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Abstract

Remotely sensed land surface temperature (LST) enables global modelling and monitoring carbon dioxide (CO2) fluxes from
peatlands. We aimed to provide the first overview of the LST potential for monitoring ecosystem respiration (Reco) in disturbed
(drained and extracted) peatlands. We used chamber measured data (2017-2020) from five disturbed and two intact northern
peatlands and LST data from Landsat 7, 8, and MODIS missions. First, we studied the strength of relationships between fluxes
and their in-situ drivers: thermal and moisture conditions. Second, we examined the association between LST and in-situ
temperatures. Third, we compared chamber measured Reco with the modelled Reco based on (i) in-situ measured surface
temperature and (ii) MODIS LST. In-situ temperatures were a stronger driver of CO2 fluxes in disturbed sites (Spearman
correlation R=0.8-0.9) than in intact ones (R=0.5-0.7). LST had a higher association with in-situ measured temperatures
(mean R=0.74 for MODIS) in disturbed sites and weaker in the intact peatlands (mean R=0.34 for Landsat and 0.36 for
MODIS). Reco models driven by MODIS LST and in-situ surface temperature yielded similar accuracy: R-squared was 0.26,
0.64, 0.65 and 0.28, 0.68, 0.58 for intact, drained and extracted sites, correspondingly. Therefore, LST has a great potential to

be utilized in Reco models as a proxy of thermal regime in disturbed and intact northern peatlands.
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Key Points:
* Temperature is a stronger driver of CO, fluxes in disturbed peatlands than in intact ones

* Remotely sensed land surface temperature is a strong predictor of in-situ thermal
conditions in disturbed peatlands

* Ecosystem respiration can be modelled with remotely sensed land surface temperature in
disturbed and intact northern peatlands
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Abstract

Remotely sensed land surface temperature (LST) enables global modelling and
monitoring carbon dioxide (CO,) fluxes from peatlands. We aimed to provide the first overview
of the LST potential for monitoring ecosystem respiration (R) in disturbed (drained and
extracted) peatlands. We used chamber measured data (2017-2020) from five disturbed and two
intact northern peatlands and LST data from Landsat 7, 8, and MODIS missions. First, we
studied the strength of relationships between fluxes and their in-situ drivers: thermal and
moisture conditions. Second, we examined the association between LST and in-situ
temperatures. Third, we compared chamber measured R.., with the modelled R.., based on (i) in-
situ measured surface temperature and (ii)) MODIS LST. In-situ temperatures were a stronger
driver of CO, fluxes in disturbed sites (Spearman correlation R=0.8—0.9) than in intact ones
(R=0.5-0.7). LST had a higher association with in-situ measured temperatures (mean R=0.74 for
MODIS) in disturbed sites and weaker in the intact peatlands (mean R=0.34 for Landsat and 0.36
for MODIS). R, models driven by MODIS LST and in-situ surface temperature yielded similar
accuracy: R? was 0.26, 0.64, 0.65 and 0.28, 0.68, 0.58 for intact, drained and extracted sites,
correspondingly. Therefore, LST has a great potential to be utilized in R.., models as a proxy of
thermal regime in disturbed and intact northern peatlands.

Plain Language Summary

Organic carbon (C) in peat layer of peatlands has been accumulating for thousands of
years. Under anthropogenic impact, e.g. drainage for forestry, agriculture or peat extraction,
peatlands start emitting the accumulated C as carbon dioxide (CO,) and methane (CHy) back to
the atmosphere much faster than historical rates of C accumulation. CO, and CH, are potent
greenhouse gases that lead to climate warming. The thermal regime is among the main factors
controlling CO, and CH, fluxes in peatlands. We demonstrated the potential of satellite thermal
data for monitoring CO, fluxes from intact and disturbed peatlands. We used a long-term (2017—
2020) dataset of CO, data measured in seven Estonian peatlands. The thermal regime explains
CO; fluxes. Also, satellite thermal data better represent both the thermal regime and CO, fluxes
in disturbed rather than in intact peatlands. Further, we modelled CO, fluxed from natural and
disturbed peatlands: first, with thermal data measured in the field and, second, with satellite
thermal data. Both these models resulted in similar prediction accuracy, which suggests that
satellite thermal data have a great potential to be used for modelling CO, fluxes from peatlands
of a varying range of disturbance.

1 Introduction

Peatlands cover only ~3% of the global land area (J. Xu, Morris, Liu, & Holden, 2018),
though they store 21% of global terrestrial soil carbon (C) (Scharlemann, Tanner, Hiederer, &
Kapos, 2014), which is double C in the world’s forests (Pan et al., 2011). Approximately 80% of
this peatland C stock is stored in northern peatlands — those distributed to the north of 45° N (Yu,
Loisel, Brosseau, Beilman, & Hunt, 2010). Until now, intact northern peatlands act as a vast C
sink and the average rate of C accumulation is estimated at 18.6 gC/m? per year (Yu, 2011).

Intact peatlands bound atmospheric carbon dioxide (CO,) as C and accumulate it as peat
(J.-O. Salm et al., 2012). However, at the same time, peatlands lose C with methane (CHy)
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emissions due to shallow (ground-) water table depths (WTD) and anoxic conditions in peat
layer (Waddington & Roulet, 2000). CH4 has more significant radiative efficiency than CO, but a
much shorter lifetime in the atmosphere (Change, 2013). Therefore, over the millennial time
scale, intact peatlands have a cooling effect on the Earth climate even though they are a source of
CH, (Giinther et al., 2020).

Over the last centuries, human impact and climate warming caused the lowering of WTD
in peatlands, which led to oxidation of peat layer (Leifeld, Wiist-Galley, & Page, 2019; Regan,
Flynn, Gill, Naughton, & Johnston, 2019; Swindles et al., 2019). Under warmer oxic conditions,
peat layer decomposes and releases accumulated C as carbon dioxide (CO,) (Hanson et al., 2020;
Rinne et al., 2020; J. O. Salm, Kimmel, Uri, & Mander, 2009; Waddington, Rotenberg, &
Warren, 2001). This loss of C can be 4.5 to 18 times faster than historical rates of C
accumulation (Hanson et al., 2020). Hence, disturbed peatlands are a significant source of CO,
and have a long-term climate warming impact (Leifeld et al., 2019; Ojanen, Minkkinen, &
Penttild, 2013). Particularly because of the CO, emissions from disturbed peatlands, the global
peatland biome is expected to shift from sink to source already in this century (Leifeld et al.,
2019; Loisel et al., 2021).

CO, exchange, particularly ecosystem respiration (Re), strongly depends on climatic
conditions in disturbed peatlands, including soil and air temperatures (Maljanen et al., 2010;
Veber et al., 2018). For example, a temperature-dependent function is widely used to model
spatial and temporal R, from intact and disturbed peatlands (Alm et al., 2007; Bubier, Bhatia,
Moore, Roulet, & Lafleur, 2003; Jarveoja, Nilsson, Crill, & Peichl, 2020; Lafleur, Roulet, &
Admiral, 2001). In previous studies, C fluxes were shown to have positive exponential
relationships with peat temperatures at different depth: -20 cm (Helbig, Humphreys, & Todd,
2019), -10 cm (Davidson, Strack, Bourbonniere, & Waddington, 2019) and -5 cm (Acosta et al.,
2017), as well as with surface temperature (X. Huang et al., 2021). However, the limited spatial
coverage of in-situ temperature measurements enables the modelling of C fluxes only at the plot
scale. Instead, the application of remotely sensed parameters, including land surface temperature
(LST), can force the global modelling of R, in peatlands (Lees, Quaife, Artz, Khomik, & Clark,
2018).

Rahman et al. (2005) were one of the first who applied remotely sensed data for R,
modelling. They found that MODIS LST had exponential relationships with R, over the wide
range of North American land covers, and what is more, these relationships varied between land
covers. Later, Kimball et al. (2009) developed a terrestrial carbon flux model driven by remotely
sensed inputs for boreal biomes; however, none of the validation sites was located in peatland.
After that, remotely sensed data were actively used to model C fluxes mainly for forest land
covers (Crabbe, Janous, Dafenova, & Pavelka, 2019; N. Huang, Gu, Black, Wang, & Niu, 2015;
N. Huang, Gu, & Niu, 2014; Jagermeyr et al., 2014; Tang et al., 2011; Wu et al., 2014; Xiao et
al., 2010). The major part of these studies utilized MODIS data of coarse spatial resolution (1-km
for LST, 250 and 500-m for vegetation indices) together with C data measured at eddy towers
and by chambers. So far, we know only two studies utilized remotely sensed data of higher
spatial resolution — 30-m (Landsat) — for CO, fluxes estimation: the first one conducted over
beech forest (Crabbe et al., 2019) and the second one — over forested peatland (C. Xu, Qu, Hao,
Zhu, & Gutenberg, 2020).

Much less attention was paid to study relationships between R, and remotely sensed
LST in peatlands. Schubert et al. (2010) revealed strong relationships between MODIS LST and
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Re.o in different types of peatlands: bog (precipitation-fed) and fen (additionally fed with
groundwater and, sometimes, surface runoff). Following, Gao et al. (2015) and Ai et al. (2018)
developed models for R.., simulation driven by MODIS LST and enhanced vegetation index
(EVI). Those models were validated over large areas and diverse land covers, including marshes
and wetlands. Generally, both these studies supported the idea of the strong relationship between
Reeo and LST. More recently, Park et al. (2020) and Junttila et al. (2021) applied MODIS LST to
estimate R, in tropical and northern peatlands, correspondingly. The case study on northern
peatlands was limited only to five peatlands (four fens and one bog), even though it has
demonstrated that the performance of LST varies between peatland types (Junttila et al., 2021).

Despite all the progress made in the estimation of R., with remotely sensed data, much
uncertainty still remains about the strength of relationships between Re., and LST in disturbed
(drained and extracted) peatlands. To our knowledge, there is no study that has specifically
addressed the applicability of LST for modelling CO, fluxes in those peatlands. We present the
first attempt to cover this gap of knowledge to tap into the potential of remotely sensed LST —
especially given the urgent need to manage substantial CO, emissions from disturbed peatlands.
This article aims to quantitively assess relationships between R, and remotely sensed LST in
drained, extracted and intact northern peatlands. We evaluated the applicability of LST for R
modelling in comparison to in-situ measured surface temperature. Overall, we used R, data
from seven Estonian peatlands: in five of them, the peat extraction activity and water drainage
were conducted in the past; two other peatlands are natural bog sites. Flux data were measured
with closed chambers during the vegetation period in 2017-2020. We studied relationships
between R, and LST data from MODIS Terra, Landsat 7 and Landsat 8 satellites. Finally, we
examined the applicability of MODIS LST for R, modelling and compared the performance of
this model with the model that utilizes in-situ measured surface temperature.

2 Materials and Methods

2.1 Study area

We collected R, data in seven boreal peatlands (Figure 1) with different types of
management (Table 1) located in Estonia. In addition to CO, data, we measured CH, fluxes. The
studied area has a temperate climate with long-term (1991-2020) mean annual temperature and
precipitation of 7 °C and 662 mm, respectively (Estonian Weather Service, 2021). Figure 1
shows the location of studied peatlands (upper panel) and zoomed-in orthophotos of each
peatland (bottom panels).



136

137
138
139
140
141

142
143
144
145
146

147
148
149
150
151
152
153

154
155
156
157

manuscript submitted to Journal of Geophysical Research: Biogeosciences

59°N

58°N

Kildem/aa/; Linnussaare Mannikjarve. Laiuse
< Kildemon 1 L prmer S T
N . Y90 0,5 km / MGrnikiee 2) \ Wl 1
1t - b
. a 0 S€. ]
Aly'ldemaa 2 /j . J Lokles Lo ;é_‘
\ . - |
| @ = linnussanre
0 0,2 km \\\/\ : /r 00,2 lr;\—/, 00,1 o ). 4 0 0,5km

E:
Mannikjorvesss o= ;
] Marmidrve 1 \ Loiuse water \ /

Figure 1. The study area includes seven boreal peatlands located in Estonia. The upper
panel shows a true-coloured cloudless mosaic of Landsat 8 obtained for summer 2018. Bottom
panels show locations of sites where ecosystem respiration was measured. Orthophotos for
summertime in 2019 and 2020 are presented in the lower small panels (Estonian Land Board,
2020).

Ess-soo bog in southwest-Estonia is of limnogenic origin, and its peat layer varies from 4
to 6 meters, and in abandoned (in 1994) milled peat extraction site — from 2 to 4 meters.
Vegetation cover in abandoned milled peat extraction area is sparse, dominated by Eriophorum
vaginatum, Calluna vulgaris, Empetrum nigrum, Vaccinium uliginosum, Polytrichum strictum,
Betula pubescens and Pinus sylvestris.

Kildemaa study site in the northern part of Korsa bog comprises abandoned milled peat
production site (remaining peat layer depth 0.8—2 meters) and densely drained part of the bog
prepared for peat extraction but abandoned before extraction (peat deposit up to 3 meters).
Extracted site is sparsely vegetated with Eriophorum vaginatum, Calluna vulgaris,
Rhynchospora alba, Betula pubescens and Pinus sylvestris, while the drained part is densely
covered with dwarf pines (Pinus sylvestris), Calluna vulgaris, Ledum palustre, lichens and
mosses.

Kdima and Maima peatlands belong to the Lavassaare bog complex, where peat deposit
depth reaches up to 7.5 meters. Kdima study site covers former peat extraction site and adjacent
nearly pristine reference site in the northwest of Kdima bog. Peat was extracted by cutting the
peat in peat blocks with a machine or by hand. The extraction site was abandoned in the 1980s
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and left for natural recovery. Ditches and depressions are mainly recovered with Sphagnum
species, and drained unexcavated parts are covered with Calluna vulgaris, Ledum palustre,
Rubus chamaemorus, Andromeda polifolia and Pinus sylvestris. In Maima, milled peat
extraction took place until the 1990s. After abandonment, the site is only sparsely vegetated with
Eriophorum vaginatum, Calluna vulgaris, Oxycoccus palustris, Vaccinium uliginosum, Betula
pubescens and Pinus sylvestris.

Laiuse bog is of limnogenic origin and situated between drumlins. Mining activity was
ceased there in 1996, and the peatland was left for natural regeneration. The northern part was
partly covered with Polytrichum strictum, Eriophorum vaginatum, Calluna vulgaris, Betula
pubescens, and Pinus sylvestris, while the southern part was flooded due to beaver activity since
2013.

Linnussaare and Ménnikjarve bogs belong to the Endla Nature Reserve and are added to
the Ramsar List of Wetlands of International Importance (no. 907). These peatlands are of
limnogenic origin; their peat layer varies from 4 to 7 meters and consists of residual of
Sphagnum, Bryales and Carex, and Pinus (Sillasoo et al., 2007). Vegetation includes dwarf pines
(Pinus sylvestris), grasses and dwarf shrubs (Calluna vulgaris, Eriophorum vaginatum,
Chamaedaphne calyculata, Andromeda polifolia, Rhynchospora alba, Ledum palustre,
Oxycoccus microcarpus, and Oxycoccus palustris), and a wide variety of Sphagnum mosses
(Sphagnum fuscum, Sphagnum balticum, Sphagnum magellanicum, and Sphagnum rubellum)
(Burdun, Bechtold, Sagris, Komisarenko, et al., 2020).

Table 1

Overview of peatland sites
Sampling Land Number of chambers Dominant species Lat. Lon.
position management (ch.) and

microtopographic
units
Ess-soo
Ess-so0 0 mined 4 ch. Eriophorum vaginatum, Calluna 57914 26.697

vulgaris, Vaccinium uliginosum,
Polytrichum strictum, Betula
pubescens and Pinus sylvestris
Ess-soo 1 mined 3 ch. Eriophorum vaginatum, Calluna 57914 26.697
vulgaris, Vaccinium uliginosum,
Polytrichum strictum, Betula
pubescens and Pinus sylvestris
Ess-soo0 2 mined 3 ch. Oxycoccus palustris, Empetrum 57913 26.687
nigrum, Vaccinium uliginosum,
Polytrichum strictum, Eriophorum
vaginatum, Calluna vulgaris

Kildemaa
Kildemaa 1 mined 3 ch. Eriophorum vaginatum, Calluna 58.427 24.786
vulgaris, Rhynchospora alba, Betula
pubescens and Pinus sylvestris
Kildemaa 2 drained 3 ch. Calluna vulgaris, Ledum palustre, 58.424 24.784
Polytrichum strictum, Andromeda
polifolia and Pinus sylvestris

Koima
Koima 1 drained 3 ch. Various Sphagnum species, Calluna  58.617 24.233
vulgaris, Ledum palustre, Rubus
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chamaemorus, Andromeda
polifolia and Pinus sylvestris
Koima 2 natural 3 ch. at lawn Various Sphagnum species, Calluna  58.614 24.239
vulgaris, Andromeda polifolia and
Pinus sylvestris

Laiuse
Laiuse 0 mined 4 ch. Polytrichum strictum, Eriophorum 58.790 26.528
vaginatum, Calluna vulgaris, Betula
pubescens and Pinus sylvestris
Laiusel mined 3 ch. Polytrichum strictum, Eriophorum 58.790 26.528
vaginatum, Calluna vulgaris and
Pinus sylvestris

Laiuse water mined 1 floating ch. 58.789  26.529
Linnussaare

Linnussaare natural 3 ch. at hollows, Various Sphagnum species, Ledum 58.878 26.219

3 ch. at hummocks, palustre, Vaccinium uliginosum,

1 floating ch. in pool  Calluna vulgaris and Pinus

sylvestris
Maima

Maima 1 mined 3 ch. Eriophorum vaginatum, Calluna 58.599 24.379

vulgaris, Oxycoccus palustris,
Vaccinium uliginosum, Betula
pubescens and Pinus sylvestris
Maima 2 mined 3 ch. Eriophorum vaginatum, 58.596 24.370
Rhynchospora alba, Calluna
vulgaris and Pinus sylvestris

Minnikjirve
Mainnikjarve 1  natural 2 ch. at hollows, Various Sphagnum species, Calluna  58.874 26.254
2 ch. at hummocks vulgaris, Chamaedaphne calyculata,

Rhynchospora alba, Ledum
palustre, Oxycoccus microcarpus,
Pinus sylvestris

Minnikjérve 2 natural 2 ch. at hollows, Various Sphagnum species, Calluna  58.876  26.249
2 ch. at hummocks vulgaris, Oxycoccus microcarpus,
Carex, Pinus sylvestris
Mainnikjarve 3  natural 2 floating ch.in pool,  Various Sphagnum species, Calluna  58.876 26.247
2 ch. at hummocks vulgaris, Oxycoccus microcarpus,

Pinus sylvestris

2.2 Field-measurements of CO,, CH,, water table depth and soil temperature

We measured R, (CO,) together with CH, fluxes with the closed-chamber method
(Hutchinson & Livingston, 1993) during the vegetation period (March — November) in 2017—
2020. Chambers (40 cm height, 50 cm diameter and 65 L volume) were made of polyvinyl
chloride (PVC) and painted white to minimize their heating. The chambers were sealed with
water-filled PVC collars (20 cm depth) on the peat surface. Each sampling site had replicants
(Table 1) and was instrumented with piezometers (perforated pipes with 5 cm diameter and up to
1.5 m length). We sampled gas using pre-evacuated (0.3 mbar) glass vials (50 mL volume) every
20 minutes during a one-hour session. Later, gas concentration in vials was measured with
Shimadzu GC-2014 gas-chromatography system equipped with an electron capture detector and
a flame ionization detector. WTD was measured in piezometers on the same days when gas
samples were collected. In addition to that, we measured soil temperature at the depths -10 cm
(T1o), -20 cm (Ta), -30 cm (T3) and -40 cm (T4), and surface soil temperature (Tj).
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2.3 Flux calculation

Fluxes of CO, and CH,4 were calculated from the linear change in gas concentration in a
chamber over 20 minutes time intervals. We adjusted gas concentration by the surface area
enclosed by collar and chamber volume. After that, we filtered out samples with a determination
coefficient (R?) of the linear fit < 0.95 (p-value < 0.01) and fluxes changes below the gas-
chromatographer accuracy (20 ppm for CO, and 20 ppb for CH,). Additionally, we filtered out
CH, values higher than 30000 ug C m? h™' interpreted as ebullition fluxes. For the final analyses,
we calculated CO, and CH, fluxes as average across replicates in each sampling position (Table
1). The fluxes data were grouped by peatlands’ management type and microtopographic
characteristics. As a result, we obtained five groups: flooded sites (data from floating chambers
in Ménnikjarve 3, Linnussaare and Laiuse water), hollows (Ménnikjarve 1, Ménnikjérve 2 and
Linnussaare), hummocks (Ménnikjarve 1 — Ménnikjérve 3, Linnussaare and K&ima 2), drained
sites (Koima 1 and Kildemaa 2) and extracted sites (Ess-soo 0 — Ess-soo 2, Kildemaa 1, Laiuse 0,
Laiuse 1, Maima 1 and Maima 2). Figure 2 shows the changes in CO, and CH, fluxes in 2017—
2020 for those five groups.
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Figure 2. Time-series of CO, and CH, fluxes: one-time measured values (marks) and
averaged for each day (bars) for flooded sites (a, f), hollows (b, g), hummocks (c, h), drained (d,
1), and extracted sites (e, j).

2.4. Landsat and MODIS LST

We calculated LST from Landsat 7 and Landsat 8 data in Google Earth Engine (GEE)
online platform using open-source code by Ermida et al. (2020). This LST retrieval algorithm
utilizes Landsat thermal infrared and optical (to derive the Normalized Difference Vegetation
Index — NDVI) data, total column water vapour values from NCEP/NCAR reanalysis data, and
ASTER GEDv3 dataset to estimate surface emissivity. All these datasets are freely available in
GEE (Gorelick et al., 2017).

The field sampling campaign was carried out in the days when Landsat 7 or Landsat 8
overpassed the study area. Because of cloudy weather conditions, we had to mask out a lot of
LST pixels around the sampling sites. Thus, we decided to calculate the median Landsat LST
value over each peatland for each time scene (Figure 3). This decision increases data availability
for analyses, but, at the same time, it brings uncertainty since Landsat LST values can vary up to
6 °C within one peatland (Figure S1).

MODIS abroad Terra provides MOD11A1 daily LST product of 1 km spatial resolution
(Wan Z., Hook S., 2015). We masked pixels covered with clouds and shadows using the quality
control band, which is included in MOD11A1 dataset in GEE. Similar to Landsat LST data, we
calculated MODIS LST value as a median across all the pixels that cover peatland for each time
scene. MODIS LST values were well-agreed with Landsat LST values (Figure S2). Nevertheless,
the slope of relationships between MODIS LST and Landsat LST varies from 0.778 to 0.887 for
different peatlands, which means that under warmer conditions, there are higher Landsat LST
values in comparison to MODIS LST values, and under cooler conditions vice-verse: lower
Landsat LST values in comparison to MODIS LST values. The final number of Landsat and
MODIS images correspondingly is the following: 167 and 420 for Ess-soo, 88 and 387 for
Kildemaa, 131 and 387 for Koima, 78 and 302 for Laiuse, 111 and 441 for Linnussaare, 95 and
379 for Maima, 98 and 372 for Ménnikjéarve (Figure 3).
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238 Figure 3. Time-series of MODIS LST median (yellow circles), Landsat LST median
239 values (blue circles) and Landsat LST standard deviation within peatlands area (blue error bars).
240 2.5 Reco modelling
241 We modelled R, following the approach presented by Tuittila et al. (2004). We utilized

242  model adjusted by Gaussian curve functions of a second term that account for additional WTD
243 and phenological phase effects (Eq. 1) as in (Jarveoja et al., 2016; Riutta, Laine, & Tuittila,

244 2007):

)

1 1
E”(T,e/—TO_T—TO) y

R,,=R, e

ref

245 where R,.,(mg CO, m? h™') is the respiration rate at 10 °C, £, (K) denotes temperature
246  sensitivity, T,.r(°C) is a reference temperature set at 10 °C, 7; (°C) is temperature minimum at
247  which respiration reaches zero set at -46.021 °C, Pp (day) denotes the days in a phenological

248 phase that starts in spring when the daily average air temperature is above 5 °C (Jaagus & Ahas,
249 2000), Pp,, (day) denotes the optimal day for maximum R, from the beginning of vegetation
250 period, Pp.,; (day) is a vegetation period tolerance for maximum Re.,, WTD,,, (cm) is an optimal
251 soil water level for respiration and WTD,, (cm) denotes the soil water level tolerance (deviation
252  from the optimum at which R, is 61% of its maximum). Table 2 presents the parameters utilized
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in Eq. 1 that were fitted with a Microsoft Excel Solver tool for calculation of ecosystem
respiration CO,-response curve (Lobo et al., 2013).

Table 2

Parameters for ecosystem respiration (R..,) model in intact (hummocks and hollows
merged), drained and extracted peatlands

Model parameter Intact (hummock, hollow) Drained Extracted
E, 147.7 122.7 153.5
Rier 50.8 109.8 63.6
Ppopt 99.3 119.5 97.1
Ppul 106.6 65.2 70.8
WTDy -29.3 -25.6 -22.2
WTDy, 98.5 64.8 44.7

2.6. Statistical analysis

We averaged the collar flux data for replicates in each site (Table 1) for further statistical
analysis to avoid pseudoreplication. Further, we applied principal component analysis (PCA) to
derive information about the relationships among all in-situ measured variables and cluster data
depending on the relevance of different variables for four different studied groups, namely
hummocks, hollows, drained and extracted sites. We did not include flooded sites to PCA since
no WTD data were available for them. Before PCA analysis, the variables were standardized to
zero mean. To evaluate the statistical dependency between paired variables, we applied a non-
parametric Spearman rank correlation (R) with p-value < 0.05 statistical significance. The
goodness of model performance was evaluated with R-squared (R?) and root-mean-square error
(RMSE) statistics. All statistics were computed using R software (R Core Team, 2018).

3 Results

3.1. Environmental controls on CO, and CH4

In Figure 4, PCA of in-situ data shows the separation between different peatland groups.
In-situ data projected onto the first two principal components (PC), explaining 78.4% of the
variance in data. PC1 is positively correlated with temperature conditions and CO, fluxes,
whereas PC2 is positively correlated with CH, fluxes and WTD. The distributions of intact
(hummocks and hollows) and disturbed (drained and extracted) sites are well separated by high
CH, fluxes and WTD. At the same time, the distributions of all four groups shows minor
separation along PC1.
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Figure 4. Principal component analysis for in-situ measured data for hollows (blue),
hummocks (green), drained (yellow) and extracted (red) sites. PC1 and PC2 correspond to the
first two principal components (PC).

To compare the relations between CO, and CH, fluxes and in-situ measured parameters,
we performed Spearman correlation analysis. Figure 5 shows the correlation matrices for the
studied peatland groups. The flooded sites stand out from others because their CO, and CH,4
fluxes do not have any statistically significant relations with in-situ parameters. Meanwhile, in
other groups, CO, fluxes have from weak to strong R with temperatures and WTD. In hollows
and hummocks, CO, fluxes have higher R values with surface and soil temperatures than with
WTD. Both hollows and hummocks show higher R with CO, fluxes for upper soil layers. It is
further noteworthy that R between CO, fluxes and T4 in drained and extracted sites are higher
than in intact sites. The highest R is observed between CO, fluxes and T, in drained sites.
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Figure 5. Spearman correlation (R) between CO, and CH, fluxes, water table depth
(WTD), surface (Ty) and soil (T;—T4) temperatures. Intense red and blue colors indicate strong
positive and negative R values, correspondingly. Crossed-out cells correspond to R values with
p-value > 0.05.

Further, Figure 6 shows the relations between T and CO, and CH, fluxes for five
studied groups. As it was previously shown in Figure 5, CO, fluxes are positively associated with
temperature increase. Therefore, the maximum values of median CO, fluxes are observed in the
summer months. In contrast, the lowest median values of CO, fluxes are present at the beginning
of spring (March and April) and the end of autumn (October). Also, the weak negative
association between CO, fluxes and WTD is noticeable in Figure 6 (panels b-e). The positive
association between CH, fluxes and T, can be seen for hollows, flooded, drained and extracted
sites (Figure 6, panels f, g, 1). Similar to CO,, the highest median CH, fluxes occur in summer.
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Figure 6. Scatterplots of soil temperature at a depth of 10 cm (Tp), CO, and CH, fluxes
(circles). Monthly fluxes and T, averages (square shapes with month numbers) are also given
with monthly standard deviations (error bars). Colors indicate the water table depth (WTD)
except for flooded sites, where no WTD data are available.

3.2. LST vs. in-situ temperatures

The profiles of temperature at different depths together with remotely-sensed Landsat and
MODIS LST values are shown in Figure 7. We found that median peat temperatures generally
decreased with depth; the highest temperature differential occurred between T, and T,o. Drained
and extracted sites have wide peat temperature variability with bimodal distribution (Figure 7,
panels d-e). In contrast, hummocks, hollows and flooded sites have lower temperature variability
and close to normal temperature distribution almost at all the depths (Figure 7, panels a-c).

We further estimated R between LST and in-situ measured temperatures. For all the sites
except flooded, both MODIS (Figure 7, panels b-e) and Landsat LST (Figure 7, panels b-c) had
the highest R with T,. Noteworthy that R between LST and in-situ temperatures were higher for
disturbed sites than for intact ones. The magnitudes of the deviations between R values for
MODIS LST and Landsat LST varied between 0.003—0.032 (Figure 7, panels b-c).
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Figure 7. Profiles of temperature variation (boxplot) and distribution (shaded area)
sensed by Landsat and MODIS, measured at the surface level (T,) and 1040 cm depths in the
peat (T10—T4o) for five studied groups. The median values (black diamond) for the mentioned
temperatures are connected with a dashed line. Blue and orange dots represent Spearman
correlation (R) between Landsat LST and MODIS LST correspondingly and in-situ measured
temperatures.

3.3. Modelling R, with in-situ measured T, and remotely sensed MODIS LST

To estimate the potential of LST to be used instead of in-situ measured temperatures in
R.co modelling, we modelled CO, fluxes with T, as well as with MODIS LST data. We found
that R, values were generally modelled with higher accuracy for disturbed peatlands (Figure 8).
As shown in Figure 5, T, has a strong relationship with CO, fluxes in disturbed peatlands. Thus,
R? values for the model, which utilized T,, were 0.77 for the whole dataset and 0.68 for the days
when MODIS LST data were available in drained sites. In extracted sites, those values were 0.64
and 0.58, correspondingly. Across the intact sites, R? values were notably lower: 0.38 and 0.28.
When we further utilized MODIS LST instead of T, in the model (keeping other parameters the
same) we found a similar pattern: R? higher for the disturbed sites (0.65 in extracted sites and
0.64 in drained sites) than for intact sites (0.26). Worth noticing that relatively high RMSE
values were present in all the models.
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Figure 8. Scatterplots of CO, fluxes and MODIS LST (orange circle), Landsat LST (blue
circle) and T, (grey circle) with modelled R* and RMSE (for the days when MODIS LST data
were present and for the whole dataset — shown in round brackets) for five studied groups.

Comparison between measured and modelled CO, fluxes reveals that generally, we fail to
catch the variability of CO,in intact sites (Figure 9 panel a). In particular, we observe the
inability of the used modelling approach to model CO, fluxes higher than 100 mg C m™ h’!
neither with Ty nor with MODIS LST in the intact sites. Meanwhile, modelled CO, fluxes are
better agreed with measured ones in disturbed sites (Figure 9 panels b, ¢c). However, some
obvious outliers are noticeable for the highest CO, fluxes, for which CO, fluxes were modelled
with lower values. We found that those outliers were present in the model output forced with T,
as well as with MODIS LST.
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Figure 9. CO, fluxes measured in situ and modelled with surface temperature — T, (grey
circle) — and remotely sensed MODIS LST (orange circle) for intact (joint hummocks and
hollows), drained and extracted sites. The dashed line shows a 1:1 line.

4 Discussion

Prior studies have noted the importance of LST for R, estimations in different
ecosystems. So far, none of the studies has addressed the potential of LST as a proxy of in-situ
measured temperatures for modelling R, in disturbed peatlands. Here, we enriched the current
knowledge and provided evidence for the future application of LST for that purpose. Even
though we utilized daytime MODIS LST data of 1-km spatial resolution, we still managed to
detect the temporal dynamics in in-situ measured temperatures at plot scale (Figure 7). This is
particularly important for disturbed sites, where Re,, was mainly driven by thermal conditions
(Figure 5).

Using the model parameterized for Ty, we utilized LST instead of T, and obtained R*
equal to 0.26 for modelled R, in intact sites, 0.64 and 0.65 in drained and extracted sites
correspondingly. To compare, in a previous study by Junttila et al. (2021) that jointly used
remotely sensed LST and EVI data, the average R? was 0.56 among five peatlands. Noticeable
that the lowest R* was obtained for bog site (0.23), while for fen sites, R* was dramatically
higher varying from 0.51 to 0.85. We did not have fen sites in our dataset; however, the
modelling results for bogs are in line with those published by Junttila et al. (2021). Notably, it
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might be the case that the use of additional remotely sensed data, e.g. vegetation indices, can
improve the R, model performance. For instance, Schubert et al. (2010) obtained high R* for
both Swedish bog (R? = 0.89) and fen (R? = 0.83) by involving LST, NDVI and EVI data from
MODIS. Ai et al. (2018) modelled R, utilizing LST and EVI for a big dataset with nine wetland
biomes and obtained R*=0.59.

Generally, we observed a weak R between LST and in-situ temperatures, and between in-
situ temperatures and CO, and CH,4 fluxes in intact sites. As it was already shown for bogs
(Burdun, Sagris, & Mander, 2019), LST has from weak to moderate association with soil
temperatures, and the strength of this association decreases with soil depth. LST dynamics is
highly dictated by incident solar radiation, while deeper soil temperatures react slowly with
fewer fluctuations (R. Huang et al., 2020). Additionally, we assume that weak R between LST
and T,—T4 could be partially caused by a higher heat capacity of saturated peat in natural sites
with shallow WTD (Zhao & Si, 2019). In previous work, Burdun et al. (2019) has demonstrated
that LST had higher R with T,—T4 during summers with abnormally high temperatures and,
correspondingly, deeper WTD. LST also reveals weaker R with T, in intact sites. We believe it
was primarily caused by vegetation cover properties. Studied bogs are covered with dense
vegetation, primary Sphagnum mosses, which demonstrate high water loss by evapotranspiration
that is near the potential rate of open water evaporation (Joon Kim & Verma, 1996). Through
evapotranspiration, mosses cool the surface and perform as a thermal insulation layer (Blok et
al., 2011). For these reasons, the disturbed sites with deeper WTD, covered with sporadic sedges
and open peat surface, had higher R between LST and T¢—T4.

In this work, R.., model was forced by in-situ measurements, among them were WTD
time series. However, only a small number of peatlands have in-situ historical observations,
which limits the future applicability of the provided model. It is possible, therefore, to use
remotely sensed proxies of WTD: e.g., radar data (Asmul3, Bechtold, & Tiemeyer, 2019;
Tampuu, Praks, Uiboupin, & Kull, 2020) and Optical Trapezoid Model — OPTRAM (Burdun,
Bechtold, Sagris, Lohila, et al., 2020). Further, given the well-established respiration dependency
on LST in disturbed sites, future work could focus on the benefit of the combined contribution of
the various remotely sensed data. For example, LAI, NDVI and EVI were shown to increase the
Re.o model accuracy over various biomes, including peatlands (Ai et al., 2018; Y. Gao et al.,
2015; Junttila et al., 2021). Moreover, the parameterization of models separately for each
peatland could increase the model performance (Junttila et al., 2021).

In contrast to earlier findings (Evans et al., 2021; Feng et al., 2020), in all the sites, R
between CH, fluxes and in-situ measured parameters was weak (from -0.3 to 0.3) and frequently
not statistically significant (p-value > 0.05). The highest correlation (R=0.3) was observed
between CH4 fluxes and T,y 4in hollows. Additionally, we observed a positive association (p-
value > 0.05) between CH, fluxes and water temperature in flooded sites. In Figure 2, it is
noticeable that CH, fluxes follow the seasonal dynamics in flooded sites (panel f). Summer 2018
was warmer than summer 2019, so methane fluxes increased dramatically during 2018 and were
the greatest in midsummer. Similar results were discussed in (McEnroe, Roulet, Moore, &
Garneau, 2009), where a weak positive (p-value < 0.001) R was found between air temperature
and CHj, fluxes.

Our findings may be somewhat limited by a small number of sites and methodological
constraints. First, we tested LST applicability only in seven sites where R, data were measured
with the closed-chamber technique. It is well-known that chamber measurements of R, might
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not accurately represent the fluxes at the landscape scale (Schrier-Uijl et al., 2010). Second, we
applied MODIS LST data of 1-km spatial resolution. MODIS pixels’ footprint covered
neighboring territories around the peatlands, which could cause a bias in the association between
in-situ measured R., and LST. We did not utilize Landsat LST for R, modelling because of the
very limited number of cloud-free images for the disturbed sites. This lack of data occurred even
though we calculated one median Landsat LST value over one site for each time scene to
increase the number of Landsat LST data. Unfortunately, high latitudes — where 80% of peatland
C stock is located (Tanneberger et al., 2017) — are frequently covered by clouds. In this regard,
modelling of Re,, with high-resolution Landsat data is challenging in northern peatlands. A good
alternative to the original Landsat LST data could be modelled Landsat LST data derived with
temporal adaptive reflectance fusion model, e.g. STARFM (F. Gao, Masek, Schwaller, & Hall,
2006). The fusion algorithms for Landsat and MODIS imagery have already shown promising
results (Moreno-Martinez et al., 2020). Additionally, machine learning techniques could be used
to fill the gaps in Landsat LST images (Buo, Sagris, & Jaagus, 2021).

Altogether, our results highlight that remotely sensed LST is a powerful tool for
modelling Re.,. LST has the potential to be used in drained and extracted sites with deep WTD
and covered with sparse sedges. However, more studies are needed to identify how general our
findings are across disturbed peatlands in the Northern Hemisphere.

5 Conclusions

The purpose of this study was to estimate the strength of relationships between R, and
LST and in disturbed (drained and extracted) and intact peatlands. Particularly, we aimed to
examine the applicability of MODIS LST for R.., modelling and compare the performance of the
MODIS LST-driven model with the model driven by in-situ measured surface temperature. This
study indicates that LST has a great potential to be utilized in R.., models as a proxy of thermal
conditions in northern peatlands. The highest R (mean 0.74) was observed between LST and in-
situ measured T, —T4, for drained and extracted sites. However, at intact sites, the relationships
between LST and T, —T4 were dramatically weaker: mean R over hummocks and hollows was
0.34 for Landsat and 0.36 for MODIS. R, model driven by MODIS LST yielded similar
accuracy as the model driven by in-situ To: R* was 0.28, 0.68 and 0.58 for intact (hummocks and
hollows), drained and extracted sites with To-driven model, and 0.26, 0.64 and 0.65 with MODIS
LST-driven model.

The present study has been one of the first attempts to thoroughly examine the potential
of remotely sensed LST for monitoring C fluxes at drained and extracted peatlands. Though our
study was limited only to seven peatlands with intermitted R.., time-series stemmed from manual
closed-chamber technique, we showed that LST data could be used as a tool to monitor CO,
fluxes with relatively high accuracy. Future research should be carried out to identify how
general our findings are across disturbed peatlands in the Northern Hemisphere.
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