, 2013.
- 621 Chaussard, E., Bürgmann, R., Shirzaei, M., Fielding, E. J., and Baker, B.: Predictability of hydraulic head changes
- and characterization of aquifer-system and fault properties from InSAR-derived ground deformation, Journal of 622
- Geophysical Research: Solid Earth, 119, 6572-6590, 2014a. 623
- 624 Chaussard, E. and Farr, T. G.: A new method for isolating elastic from inelastic deformation in aquifer systems: 625 application to the San Joaquin Valley, CA, Geophysical Research Letters, 46, 10800-10809, 2019.
- 626 Chaussard, E., Havazli, E., Fattahi, H., Cabral-Cano, E., and Solano-Rojas, D.: Over a Century of Sinking in Mexico
- City: No Hope for Significant Elevation and Storage Capacity Recovery, Journal of Geophysical Research: Solid 627
- Earth, n/a, e2020JB020648, 2021. 628
- Chaussard, E., Milillo, P., Bürgmann, R., Perissin, D., Fielding, E. J., and Baker, B.: Remote sensing of ground 629
- 630 deformation for monitoring groundwater management practices: Application to the Santa Clara Valley during the
- 631 2012–2015 California drought, Journal of Geophysical Research: Solid Earth, 122, 8566-8582, 2017.
- 632 Chaussard, E., Wdowinski, S., Cabral-Cano, E., and Amelung, F.: Land subsidence in central Mexico detected by 633 ALOS InSAR time-series, Remote sensing of environment, 140, 94-106, 2014b.
- 634 Chen, C. and Zebker, A.: SNAPHU: statisticalcost, network-flow algorithm for phase unwrapping, Retrieved April, 27, 2016, 2003. 635
- Chen, P.-H., Fan, R.-E., and Lin, C.-J.: A study on SMO-type decomposition methods for support vector machines, 636
- IEEE Trans. Neural Networks, 17, 893-908, 2006. 637
- 638 Cheremisinoff, N. P.: Groundwater remediation and treatment technologies, Elsevier, 1998.
- 639 Conway, B. D.: Land subsidence and earth fissures in south-central and southern Arizona, USA, Hydrogeology 640 journal, 24, 649-655, 2016.
- 641 Emil, M. K., Sultan, M., Al-Akhras, K., Gebremichael, E., Izadi, M., and Karki, S.: Detecting and monitoring
- 642 ground deformation using InSAR time series in arid environments; Doha City and its surroundings, Qatar, AGUFM,
- 643 2018, G41B-0704, 2018.
- 644 Esfanjary, E.: Persian historic urban landscapes: interpreting and managing Maibud over 6000 years, Edinburgh
- 645 University Press, 2018.
- 646 ESRI: http://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/an-overview-of-the-interpolation-
- 647 tools.htm, last access: 15 November 2019, 2012.

- Fanni, Z.: Cities and urbanization in Iran after the Islamic revolution, Cities, 23, 407-411, 2006.
- Galloway, D. L. and Burbey, T. J.: Regional land subsidence accompanying groundwater extraction, Hydrogeology
 Journal, 19, 1459-1486, 2011.
- Galloway, D. L., Hudnut, K. W., Ingebritsen, S., Phillips, S. P., Peltzer, G., Rogez, F., and Rosen, P.: Detection of
- aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley,
- Mojave Desert, California, Water Resources Research, 34, 2573-2585, 1998.
- 654 Geological Survey of Iran: https://gsi.ir/en, last access: 15 November 2019, 1997.
- Ghotbi, S., Wang, D., Singh, A., Blöschl, G., and Sivapalan, M.: A New Framework for Exploring Process Controls
 of Flow Duration Curves, Water Resources Research, 56, e2019WR026083, 2020a.
- 657 Ghotbi, S., Wang, D., Singh, A., Mayo, T., and Sivapalan, M.: Climate and Landscape Controls of Regional Patterns
- of Flow Duration Curves Across the Continental United States: Statistical Approach, Water Resources Research, 56,
 e2020WR028041, 2020b.
- Gido, N. A., Amin, H., Bagherbandi, M., and Nilfouroushan, F.: Satellite monitoring of mass changes and ground
 subsidence in Sudan's oil fields using GRACE and Sentinel-1 data, Remote Sensing, 12, 1792, 2020.
- 662 Gong, G., Mattevada, S., and O'bryant, S. E.: Comparison of the accuracy of kriging and IDW interpolations in 663 estimating groundwater arsenic concentrations in Texas, Environmental research, 130, 59-69, 2014.
- 664 Gualandi, A., Avouac, J.-P., Galetzka, J., Genrich, J. F., Blewitt, G., Adhikari, L. B., Koirala, B. P., Gupta, R.,
- 665 Upreti, B. N., and Pratt-Sitaula, B.: Pre-and post-seismic deformation related to the 2015, Mw7. 8 Gorkha 666 earthquake, Nepal, Tectonophysics, 714, 90-106, 2017.
- 667 Haghighi, M. H. and Motagh, M.: Ground surface response to continuous compaction of aquifer system in Tehran,
- Iran: Results from a long-term multi-sensor InSAR analysis, Remote sensing of environment, 221, 534-550, 2019.
- Hanson, R., Anderson, S., and Pool, D.: Simulation of ground-water flow and potential land subsidence, Avra
 Valley, Arizona, US Department of the Interior, US Geological Survey, 1990.
- Helm, D. C.: Horizontal aquifer movement in a Theis-Thiem confined system, Water Resources Research, 30, 953964, 1994.
- 673 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu,
- R., and Schepers, D.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146,
 1999-2049, 2020.
- 676 Hoffmann, J., Zebker, H. A., Galloway, D. L., and Amelung, F.: Seasonal subsidence and rebound in Las Vegas
- Valley, Nevada, observed by synthetic aperture radar interferometry, Water Resources Research, 37, 1551-1566,2001.
- Hooper, A.: A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches,
 Geophysical Research Letters, 35, 2008.
- Hu, X., Lu, Z., and Wang, T.: Characterization of hydrogeological properties in salt lake valley, Utah, using InSAR,
- Journal of Geophysical Research: Earth Surface, 123, 1257-1271, 2018.
- Hyvärinen, A. and Oja, E.: A fast fixed-point algorithm for independent component analysis, Neural computation, 9,
 1483-1492, 1997.
- 685 Iran Meteorological Organization: http://www.irimo.ir/eng/index.php, last access: 15 November 2019, 2018.
- Iran's WRM Co.: http://wrbs.wrm.ir/, last access: 15 November 2019, 2014.
- 687 Iranian Students' News Agency: https://www.isna.ir/news/91101207946/, last access: 08 December 2020, 2013.
- Jarvis, A., Reuter, H., Nelson, A., and Guevara, E.: Hole-Filled Seamless SRTM Data V4: International Centre for
 Tropical Agriculture (CIAT): http, srtm. csi. cgiar. org, accessed, 31, 2008.
- Jin, S. and Su, K.: PPP models and performances from single-to quad-frequency BDS observations, Satellite Navigation, 1, 1-13, 2020.
- Jolivet, R., Agram, P. S., Lin, N. Y., Simons, M., Doin, M. P., Peltzer, G., and Li, Z.: Improving InSAR geodesy using global atmospheric models, Journal of Geophysical Research: Solid Earth, 119, 2324-2341, 2014.
- Jolivet, R., Grandin, R., Lasserre, C., Doin, M. P., and Peltzer, G.: Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data, Geophysical Research Letters, 38, 2011.
- 596 Julio-Miranda, P., Ortíz-Rodríguez, A., Palacio-Aponte, A., López-Doncel, R., and Barboza-Gudiño, R.: Damage
- 697 assessment associated with land subsidence in the San Luis Potosi-Soledad de Graciano Sanchez metropolitan area,
- 698 Mexico, elements for risk management, Natural Hazards, 64, 751-765, 2012.
- 699 Laity, J. J.: Deserts and desert environments, John Wiley & Sons, 2009.
- 700 Li, R. and Merchant, J. W.: Modeling vulnerability of groundwater to pollution under future scenarios of climate
- change and biofuels-related land use change: A case study in North Dakota, USA, Science of the total environment,
- 702 447, 32-45, 2013.

- 703 Marinkovic, P. and Larsen, Y.: Consequences of long-term ASAR local oscillator frequency decay-An empirical
- 704 study of 10 years of data, 2013.
- 705 MathWorks: https://www.mathworks.com/help/stats/choose-regression-model-options.html, last access: 15 January 706 2021, 2020.
- 707 MathWorks: https://www.mathworks.com/help/stats/understanding-support-vector-machine-regression.html, last 708 access: 15 January 2020, 2019.
- 709 Motagh, M., Shamshiri, R., Haghighi, M. H., Wetzel, H.-U., Akbari, B., Nahavandchi, H., Roessner, S., and Arabi,
- 710 S.: Quantifying groundwater exploitation induced subsidence in the Rafsanjan plain, southeastern Iran, using InSAR
- 711 time-series and in situ measurements, Engineering geology, 218, 134-151, 2017.
- Motagh, M., Walter, T. R., Sharifi, M. A., Fielding, E., Schenk, A., Anderssohn, J., and Zschau, J.: Land subsidence 712 713 in Iran caused by widespread water reservoir overexploitation, Geophysical Research Letters, 35, 2008.
- 714 Ojha, C., Shirzaei, M., Werth, S., Argus, D. F., and Farr, T. G.: Sustained groundwater loss in California's Central Valley exacerbated by intense drought periods, Water resources research, 54, 4449-4460, 2018. 715
- 716 Parizi, E., Hosseini, S. M., Ataie-Ashtiani, B., and Simmons, C. T.: Representative Pumping Wells Network to
- 717 Estimate Groundwater Withdrawal From Aquifers: Lessons from a Developing Country, Iran, Journal of Hydrology,
- 718 2019. 124090, 2019.
- 719 Pavelko, M. T.: Estimates of hydraulic properties from a one-dimensional numerical model of vertical aquifer-
- 720 system deformation, Lorenzi Site, Las Vegas, Nevada, US Department of the Interior, US Geological Survey, 2004.
- 721 Porter, J. R., Xie, L., Challinor, A. J., Cochrane, K., Howden, S. M., Igbal, M. M., Lobell, D. B., Travasso, M. I.,
- 722 Field, C. B., and Barros, V. R.: Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and
- 723 sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Food security and food production systems, 2014. 485-533, 2014.
- 724
- Regional Water Company of Yazd: Yazd Water Data. Internal Reports, Regional Water Company of Yazd, 2014. 725
- Riley, F. S.: Mechanics of aquifer systems-The scientific legacy of Joseph F. Poland, 1998, 13-27. 726
- 727 Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., and Carrillo, G.: Catchment classification: empirical analysis 728 of hydrologic similarity based on catchment function in the eastern USA, Hydrology and Earth System Sciences, 15, 729 2895-2911, 2011.
- 730 Schmidt, D. A. and Bürgmann, R.: Time-dependent land uplift and subsidence in the Santa Clara valley, California,
- 731 from a large interferometric synthetic aperture radar data set, Journal of Geophysical Research: Solid Earth, 108, 732 2003.
- 733 Sharafi, S. and Karim, N. M.: Investigating trend changes of annual mean temperature and precipitation in Iran, 734 Arabian Journal of Geosciences, 13, 1-11, 2020.
- 735 SHIBASAKI, T.: The hydrologic balance in the land subsidence phenomena, Land Subsidence, 1, 201-215, 1969.
- 736 Sterrett, R. J.: Groundwater and wells, Johnson Screens, 2007.
- 737 TAMAB: National Groundwater Resources Status, Basic Studies Office, Iran Water Resources Management 738 Company, 2004.
- 739 Tien Bui, D., Shahabi, H., Shirzadi, A., Chapi, K., Pradhan, B., Chen, W., Khosravi, K., Panahi, M., Bin Ahmad, B.,
- 740 and Saro, L.: Land subsidence susceptibility mapping in south korea using machine learning algorithms, Sensors, 741 18, 2464, 2018.
- 742 Tizzani, P., Berardino, P., Casu, F., Euillades, P., Manzo, M., Ricciardi, G., Zeni, G., and Lanari, R.: Surface
- 743 deformation of Long Valley caldera and Mono Basin, California, investigated with the SBAS-InSAR approach, 744 Remote Sensing of Environment, 108, 277-289, 2007.
- 745 Trabelsi, N., Triki, I., Hentati, I., and Zairi, M.: Aquifer vulnerability and seawater intrusion risk using GALDIT,
- 746 GQI SWI and GIS: case of a coastal aquifer in Tunisia, Environmental Earth Sciences, 75, 669, 2016.
- 747 Vapnik, V.: The Nature of Statistical Learning Theory 6. [MJ New York, Springer-Verlag, 1, 995, 1995.
- 748 Vogel, R. M. and Fennessey, N. M.: Flow-duration curves. I: New interpretation and confidence intervals, Journal of 749 Water Resources Planning and Management, 120, 485-504, 1994.
- 750 Walker, R., Gans, P., Allen, M., Jackson, J., Khatib, M., Marsh, N., and Zarrinkoub, M.: Late Cenozoic volcanism 751 and rates of active faulting in eastern Iran, Geophysical Journal International, 177, 783-805, 2009.
- Walker, R. and Jackson, J.: Active tectonics and late Cenozoic strain distribution in central and eastern Iran, 752 753 Tectonics, 23, 2004.
- 754 World Bank: Islamic Republic of Iran: Cost Assessment of Environmental Degradation, Rural Development, Water 755 and Environment Department32043-IR, 2005.
- 756 Wright, T. J., Parsons, B. E., and Lu, Z.: Toward mapping surface deformation in three dimensions using InSAR,
- Geophysical Research Letters, 31, 2004. 757

- 758 Yadav, M., Wagener, T., and Gupta, H.: Regionalization of constraints on expected watershed response behavior for
- improved predictions in ungauged basins, Advances in water resources, 30, 1756-1774, 2007.
- 760 Yunjun, Z., Fattahi, H., and Amelung, F.: Small baseline InSAR time series analysis: Unwrapping error correction
- and noise reduction, Computers & Geosciences, 133, 104331, 2019.