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Abstract

The ability of an observationally-constrained cloud-system resolving model (Weather Research and Forecasting; WRF, 4-km

grid spacing) and a global climate model (Energy Exascale Earth System Model; E3SM, 1-degree grid spacing) to represent the

precipitation diurnal cycle over the Amazon basin during the 2014 wet season is assessed. The month-long period is divided into

days with and without the presence of observed propagating mesoscale convective systems (MCSs) over the central Amazon.

The MCSs are strongly associated with rain amounts over the basin and also control the observed spatial variability of the

diurnal rain rate. WRF model coupled with a 3-D variational data assimilation scheme reproduces the spatial variability of

the precipitation diurnal cycle over the basin and the lifecycle of westward propagating MCSs initiated by the coastal sea-

breeze front. In contrast, a single morning peak in rainfall is produced by E3SM for simulations with and without nudging the

large-scale winds towards global reanalysis, indicating precipitation in E3SM is largely controlled by local convection associated

with diurnal heating. Both models produce contrast in easterly wind profiles between days with and without MCS that are

similar to data collected by U.S. DOE Atmospheric Radiation Measurement (ARM) facility during the Green Ocean Amazon

(GoAmazon2014/5) campaign and other operational radiosondes. A multivariate perturbation analysis indicates the dryness

of low-level air transported from ocean to inland has higher impact on the formation and maintenance of MCS in the Amazon

than other processes.
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Key Points : 15 
• 1 Spatial variability of the precipitation diurnal variation in the Amazon is mostly 16 

reproduced by WRF but not E3SM   17 

• 2 Ambient environments are better simulated by WRF than E3SM as the convective 18 
processes have significant impact and are resolved by WRF  19 

• 3 Intrusion of cooler and dryer sea breeze front into Amazon supports formation of 20 
propagating convection 21 
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Abstract 24 

The ability of an observationally-constrained cloud-system resolving model (Weather 25 

Research and Forecasting; WRF, 4-km grid spacing) and a global climate model (Energy Exascale 26 

Earth System Model; E3SM, 1-degree grid spacing) to represent the precipitation diurnal cycle 27 

over the Amazon basin during the 2014 wet season is assessed. The month-long period is divided 28 

into days with and without the presence of observed propagating mesoscale convective systems 29 

(MCSs) over the central Amazon. The MCSs are strongly associated with rain amounts over the 30 

basin and also control the observed spatial variability of the diurnal rain rate. WRF model coupled 31 

with a 3-D variational data assimilation scheme reproduces the spatial variability of the 32 

precipitation diurnal cycle over the basin and the lifecycle of westward propagating MCSs initiated 33 

by the coastal sea-breeze front. In contrast, a single morning peak in rainfall is produced by E3SM 34 

for simulations with and without nudging the large-scale winds towards global reanalysis, 35 

indicating precipitation in E3SM is largely controlled by local convection associated with diurnal 36 

heating. Both models produce contrast in easterly wind profiles between days with and without 37 

MCS that are similar to data collected by U.S. DOE Atmospheric Radiation Measurement (ARM) 38 

facility during the Green Ocean Amazon (GoAmazon2014/5) campaign and other operational 39 

radiosondes. A multivariate perturbation analysis indicates the dryness of low-level air transported 40 

from ocean to inland has higher impact on the formation and maintenance of MCS in the Amazon 41 

than other processes.  42 

 43 

  44 
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Plain Language Summary 45 

The Amazon basin in South America is one of the regions over land that has the highest 46 

occurrence of large-size and deep cloud systems (also called “Mescoscale Convective System” 47 

(MCS)). Since they have a wide coverage and produce much heavier rainfall than the other types 48 

of cloud, the regional climate and even the earth system are tied closely with their behaviors. 49 

However, current global atmospheric models are unable to reproduce realistic diurnal variation of 50 

precipitation in the Amazon and the poor representation of those MCSs is responsible for the 51 

deficiency. We use various observations as the reference to understand how accurate the physical 52 

processes related to MCS are represented by both the cloud-system resolving (higher-resolution) 53 

and global climate (lower-resolution) models. The results show the diurnal variation of local 54 

precipitation in the basin is mostly reproduced by cloud-system resolving model but not the global 55 

climate model, because the propagating MCSs and many related processes can only be simulated 56 

by using higher-resolution model. It is also found the dryness of low-level air transported from 57 

ocean to inland has the highest impact on the formation and maintenance of MCS in the Amazon.      58 

59 
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1. Introduction 60 

The Amazonia region in South America is recognized as one of the world’s hot spots of 61 

convective activity (Nesbitt et al. 2000; Liu and Zipser 2013; Houze 2004). Since cloud 62 

populations associated with organized convective systems have significant impacts on radiation as 63 

well as produce significant amount of rainfall, the Earth’s energy budget and water cycle is 64 

strongly modulated by deep convection in the Amazon. The Amazon basin is one of the regions 65 

over land with the most frequent mesoscale convective systems (MCSs), comparable to the 66 

Maritime Continents (Feng et al. 2021). MCSs account for over 50% of annual rainfall in the 67 

Amazon, during the wet season (December – May) the percentage over central and western 68 

Amazon increase to over 60%. It is therefore important to accurately simulate characteristics of 69 

convective precipitation, particularly those associated with MCSs in the Amazon, including the 70 

diurnal variations in intensity, frequency, and duration to better understand regional and global 71 

climate. 72 

A long-standing issue of current global atmospheric models, however, is their inability to 73 

reproduce realistic diurnal variations of precipitation (Khairoutdinov and Randall 2006; Dai 2006; 74 

Dai and Trenberth 2004; Betts 2002; Xie et al. 2019; Rasch et al. 2019; Suhas and Zhang 2014; 75 

Guichard et al. 2004). For example, global climate models have a tendency to simulate an early 76 

onset of convective precipitation over land, which produces a peak rain intensity around local noon 77 

as opposed to late afternoon that is commonly observed in many locations (e.g. Bechtold et al. 78 

2004; Xie et al. 2004; Betts and Jakob 2002; Fiedler et al. 2020). The early release of convective 79 

potential available energy in models could also lead to greatly reduced rainfall intensity. Several 80 

studies have suggested that exaggerated coupling between surface heating and convection is one 81 

factor responsible for causing errors in the timing of peak precipitation rates (Xie et al. 2019; 82 



Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems 
 

 5 

Zhang 2003, 2002). This factor may subsequently lead to a failure to capture elevated nocturnal 83 

precipitation which is decoupled from near-surface processes (Marsham et al. 2011).  84 

Higher-resolution models such as convection-permitting and cloud-resolving models have 85 

been used to simulate the diurnal cycle of precipitation over regional spatial scales (Gao et al. 2017; 86 

Pearson et al. 2014; Hassim et al. 2016; Konduru and Takahashi 2020; Zhang et al. 2016; Clark et 87 

al. 2007; Love et al. 2011). Compared to global models, regional-scale models have more detailed 88 

and realistic representation of cloud processes and are able to better resolve the evolution of 89 

organized convection, which leads to improved precipitation simulations.  Analysis of regional-90 

scale simulations coupled with observations are also useful to inform how to optimize convective 91 

parameterizations used by global models. Diurnal variation of precipitation simulated by regional 92 

models is shown to be generally improved for regions affected by organized propagating 93 

convection; nevertheless, this result is not guaranteed for all cases. For instance, there are issues 94 

of excessive production of strong small-scale convection when convection is resolved explicitly 95 

(Kendon et al. 2012; Roberts and Lean 2008; Arnold et al. 2020). Moreover, Arnold et al. (2020) 96 

also reported problems of insufficient growth of cloud clusters in comparison with observations 97 

when conducting simulations using a global nonhydrostatic model with a grid spacing of 3.5 km. 98 

A number of remaining modeling issues have been raised, including misrepresentations of terrain, 99 

microphysical processes, and cold pool evolution that suggest accurate modeling of diurnal 100 

precipitation cycle is still a challenge for convection-permitting or cloud-resolving models.  101 

In terms of improved treatments of atmospheric processes in models, observations play a 102 

crucial role to inform what processes are missing or poorly parameterized. Due to the vastness and 103 

relative inaccessibility of the Amazon tropical rainforest, in situ measurements of atmospheric 104 

properties needed for model assessment has been a challenging task. Improvements in remote 105 
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satellite retrievals over the past two decades thus play a key role in quantifying and understanding 106 

environmental conditions in the Amazon. For example, the Global Precipitation Measurement 107 

(GPM, Huffman et al., 2014), successor of the Tropical Rainfall Measuring Mission (TRMM, 108 

Huffman et al. 2007), has been successful in providing quasi-global, high-quality, and fine 109 

resolution rainfall estimates. Specifically, Tan et al. (2019b) recently demonstrated an 110 

improvement in quantifying the diurnal precipitation cycle by using the latest version of Integrated 111 

Multi-satellitE Retrievals for GPM (IMERG). The global coverage of IMERG provides an 112 

opportunity to investigate precipitation characteristics over remote regions, including the 113 

Amazonian rainforest. 114 

Despite the logistical challenges, several field campaigns have been conducted at different 115 

locations in the Amazon (Harriss et al. 1990; Dias et al. 2002). The Green Ocean Amazon 116 

experiment (GoAmazon2014/5) is among the most recent campaigns which collected extensive 117 

atmospheric observations by using a range of advanced instruments (Martin et al. 2016). Studies 118 

that use observational data from GoAmazon2014/5, including (Schiro et al. 2018; Burleyson et al. 119 

2016; Ghate and Kollias 2016; Collow et al. 2016; Giangrande et al. 2017; Zhuang et al. 2017; 120 

Tang et al. 2016) have provided insights on the cloud life cycle, diurnal precipitation cycle, and 121 

large-scale environmental control on clouds over the central Amazon. Some of these studies (e.g., 122 

Burleyson et al. 2016) coupled field-campaign periods with long-term satellite observations to 123 

provide insights into the climatology of the spatiotemporal variability of convection over the 124 

central Amazon basin. 125 

Global reanalysis data is often treated as an integrative “observation” used to interpret large-126 

scale environmental conditions when measurements are not readily available (Espinoza et al. 2012; 127 

Rehbein et al. 2019; Anselmo et al. 2020; Oliveira and Oyama 2015). Since the reanalysis product 128 
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is obtained by blending observations with coarse resolution global atmospheric model predictions, 129 

it may not be adequate to represent physical processes at spatial and temporal scales relevant to 130 

convective clouds. Previous studies that evaluated diurnal precipitation cycles over Amazon region 131 

with reanalysis data and large-scale atmospheric models (Betts and Jakob 2002; Itterly and Taylor 132 

2014; Itterly et al. 2018) reported consistent deficiencies in reanalysis data such as peak rainfall 133 

occurring too early in the day, much weaker amplitude of diurnal cycle, and lack of propagating 134 

convection systems. For example, Itterly and Taylor (2014) showed that the error associated with 135 

convective precipitation was linked to errors in the top of atmosphere radiative flux of the 136 

reanalysis products. This suggests the necessity of using higher-resolution convection-permitting 137 

models to better examine convective precipitation processes.  138 

Several earlier studies have conducted convection-permitting simulations encompassing 139 

portions of the Amazon basin. However, most of these studies focused on responses to climate 140 

change (Langenbrunner et al. 2019), aerosol-radiation-cloud interactions (Archer-Nicholls et al. 141 

2016), air pollutants transport (Rafee et al. 2017), or atmospheric chemistry (Shrivastava et al. 142 

2019), rather than examining the physical processes associated with propagating convective 143 

systems. To adequately simulate convective-scale processes over the entire Amazon for a long 144 

period requires a sufficiently large domain to represent the coupling of large-scale environmental 145 

conditions and lifecycle of propagating convection to avoid contamination of artificial 146 

disturbances generated near the model lateral boundary. On the other hand, for a large domain, 147 

ambient environmental conditions could slowly drift away from real states over several days 148 

without any constraint. A common workaround is to reinitialize models every one or two days, but 149 

this strategy has drawbacks such as (1) an adequate spin-up integration period is needed for each 150 
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forecast and (2) hydrometeors are reinitialized and discontinuity in clouds and precipitation often 151 

occur when analyzing concatenated simulations that hamper interpretations.  152 

To address these issues, we take advantage of a data assimilation technique to constrain the 153 

large-scale atmospheric conditions in the Weather Research and Forecasting (WRF, Skamarock et 154 

al. 2008) model at convection-permitting scales to simulate the precipitation diurnal cycle resulting 155 

from propagating convection across the Amazon basin during the wet season. The cloud 156 

hydrometeors are also retained whenever the simulation is reinitialized by optimized 157 

meteorological fields produced from data assimilation. The impact of data assimilation on 158 

predictions of organized convection and precipitation has been examined by numerous studies 159 

primarily for mid-latitude regions with strong synoptic forcing (Schwartz and Liu 2014; Schwartz 160 

et al. 2015; Tai et al. 2020; Clark et al. 2016; Bauer et al. 2015; Gustafsson et al. 2018; Trier et al. 161 

2015), but fewer studies have assessed its impact in tropical regions with relatively weak synoptic 162 

forcing and where the density and frequency of in situ measurements is smaller. As mentioned 163 

earlier, convective cloud processes and the precipitation diurnal cycle are not adequately 164 

represented by global atmospheric models due to their coarse resolution and oversimplified 165 

parameterization (Xie et al. 2019), leading to uncertainties in the global energy budget and water 166 

cycle (Betts and Jakob 2002; Itterly and Taylor 2014; Genio and Wu 2010; Bergman and Salby 167 

1996). Therefore, we also examine the performance of the new U.S. DOE Energy Exascale Earth 168 

System Model (E3SM, Golaz et al. 2019) in simulating the diurnal cycle over the Amazon basin 169 

which has not yet been assessed in detail.  170 

This paper is organized as follows. The analysis domain and period along with sources of 171 

observational data are described in section 2. A brief description of the WRF and E3SM models 172 

as well as details of corresponding experiments conducted for this study are provided in section 3. 173 
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In section 4, analysis of the simulated precipitation diurnal cycle is presented in the context of the 174 

observations. Characteristics and spatiotemporal variability of the ambient flows in relation to the 175 

associated precipitation cycle are also investigated. Finally, a summary of the findings is given in 176 

section 5. 177 

2. Domain and observations 178 

2.1 Area and period of study 179 

The study area encompasses most of the Amazon basin with the center located at Manaus, 180 

Brazil as depicted in Figure 1. Since MCSs in Amazonian region typically propagate westward 181 

across the Amazon basin (Feng et al. 2021) with its origin at the northeastern coast of Brazil and 182 

within the central Amazon basin, our domain is large enough to alleviate possible issues introduced 183 

at the domain boundary as well as allowing the spin-up and propagation of weather systems 184 

originating from the Atlantic Ocean. The simulation period is from March 11 to April 10 during 185 

the wet season of 2014 that includes numerous intense rainfall events. As shown by previous 186 

climatological studies (e.g., Tanaka et al. 2014; Burleyson et al. 2016), March and April are usually 187 

the months with the highest accumulated precipitation during the year.  188 

2.2 Observational datasets 189 

2.2.1 IMERG V06 190 

The National Aeronautics and Space Administration (NASA) Integrated Multi-Satellite 191 

Retrievals for Global Precipitation Measurement (IMERG) V06 (Huffman et al. 2019) is one 192 

observational precipitation product used in this study. In IMERG V06 several improvements are 193 

introduced to address some of the issues discovered in earlier products, including the changes to 194 

the time-interpolation algorithm (Tan et al. 2019a,b). This product has a grid spacing of 0.1° and 195 
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is available every 30 minutes over a large portion of the globe (Huffman et al., 2014; Hou et al., 196 

2014; Tang et al., 2016; Tan et al., 2019). While the IMERG product has been widely used in 197 

hydrological and atmospheric research and has been demonstrated its crucial role in many 198 

precipitation-related studies (Moazami and Najafi 2021; Oliveira et al. 2016; Mandapaka and Lo 199 

2020; Derin et al. 2019; Huang et al. 2020), there are still uncertainties associated with propagating 200 

precipitation influenced by orography as well as temporal interpolation that primarily relies on the 201 

frequency and quality of satellite data (Tan et al. 2019b). 202 

2.2.2 SIPAM S-band radar rainfall estimation 203 

The rainfall estimates from the distributed System for the Protection of Amazon (SIPAM) S-204 

band conventional Doppler radar at Manaus, processed by Texas A & M University, are also used 205 

in this study (Schumacher and Funk 2018). The rainfall estimates were obtained through the 206 

CAPPI (Constant Altitude Plan Position Indicator) product which has a maximum detecting range 207 

of 240 km (2-km horizontal grid spacing), vertical levels between 0.5 and 20 km (0.5-km vertical 208 

grid spacing), and is available at ~12 minute intervals. Spurious data such as noise and ground 209 

clutter of the reflectivity field has been corrected. A time-dependent calibration constant derived 210 

from a comparison with TRMM precipitation radar data was applied to the CAPPI files at different 211 

periods. Rainfall estimates were then generated using the radar corrected reflectivity data at the 212 

2.5-km CAPPI level within a radius of 160 km of coverage. A power law relation between radar 213 

reflectivity and rain rate was fitted based on disdrometer observations during GoAmazon2014/5 214 

such that:  215 

𝑍 = 174.8	𝑅!.#$ 216 

where Z is the radar reflectivity factor (mm6 m-3) and R is the radar rain rate (mm h-1).  Some of 217 

the radar beams were found to be contaminated by ground clutter; therefore, unrealistic rainfall 218 
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estimations on those beams were removed using quality control masks. An hourly radar rainfall 219 

product was also produced from the 12-min data with a horizontal grid spacing of 2 km. 220 

2.2.3 Meteorological observations 221 

As one of the major participants of GoAmazon2014/5, the Atmospheric Radiation 222 

Measurement (ARM) Mobile Facility (AMF, Miller et al. 2016) collected a unique set of 223 

observations of meteorology and aerosol properties near Manacapuru, west of Manaus in the 224 

central Amazon basin. Its geographic location is very close to the white dot within subregion “M” 225 

in Figure 1 and named the “T3” site hereafter as in Martin et al. 2016. Observations at the T3 site 226 

were collected between February 2014 to December 2015. We use ARM radiosonde, Doppler lidar, 227 

and surface station measurements for model assessment and analysis of environmental conditions 228 

associated with propagating convection described in Section 4.3. 229 

During the GoAmazon2014/5 campaign period, radiosondes were launched at the T3 site at 230 

6-hour intervals (06, 12, 18, 00 UTC; or 02, 08, 14 and 20 LT) to obtain tropospheric profiles of 231 

wind, temperature, and humidity. During the intensive observational periods (IOP), one additional 232 

radiosonde was launched at 15 UTC (11 LT) to enhance diurnal coverage. In addition to ARM’s 233 

radiosondes, meteorological profiles measured at three other sites (also denoted in Figure 1) from 234 

NOAA’s National Centers for Environmental Information (NCEI) Integrated Global Radiosonde 235 

Archive (IGRA, Durre et al. 2006) are used for data assimilation simulations and also assessment 236 

of model performance. These data have lower temporal frequency and vertical resolution 237 

compared to ARM’s radiosonde profiles. Surface meteorological data was also collected at the T3 238 

site throughout the campaign. Surface horizontal wind components, temperature, and specific 239 

humidity are used to quantify average diurnal variability during the wet season IOP. Table 1 240 

summarizes all types of observations used in this study.  241 
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3. Model descriptions 242 

3.1 Weather Research and Forecasting (WRF) model  243 

3.1.1 Model configuration 244 

The WRF model version 3.9.1 (ARW, Skamarock et al. (2008)) is used to conduct the regional 245 

atmospheric simulations of convective precipitation. The domain shown in Figure 1 encompasses 246 

the continent of South America north of 20°S and includes the entire Amazon basin and adjacent 247 

oceans. The domain uses a horizontal grid spacing of 4 km (1450 x 950 grid points) and a stretched 248 

vertical coordinate with 60 levels up to the model top at 100 hPa. There are approximately 12 249 

model levels between the surface and 2 km. The model simulations use the Thompson 250 

microphysics parameterization (Thompson et al. 2008), Mellor-Yamada-Nakanishi Niino 251 

(MYNN) boundary layer parameterization (Nakanishi and Niino 2009), Mellor-Yamada-Janjic 252 

surface layer parameterization (Janjić 2001), Unified Noah land-surface parameterization (Chen 253 

and Dudhia 2001), and the RRTMG longwave and shortwave radiation parameterization (Iacono 254 

et al. 2008). A cumulus parametrization scheme is not activated because the model’s horizontal 255 

grid spacing (4 km) is considered capable of resolving MCSs at the storm system level (Prein et 256 

al. 2021), which are the targets of current study. 257 

The NCEP FNL operational model global tropospheric analysis with a 1° grid spacing is used 258 

to initialize the model’s atmosphere and soil variables. Analyses at 6-hour intervals are linearly 259 

interpolated in time for the model’s lateral boundary conditions. Land-use data is obtained from 260 

the Moderate Resolution Imaging Spectroradiometer (MODIS)-based dataset available at a 1-km 261 

grid spacing and using the International Geosphere-Biosphere Programme (IGBP) land cover type 262 

classification. 263 

3.1.2 Data assimilation and experiments 264 
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The version 3.6 Community Gridpoint Statistical Interpolation (GSI, Shao et al. 2015) software 265 

package is utilized to assimilate available observational data including conventional observations 266 

(e.g., radiosonde profiles, surface meteorology, aircraft, ship and others) and satellite radiances 267 

and derived properties. The GSI software package includes several techniques such as three-268 

dimensional variational (3DVar; Wu et al. 2002), three-dimensional and four-dimensional 269 

ensemble-variational hybrid (3DEnVar, 4DEnVar; (Hamill et al. 2011; Wang 2010; Wang and Lei 270 

2014)), and the Ensemble Kalman Filter (EnKF; Zhu et al. 2013). The 3DVar technique is chosen 271 

for this study since it has a much lower computational cost than other data assimilation techniques. 272 

Earlier studies show that ensemble-variational hybrid data assimilation techniques (3DEnVar and 273 

4DEnVar) overall outperform 3DVar, but the performance of our own test case using 3DEnVar 274 

was only a slight improvement over 3DVar. We argue this is likely due to much lower density and 275 

frequency of available observations in the Amazon than in other data-rich regions such as North 276 

America. In 3DVar, the background error is static and computed globally using forecasts from the 277 

NCEP’s North American Mesoscale Forecast System (NAM) model. Default localization 278 

parameters suggested in GSI are applied in adjustment for final background error covariances. 279 

The schematic diagram in Figure 2 displays how WRF simulations are carried out, with the 280 

DA-coupled simulation named “WRF_DA” illustrated in the upper part of the figure. WRF is 281 

initialized at 00 UTC of March 11, 2014 and then runs for 12 hours. The first data assimilation is 282 

performed at 12 UTC of March 11 by blending the simulation with observations from NCEP 283 

GDAS data stream (http://rda.ucar.edu/datasets/ds337.0/) as well as the ARM T3 site radiosonde 284 

profiles. The yellow dots denoted in Figure 1 highlight how assimilated radiosonde profiles are 285 

distributed within the model domain in the example at 12 UTC of March 12, 2014. Note the 286 

number of observed profiles varies with time as not every site launches radiosondes at the same 287 
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frequency. The zonal and meridional winds, specific humidity, temperature, and pressure are 288 

updated based on analyzed increments and the fields are used for the reinitialization of the 289 

subsequent 12-hour forecast. Therefore, the entire simulation period is partially reinitialized every 290 

12 hours until 00 UTC of April 10. We note that ARM also launched radiosondes each day at 6, 291 

15, and 18 UTC that were not included in the “WRF_DA” simulation since radiosondes were not 292 

available for other locations at these times.  Instead, the additional ARM radiosondes are used for 293 

independent model evaluation purposes (Table 1). 294 

To understand the impact of DA, a control “WRF_noDA” simulation that does not involve any 295 

DA is also performed as indicated in the bottom part of Figure 2. To prevent the simulated synoptic 296 

meteorology from drifting too far from the observed conditions, the entire month-long simulation 297 

is comprised of a series of overlapping short-term forecasts. For example, short-term 36-h forecasts 298 

are produced each day that are initialized at 00 UTC. To avoid spin-up issues, the first 12-hours of 299 

the simulation is discarded. Then, the entire simulation period is assembled by piecing together 300 

the remaining simulations as denoted by the blue shading in Figure 2. In this case, the discontinuity 301 

in hydrometeors variables may be noticeable between two adjacent simulations.  302 

3.2 Energy Exascale Earth System Model (E3SM) 303 

3.2.1 General description of model and configuration 304 

We used the U.S. Department of Energy’s Energy Exascale Earth System Model version 1 305 

(E3SMv1) (Caldwell et al. 2019; Golaz et al. 2019) in this study to assess its ability to represent 306 

the diurnal variability of precipitation in the Amazon basin. Parameterization schemes employed 307 

in the E3SM atmosphere model (EAM) version 1 (EAMv1) (Rasch et al. 2019) are summarized in 308 

Table 2. The emissions of aerosols and their precursors (Hoesly et al. 2018) prepared for the 309 
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Coupled Model Intercomparison Project Phase 6 (CMIP6) (Eyring et al. 2016) are used in EAMv1 310 

except that the emissions of marine dimethyl sulfide are based on Elliott (2009) and Wang et al. 311 

(2015).  312 

EAMv1 uses a spectral element dynamical core to solve primitive equations on a cubed sphere 313 

grid (Dennis et al. 2012; Laprise 1992; Taylor and Fournier 2010). The model is configured to run 314 

at ne30np4 resolution, which means that it has 30x30 spectral elements in each cube face and each 315 

spectral element has 4x4 Gauss-Lobatto-Legendre points. The resulting equivalent horizontal grid 316 

spacing is ~1°. The model has 72 levels in the vertical using a hybrid sigma-pressure coordinate. 317 

The lowest model level is about 25 m thick at sea level and the model top is set to be 0.1 hPa.  318 

We configured the model following the Atmospheric Model Intercomparison Project (AMIP) 319 

protocol (Gates et al. 1999), where the evolution of the atmosphere and land are simulated based 320 

on prescribed monthly mean SSTs and sea ice cover from observations. The horizontal winds in 321 

the atmosphere are nudged toward the Modern-Era Retrospective analysis for Research and 322 

Applications Version 2 (MERRA-2) with a 6-hour relaxation time scale (Sun et al. 2019; Zhang 323 

et al. 2014). The simulation named “E3SM_v1_nudge” starts from 2013-01-01 and continues until 324 

the end of 2015. To determine the impact of horizontal winds nudging, a similar simulation named 325 

“ES3M_v1_free” is performed without using analysis nudging during model integration.  326 

4. Results and discussion 327 

4.1 Diurnal cycle of precipitation over Amazon basin 328 

4.1.1 General characteristics 329 
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To quantify the diurnal cycle of precipitation over a large portion of the Amazon basin (as 330 

shown by the dashed-rectangle area in Figure 1), the mean hourly rain rate is computed first from 331 

the IMERG product as well as the WRF and E3SM simulations between March 11 and April 10, 332 

2014. Since many factors such as large-scale convergence, orographic lifting, MCSs and local 333 

surface-heating can possibly induce precipitation at any particular time, the mean rain rate is 334 

expected to filter weak signals while leaving stronger or more frequent signals. For simplicity in 335 

visualization, hourly results from the three sources are further averaged over four intervals 08 – 336 

13, 14 – 19, 20 – 01, and 02 – 07, LT (00 – 05, 06 – 11, 12 –17, and 18 – 23 UTC) and illustrated 337 

in Figure 3.  338 

In Figure 3a (08 – 13 LT), the IMERG results show that convection associated with the sea 339 

breeze (labeled as 1) forms along the northeastern coast of Brazil near local noon. Meanwhile, 340 

convection triggered within the Amazon basin or some remnants from the sea breeze systems 341 

formed on previous day propagates southwestward toward the T3 site (labeled as 2). During 14 –342 

19 LT (Figure 3b), precipitation associated with the sea breeze convection increases and begins 343 

propagating inland (labeled as 1), driven by the northeasterly trade winds. Precipitation also 344 

increases over much of the Amazon as daytime heating enhances convection across the basin. 345 

During the evening and early morning hours (20-07 LT, Figures 3c and d) the regions of 346 

convection that formed over the coast and intensified over central Amazon during the day mature 347 

and propagate to the southwest, while overall precipitation amounts decrease, particularly over the 348 

central Amazon basin where the T3 site locates within. It should be noted that not all the convective 349 

systems that form on the coast during the day propagate across the Amazon during the evening 350 

hours (e.g., Garstang et al. 1994, Cohen et al. 1995) as a number of studies have shown that coastal 351 

systems may decay within a few hundred kilometers of the coast (Greco et al. 1990; Alcântara et 352 
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al. 2011; Anselmo et al. 2021). It is most likely the disturbances generated by the sea breeze system 353 

can occasionally propagate across the basin when the environmental conditions favor the 354 

sustainability of convective growth and produce precipitation as the disturbances propagate. 355 

  Simulated hourly rain rates from both the WRF model and E3SM are processed by adopting 356 

the identical procedure as the IMERG data and illustrated in Figure 3. Here we show only results 357 

from the WRF_DA and E3SM_v1_nudge simulations as the overall pattern are similar within the 358 

same modeling system compared to WRF_noDA and E3SM_v1_free, respectively. The 359 

comparisons between the IMERG and WRF_DA panels indicate the major characteristics of 360 

diurnal precipitation cycle are qualitatively simulated by the cloud-system resolving model. 361 

Specifically, the precipitation characteristics simulated by WRF are similar to IMERG in terms of 362 

the intensity, spatial pattern, and diurnal phase shifts. In contrast, E3SM simulates much less 363 

precipitation with little spatial variation than IMERG and WRF. Instead of producing a 364 

propagating rainfall pattern, precipitation from E3SM has the overall peak rainfall rate occurring 365 

during morning hours (Figure 3i), which is likely due to the dominant role of local convection 366 

driven by solar heating in the global climate model. The representation of propagating convective 367 

systems is missing in the current E3SM configuration. 368 

We also compute the accumulated rainfall over the entire study period (March 11 to April 10 369 

of 2014) to illustrate the performance of these two models in reproducing rainfall amounts over 370 

the month-long period. Figures S1a, b, and c in supporting information display the total 371 

accumulated rainfall over the study domain from IMERG, WRF_DA, and E3SM_v1_nudge, 372 

respectively. The minimum in rainfall over the northern part of the domain is reproduced by both 373 

WRF and E3SM. Outside of this region, the total rainfall from IMERG varies from 200 to nearly 374 

600 mm. Both models produce a similar range in rainfall accumulation, although there are 375 
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localized differences in the spatial distribution. This comparison suggests that E3SM has skill in 376 

estimating longer-term accumulated precipitation in this region during the wet season despite 377 

struggling to generate propagating convective systems that contribute to the diurnal cycle of 378 

precipitation.  379 

To visualize the spatial distribution of those differences, IMERG is subtracted from WRF and 380 

E3SM rainfall in Figures S1d and e, respectively. Since the three sources have different spatial 381 

resolutions, the WRF and E3SM results were reapportioned onto the IMERG grid. In addition, the 382 

IMERG product also has its own potential bias at any particular location and time of a day. Thus, 383 

some caution is warranted in the magnitude of the rainfall biases at a given location. While the 384 

WRF model overestimates precipitation near the western edge and southeast corner of the domain, 385 

the simulated precipitation is underestimated over most of the rest of the domain compared to the 386 

IMERG data (Figure S1d). While the E3SM overestimation extends more into the central part of 387 

the domain (Figure S1e), the spatial distribution of the WRF and E3SM bias is qualitatively similar, 388 

and the domain averaged rainfall amount is comparable among the three data sources.  389 

4.1.2 Difference between days with and without propagating convection 390 

Based on the observational analysis in the previous section, models need to adequately 391 

represent the lifecycle of propagating mesoscale convective systems (MCSs) in the Amazon to 392 

realistically reproduce the observed diurnal precipitation cycle. To further investigate the influence 393 

of propagating MCS on precipitation in Amazon basin, we split all days in the period into two 394 

groups that consist of days with and without MCS that pass over Manaus near the domain center. 395 

After a subjective examination of IMERG hourly rain rate maps, there are 14 days (March 11 to 396 

16, 18, 26, 28 to 30, and April 4, 6, and 7) identified without occurrence of MCS (named “noMCS” 397 
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hereafter). The rest of the 17 days are then classified as the “MCS” group. This classification of 398 

days is applied to the WRF and E3SM simulations for consistency. 399 

To provide another perspective of the observed and simulated diurnal precipitation cycle, we 400 

now examine the spatial distribution of the time of day when the peak precipitation is produced. 401 

First, the mean hourly rain rate distributions are computed separately over the MCS and noMCS 402 

periods. Then the hour of day with the maximum rain rate is identified for each grid cell over the 403 

domain. Identical processing is applied to IMERG, WRF, and E3SM datasets and the composite 404 

distributions are given in Figure 4 for the time of maximum rain rates.  405 

A well-defined rainbow pattern can be identified in in Figure 4a, similar to previous studies of 406 

diurnal patterns across the Amazon (e.g., Yang and Slingo 2001, Dupuis and Schumacher 2018). 407 

This result implies that the observed diurnal cycle of precipitation highly correlates with 408 

propagating MCS which is in association with disturbances that triggered by sea breeze and 409 

advected inland. In contrast, the IMERG noMCS group (Figure 4b) exhibits more irregular spatial 410 

distributions for the daily maximum hour. The diurnal precipitation cycle in the basin is therefore 411 

more complicated and random during periods of weaker synoptic forcing without propagating 412 

MCSs.      413 

The maximum hour of precipitation from the WRF simulation for the MCS group is very 414 

similar to the IMERG distribution (Figure 4a), suggesting that the model is capable of reproducing 415 

the major features of the diurnal precipitation cycle associated with propagating convective 416 

systems over the Amazon basin. However, for the noMCS group there are larger differences 417 

between the WRF and IMERG distributions (Figure 4b). This implies precipitation tends to be 418 

more randomly distributed when synoptic forcing is weak, and therefore more unpredictable.  419 
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For the E3SM model, the hour of maximum precipitation agrees with the IMERG product only 420 

over the northeastern corner of the domain (Figure 4). Over the rest of the domain, the spatial 421 

variability is significantly reduced, and the simulated maximum rain rate occurs almost exclusively 422 

between 8 and 14 LT. Furthermore, the contrast between MCS and noMCS groups is less evident 423 

in the E3SM simulation than in the IMERG product and the WRF simulation. This suggests that 424 

precipitation in E3SM is an outcome of the convective parameterization that preferentially triggers 425 

convective clouds around local noon during the highest local heating associated with the diurnal 426 

cycle of incoming solar radiation. Since convection near the coast associated with the sea breeze 427 

occurs during the afternoon, the E3SM predictions agree better with IMERG product over the 428 

northeastern corner of the domain. In addition, the convective parameterization does not contain 429 

any memory of convective clouds so propagating systems cannot be represented. A recent study 430 

(Xie et al. 2019) proposed a revision to the convective triggering function implemented in the 431 

Zhang-MacFarlane scheme (1995), which may have positive impact on this metric, but this 432 

revision is not included in this study. While revised triggering function had a positive impact on 433 

the overall timing of maximum convective precipitation rate in many tropical regions, its impact 434 

on representing propagating convective systems in the Amazon basin was not investigated. With 435 

respect to all the panels in Figure 4, we found that the diurnal cycle of precipitation over the 436 

northeastern corner of domain near the coast is more predictable by the models since this region 437 

is dominated by local land-sea contrasts and propagating MCS are of lesser importance.  438 

4.2 Spatial variability of diurnal precipitation cycle  439 

Errors in the simulated propagating speed of the MCS passage contribute to errors in not only 440 

the diurnal cycle of precipitation, but also in rain rate intensity that depends on diurnally varying 441 

ambient boundary layer conditions. To quantitatively assess the spatiotemporal variability of 442 
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simulated precipitation in the basin, five subregions (2E, E, M, W, and 2W) with its width of 2-443 

degrees in each dimension are defined to represent different locations in the basin as illustrated in 444 

Figure 1. The five subregions are arranged in a NE-SW orientation to align with the approximate 445 

southwestward MCS propagation and the subregion-mean hourly rain rate is quantified for the 446 

MCS and noMCS groups. To better distinguish the difference between sensitivity simulations 447 

conducted by the same model, the following are separate discussions for the WRF and E3SM 448 

models.  449 

4.2.1 Result of WRF simulation  450 

The observed and WRF-simulated diurnal precipitation cycles at the five locations are given 451 

in Figure 5. For the coastal 2E subregion, the observed peak rain rate of ~1.4 mm hr-1 occurs 452 

around 17 LT (20 UTC) on days with MCS propagation. During noMCS days, the observed rain 453 

rate is overall slightly lower than MCS days with a peak of ~1.0 mm hr-1 and the peak hour is about 454 

two hours earlier. The diurnal variation of precipitation from the WRF_DA and WRF_noDA 455 

simulations are similar to each other, suggesting that the impact of DA is relatively small at this 456 

coastal location. They both reproduce peak rain rate earlier than what was observed in both the 457 

MCS and noMCS groups and the rain rate is lower than observed for the MCS group. In subregion 458 

E, which is located in between the Atlantic coast and Manaus, the observed rain rate peak of 0.8 459 

mm hr-1 for MCS days shifts to 05 LT (08 UTC) as the coastal systems age and propagate westward. 460 

In addition, the impact of DA is more evident. While WRF_DA has a comparable diurnal cycle to 461 

IMERG for the MCS group, there is no peak rain rate from WRF_noDA so the curve is essentially 462 

flat. However, neither simulation is able to capture the observed nocturnal precipitation peak for 463 

the noMCS days.   464 
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For subregion M that encompasses Manaus and the surrounding area, rainfall estimation based 465 

on SIPAM radar reflectivity data is included as an additional observational data source. The 466 

magnitude and diurnal variability of the rain rate from SIPAM and IMERG are quite similar.  A 467 

single broad rainfall peak near 1.0 mm hr-1 occurs between 08 and 12 LT (12 and 16 UTC) for 468 

MCS days, likely due to precipitation contributed by both MCS and locally forced convection 469 

(Burleyson et al. 2016; Giangrande et al. 2017; Tang et al. 2016). The WRF_DA reproduces both 470 

the observed magnitude and diurnal variation of rain rate. In contrast, WRF_noDA has a higher 471 

and narrower peak about one hour later than WRF_DA. A notable reduction of precipitation rate 472 

from both IMERG and SIPAM is observed for the noMCS group between 06 and 14 LT (10 and 473 

18 UTC) over this region, likely due to a higher frequency of less organized and weaker local 474 

convection on noMCS days. The later peak is also consistent with Tian et al. (2021), who showed 475 

that pre-existing disturbances (either within the region or propagating through the region) cause 476 

an earlier diurnal peak over Manaus. The reduction in precipitation is reproduced in both the 477 

WRF_DA and WRF_noDA simulations; however, nocturnal precipitation is substantially 478 

underestimated in both simulations. As a result, the mean daily rain rate is much more 479 

underestimated for days in the noMCS group than MCS days over this subregion. 480 

Downwind of Manaus in subregion W, the observed peak rainfall rate of ~1.4 mm hr-1 occurs 481 

at 17 LT (21 UTC) for the MCS group as convective systems initiated near Manaus grow and 482 

propagate westward. Both the WRF_DA and WRF_noDA simulations capture the timing and 483 

magnitude of this peak precipitation. A weaker secondary peak between 03 and 05 LT (07 and 09 484 

UTC) is evident in the IMERG product. However, this secondary peak is not captured by either 485 

WRF simulation. For this subregion, the rain rate for noMCS days is generally much lower than 486 

MCS days. While the diurnal rain rate from WRF_DA is similar to IMERG, WRF_noDA 487 
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significantly overpredicts nocturnal rainfall from 23 to 05 LT (03 to 09 UTC). Further west, in 488 

subregion 2W, the IMERG diurnal precipitation cycle for MCS days is quite similar to subregion 489 

E as both of them exhibit a peak rain rate of 0.8 mm hr-1 around 03 LT (08 UTC). This is consistent 490 

with the pattern of the hour of rainfall maximum as shown in Figure 4. Both WRF simulations 491 

overamplify the intensity of propagating convection and the simulated peak rain rates are about 492 

double the IMERG amount. The two simulations diverge after 06 LT (11 UTC), with WRF_DA 493 

being closer to IMERG than WRF_noDA. On noMCS days, the diurnal variation in precipitation 494 

rate is better represented when the model is constrained by data assimilation. Overall, the 495 

comparison of mean daily precipitation in each subregion indicates the presence of MCS increases 496 

rainfall amount in many local regions of Amazon basin.     497 

4.2.2 Result of E3SM simulation 498 

Two E3SM simulations (E3SM_v1_free and E3SM_v1_nudge) were performed and the results 499 

within the five subregions over the Amazon basin are shown in Figure 6. Since the difference 500 

between results of the MCS and noMCS groups was not significant, diurnal cycles demonstrated 501 

here are computed for all days.  502 

While the IMERG product over subregion 2E near the coast indicates that rain rate increased 503 

from 11 LT (14 UTC) and reached its maximum at 17 LT (20 UTC) (Figure 6), the two E3SM 504 

simulations have a much smaller amplitude in diurnal variation and therefore significantly 505 

underestimate the rain rate during the afternoon. This leads to underestimation of simulated mean 506 

daily rain rates as given in Figure 6. In subregion E, diurnal cycles of IMERG and E3SM are in 507 

opposite phases. The observed peak rate occurred around 02 LT (05 UTC) whereas the two E3SM 508 

simulations have higher rain rates from noon to afternoon (~12 to 17 LT).  509 
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Near Manaus in subregion M, the simulated diurnal cycle is more in phase with the 510 

observations and both simulations reasonably reproduce the observed rain rate with slightly higher 511 

daily mean rain rate than IMERG (Figure 6). However, the simulated diurnal cycle in the two 512 

western subregions (W and 2W) is similar to that over Manaus (subregion M), implying the spatial 513 

variability of the diurnal precipitation cycle is quite small in E3SM simulations, especially west of 514 

Manaus. In these three subregions, simulated hourly rain rate starts to increase right after sunrise 515 

and reaches its peak near noon. This result is consistent with Figure 4, demonstrating that E3SM 516 

simulated precipitation over the western part of the Amazon is primarily triggered by land surface 517 

heating in the convective parameterization (Xie et al. 2019). With unstable atmospheric conditions 518 

frequently occur over the Amazon basin during the wet season, convective parameterizations used 519 

in E3SM as well as other global climate models would then trigger the development of deep 520 

convection as soon as the solar radiation heats the surface sufficiently to produce positive 521 

buoyancy.  522 

In summary, the nudging of the large-scale wind field in E3SM exhibits a limited impact on 523 

the overall spatial variability of simulated precipitation amount and diurnal cycle over the Amazon 524 

basin. This is because the development of convective clouds also depends on temperature and 525 

humidity gradients which are not nudged towards global analyses in this study. In addition, any 526 

improvements in the simulated wind field is expected to have limited impact on predicted diurnal 527 

precipitation cycle, since the parameterized convection is triggered locally and there is no 528 

mechanism in the model to propagate unresolved convective activity with the winds.     529 

4.3 Characteristics of ambient flow and its variability  530 
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Several observational studies (e.g., Kousky 1980; Garstang et al. 1994; Cohen et al. 1995; 531 

Alcântara et al. 2011) describe certain environmental factors, such as the intensity of the low-level 532 

easterly jet, associated with the occurrence of well-organized convection that propagates over the 533 

Amazon basin. However, how meteorological states evolve across the area in the context of the 534 

basin-scale convective diurnal cycle has not been addressed in detail by most studies because of 535 

the limited number and spatiotemporal distribution of meteorological measurements. To address 536 

this issue, we examine the ambient environments associated with and without propagating 537 

convective precipitation by leveraging the model’s relatively high temporal and spatial coverage 538 

along with the independent high temporal resolution ARM sounding measurements at the T3 site 539 

and low-temporal measurements made at three other locations in the basin (Figure 1).  540 

4.3.1 Comparison with observations 541 

Radiosondes launched at four sites within the analysis domain are used to verify the simulated 542 

spatial variability of the ambient environment including horizontal wind velocities, temperature, 543 

and specific humidity. In addition to radiosondes at the ARM T3 site (-3.1492°N, -59.992°E) near 544 

Manaus, profiles collected at three other sites were acquired from NOAA’s IGRA, including 82099 545 

(0.05°N, -51.0667°E), 82244 (-2.433°N, -54.7167°E), and 82411 (-4.25°N, -69.9333°E). As 546 

shown in Figure 1, the four sites are near or inside the corresponding subregions (2E, E, M, 2W) 547 

designed for the precipitation analysis in Section 4.2. While ARM radiosondes at T3 site are 548 

available five times per day, radiosondes at sites 82099 and 82244 are launched every 12 hours 549 

(00 and 12 UTC). Site 82017 has only one profile per day at 12 UTC. 550 

To facilitate model-observation comparisons, the simulated profiles located within a 2-degree 551 

by 2-degree subregion centered at each site are interpolated vertically from the surface to 10 km 552 
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MSL at intervals of 0.1 km. Then, the mean profile at each given hour (00, 06, 12, 15, 18 UTC) is 553 

obtained by taking horizontal average over the subregion. These profiles are temporally averaged 554 

over the MCS and noMCS group days. Only simulations WRF_DA and E3SM_v1_nudge are 555 

selected here to represent each model since the differences among the simulations from the same 556 

model are relatively small. 557 

The composite plot for the zonal wind profiles at the four sites is given in Figure 7. The 558 

comparison of the observed and simulated profiles show that: (1) the spatial variability of the zonal 559 

wind (U) profile is well represented in both WRF and E3SM simulations; (2) while the low-level 560 

easterly jet has a peak wind speed of ~12 m-s-1 at an altitude of ~3 km for the MCS group, the 561 

height and speed of peak zonal wind speed is relatively lower and weaker, respectively, in the 562 

noMCS group (Alcântara et al. 2011; Anselmo et al. 2020); (3) the vertical wind shear becomes 563 

progressively weaker from the coastal to inland locations; (4) only near Manaus (subregion M) 564 

and roughly below 1-km altitude does the easterly wind from the noMCS group exceed the velocity 565 

from the MCS group; and (5) while wind profile varies diurnally within the MCS and noMCS 566 

groups, the differences in the zonal wind profiles between the MCS and noMCS groups is far 567 

larger.  568 

To highlight how well the two simulations can reproduce the ambient flow in a quantitative 569 

manner, profiles of the bias in the zonal wind component, temperature, and specific humidity for 570 

each simulation and for each subregion are computed and displayed in Figure 8. These results 571 

show that: (1) WRF has an overall better agreement with the radiosonde observations for every 572 

variable at each location in the basin; (2) while the bias of zonal wind in WRF and E3SM has no 573 

consistent sign at the four locations, E3SM has robust cold and dry biases in the troposphere below 574 

10 km height that are not evident in the WRF simulation. The relatively large temperature bias in 575 
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the upper troposphere is most likely introduced by the deep convection parameterization. 576 

Nevertheless, it should be noted an overall 2-3 K cold bias is considered minor for assessment of 577 

global climate models (Rasch et al. 2019).  578 

To supplement model validation, the average diurnal variability of the surface meteorological 579 

observations collected at the T3 site for the MCS and noMCS groups are computed separately and 580 

compared with the corresponding model simulations. Figure 9 shows that the observed 10-m zonal 581 

wind is consistently easterly (negative) throughout the day and has a maximum velocity of -2 m s-582 

1 and -3.2 m s-1 for the MCS and noMCS groups, respectively. While the WRF simulation 583 

qualitatively reproduces the observed diurnal cycle for both the MCS and noMCS groups, the 584 

E3SM simulation significantly underestimates the variability during the day as well as the contrast 585 

between the days with and without MCS. This indicates that E3SM does not reproduce the near 586 

surface wind fluctuation even when the large-scale wind field are nudged. While both models 587 

reproduce the observed diurnal temperature variability, both WRF and E3SM have a cold bias. 588 

The peak daytime temperature from E3SM is closer to observed on average, but WRF is closer to 589 

the observations at other times in a day. Both models also have a dry bias in specific humidity 590 

throughout the day, but WRF is closer to the observations with an overall bias less than 1 g kg-1. 591 

E3SM has much larger dry bias in general, and the atmosphere becomes significantly drier between 592 

10 to 17 LT when simulated convective precipitation is at its peak. 593 

4.3.2 Diurnal variation of low-level flow 594 

The convective diurnal cycle (CDC) was defined in Itterly et al. (2018) as the response of 595 

convection and its related processes to the daily cycle of solar insolation regulating the timing and 596 

intensity of clouds and convective rainfall. That said, convective-scale processes may influence 597 



Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems 
 

 28 

the diurnal cycle and large-scale atmospheric state but are not explicitly resolved by global climate 598 

models. Therefore, the behavior of convection is commonly approximated by using its statistical 599 

relationship with the resolved large-scale state. Since our WRF simulation can better resolve the 600 

response at cloud-system level such as vertical momentum transport and cold pools taking place 601 

over the Amazon basin, we are motivated to understand how these two models represent the 602 

atmospheric flow changes in the presence of propagating MCS.  603 

The “perturbed” state from the WRF and E3SM simulations is examined here. The full state 604 

contains distinct variations with height as well as a diurnal signal that is stronger than other 605 

smaller-scale responses; therefore, the full state is not necessarily useful in describing convection-606 

induced responses. To be consistent with the precipitation analysis discussed in the earlier sections, 607 

the same domain over the Amazon basin is used for the following analysis. To compute perturbed 608 

states, domain-mean vertical profiles are obtained at each hour and height level for the zonal wind, 609 

temperature, and specific humidity. With the horizontal mean state as a reference, the perturbed 610 

state can be then obtained by subtracting the horizontal mean state from the full state and given by  611 

𝑋%&'( = 𝑋%&' − 𝑋,'. 612 

where X represents full model state of a given variable at one particular hour, the overbar denotes 613 

the horizontal average, the prime denotes the perturbed state, and the subscript indicates the 614 

corresponding dimensions. Note the diurnal signal is filtered as the horizontal domain mean at 615 

each hour is computed and subtracted when calculating the perturbed state.  616 

To visualize how those perturbations vary diurnally, we first examine their low-level (below 3 617 

km MSL) mean. The perturbations are first averaged at each column in the domain. Then, similar 618 

to what is done for the daily maximum rain rate shown in Figure 4, the hour (UTC) of daily 619 
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maximum rain mixing ratio, easterly wind perturbation, negative temperature perturbation, and 620 

specific humidity are displayed instead. This approach is performed separately for both the MCS 621 

and noMCS groups from WRF and E3SM simulations. 622 

While the spatial distribution of the low-level mean rain mixing ratio maximum for the MCS 623 

group in the WRF simulation (Figure 10) is somewhat noisier than the rain rate maximum due to 624 

the nature of the variable’s spatial scale, the spatial distribution is very similar to the propagating 625 

precipitation shown in Figure 4. The orange to red region (equivalent to 11 to 17 LT) over the 626 

domain center in both the easterly wind and negative temperature perturbation distribution 627 

indicates the strongest low-level easterly flow and coldest air occurs primarily during the afternoon 628 

near Manaus. This timing is correlated with the precipitation propagation (Figure 4) in this region 629 

despite some differences near the domain’s southeastern corner. The diurnal variation of low-level 630 

moisture perturbation is also in phase with propagating precipitating systems. Based on what we 631 

find here and the results as will be shown later, the easterly wind and negative temperature 632 

perturbations are most likely the footprints of cold pools induced by the organized propagating 633 

convection that is superimposed on the large-scale ambient easterly trade winds.  634 

Compared to the MCS group, the rain mixing ratio (precipitation) perturbation on the noMCS 635 

days is more random over the domain reflecting the lack of organized propagating convection 636 

(Figure 10). The perturbations for the easterly wind, negative temperature, and specific humidity 637 

are also quite different in the central Amazon than their counterparts on MCS days. For example, 638 

the easterly wind perturbations occur in the late evening and early morning in the vicinity of 639 

Manaus on noMCS days as opposed to the late afternoon and early evening on MCS days. The 640 

specific humidity perturbations are shifted much later in the day as well. These simulation results 641 
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demonstrate that the occurrence of MCS systems in the Amazon basin not only alter the 642 

precipitation diurnal cycle, but also the fluctuation of low-level flow states. 643 

The corresponding results from the E3SM simulation (Figure S2) show that the diurnal 644 

perturbation distributions of rain mixing ratio and specific humidity have less correlation with the 645 

precipitation pattern, except for the northeastern corner of the domain (Figure 4). This rain 646 

behavior for both MCS and noMCS days and the environmental fields on MCS days are different 647 

from WRF (Figure 10). Nevertheless, the diurnal perturbation distributions of specific humidity, 648 

easterly wind and negative temperature for the noMCS group in WRF and E3SM are similar. This 649 

suggests that E3SM has a better skill in simulating flow patterns when MCS systems are absent 650 

but has difficulty in reproducing the observed diurnal flow variations in days with MCS.  651 

4.3.3 Diurnal variation of perturbed flow in vertical cross-section 652 

We now present the WRF cross-sections of zonal wind, temperature, and specific humidity 653 

perturbations as they evolve in time for the MCS (Figure 11) and noMCS (Figure 12) groups along 654 

a northeast-southwest oriented plane as denoted by the red line in Figure 1. The cross-sections of 655 

each perturbed state at each hour are obtained through three-dimensional interpolation. To assist 656 

in the analysis, the information on precipitation occurrence is also provided. We compute the 657 

occurrence frequency (in percentage) of simulated reflectivity is greater than 15 dBZ to indicate 658 

the occurrence of large hydrometeor particles in time and space.  659 

For the MCS group, an easterly wind (negative) perturbation persists below 5 km over the 660 

eastern part of the cross-sections at all times (Figure 11a). However, the thickness and strength of 661 

easterly wind coming from the Atlantic Ocean varies diurnally. Meanwhile, colder and drier air is 662 

advected by the easterly wind near the coast (Figures 11b and c), suggesting the air advected from 663 
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the ocean is relatively colder and drier than the air over continent. Embedded in the deck of easterly 664 

wind perturbation, the sea breeze near the northeastern coast can be identified by the patch of 665 

negative temperature perturbation as shown in Figure 11b. At local noon (12 LT), a relatively weak 666 

and shallow negative temperature perturbation appears near the bottom right corner can be inferred 667 

as the time of landfall of sea breeze. It intrudes inland in the afternoon hours and stays in similar 668 

horizontal extension overnight (from 20 to 08 LT), indicating the sea breeze front can only directly 669 

influence region within ~400 km distance from coast (east of -55° longitude). Together with the 670 

occurrence frequency of reflectivity > 15 dBZ (Figure 11d), it implies the sea breeze’s high-density 671 

flow starts to trigger shallow convection at its front near the coast at local noon. Then, as it 672 

propagates inland, the convection grows deeper, and moisture is transported upward from lower 673 

troposphere to higher altitudes (Figure 11c and 11d). A nearly persistent pattern of divergent flow 674 

is found in Figure 11a in the central basin above ~7 km through the day, suggesting the conditions 675 

favorable for growth of convective systems. As the convection intensifies and transitions to a 676 

mature stage, rain evaporation most likely takes place below the convective clouds to cool the 677 

lower troposphere (Figures 11b and 11d). From 12 to 16 LT, while the colder air in association 678 

with sea breeze becomes relatively weak, an extensive pool of colder air (6 to 7 degrees wide in 679 

longitude and ~1.5 km deep in vertical) is formed. The westward outflow from the pool of colder 680 

air is potentially responsible for maintenance and propagation of MCSs in the afternoon. Long-681 

lasting precipitation is also produced near the southwest end of cross-sections and denoted by a 682 

rectangle in Figure 11d. This may be relevant to a persistent convergence as denoted in Figure 11a. 683 

Figures 12a show that the low-level easterly wind perturbation in the noMCS group is 684 

generally weaker than what is shown for MCS group (Figure 11a), which is associated with an 685 

eastward-shifted convergence below 5 km. Moreover, the upper-tropospheric divergence is weaker 686 
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than on MCS days and becomes hardly distinguishable. While temperature perturbations in the 687 

noMCS groups show similar evolution of the sea breeze as the MCS group (i.e., negative 688 

perturbations over the lower right corners in Figure 12b), the most distinct difference between days 689 

is found in the specific humidity perturbation. For the noMCS group, a layer of dry air between 1 690 

to 4 km penetrates westward inland (Figure 12c) and its front edge is well collocated with the deep 691 

convergence denoted by the dashed long arrow in Figure 12a as well as the position of deep 692 

convection denoted by the long arrow in Figure 12d. These results imply the intensity of sea breeze 693 

may have less of an impact on the formation of MCS in Amazon basin. Instead, it is the dry air 694 

advected from ocean to the central basin that suppresses the formation of MCS which leads to 695 

much less rainfall near Manaus.  696 

The results for E3SM are given in the supporting information (Figures S3 and S4). Several 697 

features of the mesoscale environment such as strong low-level easterly wind, representation of a 698 

sea breeze (i.e., negative temperature perturbation near northeastern coast), relatively cold and dry 699 

air advected from the Atlantic Ocean are represented in E3SM simulations. While E3SM has a 700 

notable warm and dry bias when compared against radiosonde profiles (Figure 8), it does show 701 

stronger westward penetration of dry air for the noMCS group which agrees with the WRF 702 

simulation (Figures 12c, S3c and S4c). Nevertheless, other features closely related to a propagating 703 

MCS system that we saw in the WRF simulations are not found in the E3SM results. While the 704 

effects associated with land-sea contrasts are represented in E3SM, the physical processes 705 

associate with MCS are not reproduced. Furthermore, an almost stagnant pattern is found in almost 706 

every perturbed state variable, implying the diurnal variation of convective activity is subtle.  707 

5. Summary and conclusion 708 
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A cloud-system resolving model (WRF) that explicitly represents the lifecycle of convective 709 

systems and a global climate model (E3SM) that parameterizes deep convective clouds are used 710 

to better understand the processes that affect the diurnal precipitation cycle over the Amazon basin 711 

during the wet season of 2014. These simulations are combined with unique meteorological 712 

observations collected during the GoAmazon2014/15 campaign as well as operational in situ and 713 

satellite datasets. Through a comprehensive intercomparison among models and observations, the 714 

primary findings include: 715 

1. Impact of data assimilation: Our analysis shows that by using an observationally 716 

constrained cloud-system resolving model, the overall spatiotemporal variability of the 717 

precipitation diurnal cycle in the Amazon basin during the 2014 wet season is similar to what was 718 

observed. Larger differences between the observed and simulated diurnal rainfall rates over many 719 

locations in the basin are produced when data assimilation is not used. It also shows lack of 720 

observations over the Atlantic Ocean may limit the optimization of simulated convective activity 721 

over the coastal region. This suggests that adequately representing the large-scale environmental 722 

conditions in the tropics, where synoptic forcing is relatively weak, is one factor needed to 723 

adequately represent the formation and propagation of convective systems over the Amazon basin.  724 

2. Role of MCS in diurnal rainfall distribution: Analysis of IMERG precipitation data 725 

reveals the frequent southwestward propagation of MCSs triggered by the coastal sea breeze front 726 

and over the central Amazon basin during the wet season IOP (Figure 3). When days are separated 727 

into groups with and without MCS propagation, the MCS’s major role in contributing to mean 728 

diurnal precipitation cycle that varies over the basin is revealed. Close to the coast, the local diurnal 729 

precipitation cycle is controlled primarily by the sea breeze associated with land-sea temperature 730 

contrasts. Further inland, MCS takes over the dominant role (Figure 4).  731 
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3. Characteristics of simulated precipitation over the Amazon basin: Precipitation 732 

simulated by WRF agrees reasonably well with IMERG data in terms of the phase change of 733 

diurnal cycle as well as the peak rain rate intensity during the MCS and noMCS periods. There are 734 

larger uncertainties in predicting precipitation for the noMCS group than the MCS group because 735 

weaker and more isolated convections are harder to predict. In contrast, E3SM does not produce 736 

propagating convective systems over the Amazon basin. While the total precipitation amount is 737 

similar to observed at many locations in the basin during March and April 2014 (Figure S1), the 738 

simulated precipitation diurnal cycle is often out of phase with observations. The exception is near 739 

Manaus where the peak of average rainfall rate is associated with both locally forced and 740 

propagating convection that occur at about the same time. E3SM tends to underestimate 741 

precipitation in the Amazon basin during other months (not shown), which is a common bias in 742 

global climate models. This bias may be due, in part, to the inability to adequately represent 743 

propagating organized convective systems that are longer-lived and produce more intense 744 

precipitation than isolated convection.  745 

4. Reproduction of variability in ambient environment: A comparison of the simulated 746 

tropospheric meteorological profiles with radiosonde observations at four sites across the Amazon 747 

basin shows that both WRF and E3SM simulations reasonably represent the spatial characteristics 748 

of tropospheric winds (below 10 km) such as the intensity of low-level easterly winds and 749 

differences in the vertical wind shear on days with and without a propagating MCS (Figure 7). 750 

This analysis also indicates diurnal variation of wind profiles appears to be much smaller than the 751 

day-to-day variation of tropospheric wind speed in general. While both models constrain their 752 

simulations with observed winds in some way, the profiles of bias indicate that the WRF 753 

simulations agree better with the radiosonde observations than E3SM, especially for temperature 754 
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and moisture profiles (Figure 8). While WRF has small vertical variations in the biases, significant 755 

cold and dry biases are produced by E3SM in the lower troposphere that are as large as  ~2 K and 756 

~1 g kg-1 for temperature and specific humidity, respectively.   757 

5. Impact of MCS on the environment: A 4-D multivariate perturbation analysis, which has 758 

not been applied by earlier studies, is performed to better understand how the meteorological states 759 

vary between the MCS and noMCS days. Results suggest the responses induced by MCS 760 

substantially change the diurnal cycle of local meteorological states in the basin except near the 761 

Atlantic coast where the sea breeze front is primarily responsible for the convective initiation 762 

(Figures 10). Consistent with the precipitation analysis, MCS-induced perturbations produced by 763 

WRF are essentially absent in the E3SM simulation. Vertical cross-sections of perturbed states 764 

show that easterly wind perturbation and upper-level divergence are enhanced when propagating 765 

MCSs occur in the WRF simulation (Figures 11 and 12). Furthermore, the presence of large pools 766 

of colder air over the central Amazon basin highlights the role of organized deep convection 767 

associated with the propagating precipitation. While the negative temperature perturbations related 768 

to the sea breeze do not vary much between the MCS and noMCS groups, the phase of the diurnal 769 

cycle in moisture is essentially opposite in the central basin. A westward propagating positive 770 

moisture perturbation occurs in the MCS group, whereas a persistent negative moisture 771 

perturbation occurs over the central basin for the noMCS group. This suggests that the intensity of 772 

the sea breeze has a smaller impact on the formation and maintenance of organized convection in 773 

the Amazon basin than the dryness of low-level air transported from ocean to inland.  774 

Not surprisingly, the multivariate perturbation analysis shows that in E3SM the diurnal 775 

variation of convective perturbation for each state variable is almost stagnant (Figures S3 and S4) 776 

since the pattern for each perturbed state does not shift in time. This confirms that the unrealistic 777 
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representation of the convective diurnal cycle in E3SM simulations may contribute to off-phase 778 

diurnal variation in precipitation. Aside from misrepresentation of ambient environment of 779 

tropospheric flow in E3SM simulations, convective parameterizations that are strongly coupled 780 

with surface heating most likely suppress the spatial variability of the precipitation diurnal cycle 781 

(Xie et al. 2019). A future study is needed to assess the new trigger functions proposed in Xie et 782 

al. (2019) by using the current metrics as well as to quantify the improvement in the representation 783 

of spatial and diurnal variability in convective rainfall across the Amazon basin.  784 
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TABLES 1163 
 1164 

Table 1. Summary of observations used for data assimilation and validation. 1165 

Source Measurement/Instrument 
Observed or 

retrieved 
properties 

Assimilation Validation 

IMERG Satellite Rain rate  X 
SIPAM Doppler Radar Rain rate  X 

NCEP 
GDAS 

Radiosonde, surface 
station, ship and satellite 

Wind, humidity, 
temperature, 
pressure and 

radiance 

X  

ARM T3 
Radiosonde  

Wind, humidity, 
temperature and 

pressure 

X (00, 12 
UTC) 

X (06, 15, 18 
UTC) 

Surface station Wind, humidity 
and temperature  X 

IGRA Radiosonde Wind, humidity 
and temperature  X 

 1166 
 1167 
Table 2. Parameterization schemes and corresponding references employed in ES3M 1168 
atmospheric model version 1 (EAMv1). 1169 

Parameterization Description Reference 

Cloud Microphysics 2-moment cloud 
microphysics 

Gettelman and Morris (2015); 
Gettleman et al. (2015) 

Turbulence and Shallow 
Convection 

Cloud Layer Unified by 
Binormals (CLUBB) 

Bogenschutz et al. (2013); 
Golaz et al. (2002); Larson 
and Golaz (2005); Larson 

(2002) 

Deep Convection 

With addition of convective 
momentum transports and a 

modifies dilute plume 
calculation 

Zhang and Mcfarlane (1995); 
Richter and Rasch 2008; Neal 

et al. (2008) 

Aerosol 

4-mode version of the modal 
aerosol module (MAM4) with 

improved treatments of sea 
spray aerosols, secondary 

organic aerosols and 
processes in scavenging, 

transport and microphysics  

Liu et al. (2016); Burrows et 
al. (2014); Shrivastava et al. 

(2015); Lou et al. (2020); 
Wang et al. (2020) 

 1170 
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FIGURES 1172 
 1173 

 1174 
 1175 
Figure 1. Simulation domain of the WRF model where color shading represents terrain height (km). 1176 

Most of the analyses are performed within the region bounded by the dashed-line rectangle. The 1177 

five blue squares are subregions used for precipitation analysis across the basin. The four white 1178 

dots indicate where radiosonde sites associated with the subdomains are located. The red line is 1179 

the location of a vertical cross-section to examine parameter associated with propagating 1180 

convection. The yellow dots depict where the assimilated radiosonde profiles (in addition to the 1181 

four white dots) are located (example from assimilation of 12 UTC on March 12, 2014). 1182 
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1185 
Figure 2. Schematic diagram to illustrate the data assimilation cycles and forecast periods for the 1186 

WRF_DA and WRF_noDA simulations.  1187 
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 1190 

 1191 
Figure 3. Mean rain rate maps over the central Amazon basin for four time periods including 08 – 1192 

13, 14 – 19, 20 – 01, and 02 – 07 LT. Note the time in LT is for Manaus. The IMERG, WRF_DA, 1193 

and E3SM_v1_nudge results are given in (a) – (d), (e) – (h), and (i) – (l), respectively. In (a) – (d), 1194 

the lines of precipitation are labeled by numbers for identification. The white dot is the T3 site and 1195 

the white lines are rivers. 1196 
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 1199 
Figure 4. Spatial distribution of hour of maximum rain rate from IMERG, WRF_DA, 1200 

E3SM_v1_nudge for (a) days with a propagating MCS (MCS group) and (c) days without a 1201 

propagating MCS (noMCS group). The hours in LT (UTC) are given on the left (right) side of 1202 

color bar. The white dot is the T3 site, and the black lines are rivers. 1203 
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 1205 
Figure 5. Diurnal cycle of mean rain rate (mm hr-1) from the MCS and noMCS groups over five 1206 

subdomains (2E, E, M, W, 2W) shown in Figure 1. The grey patch in each panel indicates the 1207 

nighttime period (from 18 to 06 LT) at each location. IMERG and SIPAM (available only in 1208 

subdomain M) observations denoted by black and red, respectively, while WRF_DA and 1209 

WRF_noDA simulation denoted by blue and orange, respectively. Mean daily rain rate (mm day-1210 
1) calculated from each diurnal cycle is given with corresponding color at upper left or right corner 1211 

of each panel.  1212 
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 1215 
Figure 6. Diurnal cycle of mean rain rate (mm hr-1) computed for the entire study period over five 1216 

subdomains (2E, E, M, W, 2W) shown in Figure 1. The grey patch in each panel indicates the 1217 

nighttime period (from 18 to 06 LT) at each location. IMERG and SIPAM (available only in 1218 

subdomain M) observations denoted by black and red, respectively, while E3SM_v1_free and 1219 

E3SM_v1_nudge, simulation denoted by violet and dark green, respectively. Mean daily rain rate 1220 

(mm day-1) calculated for each diurnal cycle is given with corresponding color at upper left corner 1221 

of each panel.  1222 
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 1223 

 1224 
 1225 

 1226 
Figure 7. Comparison of observed mean zonal wind profiles at four locations along with the 1227 

corresponding simulated mean zonal wind profiles from WRF and E3SM. Columns from left to 1228 

right display results at observational sites 82411, ARM T3, 82244, and 82099, which correspond 1229 

to nearby subdomains 2W, M, E, and 2E shown in Figure 1, respectively. Profiles obtained at 1230 

different hours of a day can be distinguished by the line colors as indicated in the legend which is 1231 

given in the middle row of each column. Solid and dashed lines represent profiles from the MCS 1232 

and noMCS groups, respectively.  1233 
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 1236 

 1237 
Figure 8. Comparison of WRF and E3SM bias profiles at four subregions. Rows from top to bottom 1238 

show biases of zonal wind (U), temperature (T), and specific humidity (Q). Columns from left to 1239 

right display results at observational sites 82411, ARM T3, 82244, and 82099, which correspond 1240 

to nearby subdomains 2W, M, E, and 2E, respectively. Shading represents the variability among 1241 

profiles obtained in a day, which varies by site. 1242 
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 1244 
Figure 9. Comparison of observe and simulated surface mean diurnal variation in a) zonal wind, 1245 

b) temperature, and c) specific humidity surface meteorology at ARM’s T3 site. Observations 1246 

denoted in black, while WRF and E3SM simulation denoted by blue and green, respectively. The 1247 

grey patch in each panel indicates the nighttime period (from 18 to 06 LT) at each location. Solid 1248 

and dashed lines represent results from the MCS and noMCS groups, respectively.  1249 
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 1253 
Figure 10. Spatial distribution of time with the local daily maximum of WRF-simulated rain 1254 

mixing ratio along with the specific humidity, negative temperature, and easterly wind 1255 

perturbations over the domain with respect to the MCS (a, c, e, and g) and noMCS (b, d, f, and h) 1256 

groups. The hours in LT (UTC) are given on the left (right) side of color bar. White dot denotes 1257 

the location of ARM T3 site. 1258 
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 1261 
Figure 11. Vertical cross-sections to illustrate diurnal evolution of WRF-simulated tropospheric 1262 

flow associate with convective activity along the path of MCS propagation, including (a) zonal 1263 

wind (m s-1), (b) temperature (K), (c) specific humidity (g kg-1) perturbations, and (d) occurrence 1264 

frequency (%) of reflectivity to be greater than 15 dBZ from the MCS group. The long arrows 1265 

(solid and dashed) in each panel represent the front edge of propagating convective systems. White 1266 

arrows in (b) denote the diurnal variation of sea breeze. The LT time given in the heading of each 1267 

panel is for Manaus. 1268 
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 1271 
Figure 12. Similar to Figure 11 but for WRF simulations from the noMCS group. 1272 
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