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Abstract

Global-scale Observations of Limb and Disk (GOLD) disk measurements of far ultraviolet molecular nitrogen band emissions

are used to retrieve temperatures (T$ {disk}$), which are representative of lower thermospheric altitudes. The present inves-

tigation studies the response of lower thermospheric temperatures to geomagnetic activities of varying magnitudes. In this

study, it has been observed that T$ {disk}$ increases over all latitudes in response to enhanced geomagnetic activity. The

increase in temperature is proportional to the strength of the geomagnetic activity and is greater at higher latitudes. Tem-

perature enhancements vary from 10s to 100s of Kelvins from low- to mid-latitudes. Local time behavior shows that pre-noon

enhancements in temperatures, during relatively stronger geomagnetic activities, are greater compared to afternoon, which can

be attributed to the combined action of daytime dynamics and geomagnetic forcing. This study thus demonstrates the utility

of GOLD T$ {disk}$ measurements investigating the effects of dynamical and external forcings in the thermosphere.
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Key Points:10

• GOLD thermospheric temperature increases globally in response to geomagnetic11

activity12

• The increase in temperature is proportional to the strength of the activity and is13

greater at higher latitudes14

• Temperature enhancement during active geomagnetic events is greater in the morn-15

ing than that in the afternoon.16
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Abstract17

Global-scale Observations of Limb and Disk (GOLD) disk measurements of far ultravi-18

olet molecular nitrogen band emissions are used to retrieve temperatures (Tdisk), which19

are representative of lower thermospheric altitudes. The present investigation studies the20

response of lower thermospheric temperatures to geomagnetic activities of varying mag-21

nitudes. In this study, it has been observed that Tdisk increases over all latitudes in re-22

sponse to enhanced geomagnetic activity. The increase in temperature is proportional23

to the strength of the geomagnetic activity and is greater at higher latitudes. Temper-24

ature enhancements vary from 10s to 100s of Kelvins from low- to mid-latitudes. Local25

time behavior shows that pre-noon enhancements in temperatures, during relatively stronger26

geomagnetic activities, are greater compared to afternoon, which can be attributed to27

the combined action of daytime dynamics and geomagnetic forcing. This study thus demon-28

strates the utility of GOLD Tdisk measurements investigating the effects of dynamical29

and external forcings in the thermosphere.30

Plain Language Summary31

The thermosphere ionosphere system is influenced by waves from the lower atmo-32

sphere and solar and geomagnetic forcing from above. For such a coupled system it is33

important to decipher the relative influence of the two regimes of forcings. The recently34

launched GOLD mission provides daytime thermospheric temperatures with unprece-35

dented local time and spatial coverage. The thermospheric temperature over the Earth’s36

disk visible from geostationary orbit is a first of its kind of measurement, which enables37

us to investigate the local time behavior over wide latitudinal coverage from 69◦S to 69◦N.38

We find that, during active geomagnetic conditions, the thermospheric temperature is39

enhanced across the whole visible hemisphere, with the largest temperature enhancements40

at higher mid-latitudes. The local time behavior shows that the pre-noon enhancement41

in temperature is greater compared to the afternoon, which demonstrates, for the first42

time, the interplay between thermospheric weather and geomagnetic forcing effects.43

1 Introduction44

Temperature variability of the daytime thermosphere of the Earth is controlled mainly45

by solar radiation. It is also influenced by wave forcing from the lower atmosphere and46

geomagnetic forcing from above. During geomagnetic storms energetic particles precip-47
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itate into the atmosphere at high-latitudes, which induces, among other effects, ionospheric48

current systems, Joule heating, and circulation changes (Rishbeth & Garriott, 1969; Mayr49

et al., 1978; Prölss, 1980; Burns & Killeen, 1992; Deng et al., 1995; Forbes et al., 1996;50

Killeen et al., 1997). The impact of the currents generated by the movement of the en-51

ergetic particles and the ionization they produce is instantaneous and they can indirectly52

alter the low-latitude ionosphere (Tsurutani et al., 2008). The most important heating53

term is the Joule heating (per particle) and the ion-neutral momentum coupling induced54

by circulation changes give rise to delayed impact at different latitudes and altitudes in55

the thermosphere (Mayr et al., 1978; Prölss, 1980; Burns et al., 1995).56

Depending on the strength of a geomagnetic storm, the thermospheric circulation57

can reverse from the usual poleward daytime circulation. Storm induced circulation changes58

can also give rise to relative adiabatic cooling or heating depending on the relative changes59

in the divergence and convergence of the horizontal winds. Radiative cooling by infrared60

emissions from nitric oxide (NO) and carbon dioxide (CO2) is the mechanism through61

which energy is dissipated in the lower thermosphere (Killeen et al., 1997; Mikhailov &62

Perrone, 2020). In short, a geomagnetic storm can alter the whole thermosphere-ionosphere63

(TI) system enormously, so synoptic observations of local time variability of the ther-64

mosphere during storm events is important for a complete understanding of space weather.65

The neutral atmosphere at TI altitudes (about 100 km and up) is primarily inves-66

tigated using in-situ (e.g. Spencer et al., 1981; Forbes et al., 1996; H. Liu & Lühr, 2005)67

and optical remote sensing techniques (Pant & Sridharan, 1998; Pallamraju et al., 2004;68

Aksnes et al., 2006; Pallamraju et al., 2013; Meier et al., 2015). The temperature of the69

thermosphere can be retrieved from spectral broadening characteristics of atomic lines70

(Biondi & Meriwether, 1985; Fagundes et al., 1996; Pant & Sridharan, 1998; Chakrabarty71

et al., 2002) or molecular bands (Aksnes et al., 2006; Meier et al., 2015; Evans et al., 2018;72

Zhang et al., 2019). Ground based observations of the thermosphere have good local time73

coverage, at a cadence of minutes to hours for over at least 10 hours per day, but they74

are mostly limited to the night-time sector and are available from limited ground sta-75

tions (Biondi & Meriwether, 1985; Fagundes et al., 1996; Pant & Sridharan, 2001; Chakrabarty76

et al., 2002). Satellite based remote-sensing observations on the other hand have poor77

local time coverage and are mostly from limb viewing geometry (Aksnes et al., 2006; Meier78

et al., 2015). In-situ temperature measurements are also very limited, for example those79

from Dynamic Explorer 2 (DE-2) mission (Spencer et al., 1981) or those retrieved from80
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satellite drag (e.g., Mehta et al., 2017, and references therein). The in-situ satellite based81

measurements also lack local time coverage. Thus, the earlier studies provided mostly82

a seasonally averaged or near-single local time behavior of the thermospheric temper-83

ature variability during geomagnetic activities. Thus, the local time variations of the ge-84

omagnetic storm effects on thermospheric temperatures with global coverage have been85

limited mainly to model simulations only (Burns et al., 1995). For wide spatial and lo-86

cal time coverage one would require ground based stations covering the globe, or a con-87

stellation of sun-synchronous satellites in low-earth-orbit, or measurements from the geo-88

stationary orbit. The Global-scale Observations of the Limb and Disk (GOLD) mission,89

launched on 14 January 2018, is in geostationary orbit and provides Far-Ultraviolet (FUV)90

emission measurements, which can be used to retrieve thermospheric neutral tempera-91

tures (Eastes et al., 2020). Though GOLD disk measurements are limited over a fixed92

hemisphere, they have very good coverage in latitude (69◦S to 69◦N), longitude (25◦E93

to 120◦W; covering America and parts of Europe and Africa), and local time (a mini-94

mum of 6 to 18 hr near nadir longitude, which extends to even more depending on lo-95

cation).96

Evidence of geomagnetic storm related changes in thermospheric temperatures, den-97

sities, and winds are ample in the literature (Mayr et al., 1978; Burns & Killeen, 1992;98

Burns et al., 1995; Strickland et al., 1999; Pant & Sridharan, 2001; Pallamraju et al., 2004;99

Crowley et al., 2006; Aksnes et al., 2007; Bagiya et al., 2014; Astafyeva et al., 2020; Karan100

& Pallamraju, 2018; Zhang et al., 2019; Mandal & Pallamraju, 2020). Due to particle101

precipitation, the temperatures at high-latitude are increased and the resulting circu-102

lation changes alter the whole thermospheric temperature (Burns & Killeen, 1992; Fuller-103

Rowell et al., 1994; Burns et al., 1995) with some delayed response at different altitudes104

and latitudes (Burns et al., 1995; X. Liu et al., 2018; Li et al., 2018). Some recent in-105

vestigations using GOLD O/N2 (ratio of atomic oxygen and molecular nitrogen column106

densities) and limb temperature data showed that even minor to moderate geomagnetic107

activities can impact the TI system significantly (Cai et al., 2020; Evans et al., 2020).108

But these earlier investigations of daytime thermospheric variability lack the local time109

and spatial coverage provided by the GOLD mission from geosynchronous orbit. The cur-110

rent study aims to use GOLD disk temperature (Tdisk) data to investigate synoptic and111

local time behavior of the thermospheric temperature during periods of enhanced geo-112

magnetic activity of varying magnitudes.113

–4–



manuscript submitted to Geophysical Research Letters

2 Data and Methods114

The primary dataset used in this investigation is the GOLD retrieved disk temper-115

atures, Tdisk. Solar and geomagnetic indices are also used. GOLD observes the Earth’s116

thermosphere in the FUV for over 18.5 hours each day, from 0610 to 0040 UT of the next117

day (Eastes et al., 2019, 2020; McClintock et al., 2020; Laskar et al., 2020; Cai et al., 2021).118

GOLD daytime disk scans of the N2 Lyman-Birge-Hopfield (LBH) bands are used to re-119

trieve the Tdisk data, which are representative neutral temperatures at an effective height120

of around 160 km (Evans et al., 2018; Laskar et al., 2021). GOLD scans each full disk121

in about 30 minutes. The retrieval algorithm is an improvement of the code that was122

used previously to derive temperature from limb measurements of N2 LBH intensity from123

the High-resolution Ionospheric and Thermospheric Spectrograph (HITS) instrument (Aksnes124

et al., 2006; Krywonos et al., 2012). GOLD measurements have a higher spectral res-125

olution that includes N2 LBH band emissions within 132 – 162 nm range. Effective neu-126

tral temperatures are retrieved by fitting the observed rotational structure of the N2 LBH127

bands using an optimal estimation routine (Rodgers, 2000; Lumpe et al., 2002; Evans128

et al., 2018). Five parameters are retrieved from each measured spectrum: rotational tem-129

perature (K), wavelength shift and dispersion (nm), background (counts/bin), and a for-130

ward model scale factor. The current investigation used Level 2 (L2) Tdisk version 3 data131

that are retrieved from 2×2 binned level-1C N2-LBH spectra, which are available at the132

GOLD web-page, https://gold.cs.ucf.edu/. The 2×2 binned data have a spatial res-133

olution of 250-km×250-km near nadir.134

3 Results135

Sub-satellite local time (Sub-Sat. LT) versus day-to-day variation of GOLD Tdisk136

(from here on temperature or in short T) for about 2.5 years (14 October 2018 to 15 March137

2021) of observations with ap index and solar F10.7 flux are shown in Figure 1(a). These138

are averaged between 21◦N to 53◦N and 43◦W to 54◦W from the disk observations. This139

spatial bin is chosen arbitrarily and any other spatial combination also shows similar be-140

havior. But selection of a very narrow bin results in a noisy signal. The average uncer-141

tainty, which varies with LBH emission signal-to-noise-ratio, within the above chosen spa-142

tial bin is about 12 K. Notable features in this figure are: (a) the temperature is high-143

est near 13-14 LT and afternoon is warmer than morning, and (b) the temperature in-144

creases over all local times in response to an increase in ap index or F10.7 flux. Figure145
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1(b) shows temperature deviations (∆T) from a baseline local time behavior. The base-146

line levels are calculated using all the quiet days (with ap<6 nT) that are within a 31147

day running window of observation. We choose a 31 day window so that the seasonal148

changes are also removed once we subtract the 31-day mean. A shorter window will have149

fewer days with ap<6 nT and also we do not want to remove variations shorter than 30150

days, where most of the dominant geomagnetic variations fall.151
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Figure 1. Sub-satellite local time and day-to-day variation of GOLD temperature for about

2.5 years of observations along with ap index and solar F10.7 cm flux are shown in (a). ∆T and

ap index variation are shown in (b). Notable feature is the enhancement in T and ∆T as the ap

index increase.

Though the solar flux has not exceeded 120 sfu (1 sfu=10−22 Wm−2Hz−1) during152

the period covered in this study, the temperatures show some increase with the slight153

enhancement in F10.7 cm flux during the last quarter of 2020, where it was above 110154

sfu for a couple of days. This temperature increase with F10.7 cm flux is above the mean155

uncertainty, which is about 12 K. A notable feature of ∆T, as shown in Figure 1(b), is156

that it increases with increasing ap index. Thus, observations in Figure 1 demonstrate157

that the GOLD temperature appear to respond to both solar flux and geomagnetic ac-158

tivity. These findings are in consistent with the response observed in GOLD exospheric159

temperatures due to minor geomagnetic activity reported by Evans et al. (2020). There160
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is a gap of about 10 days of data during 16-26 April 2019, where the GOLD channel-A161

detector gain was low, which needed a grating yaw maneuver to overcome this. The data162

during this interval are available but should be interpreted with caution. Thus, they are163

are not used in the present investigation.164

To quantify the relationship between ap and ∆T, a scatter plot and a linear regres-165

sion analysis are shown in Figure 2(a). The scatter plot and the correlation analysis are166

done with the averaged ∆T values between 21◦N to 53◦N and 43◦W to 54◦W and 10 hr167

to 14 hr local time for all the days with ap>8 nT. Each point in the scatter plot repre-168

sents a day, as these ∆T values are local-time and spatial averaged as mentioned above.169

A correlation coefficient of ∼0.52 is observed between ap and ∆T, which indicates that170

they are positively, though weakly, correlated. The not so strong positive correlation be-171

tween ap and ∆T can be due to other sources of temperature variability, e.g., lower at-172

mospheric waves (Laskar et al., 2013, 2014) and non-linear response of temperature to173

geomagnetic-forcing (Connor et al., 2016), and solar flux variability. To further quan-174

tify their variabilities, Lomb-Scargle periodograms (Horne & Baliunas, 1986) of ap, F10.7,175

and Tdisk are shown in Figure 2(b). Almost all the dominant periodicites that are seen176

in ap, such as, 6, 7, 9, 13-15, and 23-30 days can also be seen in Tdisk. These results demon-177

strate that the thermospheric temperature responds positively to geomagnetic activity.178

The F10.7 cm flux show some dominant periodicities around 27-day, the solar rotational179

period, which can also be seen in Tdisk and ap periodicities.180

As GOLD provides good latitude coverage from 69◦S to 69◦N, a latitudinal vari-181

ation of correlation coefficients between ap and ∆T (similar to Figure 2(a)) is shown in182

Figure 3(a) for two ap ranges, 8-14 nT and ≥14 nT. The number of days with 8 nT≤ap<14183

nT and ap≥14 are 111 and 52, respectively. Some of the active events lasted for more184

than a day, so the number of individual active periods with 8 nT≤ap<14 nT and ap>14185

nT were at least 50 and 27, respectively. The latitudinal variation of ∆T for the two ge-186

omagnetic activity ranges is shown in Figure 3(b). The temperature retrieval algorithm187

is not optimized to take into account the changes in LBH emissions due to energetic par-188

ticle precipitation, so latitudes higher than 60◦ are not considered in this analysis. Note189

that the correlation coefficients are positive at all latitudes and are higher for stronger190

geomagnetic events. Also, the temperature enhancements are always positive and are191

greater at higher mid-latitudes. The greater ∆T enhancements at higher mid-latitudes192

are in accordance with the fact that most of the energy deposition of the storm time par-193
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Figure 2. Scatter plot and linear regression with Pearson correlation coefficient between ∆T

and ap are shown in (a). Lomb-Scargle periodograms of ap, F10.7, and ∆T are shown in (b). A

positive correlation of about 0.52 is observed at latitudes between 21-53◦N. Periodogram analysis

shows that most of the dominant peaks in ∆T can also be seen in ap.

ticle precipitation occurs at high-latitudes. It also demonstrates that the temperature194

enhancements occur over all latitudes. The percentage increase in ∆T varies from 10 to195

20% for the stronger events. These percentages are for an average of all the 27 individ-196

ual events having ap≥14 nT. However, the strongest event on 31 August and 1 Septem-197

ber 2019 with a daily average ap of 43 nT showed about 25 to 35% enhancement in tem-198

perature at low- to mid-latitudes. As the ∆T values are calculated using a reference quiet-199

day that is obtained from a 30 day running mean around the active day, they should be200

independent of any artifact that may arise from solar zenith angle and emission angle201

dependence of Tdisk (Evans et al., 2018).202

A unique feature of the GOLD mission is that it provides an unprecedented local203

time coverage, in addition to a wide spatial coverage. To investigate the local time vari-204

abilities, the ∆T variation at northern mid-latitudes (32◦N to 53◦N) for the days with205

ap≥20 nT are shown in Figure 4(a). Note that the number of individual active events206

with ap>20 nT were 16 in the 2.5 years period. Of the 16 active events, many of them207

lasted for several days. For this analysis only the first day of the active events are con-208
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Figure 3. Latitudinal variation of correlation coefficients between ap and ∆T are shown in (a)

for two ap limits, 8≤ap<14 nT and ap≥14 nT. Latitudinal variation of ∆T is shown in (b) for

the two activity ranges. Correlation coefficients are positive at all latitudes and the temperature

enhancements are greater at higher mid-latitudes.

sidered to compare them with a pre-active quiet day. For a particular event, the pre-active209

quiet day is a day having minimum ap value among 5 consecutive days just prior to the210

first active day. For most of the events the pre-active quiet day falls 2 to 3 days before211

the first active day. As there are 16 individual active events having ap>20 nT, the cal-212

culations in Figure 4 used 16 active and 16 quiet days. Average ap indices for the 16 quiet213

and 16 active days were 2.9 nT and 25.4 nT, respectively. Also, the average F10.7 cm214

flux for the quiet and active days were 72.1 sfu and 73.0 sfu, i.e., they are nearly same.215

It can be seen that there is more than 90 K difference between active and quiet times216

at all local times, which cannot be attributed to the 1 sfu increase in F10.7 cm flux. Note217

that the morning time (8 to 12 LT) temperature deviations are 23.5±2.5 K larger com-218

pared to afternoon time (12.5-16.5 LT). Such morning and afternoon temperature dif-219

ferences occur at all latitudes though the values are lower at low-latitudes (not shown220

here). This morning and afternoon difference is higher for the stronger events and they221

are nearly absent, even at mid-latitudes, for events having ap index less than 20 nT. The222

strongest geomagnetic event during the current observation period is of moderate strength223

that occurred during 31 August to 1 September 2019. In the future, when we expect a224

greater number of moderate and severe geomagnetic storms, a quantitative investigation225
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of the relationship between strength of geomagnetic activity and corresponding morn-226

ing to afternoon temperature difference could be performed.
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Figure 4. Mean ∆T variations at northern low- to mid-latitudes for all the days with ap>20

nT and average of their corresponding pre-storm (Quiet) days are shown in (a). The differ-

ence between active and quiet days are shown in (b). Morning time (8 to 12 LT) differences are

greater compared to afternoon time (after 12 LT).

227

4 Discussion228

Heating due to solar Extreme-Ultra-Violet (EUV) absorption and cooling due to229

downward heat transport is the primary source and sink of energy in the daytime ther-230

mosphere. The diurnal tidal circulation in the thermosphere is mainly driven by in-situ231

differential heating due to solar EUV. As a result of this circulation there occur regions232

of convergence and divergence that produce vertical motions (Laskar et al., 2017), which233

are upward in the daytime and are downward in the majority of the night-sector at low-234

and mid-latitudes (Mayr et al., 1978; Burns et al., 1995). From numerical model sim-235

ulations, Burns et al. (1995) showed that under quiet geomagnetic conditions the usual236

vertical winds during late-night to late-morning are downward and that they are upward237

in the afternoon and late-evening sector. During geomagnetically active events the usual238
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thermospheric equator to pole circulation gets disturbed. Under such altered circulation,239

the morning time vertical winds at low- and mid-latitudes become more downward due240

to pole to equator circulation thus creating greater compressional heating compared to241

quiet time. Whereas, in the afternoon and evening sectors, the storm time circulation242

makes the vertical winds weaker, resulting in lesser expansion of the thermosphere and243

thus lesser cooling. Due to this changes in circulation, the storm-time temperatures at244

low- and mid-latitudes are higher than quiet time. This mechanism also explains why245

the pre-noon sector enhancement in thermospheric temperature is greater than in the246

afternoon. Figure 8 of Burns et al. (1995) shows a numerical simulation result that pro-247

vides a more detailed explanation of this mechanism. The DE-2 data used in Burns et248

al. (1995) were extremely limited to demonstrate it unambiguously. Our results from the249

GOLD Tdisk observations showing morning and afternoon difference as shown in Fig-250

ure 4, thus provide a first experimental demonstration of this effect during geomagnet-251

ically active conditions. This also demonstrates that the thermospheric weather plays252

an important role in responding to geomagnetic forcing effects during active geomagnetic253

conditions. This has been possible due to the unprecedented local-time and latitude cov-254

erage of the GOLD mission. In the future, a more detailed investigation of GOLD ob-255

servations during stronger geomagnetic storms could be performed to quantify the tem-256

poral relationship between different phases of the storms and ∆T.257

5 Conclusions258

An investigation of the response of thermospheric temperatures to geomagnetically259

active events of varying magnitudes is carried out using recently available GOLD L2 Tdisk260

data. The salient results of this investigation are:261

1. GOLD Tdisk measurements respond to geomagnetic activity of varying magnitudes262

and the response is proportional to the strength of the activity.263

2. Tdisk responds to even minor geomagnetic activity with an ap values less than 14264

nT.265

3. The temperature enhancement increases with increasing latitude and they are ob-266

served to vary from 10-35% for weak to moderate events.267

4. The pre-noon increase in temperature is about 23◦K larger than the afternoon one268

for the active events with ap>20 nT. This demonstrates that the usual daytime269
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circulation and storm altered circulation work in phase in the pre-noon sector. This270

also provides a first experimental demonstration of earlier numerical model sim-271

ulation studies.272

These observational results demonstrate, for the first time, the interplay between273

thermospheric weather and geomagnetic forcing effects during geomagnetically active con-274

ditions. This shows that the GOLD Tdisk data can be used for space weather and op-275

erational use. Possible future investigations could be done on the latitude, longitude, and276

local time dependence of the storms and their spatio-temporal relationship with differ-277

ent phases of the storms.278
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