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Key Points:

 The HRRR model surface thermodynamic biases are seasonally dependent,  presenting a 
systematic warm and dry bias during the warm season. 

 The primary locations of the summer warm and dry biases are over farmland,  on days 
with optically thick clouds. 

 A  hydrological bias underestimating of spring snow melt is consistent with subsequent 
summer warm and dry biases over farmland. 
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Abstract

In recent years, there has been increasing demand for applications of shortterm forecasting of 
renewable energy potential and assessments of the likelihood of extreme weather events using 
the High-Resolution Rapid Refresh (HRRR) model. Examining the biases in the newest version 
of HRRR is necessary to promote further model development. Using data from the most 
comprehensive and dense monitoring network, New York State Mesonet (NYSM), we evaluated 
HRRR version 3 meteorological fields for an entire year. In this work, the land-atmosphere-
cloud coupling system is evaluated as an integrated whole. We investigated the physical 
processes influencing the soil hydrological balance and the thermodynamic interactions, from 
surface fluxes up to the level of boundary layer convection from both temporal (seasonal and 
diurnal) and spatial perspectives. Results show that the model 2m temperature and humidity 
biases are seasonally dependent, with warm and dry bias present during the warm season, and an 
extreme nocturnal cold bias in winter. The summer warm bias includes both a land-surface-
induced bias and a cloud-induced bias. Inacurate representation of energy partition and soil 
hydrological process across different land use types and hydrological bias of spring snow melt in
the land surface model is identified as the main source of the land-surface induced bias. A 
feedback loop linking cloud presence, radiative flux changes and temperature contributes to the 
cloud-induced bias. The positive solar radiation bias increases from clear sky to overcast sky 
conditions. The most significant bias occurs during overcast and thick cloud conditions 
associated with frontal passage and thunderstorms.

1 Introduction

Understanding land-atmosphere coupling is essential for improving weather forecasts at 
multiple scales (Betts et al., 2013). Soil and vegetation influence the partition of surface energy 
fluxes, which in turn affecting planetary boundary layer (PBL) development, convective 
initiation, cloud development, and precipitation (Pleim et al., 2011; Smirnova et al., 2016; Sun et
al., 2017; Lee et al., 2018). Subsequent cloud formation and precipitation modulate the exchange
of radiation, heat, and moisture in the boundary layer, a feedback that alters surface 
thermodynamic conditions (Stull, 1988; Fitzjarrald et al., 2001; Freedman et al., 2001; Betts & 
Silva Dias, 2010). This complex, nonlinear feedback process has been the topic of numerous 
simulation and observational studies dealing with the land atmosphere interaction (e.g., Eltahir et
al., 1998; Schar et al., 1999; Koster et al., 2004; Koster et al., 2006; Taylor et al., 2012; Williams
et al., 2016; Peters et al., 2017). Williams et al. (2016) evaluated the single-column version of 
Community Land Model (CLM4.5) using observations in the U.S. Southern Great Plains. They 
found the model underpredicted evaporative fraction and overpredicted the impact of soil 
moisture, leading to biases in the 2-m air temperature and precipitation. Peters et al. (2017) 
analyzed the impact of surface moisture on the forecasting of a mesoscale convective system 
(MCS), finding that the initial onset and subsequent MCS displacement was strongly correlated 
with the model bias in near-surface humidity.

The HRRR (High-Resolution Rapid Refresh) model was developed to serve the US 
severe weather and aviation forecasting community by providing frequently updated high-
resolution short-range weather forecasts (Benjamin et al., 2016). HRRR is highly flexible, and 
has been used to develop many valuable forecast applications, including more accurate 
predictions of thunderstorms and flooding potential (Bytheway et al., 2017; Katona et al., 2016; 
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Griffin et al., 2017), air quality (James et al., 2018), and renewable energy forecasting (Pichugina
et al., 2017; James et al., 2017).  The performance of HRRR forecasts in terms of land-
atmosphere interaction has been evaluated in previous works (Wagner et al., 2019; Lee et al., 
2019). Wagner et al. (2019) evaluated HRRR diurnal variation of convective available potential 
energy (CAPE) against CAPE obtained from surface-based Atmospheric Emitted Radiance 
Interferometer (AERI) measurements, finding that HRRR-forecasted CAPE lagged 2 to 4 hours 
compared to the observations. This is believed to result from the lack of subgrid-scale clouds in 
version 1 of the HRRR. Lee et al. (2019) also evaluated the HRRR forecasted near-surface 
meteorological fields and surface energy balance using measurements from two 
micrometeorological sites. They found that although HRRR-forecasted near-surface temperature 
and moisture are in good agreement with observations, there are notable positive biases in 
sensible heat flux, biases that might lead to modeled precipitation underestimates.  

The complex landscape of New York State and its immediate surroundings offer a unique
opportunity to study the effects of aerosol-cloud-precipitation interactions on weather systems in 
complex terrain that rely on strong land-atmosphere coupling . In response to increasingly 
frequent extreme weather events, the University at Albany, SUNY (UAlbany)  developed an 
Early Warning Severe Weather Detection network. This unique network measurement suite, 
known as the New York State Mesonet (NYSM), fills a critical need of providing data for in-
depth model evaluation.  It is well-suited for NWP model evaluations of mesoscale processes 
and comparison with the NYSM observations forms the basis of this study to evaluate HRRR 
model performance. Our goal in this study is to identify the spatial and temporal error structure 
and sources of surface thermodynamic variables, and investitgate its link to land surface, 
atmosphere and cloud coupling processes. Furthermore, we aim to indentify processes that are 
candidates for inclusion during future model improvement.

2 Data and Methods

2.1 HRRR

HRRR v3 model is based on WRF-ARW v3.8.1. It was developed by NOAA, with 3-km 
resolution, hourly updated, cloud-resolving, convection-allowing atmospheric model. The model 
region covers the whole Continental United States (CONUS). The scalar grid dimensions are 
1799 × 1059. Since the operational version of the HRRR (currently HRRRv3) was implemented 
on 12 July 2018, we will perform one-year evaluation between September 1, 2018 and August 
31, 2019. In the HRRRv3, 15-sec land use information and 30-sec Leaf Area Index from 
Moderate Resolution Imaging Spectroradiometer (MODIS) was used as initial condition. The 
Rapid Update Cycle (RUC) land surface model is used to compute surface heat flux and 
moisture exchanges (Smirnova et al., 2016). The surface skin temperature is calculated using 
surface energy balance, itself controlled by the shortwave and longwave radiation budget, and 
the energy partition of sensible and latent heat fluxes. A two-layer snow model was used in 
RUC. Snow can be melted from the top and bottom of snowpack. Bottom layer melted water 
infiltrates into soil, and tops layer goes into surface runoff (Smirnova et al. 2016). A frozen soil 
physics algorithm is used in RUC to take into account freezing and thawing processes in soil. In 
this algorithm, direct effect of energy releases in soil water changing phases and the change of 
thermal conductivity of the soil column is considered (Smirnova et al. 2000). HRRR v3 used the 
Thompson microphysics scheme with five hydrometeor types (cloud water, cloud ice, rain, snow 
and graupel) which improved the upper level cloud biases in comparison to the previous version 
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(Thompson & Eidhammer, 2014). To better represent sub-grid scale shallow-cumulus clouds, the
MYNN Planetary Boundary Layer Scheme is used, with assumed sub-grid cloud probability 
distribution functions to determine the subgrid scale cloud mixing ratio, cloud fraction, and the 
buoyancy flux (Olson et al., 2019). The Rapid Radiative Transfer Model for GCMs (RRTM-G) 
is used to estimate radiative forcing (Iacono et al., 2008). This study focuses on the short-term (1 
- 24 hours) forecast from 0 UTC analyses. 

2.2 New York State Mesonet (NYSM)

The diverse topography and mosaic of land cover types characteristic of New York State 
elicit a strong challenge to models aiming to describe the impact of land surface/atmosphere 
interactions on forecast quality. Large coverage of deciduous forest introduces strong seasonality
on land surface conditions, which in turn strongly modulate the surface energy partition, itself 
partially controlling boundary layer development. Interleaved with forest are other important 
surface types, such as forest, farmland and urban landscapes. This mosaic challenges the model’s
ability to represent the transition zones that separate land surface types. Complex terrain effects 
such as valley-induced LLJs and channeling of the winds is important for the break of stability at
the early morning, which further complicates the cloud formation processes (Freedman et al., 
2001; Freedman and Fitzjarrald, 2017). All of these characteristics provide a good testbed for 
understanding the processes of land atmosphere-cloud coupling.
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Figure 1. Topography of THE research area identifying the 17 profiler sites, 17 flux sites and 126
standard stations of the New York State Mesonet. Redfield (REDF) is a typical forest site. 
Voorheesville (VOOR) is an orchard (farmland and forest mosaic) site. Staten Island (STAT) is 
an urban site. The Adirondack mountains are primarily covered by deciduous forest. 

In 2017, UAlbany deployed and began operating a dense environmental monitoring 
network, New York State Mesonet (NYSM, http://nysmesonet.org/). The 180-site NYSM has  
operated with state-of-the-art instrumentations, including 126 standard surface meteorology 
stations, 17 flux towers and 17 atmosphere profilers, currently the most sophisticated, high 
density (average distance between stations ~ 26 km) statewide observing network (see Figure 1). 
The 126 standard surface stations measure not only standard meteorological variables  
(temperature, humidity, wind speed and direction, pressure, and precipitation) but also soil 
temperature and moisture at three levels, snow depth, and total surface short-wave (SW) 
irradiance at 5-minute intervals (Brotzge et al., 2020). The sub-network of 17 enhanced surface 
energy budget stations directly measure both  incoming and outgoing shortwave and longwave 
radiation, ground heat flux, and turbulent fluxes of momentum, sensible and latent heat, and 
carbon dioxide with 30 minutes intervals. The locations of 17 flux sites were selected to 
represent New York State land surface types, including farmland, forest, urban and etc. 
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Topograghy is also considered to avoid obstruction proximity (Covert, 2019). To be comparable 
to HRRR, only data sampled at an hourly interval are used in this paper. 

As NWP models transit to a high-resolution convection-allowing framework, infrequent 
atmospheric sounding profiles (currently only 2 soundings per day at three sites within New 
York State) are inadequate. Recognizing this critical measurement gap, the NYSM operates 17 
enhanced atmospheric profiler systems that are sited along population, transportation and utility 
corridors, strategically positioned to capture upwind features approaching the station (Freedman 
et al., 2016). Each profiler site is equipped with a wind Doppler LiDAR (WDL), a profiling 
(multi-frequency) microwave radiometer (MWRP) and the environmental Sky Imager-
Radiometer (eSIR). The profiler network continuously samples the vertical profiles of 
temperature, humidity with MWRP from surface to 10 km (Yang & Min, 2018). MWRP 
significantly increased temporal resolution of temperature and humidity vertical measurements. 
Compensated with higher vertical resolution from soundings, MWRP measurements can lead to 
better understanding of boundary layer conditions. eSIR is a dual-measurement system 
comprised of continuous (daytime) observations of aerosol and cloud optical depths, narrowband
spectral direct and diffuse radiation, and whole sky images (cloud distribution and motion for 
solar energy forecasting). The WDL provides not only 3D wind fields (up to 7 km) but also 
planetary boundary layer (PBL) height and vertical profile of aerosol optical properties 
(synergistic with eSIR inferred aerosol optical depth). The multi-frequency MWRP independent 
information on temperature and moisture, and cloud liquid water--crucial data for determining 
upper atmospheric conditions (Yang & Min, 2018) and cloud optical properties (Min & 
Harrison, 1996). This advanced instrument suite provides an unprecedented data stream of 
aerosols, clouds, radiation, precipitation, multi-level soil moisture/temperature, snow depth/snow
water content, surface fluxes, and meteorological profile data at high spatial and temporal 
resolution, providing the ability to track abrupt changes in thermodynamic profiles throughout 
the state. 

To quantify the cloud conditions at the standard sites where eSIR is not available, the 
observed global horizontal irradiance (GHI) or total solar radiation was used to calculate the 
clear-sky index (CSI). The clear-sky index is the ratio of observed GHI to the baseline GHI 
under clear-sky conditions in that month. A simple clear sky model was used to calculate clear-
sky solar radiation (Robledo & Soler, 2000):

     GHI=A× (cos z )
B
×exp (C × (900−z ))              (1)

Where GHI is the Global Horizontal Irradiance; z is solar zenith angle; and A, B, C are the fitting
parameters at specific site, derived from GHI measurements on selected clear-sky days in one 
month. Consequently, the CSI describes the atmospheric clear-sky or cloudy-sky conditions, 
defined as

                                        CSI=
GHI

GH I clear−sky
                                     (2)

Specifically, we classified the weather conditions as: 

 Clear-sky conditions with CSI > 0.8.
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 Transition conditions with CSI between (0.6, 0.8), in which either optically thin clouds or
broken clouds are present in the sky.

 Overcast conditions with CSI <= 0.6.

3 Results

3.1 Temporal and spatial analysis of the HRRR 2-m forecast

The 2-m temperature and relative humidity are key meteorological parameters for 
diagnosing and evaluating model performance.  They are strongly influenced by the coupling 
processes between  land and atmosphere. During the warm season there are consistently warm 
and dry biases during both daytime and nighttime (Figure 2). The daytime maximum temperature
bias,  however, is anti-correlated with the bias of the nocturnal minimum temperature (r ≈ -0.49).
This suggests that low-level cloud dynamics might play an  important direct role in elucidating 
the diurnal cycle of the warm season surface temperature bias. During the daytime, low-level 
clouds tend to block the shortwave radiation and cool the surface. However, at night, the same 
low-level clouds reduce the outgoing longwave radiation and keep the surface warm. An 
inaccurate representation of low-level clouds during both daytime and nighttime is a possible 
reason for the negative correlation. In contrast, both biases of maximum and minimum 
temperatures during the cold season show no significant average systematic biases, with extreme 
negative biases on the coldest days. The daytime maximum temperature bias and nocturnal 
minimum temperature bias are positive correlated (r ≈ 0.36), indicating potentially distinct 
physical processes other than low cloud bias controlled the cold season surface biases. In winter, 
the snow freezing and melting processes largely modulate the surface temperature and humidity. 
The freezing and thawing processes in the snow cover and soil are possibly responsible for the 
cold extreme biases (Viterbo et al., 1999; Garc´ıa-D´ıez et al., 2013) 
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Figure 2. Average time series of data from 126 NYMN sites and simulation results from HRRR: 
(a) daily maximum temperature and (b) is daily minimum temperature; (c) corresponding relative
humidity to daily maximum temperature. and (d) corresponding relative humidity to daily 
minimum temperature. The blue shaded area is the cold season and the red shaded area is the 
warm season.

The HRRR vegetation module incorporates monthly updated MODIS (Moderate 
Resolution Imaging Spectroradiometer) satellite retrieved vegetation. In New York, the transition
seasons (spring, fall) rapidly progress northward in spring or retreat to the south in fall 
(Fitzjarrald et al., 2001). Significant changes in vegetation “greenness”, soil temperature, and 
soil moisture in a few weeks during leaf emergence coincide with corresponding changes in the 
surface energy partition. Figure 2 also shows these distinct seasonal transitions in the 2-m 
temperature and RH bias characteristics that occurred around mid-May (during spring onset and 
leaf emergence) as well as mid-October (during leaf senescence in New York State), indicating 
that the HRRR model physics associated with the spring and fall season transition may lack 
precision. Detailed statistics of daily maximum/minimum temperature and relative humidity for 
each month are listed in Table 1. These strong seasonality of biases in temperature and RH 
suggests that there are potential issues with the land-atmosphere coupling in the HRRR. 
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Figure 3. Spatial distribution of the 2-m temperature and RH biases classified by clear sky index 
in July 2019 over NYSM 126 standard sites: (a) and (e)  clear-sky conditions with CSI > 0.8; (b) 
and (f) transition conditions with CSI between (0.6, 0.8); and (c) and (g) overcast conditions with
clear sky index <= 0.6. (hour 0900-1700). The red circle indicate the Adirondack region.

Table 1. Mean Bias Error (MBE), Root Mean Square Error (RMSE) of daily 
maximum/minimum temperature, relative humidity between 126 standard NYSM sites and the 
HRRR over period 1 Sep. 2018 to 31 Aug. 2019. Statistics are based on all hourly observations 
and averaged over monthly and separated by different land use types (farmland and forest). 
Tmax is the daily maximum temperature; Tmin is the daily minmum temperature; Hmax is the 
relative humidity when temperature is maximum; Hmin is the relative humidiy when temperature
is minimum.

Farmland Forest
Tmax

(MBE)
Tmax

(RMSE)
Hmax
(MBE)

Hmax
(RMSE)

Tmax
(MBE)

Tmax
(RMSE)

Hmax
(MBE)

Hmax
(RMSE)

Jan 0.17 1.25 2.96 7.62 0.25 1.26 3.06 6.65
Feb -0.13 1.7 10.56 10.24 -0.07 1.67 11.45 11.41
Mar -0.23 1.21 13.91 7.95 -0.69 1.27 17.82 10.63
Apr 0.82 1.4 4.1 9.16 0.05 1.6 12.32 9.08
May 0.92 0.87 -2.15 4.68 0.1 1.12 3.45 6.09
Jun 0.94 0.87 -2.15 4.68 0.1 1.12 3.45 6.09
Jul 1.94 0.72 -11.23 3.4 1.07 0.93 -5.69 5.54
Aug 1.64 0.69 -10.55 5.34 1.17 0.8 -7.46 5.8
Sep 1.24 1.03 -7.72 5.88 1.02 0.98 -5.11 6
Oct 0.57 0.97 0.68 5.54 0.67 1.1 -0.12 7.82
Nov 0.32 1.02 3.17 8.41 0.67 1.1 0.7 11.18
Dec 0.24 0.79 3.12 6.03 0.28 0.7 1.42 7.86
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The dense NYSM network enables us to study the HRRR performance, as a function of 
heterogeneous land covers, and soil conditions under a variety of weather conditions. In the 
warmest month, (July, 2019), the spatial patterns of 2-m temperature and humidity biases are 
correlated closely to the land surface types under all weather conditions (Figures 3a-3d). The 
forest sites, particularly at Adirondack northern plateau forest regions, have lower or even 
opposite 2-m temperature biases compared to the nearby farmland sites under all weather 
conditions. Table 1 also shows that in warm season (June, July, August), the mean 2-m 
temperature biases are much larger over farmland. The dependence of land use type further 
illustrates a potential issue in the Rapid Update Cycle (RUC) Land Surface Model (LSM) used 
by the HRRR. Figure 3 also shows the cloud control on surface warm biases. We found that the 
most significant bias comes during conditions with cloud overcast. It is hypothesized that land 
surface energy partition and cloud forcing are two main factors controlling the warm season 
surface temperature bias. We will discuss this hypothesis further in section 3.3 and section 3.4 
below.
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3.2 Soil hydrological process in land surface model

Figure 4. Time series of 126 standard sites averaged (a) daily accumulated precipitation, (b) 
snow depth, (c, e, g) soil moisture at 0.05 m, 0.25 m and 0.5 m; and (d, f, h) soil temperature at 
0.05 m, 0.25 m, 0.5 m.

Soil moisture is an important variable among the processes that describe the land 
surface–atmosphere coupling.  Its value reflects how rainfall is partitioned into runoff, surface 
storage, and infiltration components. One consequence is that soil moisture modulates the energy
budget by determining the soil heat capacity, the degree of evapotransipiration, and the albedo 
(Seneviratne et al., 2010; Smirnova et al., 1997; Gascoin et al., 2008). Through balancing of land
surface water and energy, soil moisture directly affects 2-m temperature and humidity by 
controlling the total energy used by latent heat flux, and further modulating surface energy 
partition. (Kala et al., 2016; Seneviratne et al., 2013; Mueller & Seneviratne, 2014). Soil 
moisture at all three levels of 0.05 m, 0.25 m, 0.5 m are closely associated with the precipitation. 
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The spikes of precipitation-induced soil moisture increase matches alright between model and 
observation (Figures 4a, 4c, 4e and 4g).

At each mesonet station, a Stevens Hydra Probe Soil Sensor measures soil moisture based
on dielectric permittivity measurements. Proprietary algorithms were used to convect the signal 
response of the standing radio wave into the dielectric permittivity and thus the soil moisture. 
The soil moisture measurements are in units of water fraction by volume (m3/m3), which is 
consistent with model. The forecasted soil moisture values at 0.25 m and 0.5 m have systematic 
biases around 0.05 m3/m3 respectively. The forecasted soil moisture at 0.05 m showed few 
apparent biases when compared to NYSM measurements at the beginning of the evaluation 
period (1 Sep, 2018), but a dry bias emerged as the fall transition proceeded (Figure 4c). During 
the warm days of late winter to early spring, snowmelt, which is the major reason for snow depth
reduction, adds water into the soil. NYSM observation shows around 20cm snow melted during 
early spring and in the meantime, observed soil moisture increased sharply (blue arrow in Figure 
4). However, the forecasted soil moisture at 0.05 m did not respond to the snow water as 
indicated by the NYSM observations. This suggests that the snow melting process is poorly 
represented by the HRRR, either due to RUC thawing process or due to the snow water runoff. 

HRRR-forecasted soil temperatures at three levels  (Figures 4d, 4f and 4h) basically agree
with NYSM observations. However, HRRR predicted a much larger diurnal cycle of soil 
temperature at the 0.05 m and 0.25 m levels than observation (Figures 4d and 4f). One possible 
reason is that the overall dry biases of soil moisture decreased the soil heat capacity, and led to 
increased amplitude of soil temperature variation. Also, the observed average soil temperature 
was above freezing during the cold winter months, while HRRR-forecasted soil temperature 
exhibited much lower temperatures, below freezing (Figure 4d). These examples illustrate 
potential issues in the RUC as used by the HRRR, including difficulties simulating the soil 
freeze-thaw processes (Viterbo et al., 1999; Ek et al., 2003). In the real world, the water in the 
soil will not completely freeze, but rather remain a mixture of ice and water at  0° C. However, 
the model unrealistically freezes the soil at depth during the cold winter. This bias in soil 
temperature partly explains the extreme cold bias we see earlier in 2m air temperature.

The soil moisture budget examines  one avenue of how changes in the land surface may 
alter the water and energy balances. Precipitation and snowmelt inputs increase soil moisture 
through infiltration are countered by runoff and evapotranspiration outputs, as evapotranspiration
releases water through plant leaves and soil (Figure 5). The comparison between HRRR change 
rates and NYSM observation in four seasons exhibit unique seasonal characteristics: 
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Figure 5. Mesonet observed and HRRR simulated regression fits for soil moisture differential at 
0.05 m during different seasons. the growth rate and loss rate are linear fitted separately. The 
black lines represent the 1:1 line. The blue lines represent linear regression lines.

Table 2. Comparison of modeled with observational soil moisture rates of change under different 
precipitation conditions.

loss rate growth rate

r slope intercept r slope intercept

Spring 0.50 0.97 0.0006 0.78 1.11 -0.0040

Summer 0.68 0.89 0.0006 0.77 0.73 -0.0001

Autumn 0.59 1.18 0.0012 0.84 0.76 -0.0002

Winter 0.19 0.18 -0.0006 0.66 0.68 -0.0016

298

299

300

301

302

303

304

305



manuscript submitted to Journal of Geophysical Research: Atmospheres

• Spring: Snowmelt is important to soil hydrological process for soil moisture growth rate during 
early spring season. The extreme high intercept -0.0040 m3m-3h-1 shown in Table 2 could be 
attributed to the misrepresentation of snow melting process. In the mean time, the loss rates of 
soil moisture during this period are not well captured by HRRR forecasts. The loss rate 
correlation coefficient r is only 0.50. The result indicates that large uncertainty still lies in the 
soil hydrological process during spring associated with snow metling and the partition of water 
into runoff, soil moisture and evapotranspiration. 

• Summer:  The precipitation has been underestimated in summer with the integrated bias as -
20.56 mm in whole summer, which lead to the underestimation of the growth rate of soil 
moisture forecasted by HRRR in summer (Benjamin et al., 2016). The loss rate of soil moisture 
forecasted by HRRR tended to be lower than NYSM observation, suggesting a weak 
evapotranspiration process in HRRR RUC (Figure 5b). A combined result of the underestimation
of both growth and loss rates is that the overall soil moisture dry bias decreases from its 
maximum at the beginning of summer to much less in late summer (Figure 4c). The severe 
underestimate of evapotranspiration processes changes surface energy patition and lead to the 
consistent warm bias observed. 

• Autumn: The HRRR underpredicted the growth rate of soil moisture, however, overestimated 
the loss rate during the transition season. The overestimation of loss rate in fall indicates that the 
evapotranpiration process during autumn has been overestimated. As leaf senescence occurred in
New York during this period,  the transpiration vanished; the vegetation ceased to withdraw 
water from the soil. The soil moisture continued to build up and reached its annual maximun in 
early winter. In Figure 4c, the model shows a gradual dry bias in forecasted soil moisture, with 
almost the same level of soil moisture at the beginning (September 1st) and 0.1 m3/m3 bias at the 
end of the fall (November 30th). It is likely that the vegetation phenology changes during the fall
and their impact on soil moisture dynamics are not well represented in HRRR RUC.  

• Winter: The soil hydrological process is most poorly simulated in winter. The HRRR growth 
rate of soil moisture is underpredicted, and the loss rate is largely underpredicted. During the 
winter, precipitation can be either in liquid phase (i.e., rain) which immediately interacts with 
soil or in solid phase (i.e., snow) accumulated for later release. The soil freezing and thawing 
processes adds more complexity to the soil moisture dynamics. The observed HRRR biases 
suggest the needs to further investigate the snow precipitation process, snow-pack dynamic and 
the soil freeze cycle in the HRRR.  

3.3 Surface energy partition                                                                                                               

The land use types exert a major control on the surface energy partition. The way that the 
model represents the partition of sensible and latent heat flux with different land use types is 
crucial to the forecast of land surface meteorological condition and cloud formation through land
atmosphere feedbacks. To gain deeper insight into model performance, HRRR forecasted energy 
partition at three major land use type sites of forest, farmland forest mosaic, and urban  are 
evaluated using the flux measurements from NYSM flux sites. Three typical flux sites (REDF, 
VOOR, STAT, shown in Figure 1) were selected for the further analysis. We only selected the 
sites that have the same land use type as does the 3km model land use classification. However, it 
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should also be noted that, for three selected flux sites, the immediate surrounding area is flat with
grassland or low vegetation to meet WMO standards. To get the best representation of heat 
fluxes from different land use types, only the data from mid-afternoon (1800 UTC) are used. 
During this period, the impact of surrounding land cover on the flux measurements is most 
significant due to that the mixing of boundary layer is strongest at this time of the day.

Figure 6. Time series of (a, b, c) daytime latent heat flux, sensible heat flux, Bowen ratio 
measured from forest flux site; (d, e, f) from farmland flux site; (g, h, i) from urban flux site

At forest sites during the warm season, the latent heat flux is overestimated, and the 
sensible heat flux is close to the measurements. However, considering that the observed fluxes 
have an estimated 100W/m2 to 200W/m2 energy closure imbalances (Steeneveld et al., 2011), it 
is possible that the sensible heat flux has been underestimated at the forest sites. HRRR 
underpredicted the mid-day Bowen ratio compared to NYSM observation for most of the 
growing season,  from spring onset to leaf senescence (Figures 6a-6c). The bias in energy 
partition over forest sites partly explains the slight cold and wet bias over Adirondack region 
under clear sky shown in Figure 3a. Over the forest, the evapotranspiration process dominates 
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the latent heat flux during the growing season. The deep rooting system enables the forest to be 
less affected by the surface soil moisture drought. 

On the contrary, the HRRR predictions of Bowen ratio over farmland sites are generally 
larger than the observed during the warm season. Compared to forest, farmland has a much 
shallower root depth, which is more vulnerable to the water deficit at surface soil layers. As 
discussed in section 3.2, soil moisture has been underestimated during the warm season. The 
false drought in soil further lead to the underestimation of latent heat flux, while sensible heat 
flux is overestimated around 300 W/m2. This relatively larger biases of Bowen ratio over 
farmland sites than those over forest sites consist with the larger warm bias of 2-m temperature 
over farmland sites than those over forest sites (Figure 3). These biases will also contribute to 
changing of the convection behavior of cloud, and further enlarge the surface thermodynamic 
bias through surface cloud feedbacks. 

During the snowmelt period, HRRR predicted more LH (Figure 6a) without significant 
increase in soil moisture at 0.05 m level (Figure 4c). In fact, Figure 4c shows that 0.05 m soil 
moisture in HRRR decreases steadily during this period, while the observation increases rapidly. 
The result suggests that most melt water was evaporated into the atmosphere and did not 
infiltrate into the soil.

Over the urban site, the HRRR overestimated the latent heat while underestimating the 
Bowen ratio. The urban site equipment are located on rooftop, and that the measurements are 
affected by artificial local heat sources.

The 2-m air temperature and humidity biases over New York State have quite unique 
spatial characteristics. The biases are small over forest and largest over farmland. (see Figure 3 
and Table 1). The vertical flux divergence of surface sensible and latent heat fluxes simulated by 
land surface model modifies the atmosphere heat and moisture state. Correct representation of 
surface energy partition is essential to simulation of the 2-m (screen level) and mixed layer 
temperature and humidity. The significant overestimation of Bowen ratio and underestimation of
latent heat over farmland (see Figures 6d-6f) is possibly one of the most important sources of the
2-m temperature and humidity spatial related biases.  

During the warm season, the underestimation/overestimation of the Bowen ratio over 
forest/farmland sites led to the cold/warm and wet/dry biases under clear sky. The dry bias in soil
moisture, and underestimated evapotranspiration in the warm season partially explains the bias in
surface energy budget estimates. The early-spring snowmelt issue could be one of the reasons 
that leads to the warm and dry biases during the subsequent warm season. As a consequence of 
insufficient water infiltrating into the soil in spring, there arises a soil water deficit at the 
beginning of summer, and this suppresses evapotranspiration and latent heat release especially 
over regions with shallower-rooted vegetation.

3.4 Cloud radiative effects on land-atmosphere coupling biases

The 2-m air temperature and humidity biases over New York State are close associated 
with observed cloud conditions (see Figure 3). Under clear sky, the biases are smallest, while 
under the thickest cloud, the biases are largest. Possible causes from cloud radiative forcing in 
the model should be investigated. Underestimation of low-level cloud coverage and optical 
thickness has been identified as an important potential explanation for the systematic daytime 
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incoming solar radiation bias, in turn yielding a surface warm and dry bias during the warm 
season (Benjamin et al. 2016). Here the biases of downward shortwave radiation and maximum 
2-m air temperature are investigated by classifying biases using clear sky index.

Figure 7. (a,b) Box-and-whisker plots showing the shortwave radiation bias binned by clear sky 
index (warm/cold season). The vertical bar represents standard error. (c,d) correlations between 
downward shortwave radiation bias and daily maximum temperature bias; (e, f) Number of 
measurements in certain hours when the temperature biases exceed 5 K. The warm season is 
June, July, August (JJA), and the cold season is December, January and February (DJF). Only 
daytime (from 9:00 to 16:00 local time) data are included in the statistics.

Figure 7a shows that during the warm season, both the mean biases and standard 
deviation of the shortwave radiation increases as observed clouds thicken (The clear-sky index in
Figure 7 is based on station observation). In the warm season, a positive radiation bias around 
100 W/m2 when the clear sky index exceeds 0.9. The absence of aerosol direct effect in HRRR 
could be the reason for this positive bias under clear sky. For clear sky index < 0.2, when the sky
is covered by optically thick clouds, the mean radiation bias can be as high as 400 W/m2. In 
contrast to previous studies that emphasized the importance of unresolved fair-weather sub-grid 
clouds on the surface temperature bias, our analysis indicates that largest radiation biases are 
associated with optically thicker clouds. During the warm season, the clouds over North Eastern 
United States (NEUS)  can be separated into four categories: Fair weather cumulus, cumulus 
congestus (towering cumulus), individual cumulonimbus, and stratocumulus associated with 
thunderstorm and frontal passage (Houze, 1993). The GOES truecolor cloud images and synopic 
weather maps during this period show that the days associated with the large biases and low 
cloud index are generally associated with individual cumulonimbus and stratocumulus associated
with thunderstorm and frontal passage. The displacement and weaker strength in deep 
convection might explain most of the biases in thick clouds.
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During the warm season, daytime temperature bias correlates well with the shortwave 
radiation bias (Figure 7c) . Further analysis separates the radiation and temperature biases using 
the clear sky index. In both warm and cold seasons, it is clearly shown (Table 3) that the slope of
the linear regression between solar radiation and temperature biases decreases as the clear sky 
index increases, as does the correlation coefficient r. The results suggest that when clouds are 
thicker, the temperatue biases are explained more by the radiation biases. This further supports 
the argument that the relationship between radiation bias and temperature bias is more significant
with thicker clouds. 

The dependence of shortwave biases on cloud is more significant in warm season than 
during the cold season (Figures 7a and 7b). Compared to the warm season, the cold season 
daytime temperature bias is much less dependent on cloud bias. When the clear sky index 
exceeds 0.4, the slope becomes negative, and the correlation coefficient essentially vanishes. 
During cold season, other process rather than shortwave radiation forcing dominates the 
boundary layer thermodynamic process, such as the high albedo of surface snow and longwave 
cloud forcing. (Betts & Beljaars, 2017). Also, due to the much thinner convective boundary 
layer, the surface thermodynamically-controlled boundary layer cloud fraction is lowest during 
cold season over the eastern United States (Freedman et al., 2001). These results suggested that 
other physical processes, such as the snow albedo effect and snow/soil frozen/melting process 
may be more important to explain the surface temperature biases (Figure 7d).

Table 3. Relationships between solar radiation biases and air temperature biases during warm and
cold season. The results are classified by clear sky index (CSI).  The slope has been multiplied 
by scale factor of 1000, and the unit of slope is °C/(W/m2). W indicates warm season, C indicates
cold season. r is the correlation coefficient.

CSI [0, 0.2] [0.2,0.3] [0.3,0.4] [0.4,0.5] [0.5,0.6] [0.6,0.7] [0.7,0.8] [0.8,0.9] [0.9,1]

Slope(W) 5.79 4.43 4.00 3.65 3.18 3.50 3.03 2.92 3.22

r (W) 0.54 0.50 0.47 0.46 0.39 0.32 0.26 0.23 0.20

Slope (C) 1.74 1.53 0.45 -0.21 -0.77 -0.13 0.02 -0.22 -0.05

r  (C) 0.09 0.09 0.03 -0.01 -0.04 -0.01 0.00 0.01 0.00

Figures 7e and 7f illustrates the interesting feature that extreme temperature biases larger 
than 5 K (assumed to be a temperature forecast error) is more frequent at 15:00 LT, typically 
considered to be the warmest time of day.  However, another possible reason for the largest 
temperature biases may be associated with occasional afternoon thunderstorms, which occur 
around 15:00. The histogram of cold season extreme temperature biases are much flatter than 
during warm season, indicating that the frequency of extreme temperature bias does not 
correspond to the time of day as during the warm season.

Shortwave cloud radiative forcing is the dominant process that drives boundary layer 
development during the warm season. Since downward shortwave radiative flux is the major 
source of surface energy and temperature increases during daytime, it is not surprising that the 2-
m temperature biases have strong dependence on radiation biases. The relationships between 
cloud shortwave radiative forcing and temperature biases were analyzed. Using the clear sky 
index as a proxy for the observed cloud radiative forcing, the results (Figure 7a) indicated that 
HRRR-simulated shortwave radiation biases increase as clouds thickens. Downward shortwave 
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radiation biases are directly linked to low cloud amount and properties. The results suggest that 
during warm season, the thick and overcast clouds are the main contributor to the downward 
shortwave radiation positive biases. The correlation coefficient of temperature vs. radiation 
biases increases as cloud gets thicker, indicating that they are major source of the surface 
temperature and radiation biases in HRRR model. 

The results of this paper emphasize that understanding land surface energy partition over 
diverse land cover types and the important role cloud radiative forcing (especially during warm-
season thick cloud conditions) is essential to reducing modelled land surface temperature and 
humidity biases.

4 Conclusions

In this work, we systematically evaluated the HRRR model using the New York Stae 
Mesonet over the complex terrain of New York State. One year of HRRR model and observation
data were used in this study to investigate the biases from both diurnal and seasonal perspectives.
The dense NYSM network (average distance between stations ~ 30 km) of 126 standard weather 
stations provides opportunities to investigate the impact of spatial heterogeneity on the land-
atmosphere-cloud interaction as a coupled system.

Surface meterological fields were examined by separating the daily maximum and 
minimum temperature. In the warm season, there are consistent warm and dry biases at 2 meter, 
with a relatively small standard deviation. Cold season biases show a much larger standard 
deviation but smaller mean biases. Furthermore, extreme cold biases exist in the nighttime in 
February, with large daytime wet biases in March.  

Soil hydrological processes strongly control surface energy balance and fluxes, which are
the most sensitive processes in the land surface model to the atmospheric model (Santanello et 
al., 2019). Through the whole year, soil moisture at all measured vertical levels (0.05, 0.25 and 
0.5 m) are largely underestimated, contributing to the dry and warm biases during the warm 
season. Also, this soil moisture underestimation reduces the soil heat capacity, causing the 
overestimation of soil temperature diurnal amplitude. During the cold season, the abnormal soil 
temperature below freezing when the observational soil temperature is close to 0°C is the 
possible reason for the extreme cold temperature biases during winter. Lacking a comprehensive 
representation of soil freezing-thawing processes, the model failed to predict a soil temperature 
barrier at the freezing point. 

Contributions of evapotranspiration and precipiatation to soil hydrological processes 
from seasonal perspective were analyzed. Results show that during spring, the snow melting 
process controls the bias in soil moisture growth rate. During summer, the soil moisture growth 
rate is underestimated due to the forecast shortfall in summer thunderstorm development, this 
bias is compensated by the underestimate of evapotranspiration. The result is that the soil 
moisture dry bias decreases from its maximum at the beginning of summer to much less in late 
summer (Figure 4c). In fall, the model underpredicts the precipitation brought by tropical 
cyclones. In the meantime, evapotranspiration rate has been overestimated due to incorrect 
representation of seasonal transition when the leaves fall. The combined effect is a negative soil 
moisture of about 0.1 m3/m3 at the end of fall season. Winter biases mostly come from snow 
melting and soil freezing/thawing processes. 
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The dry bias in soil moisture content that appears during snow melt season is the main 
source for the warm season soil moisture underestimation. The soil dries out in the model while 
the soil is moistened by melting snow in the observations. The water stress in the model soil 
hydrological processes plays an important role in the energy partition in the following summer 
season where the water stressed soil will suppress the evapotranspiration and increase the Bowen
ratio especially for shallow rooted vegetation, leading to the surface thermodynamic bias in the 
seasonal scales. These processes are amplified by the positive feedback loop between dry soil, 
reduced clouds, and warm temperatures. The positive feedback loop is most significant in warm 
season when the land surface atmosphere cloud coupling is strongest. This result presents a 
specific avenue for future model improvement: studying and improving the representation of 
snow melt and infiltration processes in the early spring.

Low-level clouds are recognized as one of the most important sources of the surface 
incident solar radiation and temperature biases. Complementing earlier analyses of the impact of 
sub-pixel cloud, we further explored the cloud effect by classifying cloud optical properties using
clear sky index. We found that the most optically thick clouds (generally associated with frontal 
system and thunderstorms) yielded the largest biases in solar radiation, the main contributor to 
the surface warm bias during the warm season. This finding emphasized the importance of 
further investigation of these clouds in the model. 

The present work identifies HRRR model biases from the land-atmosphere coupling 
perspective.  Surface energy partition introduced by different land surface properties and cloud 
radiative forcing are two main sources of warm season 2-m temperature and humidity biases. As 
an integrated system, biases of each feedback elements in land-atmosphere-cloud interactions 
can easily spread into the whole system and further increase the overall bias and reduce the 
forecast accuracy. For the future application of the HRRR model to forecast the alternate energy 
potential as well as for severe weather forecasting, our work identifies possible mechanisms 
responsible for the biases in the land surface processes, such as: soil hydrological, vegetation 
phenology. However, the improvement of the land surface model is still challenging and requires
better understanding of the physical processes as well as more complicated observation network 
and data assimilation techniques.
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