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Abstract

Forests cover around 30% of the Earth’s land area but are becoming increasingly fragmented. In many parts of the world,

edge effects dominate most of the forested area. Inhomogeneous landscapes and non-ideal weather conditions generate fluid

dynamical features that cause observations to be inaccurately interpreted, biased, or over-generalized. We discuss progress

towards capturing the complicated reality of forests in turbulence-resolving models. Scalar transport does not necessarily follow

the flow in complex terrain, meaning scalar quantities are rarely at equilibrium around patchy forests, and significant scalar

fluxes may form in the lee of forested hills. Gaps and patchiness generate significant spatial fluxes that current models and

observations neglect. Atmospheric instability, driven by differential heating of the canopy, increases the distance over which

fluxes adjust at forest edges. For deciduous forests, the effects of patchiness differ between seasons; eddies reach further into

rougher, leafy canopies. Air parcel residence times are likely much lower in patchy forests than homogeneous ones, particularly

around edges. However, the modeled probabilities of gusts are sensitive to the model setup, including any stochastic element.

Eulerian parametrizations now allow researchers to investigate forest chemistry and particle deposition in the turbulent flow.

The reconfiguration of plants under wind loading can be captured efficiently by modifying the velocity dependence of the

aerodynamic drag. Future challenges include: (i) targeted observations in patchy landscapes; (ii) developing parametrizations

of turbulent transfer applicable to larger scales; (iii) developing numerically efficient improvements to model forest structure;

and (iv) simulating a greater range of weather conditions.
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Key Points:

 Forests are becoming increasingly fragmented. Patchy landscapes and non-ideal 
weather complicate the interpretation of observations.

 Turbulence-resolving models can capture scalar transport, plant movement, varied 
atmospheric conditions, and site-specific structure.

 Models capturing forests more realistically will simulate fluxes better but need 
targeted observations and new parametrizations.
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Abstract

Forests cover around 30% of the Earth’s land area but are becoming increasingly fragmented.
In many parts of the world, edge effects dominate most of the forested area. Inhomogeneous
landscapes  and non-ideal  weather  conditions  generate  fluid dynamical  features  that  cause
observations to be inaccurately interpreted, biased, or over-generalized. We discuss progress
towards capturing the complicated reality of forests in turbulence-resolving models. Scalar
transport does not necessarily follow the flow in complex terrain, meaning scalar quantities
are rarely at equilibrium around patchy forests, and significant scalar fluxes may form in the
lee  of  forested  hills.  Gaps  and  patchiness  generate  significant  spatial  fluxes  that  current
models and observations neglect. Atmospheric instability, driven by differential heating of
the canopy, increases the distance over which fluxes adjust at forest edges. For deciduous
forests, the effects of patchiness differ between seasons; eddies reach further into rougher,
leafy  canopies.  Air  parcel  residence  times  are  likely  much  lower  in  patchy  forests  than
homogeneous ones, particularly around edges. However, the modeled probabilities of gusts
are sensitive to the model setup, including any stochastic element. Eulerian parametrizations
now allow researchers to investigate forest chemistry and particle deposition in the turbulent
flow.  The  reconfiguration  of  plants  under  wind  loading  can  be  captured  efficiently  by
modifying the velocity dependence of the aerodynamic drag. Future challenges include: (i)
targeted  observations  in  patchy  landscapes;  (ii)  developing  parametrizations  of  turbulent
transfer applicable to larger scales; (iii)  developing numerically efficient improvements to
model forest structure; and (iv) simulating a greater range of weather conditions.

Plain Language Summary

Plants live by an intricate set of exchanges with the atmosphere. They draw carbon dioxide
from the air—while being buffeted by the wind—and release water vapor, oxygen, pollen,
and a  variety  of  organic  compounds.  These  exchanges  are  especially  intricate  in  forests,
where microbes and animals add to the quantity and variety of exchanges. Forests’ patchwork
structures mean that certain trees may experience profoundly different climates to others only
meters  away.  These  exchanges  are  made  yet  more  complicated  by  the  fragmentation  of
forests by human activity. This review of the computational modeling of exchanges between
forests and the air focuses on practical ways to improve the realism of the modeling. No
model can recreate all the exchanges in detail. However, capturing more of the edges, gaps,
and  patches  in  real  forests,  as  well  as  non-ideal  weather  conditions,  will  improve  our
understanding  of  forest-atmosphere  exchanges.  This  will  aid  scientific  understanding  and
policy making for forest ecology, meteorology and climatology, and air and water quality.

1 Introduction

1.1 Fragmentation and forest–atmosphere interactions

Forests around the world are becoming increasingly fragmented (Bogaert et al., 2011; Fahrig,
2003; Riitters et al., 2000; Taubert et al., 2018). Only about half of the world’s remaining
forest area, mostly in the Amazon and the Congo Basin, lies more than 500m from the nearest
edge (Haddad et al., 2015). In much of the Northern Hemisphere, forests are small and patchy
because they are located close to areas where large populations of humans have lived for
centuries. As an extreme example, approximately three-quarters of English woodland lies less
than 100 m from the nearest edge  (Riutta et al., 2014). Extensive edges, including internal
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edges around clearings, alter how forests interact with the surrounding environment. Edge
regions are different to the forest interior both in their mean local climate (e.g., less humid)
and in the range of  meteorological  extremes  they  experience  (Crockatt  & Bebber,  2015;
Magnago et al., 2015). Edge-region climate slows woody-debris decomposition (Crockatt &
Bebber, 2015), increases transpiration  (Kunert et al., 2015), and affects the carbon budget
(Froelich et al., 2015; Schmidt et al., 2017). Local climatic changes affect the forest ecology
by  favoring  certain  plant  species  (e.g.,  Bertrand  et  al.,  2020;  Zellweger  et  al.,  2020) or
altering the habitats of forest-dwelling animals  (Pfeifer et al., 2017). Internal fragmentation
from logging and road building facilitates the spread of invasive plant species through forests
(Mortensen et  al.,  2009;  With,  2002).  Forest  edge and patch environments  are  important
ecologically and make up an increasingly large fraction of the total forest ecosystem. The
variation  in  energy balance,  water  balance,  and ecology across  different  forest  structures
implies differing exchange of momentum, and of scalar quantities transported with the flow
such as CO2, water vapor, biogenic volatile organic compounds (BVOCs), and anthropogenic
and biological aerosol particles.

It is more difficult to measure forest–atmosphere exchange in patchy forests than in large,
intact ones. For chemical species for which sufficiently fast sensors exist, eddy covariance is
the  standard  method  for  investigating  forest–atmosphere  exchange  at  an  ecosystem scale
(Aubinet et al., 2012; Baldocchi et al., 2001; Hicks & Baldocchi, 2020; Oliphant, 2012). The
technique assumes certain conditions about the surface and the flow, for example, that the
forest  is  horizontally  homogeneous below height  of  the instruments  and that  the  flow is
stationary. Around forest edges and in other complex terrain, these assumptions are seldom
satisfied even approximately, causing the estimates of exchange to be inaccurate or biased.
This is a well-documented problem  (Baldocchi, 2008; Stoy et al.,  2013; K. Wilson et al.,
2002) which remains unresolved despite sophisticated efforts to refine the eddy-covariance
technique  (Aubinet  et  al.,  2010) or to  correct  measurements  collected during problematic
weather conditions (Acevedo et al., 2009; Wharton et al., 2017). This problem is becoming
increasingly relevant as forests become patchier and more fragmented.

1.2 The scope of this review 

Researchers  typically  approach modeling  forest–atmosphere  interactions  from one of  two
directions. The first focuses on the effect of forests on the atmosphere, for example, on leaf
boundary layers  (Schuepp, 1993a) and evapotranspiration  (Katul et al., 2012) at small time
and space scales, and on climate feedbacks at larger time and space scales  (Bonan et al.,
1992; Rap et al., 2018; Spracklen et al., 2008). The second approach focuses on the effect of
the atmosphere on vegetation, such as on plant biomechanics  (Gosselin, 2019; De Langre,
2008, 2019; Vogel, 2009) or water use efficiency (Schymanski & Or, 2016) at small scales,
to ecosystem changes at larger scales (Canadell & Raupach, 2008; Norby et al., 1999; Zohner
et al., 2020). While these approaches overlap, researchers use different techniques depending
on the physical process and scale of interest. In this review, we concentrate on models of
forest–atmosphere interactions across length scales of up to a few kilometers and time scales
of  up  to  several  hours.  We  refer  to  this  as  the  ‘fragment  scale’,  which  approximately
corresponds to the ecological scales from ‘individuals’ to ‘patches’  (Scholes, 2017) and the
meteorological micro– and γ–mesoscales (Stull, 1988). 
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At the fragment scale, we can consider forests as cohesive units, which may exist as isolated
fragments or as part of a larger whole. In approximately homogeneous canopies, one expects
a  certain  amount  of  statistical  homogeneity  in  the  flow  of  air  and  the  forest  structure.
However,  forest  patchiness  and  challenging  weather  conditions  induce  non-random fluid
dynamical phenomena that violate the assumptions of eddy covariance and are not easy to
constrain  in  parametrizations  for  larger  scale  models.  Recent  reviews  have  discussed the
modeling of land–atmosphere interactions more generally  (Fisher & Koven, 2020), flow in
vegetation canopies  (Belcher et al., 2012; Brunet, 2020), and ecological processes such as
evapotranspiration (Katul et al., 2012). We supplement these reviews by focusing on practical
steps to improve numerical models of forest–atmosphere exchange, particularly as tools to
interpret  field  observations  in  real-world  patchy  landscapes  and  challenging  weather
conditions. Developments in theory, computational capacity and observational networks offer
the  potential  to  improve  scientific  understanding  and  policy  across  forest  ecology,
meteorology  and  climatology,  air  and  water  quality,  and  land  management.  Section  2
summarizes the main fluid dynamical phenomena relevant to forests and the representation of
forests in numerical models. Readers from a micrometeorological background may wish to
skim read sections 2.1–2.4. We discuss four main topics in the remainder of the review: (i)
the realities of forest structure and its representation in numerical models (section 3); (ii)
developments in the theory and modeling of scalar transport around patchy forests (section
4); (iii) incorporating atmospheric phenomena such as stability, air parcel residence time, and
non-passive scalar quantities into high-resolution models (section 5); and (iv) modeling the
effect of wind on forests, accounting for processes such as plant reconfiguration (section 6).
We conclude in section 7 and provide recommendations for further research.

2 Flow in and around forests

2.1 Definition of terms

We use right-handed Cartesian tensor notation, with the Einstein summation convention, and
indices (i , j , k ) take values (1, 2, 3) respectively. For example,  ui is the velocity in the  x i

direction,  with  i = 1,  2,  3 representing  the streamwise (x),  spanwise (y)  and vertical  (z)
directions. We denote  x=(x , y , z ),  (u¿¿1 , u2 ,u3)=(u , v ,w)¿, and time as  t .  For a resolved
quantity,  ϕ,  ⟨ϕ⟩ denotes  a  spatial  average  and  ϕ denotes  a  time  average  such  that
ϕ ( x , t )= ⟨ϕ ⟩ ( t )+ϕ″ (x ,t ) and  ϕ ( x , t )=ϕ ( x )+ϕ ' ( x ,t ) . We refer to the quantities  ϕ ″( x , t) and

ϕ '(x , t) as  the  ‘dispersive’  and  ‘turbulent’  quantities,  respectively,  which  reflect  local
departures from the space and time averages. The nth moment, where n is a positive integer, is

given by ⟨ϕ ' n ⟩. The standard deviations of the velocity components are σ ui
=⟨ui

' 2 ⟩
1
2 , the mean

turbulence  kinetic  energy  (TKE)  ¿
1
2

⟨ui
' 2 ⟩

1
2,  skewness  Skui

= ⟨u i
'3 ⟩ / ⟨ui

' 2 ⟩
3
2,  kurtosis  Kt❑ui

=¿

⟨ui
' 4 ⟩ / ⟨u i

'2 ⟩
2
, and the friction velocity, u¿=( ⟨u 'w ' ⟩

2
+⟨v ' w' ⟩

2
)

1
4. 

Forests are located in the atmospheric boundary layer (ABL), the layer of atmosphere that is
directly  influenced by the Earth’s surface.  Figure 1 presents a schematic  of the idealized
structure of the daytime ABL. The top of the daytime ABL, at height z i, caps the mixed layer,
within  which  variables  such  as  humidity  and  potential  temperature  are  approximately
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constant with height. The lowest 10% or so of the ABL is known as the atmospheric surface
layer (ASL), analogous to the ‘inner region’ in wall boundary layers. Above rough surfaces,
such as forests and urban areas, the ASL can be further divided into the inertial  sublayer
(ISL) and the roughness sublayer (RSL) (Raupach et al., 1991). Within the ISL, the turbulent
fluxes  of momentum and scalar  quantities  are  approximately  constant  with height.  These
constant fluxes are used as scaling parameters in a set of relationships known as Monin–
Obukhov similarity theory (MOST)  (Foken, 2006; Monin & Obukhov, 1954; Stull, 1988).
MOST is widely used in surface-layer parametrisations for numerical weather prediction and
climate modeling (Hari Prasad et al., 2016; Skamarock et al., 2008). The RSL extends from
the ground up to  around 1.5–5 times  the mean height  of the obstacles  hc,  known as the
blending height. The lowest part of the RSL, from the ground to z=hc, is the canopy layer, in
which  obstacles  and  air  are  intimately  intermingled.  In  neutral  atmospheric  conditions,
turbulent  structures  that  scale  with  the  mean  canopy  height  hc control  the  exchange  of
momentum and scalar quantities between air and the surfaces of the obstacles.  The friction
velocity u¿ can be interpreted as a measure of the mean velocities of the turbulent eddies. It is
often used as a shorthand for ASL turbulence, with higher values indicating more turbulent
conditions. However, u¿ is only clearly defined in the ISL. Around forests, the complexity of
the flow means that u¿ alone provides limited information about the turbulence (Wharton et
al., 2017)
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Figure 1. Sublayers of the daytime atmospheric boundary layer (ABL) over a forest. The
figure follows the classification in Oke (1988) for an urban boundary layer. The height of the
mixed  layer,  which  typically  accounts  for  around  90%  of  the  daytime  ABL height,  is
suppressed to aid presentation. The variables z i and hc denote the height of the ABL and the
mean height of the forest, respectively. 

2.2 Representing forests in numerical models

Early models of flow in vegetation canopies accounted for the presence of the plants through
empirical  drag  terms  based  on  spatially  averaged  velocity  measurements  (Cionco,  1965;
Inoue, 1963). In the 1970s and 1980s, researchers developed a more formal basis for the
plants’ presence, often referred to as the ‘double-average method’, which proceeds directly
from the transport equations (Finnigan, 1985; Raupach et al., 1986; Raupach & Shaw, 1982;
N. R. Wilson & Shaw, 1977). This is achieved using a volume average operation such that,
for a resolved quantity ϕ,

⟨ϕ ⟩ ( x , t )=
1
V ∭ϕ (x+r , t )dr .

(1 )

The spatial  average in equation (1) is over a volume that (a)  includes multiple  trees and
plants, but (b) is small compared to the distance over which the structure of the forest varies.
The vertical resolution is high in order to properly resolve the flow gradients  (Finnigan &
Shaw, 2008). Around the same time, researchers applied similar procedures to investigate
mass  transfer  in  engineering  applications  (Howes  &  Whitaker,  1985;  Whitaker,  1973).
Because plant elements occupy a small proportion of the available volume, no distinction is
typically  made  between  the  ‘superficial’  averaging  operation  (including  air  and  plant
elements in the average) and the ‘intrinsic’ average (within the body of fluid only), although
this  distinction  can  be  important  in  urban  areas  (Schmid  et  al.,  2019).  The  averaging
operation is followed by a time average sufficient to capture the dominant scales of motion.
Applying  the  two  operations  to  the  continuity  and  momentum  equations,  ignoring  the
Coriolis force and the momentum transfer from viscosity, gives 

∂U ❑i

∂ x i

=0 ,

(2a )

∂U i

∂ t
+U j

∂U i

∂x j

=
−∂P
∂x i

+
g
θ0

⟨θv ⟩δ i3−
∂ ⟨u i

'u j
' ⟩

∂x j

−
∂ ⟨ui  overline {{u} rsub {j}} ⟩

∂x j

+ f i ,

(2b )

where  P  is  the  kinematic  pressure,  g is  the  gravitational  acceleration,  θ0 is  a  reference
temperature, θv is the virtual potential temperature, and δ i 3 is the Kronecker delta (non-zero
when i = 3). Capital letters denote the double-averaged quantities, which we refer to as the
mean  quantities—e.g.,  the  mean  streamwise  velocity  component  U.  The  term
−∂ ⟨ui  {overline {u}} rsub {i} ⟩/∂ x jis  the  dispersive  flux  of  mean  momentum,  which
accounts for spatial correlations in the time-averaged velocity field. The dispersive flux is
usually assumed to be low in homogeneous forests and is therefore typically disregarded in
numerical models  (Patton & Finnigan, 2012). However,  recent evidence suggests that the
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dispersive fluxes of momentum and scalar quantities can be significant around patchy forests
(see sections 3.3 and 4.3). 

The aerodynamic drag of the forest (per unit mass of air) is accounted for through the term f i
(m s-2) on the right-hand side of equation (2b). This term is the net sum of (i) the form drag
from pressure differences either side of each plant element, and (ii) the viscous boundary
layers that develop over each plant element, 

f i=−⟨ ∂P
″

∂x i
⟩+ν ⟨ ∂2u″

∂ x j∂x j
⟩ ,

(3 )

where  ν is  the  kinematic  viscosity  of  air.  This  term is  usually  parametrized  as  spatially
distributed drag, which we discuss in section 3. See Finnigan (2000) and Finnigan & Shaw
(2008) for more detailed discussion of the double-average method.

Researchers have adopted various approaches to find approximate solutions to the double-
averaged  equations,  including  first-order  analytical  closure  (Finnigan  et  al.,  2015,  and
references therein), modified gradient-diffusion theory (Zeng & Takahashi, 2000), Reynolds-
averaged  Navier–Stokes  (RANS)  solvers  (Boudreault  et  al.,  2015;  Brunet,  2020,  and
references  therein;  Katul  & Albertson,  1998),  and large-eddy simulation  (LES)  (Shaw &
Schumann,  1992).  Direct  numerical  simulation  (DNS)  has  recently  been  used  for  small,
idealized  plant  canopies  (Sharma  &  García-Mayoral,  2020b,  2020a).  However,  the
computational  expense  of  DNS  means  it  can  still  be  employed  only  for  relatively  low
Reynolds number (Re) flow and that it remains unsuitable for fragment-scale investigations
around  forests.  Of  these  techniques,  LES  has  emerged  as  the  most  popular  method  for
investigating fragment-scale exchange around forests, although analytical closure schemes
and RANS remain popular for situations that do not require the turbulence to be resolved.
Using LES, a low-pass filter is applied to the momentum equations, where the spatial filter is
analogous to  the volume average in equation  (1).  This  divides  the flow into numerically
resolved motion larger than the spatial filter, and smaller sub-grid scale (SGS) motion, which
must be parametrized (section 3.5). The main advantage of LES is that the largest scales of
motion  are  expressly  resolved,  allowing  visualization  and  term-by-term  analysis  of  the
turbulent flow of air that is impossible to achieve using observations or physical models.

2.3 The turbulence structure around forests

As air moves through a forest, momentum is transferred from the flow to the aerial parts of
the plants and trees. This reduces the streamwise wind speed throughout the depth of the
canopy and a region of high wind shear forms around the crown top. The shear region is
evidenced  by  an  inflection  in  the  mean  streamwise  wind-speed  profile,  which  is
approximately  exponential  within  the  canopy  and  logarithmic  above  it  (Finnigan,  2000;
Raupach  et  al.,  1996).  A secondary  maximum in  the  streamwise  wind speed  sometimes
occurs  in  the  trunk  space,  especially  near  edges  and  in  forests  with  sparse  understories
(Dupont et al., 2011). The high shear around the crown top generates Kelvin–Helmholtz-type
instabilities,  which  in  turn  generate  coherent  large  eddies  around  the  tops  of  the  trees,
analogous to the dominant processes in a plane mixing layer (Raupach et al., 1996). Using the
analogy  of  vorticity  thickness  in  a  mixing  layer,  Raupach  et  al.  (1996)  reduce  canopy
turbulence to a single length scale,  Ls=Uhc

/(∂U /∂ z )hc
, where  Uhc

 is the mean streamwise

7

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240



velocity component U at z=hc. The shear length scale Ls, which equates to around 0.5hc for
medium  density  vegetation, provides  a  rough  estimate  of  the  diameter  of  the  dominant
turbulent eddies. It is difficult to determine the value of  Ls exactly for real forests because
dU /dz varies quickly with height around the crown top (i.e., d2U /d z2 is not easily defined). 

The presence of the trees and plants affect the flow statistics in distinctive ways. The second-
order moments ⟨u' 2 ⟩, ⟨w '2 ⟩, ⟨u ' w' ⟩ and the TKE increase with height within plant canopies, but
are roughly constant above the canopy  (Brunet, 2020; Raupach et al., 1996). The turbulent
velocity components u ' and w '  are more correlated and skewed in the RSL than they are in
the  ISL above,  where  many  velocity  statistics  display  approximately  Gaussian  behavior.
Streamwise and vertical skewness (Sku and Skw) are approximately zero in the ISL but take
values  0.5≤S ku≤1 and  −1≤Skw≤ 0 in forests  (Amiro,  1990; Kruijt  et  al.,  2000;  Lee &
Black, 1993; Raupach et al., 1996; Villani et al., 2003). The values of  Sku and  Skw may be
higher, absolutely, at forest edges (Dupont & Brunet, 2008a). The association of positive Sku

and negative Skw values indicates that turbulent transfer is dominated by strong but infrequent
downward penetrations of air into the canopy, known as ‘sweep motions’ (u'

>0and  w '
<0).

Frequent  upward  motions  of  low-momentum  air  from  within  the  canopy,  known  as
‘ejections’  (u'

<0and  w '
>0),  also  account  for  a  large  proportion  of  the  turbulent  transfer

(Shaw & Patton,  2003),  although sweep motions  contribute  more to  the total  transfer  of
momentum around the crown top (Raupach et al., 1996; Shaw & Tavangar, 1983). Together
sweep motions and ejections account for between 60% and 80% of the exchange of scalar
quantities from homogeneous forest canopies to the atmosphere aloft (Gao et al., 1989). The
greater  magnitudes  of  the  skewness  statistics  around  forest  edges  reflect  the  significant
differences in momentum and scalar exchange in patchy and gappy forests as compared to
homogeneous canopies.

The mixing-layer  analogy—where the turbulence  is  dominated by shear generated eddies
around  the  crown  top—has  proved  remarkably  robust  in  forests  and  other  vegetation.
However,  current  understanding  of  canopy  turbulence  is  far  from complete,  particularly
around patchy forests. Further LES studies and targeted observations will help to reveal to
what extent three-dimensional structures dominate the turbulence, to what extent the mixing-
layer  analogy  breaks  down when  the  canopy  is  patchy,  and  the  density  of  trees  that  is
required for the flow to transition from boundary-layer to mixing-layer-type flow (mixing-
layer behavior has been observed at low densities). The impact of atmospheric stability and
precipitation on fragment-scale forest–atmosphere exchange is also poorly understood. For
good reason, modeling  studies  have typically  sought  ‘canonical’  dynamical  behavior  that
occurs in different types of vegetation. However, this has usually meant neglecting buoyancy
and other challenging weather, despite their significant impact on both the forest ecology and
the flow dynamics (see section 5.1). For further discussion of plant-canopy turbulence see
Finnigan (2000) for  flow statistics  and technical  background,  Bailey  & Stoll  (2016) and
Finnigan et al. (2009) for the emergence of coherent fluid structures, Belcher et al. (2012) for
scaling analysis in complex terrain, and Brunet (2020) for historical background and a review
of recent studies in homogeneous plant canopies.
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2.4 Flow adjustment around forest edges

Figure 2 presents a schematic of the statistical patterns in momentum transfer that emerge as
the flow adjusts around the edges of a small forest in neutral atmospheric conditions (Belcher
et al., 2003, 2012; Dupont & Brunet, 2008a, 2009). 

Figure 2.  Dynamical flow patterns around a small forest in neutral atmospheric conditions.
Each pictured tree represents approximately three trees in the streamwise direction. Figure
after  Belcher et al. (2003) and Dupont and Brunet (2009). The stylized edge profile of the
schematic forest is discussed in section 3.2.

In the impact region, (i) in Figure 2, the forest acts as a step-change in porosity, inducing a
pressure gradient  to  slow the flow. Just  downstream of the forest  edge is  the  adjustment
region, (ii) in Figure 2, in which the drag from the trees decelerates the flow over a distance
x A proportional  to a  canopy drag length  scale  Lc=1/Cda ( z ) (Belcher  et  al.,  2003,  2012;
Rominger & Nepf, 2011), where a (z) (m2  m-3) is a height-dependent function of local plant
density, and Cd is a dimensionless drag coefficient. The length scale Lc emerges from quasi-
inviscid solutions to the momentum equations in one-dimensional flow. It can be interpreted
as a distance constant over which the velocity and drag adjust to balance the pressure gradient
(Finnigan & Brunet, 1995). At the edge of homogeneous canopies, assuming constant shear,
and neutral atmospheric conditions,  Lc≈ L sU hc

2
/2u¿

2. Because  Lc is inversely proportional to
the plant density, the flow adjusts more quickly with increasing forest density, provided the
density varies on scales greater than the volume averaging operation. The length scale Lc is
only an approximation for three-dimensional flow around real forests, for which the variables
Cd and  a (z) may  not  be  clearly  defined  (sections  3  and  6).  Nonetheless,  numerical
simulations,  field  observations  and  flume  experiments  of  vegetation  canopies  show  the
adjustment distance x A downstream of a forest edge is indeed proportional to Lc, with x A≈ 4–
6Lc≈ 8–10hc(Belcher  et  al.,  2012;  Morse  et  al.,  2002;  Rominger  &  Nepf,  2011;  Yang,
Raupach, et al., 2006). 

In the canopy-flow region, (iii) in Figure 2, the flow is fully adjusted to the presence of the
forest. The canopy-shear layer (iv) is characterized by the shear-generated turbulent eddies
that  exchange  most  of  the  energy,  mass  and  momentum  between  the  forest  and  the
atmosphere. These eddies are generated by processes analogous to those in a plane mixing
layer  (Raupach et  al.,  1996). Downstream of the adjustment  region, an internal  boundary
layer may begin to develop above the trees, known as the  roughness-change region (v). If
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there is low vegetation or a large clearing in the lee of the forest, an exit region (vi) forms,
within  which mean wind speed increases,  with a  corresponding downwards  flow,  over  a
streamwise distance 1–2hc. A wake region (vii), in which the flow recirculates, may form in
the lee of relatively dense forests (Cassiani et al., 2008). The formation and strength of the
recirculation depends on the density on the forest, but appears to be relatively independent of
its foliage distribution (Ma et al., 2020). 

2.5 The edge regions in context 

Simple geometric considerations show that the area of forest subject to edge effects, the ‘edge
region’, is surprisingly large. Among two-dimensional shapes with the same area, a circle has
the shortest perimeter, i.e., we can consider it the most compact shape in terms of its edge to
area ratio. By approximating the plan of a forest stand as a circle, we obtain a lower limit to
the area of the edge region from the annulus of widthx A, where x A is the flow’s adjustment
distance. The lower limit for the ratio R0 of the area of the edge region to the total stand area
is therefore

Ro=
x A (2 r−x A )

r2 =

π . xA (2√ A
π

−x A)
A

;r ≥ xA>0 ,

(4 )

where A is the area of the forest stand and r is the radius of the equivalent-area circle. Taking
R0>1/2 in equation (4) shows the edge region comprises over half the forest stand where

√A / π<(2+√2 )x A,  i.e.,  where  A< (6+4 √2 ) π x A
2 .  Because  most  forest  stands  are  not  even

approximately  circular,  the  area  subject  to  edge  effects  is  substantially  larger  than  this
minimum.  As  a  conservative  heuristic  for  non-circular  forests,  we  suggest  edge  effects
dominate an area 25% greater than the area of the equivalent-area circle, therefore, where

A<1.25× ( 6+4 √2 ) π x A
2 ≈ 46 xA

2 . Taking  x A≈8hc—the lower end of reported values of  x A—

provides  a  rule-of-thumb that  edge  effects  dominate  in  forest  stands  where  A< 3000hc
2.

Since  forested  areas  are  usually  reported  in  hectares  and  canopy  heights  in  meters,  a
dimensional version of the rule-of-thumb is

A (ha )<0.3 [hc (m ) ]
2
.

(5 )

For example, for a mature forest with a canopy height of 20 m, edge effects dominate for
patches whose area are less than 120 ha. In many parts of the world (Haddad et al., 2015),
edge effects dominate most of the forested area. 
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3 Beyond idealized forest structures 

3.1 The drag parametrization and its simplifications

The  aerodynamic  drag  f i in  equations  (2)  and  (3)  is  typically  parametrized1 by  spatially
averaging the localized drag from the individual plant elements as

f i=−Cda ( z )|U|U i ,

(6 )

where  |U|=(U jU j )
1
2 and the drag coefficient  Cd is usually specified as a constant, with values

ranging from 0.1–0.5 (Table A1). This parametrization, which we refer to as the ‘distributed-
drag method’, assumes the aerodynamic drag from the forest increases with the square of the
velocity, as is the case around bluff bodies  (Shaw & Schumann, 1992; N. R. Wilson & Shaw,
1977).  The  viscous  component  of  the  drag  is  usually  neglected  in  the  approximation  of  f i
because form drag dominates in high-Re  flow through forests  (Thom, 1971). The local forest
density a (z) is typically assumed to be a function of the plant area density (PAD), the total one-
sided plant area per unit layer volume (m2/m3). The plant area index (PAI) is the PAD integrated

over the height of the forest  hc, i.e.,  PAI  ¿∫
0

hc

a ( z )dz. Figure 3a shows  a (z) derived using the

parametrization by Lalic and Mihailovic (2004), as employed by Yan et al. (2020), among many
others. The Lalic and Mihailovic parametrization is flexible, covering a broad range of densely
packed, even-aged monocultures, but it is less suitable for discontinuous canopies, uneven-aged
forests, and ‘standards with coppice’ forest forms, which have multiple modes of leaf density.
Other vertical profiles of a (z) are typically scaled or generated empirically from published PAI
values.  However,  some studies have specified  a ( z ) using field measurements  (Dupont  et  al.,
2011) or terrestrial laser scans of forests (Schlegel et al., 2012) – see Table A1 for a summary of
the various techniques used. The canopy drag length scale permits an alternative expression for
the PAI of a forest: PAI¿hc=a(z )≈a, so that PAI≈hc/Cd Lc. This is only a rough approximation,
because it assumes the plant area is evenly distributed in all directions. Modeling studies have
used PAI values in the range 1–8, with most studies concentrating at the low-to-medium end of
the range (Table A1). The relative scarcity of studies using PAI > 5 is surprising given that
values in tropical and conifer forests often fall in the range 8–12 (Fleischbein et al., 2005; Lefsky
et al., 1999).

1 This parametrization is based on the aerodynamic drag equation, used in fluid mechanics and engineering 
applications. In the fluid mechanics literature, the drag equation (per unit mass) is usually written with a factor of ½,
which originates from the formula for the kinetic energy of the fluid in front of the body. By meteorological 
convention, the factor of ½ is included in the drag coefficient and does not appear expressly here.
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Figure 3.  (a) Vertical profile of PAD,  a (z), calculated using the formula derived by Lalic and
Mihailovic (2004;  (b) the southern edge of the oak-dominated woodland at  the  Birmingham
Institute  of  Forest  Research  (BIFoR)  free-air  carbon  dioxide  enrichment  (FACE) facility
belonging  to  the  authors’ institute;  and  (c)  open  trunk  space  of  an  even-aged  Pinus  taeda
monoculture plantation. 

The distributed-drag method was introduced in the 1970s and remains  the starting  point  for
numerical  investigations  of forest–atmosphere  exchange in  the turbulent  ASL. The approach
accurately resolves the mean flow around bluff bodies and through homogeneous forests (Yang
et al., 2006). However, it poorly reproduces higher-order flow statistics around forests and in
other vegetation canopies  (Dupont & Brunet, 2008a; Ma & Liu, 2019; Pan, Chamecki, et al.,
2014).  It  also  makes  several  unrealistic  assumptions  about  the  canopy  structure,  which  are
especially relevant when forests are patchy. First, while the drag force is time dependent, the
local foliage density a (z) varies only with height, if at all. The forest is therefore assumed to be
horizontally homogeneous at each height, reducing the forest morphology to a single dimension (
z).  In  reality,  forest  canopies  comprise  a  patchwork of  openings  of  many shapes  and sizes,
formed by senescence, disease, and windthrow (Hirons & Thomas, 2018; Whitmore, 1989) as
well as human activities (Figure 4). These gaps are significant ecologically and structurally. The
floras of the northern temperature forests, for example, include many species that depend on gaps
and patchiness (Fox, 1977; Tinya et al., 2009; White, 1979). 
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A second assumption underlying the  distributed-drag method is that forest edges are structural
continuations  of the main body of the canopy  (Dupont & Brunet,  2008a;  Kanani-Sühring &
Raasch, 2015; Ma et al., 2020). Unless the forest has been recently disturbed, this assumption is
unrealistic because many trees and understory plants grow into the light to maximize the leaf
area available for photosynthesis, thereby forming an almost closed edge (see the example in
Figure 3b). Failing to account for the true structure of forest edges strongly overestimates the
penetration of air into the forest  (Schlegel et al.,  2012, 2015), and neglects the possibility of
dispersive fluxes of momentum and scalar quantities (Boudreault et al., 2017; Q. Li & Bou-Zeid,
2019). Third, even where a (z) is treated as varying with height, most studies represent the plant
area as being distributed very densely in the tree crowns and sparsely in the trunk space (Figure
3a). This is a reasonable approximation for certain forests, such as unthinned conifer plantations
(Figure 3c), but a poor approximation for forests with extensive understory growth.

3.2 Modeling forest patchiness

At which scale do canopy gaps begin to matter? As regards light penetration,  Zhu et al. (2015)
propose three categories of gap sizes in temperate forests: ‘small’ 0.49 ¿ ROd /hc

≤ 1; ‘medium’ 1
¿ ROd /hc

≤ 2; and ‘large’ gaps, 2 ¿ROd / hc
< 3.5, where ROd /hc

 is the ratio of the opening’s diameter (

Od ¿ to the mean height of the trees surrounding the gap. Openings with diameters such that

ROd /hc
≥ 3.5 are considered clearings with their own edges. Small openings, such that ROd /hc

≤ 0.49

are not treated as gaps, because they remain in shade for much of the day. 

Regarding the flow of air, it is not clear at which size a canopy opening is a ‘pore’, in that the
filtering operations smooth out its effect on the flow, and at which size it is a ‘gap’, in that it
induces non-random dynamical effects. Determining a numerical threshold between pores and
gaps is not possible using observations alone because of the difficulties inherent in obtaining
spatially-representative  velocity  observations  in  forests  (Finnigan,  2000;  Finnigan  &  Shaw,
2008), and is not straightforward even using idealized LES models, because the threshold likely
to be around the scale of, or smaller than, the spatial filter. We propose, as a first approximation,
that openings with horizontal  diameter greater than to the shear length scale (Od≥ Ls) can be
considered ‘gaps’, because they are likely to induce fluid dynamical effects on the scale of the
dominant turbulent eddies. Openings where Od≪Ls can be considered ‘pores’ in that they have
only wake-scale effects on the flow and contribute little to the overall TKE budget  (Finnigan,
2000;  Raupach et  al.,  1996;  Raupach  & Shaw,  1982).  The length  scale  Ls is  most  soundly
defined in homogeneous,  dense vegetation canopies,  so this  is only rough approximation for
patchy forests. Because Ls≈ 0.5hc,  this dynamical definition of canopy gaps corresponds to the
minimum size of the ‘small gaps’ proposed by  Zhu et al. (2015), which they determined with
respect to light penetration rather than fluid dynamics. 
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Figure 4. Openings in various forest canopies. In-canopy (a) and aerial (b) views of the BIFoR
FACE facility, situated in a mature deciduous woodland in the United Kingdom  (Hart et  al.,
2020). The FACE infrastructure is sited in natural gaps in the forest canopy. Note the variation in
foliage color and density in (b), which was caused by insect herbivory during an outbreak of the
European winter moth; (c) canopy openings in the understory layer of a tropical rainforest in
Suriname; (d) canopy openings in the understory layer of a boreal forest in British Columbia,
Canada.

A few studies have modeled patchiness at the stand level and below. Bohrer et al. (2009) use a
virtual canopy generator (Bohrer et al., 2007) to simulate three-dimensional deciduous canopies,
including gaps smaller than a tree crown. The heterogeneity caused turbulent fluxes to become
spatially  correlated in some parts of the forests, such as stronger and more frequent ejection
events occurring over shorter trees.  Bohrer et al. (2009) also show that canopy gaps affect the
flow  differently  depending  on  season.  In  winter,  when  deciduous  forests  are  sparse,
heterogeneity in the forest canopy causes the dominant turbulent eddies to penetrate less deeply
into the canopy relative to the homogeneous case. This decreases the forest’s roughness length z0
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, a common measure of surface roughness, and the displacement height  hd, which reflects the
height of the bulk sink of momentum. By the end of spring, however, when the PAI is higher,
gaps  in  the  forest  canopy  cause  the  dominant  turbulent  eddies  to  penetrate  further  into  the
canopy, and the values of z0 and hd to increase. In other words, in winter, the flow perceives a
patchy forest  as  smoother  than a  homogeneous one but,  after  spring  leaf-out,  it  perceives  a
patchy  forest  as  rougher.  This  probably  results  from there  being  a  smaller  density  contrast
between the gaps (high eddy penetration) and full canopy cover (low eddy penetration) in winter,
as well as lower wind speeds in spring. It is not clear why Bohrer et al. (2009) focused on spring
rather than summer as their leaf-out season, since, for deciduous forests, spring is a time of rapid
change in terms of weather and canopy structure. The changes to the values of z0 and hd induced
by the transitions in canopy morphology are relevant to large-scale atmospheric models, which
employ these parameters  to represent  forests’ effect  on the atmosphere.  Bohrer et  al.  (2009)
propose that variables such as the maximum PAI and the fractional area of gaps may be used in
regional models to adjust the parameterized values of z0, hd and the eddy penetration depth, each
of which may vary by around 25% in patchy forests relative to homogeneous forests of the same
density. Maurer et al. (2015) find that varying z0 and hd seasonally, as a function of the canopy
structure,  produces more precise and less biased estimates of  u¿ than models taking constant
values of those parameters.

Schlegel et al. (2015, 2012) use LES to simulate flow around a clearing, with the forest structure
derived  using  terrestrial  lidar  observations.  Small-scale  plant  heterogeneity  creates  sustained
upwards motion in denser patches of forest and downwards motion in clearings and large gaps.
In patchy urban areas  (treated  as  porous media),  where a  patch  is  larger  than  x A,  the mean
streamwise  velocity  component  fully  adjusts  to  the  change in  density  induced by the  patch,
creating a strong vertical velocity component at the upstream edge of edge patch  (Bannister et
al., 2021). The lidar measurements of  Schlegel et al. (2012, 2015) show that, even in a forest
dominated by Norway spruce and Scots pine, the edges are dense throughout the height of the
forest. This assumption is less realistic still for tropical and deciduous broadleaf forests, which
often  have  dense  understory  layers  in  which  the  PAD is  similar  to  that  of  the  crown layer
(Schneider et al., 2019; Zhao et al., 2011). Schlegel et al. (2012, 2015) show the flow does not
penetrate  closed edges as easily as may appear in homogeneous models.  TKE and Reynolds
stresses decay faster behind closed edges and strong cross flows may develop. Away from the
edges, large gaps and clearings deflect the flow downwards, creating advective fluxes within the
forest air space (Queck et al., 2016). Boudreault et al. (2017) use lidar measurements (outlined in
Boudreault et al., 2015) to generate a three-dimensional forest structure, which they use in an
LES model of flow across a forest edge. Compared to a homogeneous edge, the gaps induce
variations in the flow, for example, the streamwise (U) and vertical (W) velocity components
respectively  vary  by  around 20% and 5% of  their  spatial  means  at  z=0.5hc.  The  turbulent
momentum fluxes  are  likewise  higher  in  the  heterogeneous  case,  for  example  σ w varies  by
around 40% of its spatial mean, because air is forced through patches of low density. 
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3.3 Dispersive fluxes of momentum can be significant

Spatial correlations in the time-averaged statistics, the term −∂ ⟨ui  {overline {u}} rsub {i} ⟩/∂ x j

in equation (2b), are usually excluded from analyses of forest–atmosphere exchange (Kaimal &
Finnigan, 1994; Patton & Finnigan, 2012). This is a reasonable assumption in homogeneous,
idealized  canopies  in  which  these  dispersive  fluxes  are  small  (Moltchanov  et  al.,  2011).
However,  investigations  in  model  canopies  show  that  inhomogeneities  in  the  structure  can
generate large dispersive fluxes, particularly around edges (Harman et al., 2016; Moltchanov et
al., 2011, 2015).  Boudreault et al. (2017) show that spatial variability in forest canopy structure
induces  dispersive fluxes  that account  for 10–70% of the total  variances  of  U and  W at  the
upstream edge of the forest,  across a streamwise distance of  x /hc=¿ 0–8  ≈ 0–x A.  Here,  the
dispersive  momentum fluxes  and skewness  are  greater  than  their  turbulent  counterparts,  for
example, with the dispersive flux of momentum accounting for  ¿50% of the total momentum
flux. Away from the edges, gaps and other patchiness decrease the efficiency of momentum
transfer at the crown top. This suggests gap-induced flow phenomena interfere with the mixing-
layer-type  coherent  structures  that  form  around  the  tops  of  the  trees.  Bailey  et  al.  (2014)
observed  a  similar  result  in  row-structured  versus  homogeneous  trellis-trained  crops.  This
interference is probably strongest when the structural inhomogeneities are of a size ≈ Ls, so that
the vortices  shed around them are of  a  similar  scale  to the coherent  structures  that  develop
around the crown top. In a more idealized example, Q. Li & Bou-Zeid, (2019) use LES to show
that  very  rough,  heterogeneous  surfaces—comprising  cuboids  of  various  dimensions  and
orientations—affect  the  dispersive  fluxes  of  momentum and  scalar  quantities  more  than  the
turbulent components of the fluxes. As in  Boudreault et al. (2017),  Q. Li & Bou-Zeid, (2019)
show the dispersive components can comprise most of the total momentum flux. Ignoring these
dispersive fluxes may mean ignoring over half of the total momentum flux by focusing only on
deviations from the time average and neglecting spatial deviations. Real forests channel air into
gaps and patches, creating spatially coherent structures whose contributions can be as large as
those induced by turbulence.

3.4 Resolved trees

The difficulties involved in incorporating realistic structure into the distributed drag approach,
discussed above, raise the question of whether it  is  possible  to resolve the forest directly  in
numerical and physical models. Poggi et al. (2004) approximate plants as rigid circular cylinders
in  a  wind-tunnel  model,  finding the  wakes  in  the  lee  of  the  vegetation  stems perturbed the
dominant mixing-layer type eddies at the crown top. Yue et al. (2007) model corn plants as stems
surrounded by leaves, applying a distributed drag parametrization at the leaf points and, at the
stem points, a force calculated as drag around a cylinder.  Böhm et al. (2013) modeled trees as
cylindrical trunks below spherical crowns in a wind tunnel. They conclude similarly to Poggi et
al. (2004) that the partially coherent wakes of the bluff canopy elements modify the dominant
eddies at the crown top, and that flow within the canopy divide into wake and non-wake regions.
Yan et al. (2017) performed high-resolution LES studies of a regular array of bluff elements,
specified  similarly  to  the  wind-tunnel  model  of  Böhm et  al.  (2013).  In  a  series  of  separate
simulations,  Yan et al. (2017) configure the trees as (a) entirely bluff bodies; (b) solid trunks
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with the crown represented as distributed drag; and (c) as entirely distributed drag. The spatially
averaged flow statistics were quite similar across the three cases, with slightly higher turbulence
in the shear layer using the bluff-body representations. As an interesting alternative, Schröttle and
Dörnbrack (2013) use LES to simulate flow around 16 Pythagoras trees2, treated as immersed
boundary layers with the outer tree branches 3.35 K warmer than their surroundings. They show
the thermally driven vortices from the trees, of diameter roughly hc and turnover time of ~30 s,
interfere with the shear-generated coherent structure at the tops of the trees. However, the study
was a method prototype, and its results reveal little about real forests.

For the time being, because of the computational expense of simulating turbulent flow, resolving
forest structure directly remains out of reach for field-scale investigations of forest–atmosphere
exchange. For example,  Yan et al. (2017) use an extremely high resolution model to discretize
the trees (dx=dy=0.03hc), which severely constrains the number of trees that can be simulated.
Further,  treating  the  trees  as  bluff  bodies  does  not  account  for  plant  reconfiguration,  may
overestimate the scales of vortical  wakes behind tree crowns, and excludes the possibility of
resolving the cooperative waving motion that occurs in real vegetation. There are no theoretical
limits to the number of trees that can be included in wind-tunnel models. However, it is difficult
to  include  canopy  exchange  and  other  ecological  processes  in  physical  models.  It  is  also
challenging to maintain flow with sufficiently high  Re values around forests, for which higher
values are needed than in many engineering applications  (Gromke, 2018). Results from bluff-
body  models  may  be  useful  to  derive  drag  parametrization  schemes  for  use  in  larger  scale
simulations.  Böhm et al. (2013) provide a strong starting point by identifying that wake-scale
TKE in bluff-body canopies is around 1/5 Ls (the mixing layer hypothesis eddy scale) rather than
1/100 to 1/10  Ls typical of vegetation canopies. This implies momentum is transferred more
efficiently in vegetation than in canopies of bluff bodies. 

3.5 Resolution and domain size

Scientists continually face a trade-off between scale and resolution. This choice is particularly
relevant  to  fluid  modeling  because  of  the  extreme  computational  expense  of  simulating
turbulence. LES of fragment-scale interactions around forests currently use around 106–107 cells
(e.g., Ma et al., 2020), although Patton et al. (2016) deployed some 4 × 109 cells in an enormous
computational effort. In practice, this means LES models simulating turbulence in a horizontal
domain  of  a  few  square  kilometers  currently  have  a  horizontal  grid  resolution  of  2–10m.
Computing capacity is expected to increase with time for the foreseeable future, although LES
resolution  has  increased  more  slowly  than  the  general  semiconductor  capacity  predicted  by
Moore’s law (Bou-Zeid, 2014). This raises the question of whether the extra capacity should be
applied towards increasing the resolution or the size of the simulated domain. In many fluid
applications, the answer to this question is ‘both’. However, the distributed-drag method requires
the averaging volume to be much larger than the individual plant elements so that their presence
is accounted for statistically. For mature forests, where the tree trunks can have diameters of a

2 A type of fractal constructed iteratively from a right-angled triangle with squares erected on each of its sides.
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meter or more, increasing LES resolution further than the current maxima makes little physical
sense without a formal re-think of the averaging operations. 

Increased computational capacity could be used more productively (i) to increase the simulated
ABL height, thereby increasing the total amount of resolved TKE  (Grylls et al., 2020), (ii) to
increase the size of the simulated domain, (iii) to include a wider range of physical and chemical
processes, or (iv) to account for plant movement. Each of these points is discussed below. The
workhorse  spatial  resolution  remains,  then,  a  forest  volume  of  up  to  tens  of  cubic  meters
accounted for by a single grid cell, and the smallest resolved eddies  ≈ 5 m in diameter. This
implies a need for robust SGS schemes if LES simulations are to be useful. Although LES has
become popular over the last few decades, development of SGS schemes has been slow (Moser
et al., 2021). The most widely used SGS parametrization is the Smagorinsky scheme, in which
closure is achieved using empirical arguments and theory  (Smagorinsky, 1963). This scheme
assumes the turbulence is isotropic, which is not the case in forests (and in many other ASL
applications).  Recently,  more  suitable  schemes  have  been  developed  by  determining  the
minimum energy dissipation needed to balance the turbulence production at SGS scales (Gadde
et al., 2021; Rozema et al., 2015), but these schemes have not yet been widely adopted. While, as
we argue above, blindly increasing the grid resolution is likely to achieve little, improving SGS
schemes for forest applications is an important line of future research. Eddies larger than the
plant elements lose TKE to heat and fine-scale TKE, which short cuts the usual eddy cascade
that is assumed by Kolmogorov’s  –5/3 law (Finnigan, 2000).  Shaw & Patton (2003) show this
effect  can  be  accounted  for  in  LES using  a  TKE cascade  term,  without  the  need for  extra
modifications to account for wake-scale kinetic energy transfer. However, the effect of this short
cut to fine scales has not been tested in patchy vegetation canopies, with moving plants, or with a
view to determining its impact on scalar exchange across the boundary layers of leaves.

4 Scalar quantities in complex terrain

The desire to understand forest–atmosphere scalar exchange is a major motivation for measuring
and modeling forests at all. Important scalar quantities in forest ecology include: temperature;
trace gases such as CO2, water vapor, ozone, and volatile organic compounds (VOCs); ultrafine
particles (UFP); litter fragments; soil particles; insect and animal detritus; and spores and pollen.
In this section we focus on the numerical modeling of species that can be approximated as being
passive and massless. These include CO2, as well as other gases and UFPs whose lifetimes are
longer than the longest air parcel residence times (Bannister et al., 2021; Janhäll, 2015; Kanani-
Sühring & Raasch, 2015; Petroff et al., 2008). Other scalars, such as litter, animal detritus, and
certain pollens, are much larger and must be treated differently (section 5 below). For a resolved
scalar quantity ϕ, the conservation equation (neglecting molecular diffusion) is

∂ϕi

∂ t
+U j

∂ϕi

∂ x i

=
−∂ τ j ϕ i

∂ x j

+Sϕ i
,

(7 )

where  τ j ϕi
 is the SGS scalar flux (this term is not present when the equation is not spatially

filtered). The term Sϕ i
 is a source/sink accounting for the emission, deposition, and production or
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destruction of the scalar quantity. Equation (7) can be double filtered into mean, turbulent and
dispersive components, as for equation (2).

4.1 A one-dimensional view

Edburg et al. (2012) provides an excellent case study for exchange in a homogeneous forest. The
authors use LES to simulate a sparse (PAI  ¿ 1), continuous, homogeneous forest in which the
bulk of the PAD in concentrated between z /hc ≈ 0.3–0.8. They simulate passive scalars as being
emitted from the ground at a constant flux rate, and from the canopy using a height-dependent
source,  S↑=Qhc

exp ⁡(−αa ( z )),  where  Qhc
 is  a  specified  flux  at  the  crown  top,  and  α  is  an

attenuation coefficient,  which accounts for the flow’s response to the forest  density  (Cionco,
1978). They simulate scalar deposition onto the plants through a sink term S↓=−vϕa ( z )ϕ l, where
vϕ is the bulk dry deposition velocity, accounting for a combination of aerodynamic and stomatal

resistances, and ϕl is the resolved local scalar concentration. Scalar concentrations in the lower
two-thirds of the canopy are much higher for scalars with ground sources than for those with
canopy sources. The turbulent fluxes of scalar quantities are high throughout the depth of the
canopy  for  ground sources  of  scalars.  However,  for  canopy  sources,  the  magnitudes  of  the
turbulent fluxes decrease sharply towards the ground. Scalar quantities with canopy sources are
stirred by the large turbulent eddies near the tops of the trees, whereas ground sources of scalars
require intermittent turbulent motions to permeate the entire canopy depth. Scalars emitted from
the canopy are therefore more evenly mixed throughout the forest and have shorter residence
times compared with those emitted from the ground. 

4.2 Scalar adjustment around forest edges

4.2.1 Single source models

We retain the terminology from section 2 (Figure 2) to help summarize recent investigations of
scalar transport around forest edges. A simple conceptual model considers a scalar field, with a
uniform ground source, adjusting when the flow enters a homogeneous forest. Scalar quantities
accumulate in the adjustment region at the upstream edge of the forest (region (ii) in Figure 2)
over  a  streamwise  distance  x≈ 9–12Lc≈2 x A≈ 16–20hc.  Here,  concentrations  of  the  scalar
quantity can be several times higher than in the upwind air before it enters the forest. This pattern
appears consistent across field observations of heat transport around forest edges (Klaassen et al.,
2002), and in RANS (Sogachev et al., 2008) and LES (Kanani-Sühring & Raasch, 2015; Ma et
al., 2020) models of flow around idealized forests. 

Turbulent fluxes of scalar quantities above the adjustment region are 1.2–3.8 times larger than
the surface source rate, and are therefore compensated by horizontal fluxes from elsewhere in the
forest  (Kanani-Sühring & Raasch, 2015). The location of the peak scalar concentrations and
turbulent fluxes is dictated by (a) the adjustment of the flow and (b) streamwise turbulent scalar
transport. The mean and turbulent fluxes are of the same order, with the turbulent component
more influential in sparser forests. Concentration peaks are more pronounced in denser forests
and are located closer to the upstream edge, for example, at x≈ 9–12Lc≈8hc for PAI ≈hc/C d Lc
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= 8but  x≈ 5–6Lc≈14 hc for PAI = 2. Forest succession and management,  both of which can
change PAI will, therefore, greatly influence scalar concentration gradients close to edges. This
is because denser forests impose more drag on the flow than sparser ones, which suppresses
turbulent mixing and causes the flow to adjust more quickly, i.e., the canopy drag length scale Lc

is reduced. Turbulent scalar fluxes are greater in magnitude and located closer to the edge with
increasing  density.  The  magnitude  of  the  fluxes  increases  with  increasing  wind  speed  but,
because the turbulent components  w '  and  ϕ ' vary inversely with increasing wind speed, the
locations of the fluxes do not change. 

4.2.2 Models with multiple sources and sinks

Single source models provide good conceptual templates for certain processes around forests,
such as the encroachment of pollutants from surrounding areas, or the release of isoprene, which
is overwhelmingly from sunlit leaves in the canopy (Sharkey et al., 1996). However, most scalars
have multiple sources and sinks, whose distribution varies temporally and spatially. Recent work
has attempted to tackle this complexity in idealized settings.  Kanani-Sühring & Raasch (2017)
extend their 2015 work to investigate scalar transport in the exit and wake regions of forests,
regions (vi) and (vii) in Figure 2, respectively. They simulate three scalar source distributions:
the ground, the canopy, and the ground plus the canopy. Scalar accumulates in the wake region
over  a  distance  x /Lc≈ 0.5–1  downstream  of  the  trailing  edge  of  the  forest,  with  peak
concentrations  10–75%  larger  than  those  at  a  reference  point  far  downstream.  Turbulent
transport  accounts  for  around  half  the  total  scalar  transport.  The  locations  of  the  highest
concentrations and turbulent fluxes do not vary with wind speed. Higher concentrations occur at
lower wind speeds, but the magnitudes of the turbulent fluxes do not change. In the wake region,
the magnitudes of both the concentrations and turbulent fluxes increase non-linearly with forest
density. For example, the magnitude of the turbulent fluxes for forests of PAI ≈hc/Cd Lc=¿ 8 are
around two and half times those of forests with PAI = 2.

Ma & Liu (2019) adapt the Community Land Model (CLM) Version 4.5 (Oleson et al., 2013) to
create a multi-layer canopy model, 'MCANOPY', which simulates one-dimensional transport of
water  vapor,  heat,  and  CO2 in  the  soil-forest-atmosphere  system.  Ma & Liu  (2019)  couple
MCANOPY to the LES mode of the Weather Research and Forecasting model (WRF) version
3.9  (Skamarock  et  al.,  2008),  with  a  horizontally  and  vertically  uniform  forest  represented
through the drag parametrization in equation (6). Due to computational constraints, the authors
did not evaluate the performance of the coupled-LES over simulation times of more than a few
hours.  The  stand-alone  version—which  includes  a  vertical  turbulent  mixing  parametrization
(Katul et al., 2004)—simulates most variables well when evaluated against observations from a
walnut orchard (Patton et al., 2011). However, MCANOPY failed to simulate observed humidity
gradients  within  the  canopy,  which  the  authors  attribute  to  large scale  processes  in  the‐
observations, such as the advection of humid air, which were not captured in their model. Ma et
al. (2020) use MCANOPY to investigate scalar transport around forest edges, simulating three
different  forests  by  varying  a (z) equation  (6)  (with  constant  PAI).  They specify  two scalar
configurations: (i) constant flux sources at the ground and at  z /hc=¿ 0.3, 0.6 and 0.9; and (ii)
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using  MCANOPY  coupled  to  WRF-LES.  The  lowest  CO2  concentrations  coincide  with  the
canopy sink, with the depth of the region of low concentration increasing with distance from the
upstream edge. Strong turbulent fluxes occur above the end of the adjustment region at  x≈ x A,
and  z ≈1.5hc, agreeing with the results of  Kanani-Sühring & Raasch (2015).  Ma et al. (2020)
attribute this flux to scalar-rich air being swept upwards by the mean and turbulent components
of the flow (σ w

2  is high in this region). Horizontal and vertical advection, which eddy covariance
measurements do not usually account for (Aubinet et al., 2010), dominate CO2 transport in the
adjustment region. The patterns of scalar concentrations and fluxes are most complicated in the
adjustment region where they are influenced by the strong turbulence, the inflow concentration
from the surrounding environment, and the distribution of the sources and sinks within the forest.
In  mesoscale  simulations  over  a  forested  area,  including a  vegetation  canopy with a  simple
radiation scheme improved the simulated velocity fields compared with simulations based on
land-use information alone (Yan et al., 2020). 

4.3 Dispersive fluxes of scalar quantities

There have been no studies of the influence of small-scale variations in forest structure on scalar
transport. A particular unknown is whether gaps and other patchiness induce dispersive fluxes of
scalar  quantities,  i.e.  spatial  correlations  between  time-averaged  scalar  fields  and  velocity
components. Wind-tunnel measurements in idealized plant canopies found the dispersive scalar
fluxes to be small  (Legg et al., 1986). However, recent studies in urban areas and generalized
porous media suggest the dispersive fluxes of scalar quantities should not be dismissed out of
hand. Philips et al. (2013) use LES in an urban canopy to show that scalar dispersion of a scalar
quantity is sensitive to the geometry of the obstacles surrounding the source (they observe a
plume’s evolution directly,  rather than investigating time-averaged quantities).  Q. Li & Bou-
Zeid, (2019) show the dispersive fluxes of scalar quantities do not always follow the flow of
momentum,  with obstacle  geometry typically  affecting dispersive fluxes of momentum more
than those of scalars. The authors attribute this difference to the physical mechanisms involved.
The air’s velocity decreases before it reaches the upstream face of an obstacle,  and therefore
pressure  affects  momentum  transfer  away  from  surfaces.  However,  the  air  must  touch  an
obstacle’s  surface  to  deposit  or  take  up  scalars,  so  scalar  transport  is  much  more  spatially
confined. LES studies of ABL flow over homogeneous surfaces indicate dispersive fluxes of heat
are modulated by two broad flow regimes. The first is where surface heterogeneities, such as
unevenly heated ground, drive the dispersive fluxes. The second is where dispersive fluxes are
driven by turbulent coherent structures in high-shear conditions (Inagaki et al., 2006; Margairaz
et al., 2020). 

4.4 Topography and passive scalar quantities

Topographical effects on forest–atmosphere exchange are not random and can introduce notable
horizontal fluxes that are not captured by eddy covariance or smoothed out by time averaging. In
heavily populated regions, forests are overwhelmingly confined to land of marginal agricultural
value, which often means sloping land (Sabatini et al., 2018). The effect of topography on forest-
atmosphere  interactions  is  therefore  of  wide  applicability.  Finnigan  et  al.  (2020) review
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boundary-layer flow in hilly terrain, including sections discussing flows around vegetated hills.
We refer  readers  to  their  paper  for  a  thorough overview of topographical  effects  on forest–
atmosphere exchange. Before moving on, however, we highlight a remarkably consistent picture
of scalar transport around forested hills that has emerged from recent studies. In the lee of a
forested hill, an in-canopy recirculation region (ICR) may form within the forest, particularly
when (a) the hills are steep, so there is a large pressure gradient at the upstream slope; and (b) in
tall, dense forests, in which there is little mixing of high momentum air from above the forest
with that near the forest floor. Another ICR may form at the foot of the slope at the upstream side
of the hill. The ICRs result from a balancing act between the aerodynamic drag, the pressure
perturbation induced by the hill, and the shear stress induced by the forests. A helpful scale to
interpret flow in hilly terrain is the hill half length, L, defined in Finnigan and Belcher (2004) as
a quarter of the wavelength of the topography. The ICR upstream of the hill occurs at x /L≈−¿1
to 0 , and another in the lee of the hill at  x /L≈ 2–4 (Figure 5)  (B. Chen et al., 2019; Ross &
Harman, 2015). Forests absorb lots of momentum, meaning ICRs are more common in forested
landscapes  than  in  those with low vegetation,  and may form in  the lee  of  even gentle  hills
(Finnigan & Belcher, 2004; Patton & Katul, 2009). Both the forest density, through its effect on
the canopy drag length scale Lc, and the absolute height of the canopy influence the likelihood of

ICRs forming. In ‘shallow’ canopies, where hc/Lc<2(u¿ /U hc
)

2≈ 0.2 (Poggi et al., 2008), not all

of the  momentum is absorbed by the foliage and ICRs are less likely to form than for ‘deep’
canopies, where hc/Lc≫ 0.2. 

 

Figure 5. Schematic of scalar flux over a forested hill. A region of high scalar flux occurs around
the in-canopy recirculation region in the lee of the hill. This region acts as a chimney for air
parcels leaving the forest air space.

Figure 5 shows the region of strong vertical fluxes of scalar quantities forms between the crest of
the hill and the upstream edge of the lee ICR. This result appears robust across models, despite
their  differing  treatments  of  the  physics  (B.  Chen  et  al.,  2019;  Katul  et  al.,  2006;  Ross  &
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Harman, 2015). Scalar fluxes around the lee ICR are stronger for ground sources of scalars than
for canopy sources, because the topography affects the flow and turbulent mixing more near the
forest  floor  (Ross  &  Harman,  2015).  In  models  for  which  multiple  sources  and  sinks  are
specified, the net effect of the sources depends on the balance of the individual transport terms.
Chen et al. (2019) propose two pathways by which air parcels leave the forest: (i) the ‘local’
pathway, where ejection events transport air parcels out the forest, approximately vertically; and
(ii) the ‘advection’ pathway, where parcels are transported horizontally until they encounter and
are entrained into the lee ICR, before turbulent fluxes eject them from the forest. The local and
advection pathways, respectively, dominate air parcels moving from the upper and lower parts of
the forest air space. The whole forest air space contributes air parcels that leave via the advection
pathway,  although  sources  from the  forest  floor  contribute  a  greater  proportion  of  the  total
escape.  This  region  acts  as  a  chimney  for  air  parcels  leaving  the  forest.   This  behavior  is
amenable to observational testing but has not been verified by field measurements.  Zeri et al.
(2010) observed higher  CO2 concentrations around a forested hill  when the wind blew from
certain  directions,  which  they  attributed  to  CO2 accumulating  in  the  lee.  However,  the
accumulation  region  fell  just  outside  of  the  observational  area,  so  the  authors  could  not
investigate this behavior further.

4.5 Conclusions about passive scalar transport in patchy forests

Scalar  processes  remain  far  less  well  understood  than  velocity  adjustment  and  momentum
transport,  in terms of both the fundamental flow statistics  (Shralman & Siggia, 2000) and in
geophysical applications around forests (Bou-Zeid et al., 2020; Katul et al., 2013). For example,
one would expect the adjustment of the flow to the presence of the forest to dictate patterns in
scalar  transport,  such as the location and magnitudes of their  fluxes.  Scalar fluxes appear to
adjust  more  slowly  than  momentum as  the  flow meets  the  forest,  but  the  patterns  in  scalar
transport are not always intuitive. Scalars are represented in models through the source term S in
equation (7) as either a concentration or flux boundary condition. In numerical models specifying
flux boundary conditions, such as those discussed in the previous two subsections, one would
expect scalar quantities to be slave to the flow because no additional length scales are introduced
in  the  model.  Based  on  Sogachev  et  al.  (2008),  Belcher  et  al.  (2012) suggest  scalar
concentrations and fluxes ought to reach equilibrium after a distance of x≈2 x A downstream of
the  edge,  where  the  value  of  x A decreases  with  increasing  forest  density.  Following  this
reasoning, we expect the fluxes of scalars to adjust more rapidly in denser forests. However,
Kanani-Sühring and Raasch (2015) find the opposite:  scalar  fluxes  adjust  more  slowly with
increasing PAI,  x / xA≈2 for sparse forests,  where PAI  ≈hc/Cd Lc=¿1–2, and  x / xA≈ 3–4 for
forests with PAI = 4.5–8. The relative size of sparse and dense patches of heterogeneity in forests
may also affect scalar concentrations.  For example,  for flow through idealized porous media,
maximum scalar concentrations occur in sparse patches where the patch size is less than the
adjustment  distance  x A,  but  in  the  dense  patches  where  the  patch  size  is  greater  than  x A

(Bannister  et  al.,  2021). Given the abundance of edges in contemporary forested landscapes,
scalar concentrations and fluxes will be out of equilibrium for much, perhaps even most, of the
world’s forests.
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There are potential ecological consequences of the patterns in scalar transport. For example, the
simulations of Ma et al. (2020) indicate the air can be a few degrees warmer at the upstream edge
of the forest. If this temperature variation is correct, a forest edge in the prevailing wind direction
may provide a very different habitat to forest only tens of meters away (Zellweger et al., 2020).
Turbulent fluxes of scalar quantities adjust slowly around patchy forests and in other complex
terrain. For example, turbulent fluxes of water vapor and CO2 respectively adjust over distances
x≈30hc≈38 Lc and x≈60hc≈76 Lc downstream of a forest edge (Ma et al., 2020). This amounts
to some 500–1000 m for mature forests, which again suggests scalars are rarely at equilibrium in
patchy landscapes. However, it is difficult to generalize beyond these broad observations because
the results are sensitive to the model configuration.  For example,  Ma et al.  (2020) find CO2

accumulates in the adjustment region, but water vapor accumulates downstream in the canopy
flow region. This difference probably results from the authors’ treatment of each species. They
specify a ground source of CO2 across the whole domain, with a sink in the upper canopy, but
multiple sources of water vapor, with ground sources either side of the forest and a second larger
source in the upper canopy. 

5 Adding more atmospheric physics and chemistry 

5.1 Atmospheric stability

Air in the ASL is, on average, statically unstable during the day and stable at night (although the
true dynamics  are more complicated  (Stull,  1991)).  The mixing-layer  model  of canopy flow
described in section 2 assumes near-neutral conditions, with the dynamics controlled by the high
shear in the mean wind velocity around the tops of the trees. However, in strongly stable or
unstable  conditions,  the velocity  shear  can be much less influential  (Brunet  & Irvine,  2000;
Lemone  et  al.,  2019).  As  the  ABL becomes  more  unstable,  the  turbulence  structure  around
forests transitions from a shear-driven to a convection-driven regime, i.e.  thermal cells govern
the flow dynamics, and the mixing-layer type turbulence becomes less prominent  (Dupont &
Patton,  2012;  Lemone  et  al.,  2019;  Mahrt,  2000).  Conversely,  when the  ABL is  stable,  the
buoyancy of the air dampens vertical motion. Mixing-layer type coherent structures may still
develop around a forest, but they are smaller and less frequent than those that form in near-
neutral conditions  (Dupont & Patton, 2012). ABL turbulence is generally more intermittent—
variable in space and time—in stable conditions (Mahrt, 2014). In very stable conditions, fluxes
of scalar quantities are driven by an interaction of mesoscale phenomena, such as gravity waves
and nocturnal jets, and the local turbulence. This interaction is observed in the large, intermittent
variations in temperature and CO2 concentration around forest that occur when extended calm
periods are interrupted by short  bursts of intense turbulence  (Aubinet,  2008; Heinesch et al.,
2007; Wohlfahrt et al., 2005).

Simulations of flow around idealized forests in non-neutral conditions are beginning to add detail
to  this  general  picture.  Patton et  al.  (2016) used LES to investigate  the entire  ABL over an
interactive  forest  canopy,  across  five  stability  classes  (near  neutral  to  free  convection).  In
strongly unstable conditions, thermal plumes may bubble up from the forest floor or the canopy
top, and the vertical profiles of the atmosphere in the RSL approach those predicted by MOST.
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As stability decreases from near neutral to free convection,  the dominant turbulent structures
around the forest change from shear layer vortices to thermal plumes, and momentum and scalar
fluxes become less correlated. It is not clear whether this transition is gradual, with shear and
thermally driven structures coexisting, or sudden, with a flip between regimes upon reaching a
stability threshold. Nascent research indicates the transition may be sudden  (Brunet, 2020). In
unstable  conditions,  scalar  quantities  are  transported predominantly by thermal  plumes—also
observed  in  field  measurements  (Dupont  &  Patton,  2012)—and  the  velocity  variances,
momentum stresses, and momentum transport efficiency decrease as the atmosphere becomes
less stable. 

Around forest edges, TKE and momentum transfer are much higher in unstable conditions than
when the ABL is approximately neutral, and the flow takes longer to adjust upon meeting the
canopy  (Ma & Liu, 2019). In the adjustment region, the skewness of the streamwiseSku and
vertical Skw velocity are smaller in magnitude in unstable conditions than in neutral conditions,
indicating  sweep motions  do  not  penetrate  as  easily  into  the  forest  canopy  when  the  air  is
buoyant. In neutral conditions, CO2 accumulates in the adjustment region at the upstream edge of
the  forest,  and  water  vapor  in  the  canopy  flow region,  but  these  patterns  largely  vanish  in
unstable conditions.

In stable conditions, wind shear at the crown top is higher than in unstable or neutral conditions,
and momentum penetrates  less  deeply  into  the  forest  (Chaudhari  et  al.,  2016;  Nebenführ  &
Davidson, 2015; H. B. Su et al., 2008). Within the forest, turbulence is much weaker and more
intermittent than in neutral or unstable conditions, and the pressure transport term of the TKE
budget becomes more significant with increasing stability  (Nebenführ & Davidson, 2015). In
open forests, intermittent  turbulence,  driven by shear in the air  aloft,  may penetrate  into the
canopy  and  dramatically  alter  the  distribution  of  scalars  (Wharton  et  al.,  2017).  These
intermittent events in stable conditions are not well understood and are seldom resolved well by
numerical models because they do not result from resolved shear generated turbulence at the
microscale  or  MOST  theory  used  in  larger  scale  models.  They  are  thought  to  result  from
nonturbulent  ‘submeso’  motions,  which  fall  between the  scale  of  the  largest  turbulent  ABL
eddies  (∼O(100 m))  and the  smallest  γ–mesoscale(∼O(2 km))  (Mahrt,  2014).  There  is  some
evidence  that  parametrizations  of  submeso  motions  may  be  possible  by  analogy  with  ‘self-
organized criticality’, the tendency of dynamical systems to organize their microscopic behavior
to be scale  independent  (Cava et  al.,  2019).  However,  this  remains  an active area  of future
research, requiring careful comparison between numerical model results and observations (Sun et
al., 2015).

The  atmospheric  stability  within  the  forest  itself  often  differs  to  that  of  the  surrounding
atmosphere. For example, on a sunny day, warm convective thermals may form above a forest,
while the air within it remains stable (Ramos et al., 2004; Stull, 2006). At night, the situation is
reversed when the forest crown loses heat through radiative cooling, forming a capping layer of
very  stable  air  around the  tops  of  the  trees  that  can  decouple  the  forest  air  space  from the
surrounding atmosphere  (Nebenführ & Davidson, 2015; Paul-Limoges et al., 2017; Xu et al.,
2015).  The  decoupling  is  sensitive  to  site-specific  meteorological  conditions,  such  as  local
temperature gradients  (Alekseychik et al., 2013; Russell et al., 2016). The capping layer forms
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around the tops of the trees, below the height of the instruments at many long-term observational
sites. In these conditions, eddy-covariance measurements are difficult to interpret because CO2

and  other  scalars  can  accumulate  within  the  canopy,  and  the  measured  turbulent  flux  is
unrepresentative of the forest as a whole (Aubinet, 2008; Massman & Lee, 2002). In hilly terrain,
the decoupling can trigger drainage flows, transporting CO2, heat, and water vapor to and from
forests (Finnigan et al., 2020; Sun et al., 2012; Wharton et al., 2017; Xu et al., 2015). Drainage
flows and other below-canopy transport contribute a large proportion to the total scalar transport
in certain meteorological conditions, such as during stable nights with weak winds (McHugh et
al., 2017; Paul-Limoges et al., 2017). 

A tricky further challenge to modelers is dealing with the localized heat sources that form within
a forest. During the daytime in direct sunlight,  broad leaves may be 20  oC warmer than their
surroundings (Monteith & Unsworth, 2008; Schuepp, 1993b; Vogel, 2009) and can therefore act
as highly localized heat sources. We are not aware of direct investigations the effect of these
sources, but LES of unevenly heated generic surfaces suggests thermal heterogeneities drive the
local mean flow in certain weather conditions. In these conditions, the dispersive fluxes of heat
account for more than 40% of the total sensible heat flux at z=¿ 100 m and up to 10% near the
surface  (Margairaz et al., 2020). This behavior is difficult to constrain in models because the
locations of sunflecks (brief periods of high photon flux density) change quickly depending on
branch movement (Way & Pearcy, 2012). The radiative properties of the leaves may even vary
between  the  sun and  shade  sides  of  a  tree  (Vogel,  1968).  One possible  starting  point  is  to
combine the modeling approaches of thermal transfer in urban areas (e.g. Martilli et al. 2002;
Salamanca et al. 2010) and radiation transfer in vegetation (Ma and Liu 2019). For example, the
leaves of the forest may be represented using a probability density function (PDF) of small,
flexible,  surfaces with high absorptance,  and the trunks through a PDF of vertically  aligned
cylinders of varying thickness and low absorptance.

5.2 Air parcel residence times

Once a molecule enters a forest from outside, or is released from a leaf or the soil, it is mixed
within the forest air space. This is easiest to visualize in terms of the stretching and dissipation of
small air parcels. During the passage of these air parcels, the molecules or particles contained
within may react or deposit on surfaces. The local turbulence affects the parcels’ residence times,
which  in  turn  affects  the  forest’s  ecology—e.g.  influencing  chemical  signaling  (Szendrei  &
Rodriguez-Saona,  2010) and VOC chemical  processes  (e.g.,  Pugh et  al.  2011;  Batista  et  al.
2019), or varying the likelihood of nutrients (Fowler et al., 2009) or fungal spores (Norros et al.,
2014; Pan, Chamecki, et al., 2014) being deposited. The lifetimes of some VOCs emitted by
forests are in the order of tens of minutes, similar to the residence times parcels moving from
close to the ground (Wolfe et al., 2011). Reactive scalar quantities emitted from the ground are
therefore more likely to be chemically transformed within the forest than scalars emitted in the
tree crowns. Numerical models are powerful tools for investigating air parcel residence times
because the flow can be studied from either a Lagrangian or Eulerian point of view. The Eulerian
specification of the flow focuses on specific locations in space through which the air flows with
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time, whereas the Lagrangian specification follows an individual air parcel as it moves through
space and time.

The initial vertical position of an air parcel affects its residence time, with parcels ‘released’3

near the ground having much longer residence times than those released higher in the forest
canopy (Edburg et al., 2012; Fuentes et al., 2007). Estimates of parcel residence times vary from
a few seconds for parcels moving from the crown, to around 30 minutes for parcels moving from
the forest floor, with  spatially averaged values in the order of a few minutes  (Edburg et al.,
2012; Fuentes et al., 2007; Gerken et al., 2017; Hart et al., 2020). The density and morphology of
vegetation influences  air  parcel residence times.  For example,  in a short,  trellis-trained crop,
parcel  residence time increases with canopy PAI, other than for parcels released high in the
canopy  (Bailey et  al.,  2014). Residence times increase with increasing PAI, because mixing-
layer-type eddies and TKE do not penetrate as deeply into the canopy (Gerken et al., 2017). Air
parcels remain in the canopy for longer when they are released from approximately the height at
which most of the plant area is located. For example, for parcels released in the upper canopy,
residence times are longer for top-heavy PAI profiles, such as pine plantations, than for forests
with  more  plant  area  lower  down.  We expect  longer  residence  times  in  stable  atmospheric
conditions, such as at night or on overcast days, because turbulent mixing is suppressed. We are
not  aware  of  any  investigations  into  stability  effects  on  parcel  residence  times  in  forests.
Observations and RANS simulations  in urban areas indicate parcel residence times generally
increase with increasing atmospheric stability, although they also heavily influenced by the wind
velocity and the geometry of local obstacles (Mavroidis et al., 2012).

The next challenge is to explain quantitatively how forest canopy turbulence affects air parcel
residence times. As rough approximation in homogeneous forests, Gerken et al. (2017) propose
that the parcel residence time (τ ) is proportional to the reciprocal of the friction velocity, i.e.
τ∝1/u¿.  Unfortunately,  this  relationship  is  unlikely  to  hold  even  approximately  in  patchy
landscapes. As an illustration, we simulate flow across a continuous homogeneous forest (Case
1) and a small, homogeneous forest patch (Case 2). Case 1 and Case 2 are represented using the
drag  parametrization  in  equation  (6),  with  the  transport  equations  solved  using  LES  (see
Appendix A for numerical details). Figure 6 presents two-dimensional evolutions of Sku and Skw

for each case. In the adjustment region of the forest in Case 2, the mean wind velocity is higher
than in the homogeneous forest in Case 1. More importantly, around the forest edges in Case 2,
the velocity statistics are highly non-Gaussian, evidenced by the clear patterns in Sku and Skw in
Figure 6b and d relative to Case 1 (Figure 6a and c). The friction velocity u¿ is a global quantity
that is only well defined in the ISL where the shear stress  u'w' is approximately constant with
height. Therefore, although the value of  u¿ may not differ greatly between forests in the same
weather conditions —e.g.,  u¿≈ 0.5 m s-1 for both cases here— residence times are likely to be
much lower in patchy forests than homogeneous ones, particularly around edges. 

3 Studies looking at particle residence times in plant canopies often adopt a Lagrangian point of view.
27

38

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959
960

39

40



manuscript submitted to Reviews of Geophysics

Figure 6. Two-dimensional evolutions of streamwise velocity skewness Sku for (a) Case 1 and
(b) Case 2; and vertical velocity skewness Skw for (c) Case 1 and (d) Case 2. The green dashed
line shows the presence of the forest. The x-axis is scaled so that 0 coincides with the upstream
edge of the forest for Case 2. The figures for Case 1 (a, c) can be considered snapshots of a large
homogeneous forest.

5.3 Modeling in-canopy chemistry and particle deposition

Fragment-scale investigations of forest–atmosphere interactions are often motivated by questions
concerning trace gas exchange, usually representing the species of interest as passive scalars (see
section 4). However, the behavior of many biologically important gases and particles cannot be
approximated in this way. For example, many pollens and spores have substantial mass and are
subject  to  inertial  forces  different  to  those  on  a  trace  gas  molecule  (see,  e.g.,  Hinds,  1999;
Seinfeld  & Pandis,  2016).  Freshly  nucleated  UFPs,  resulting  from the  oxidation  of  BVOCs
(Kulmala et al., 2001, 2007), are produced in high number concentrations around forests and
may coagulate (Dal Maso et al., 2002; Kulmala et al., 2001; Pierce et al., 2012). These processes
introduce physics requiring a different mathematical approach to that for fluid flow or particle
growth/evaporation (Jacobson, 2005; Seinfeld & Pandis, 2016; Spracklen et al., 2006). Chemical
transformation and particle deposition around vegetation are important aspects of atmospheric
science that deserve their own reviews. Here, we highlight recent work in which some of these
processes are captured efficiently in high-Re models. 
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5.3.1 Modeling in-canopy chemistry 

BVOCs  are  ecologically  important  in  forests  (Niinemets,  2010;  Visakorpi  et  al.,  2018) and
influence air quality, meteorology, and the climate through their interactions with oxidants such
as O3 and OH (Fuentes et al., 2000; Lelieveld et al., 2008; Peñuelas & Staudt, 2010; Rap et al.,
2018;  Richardson et  al.,  2013).  Studies  investigating  BVOC chemistry in forests  are  usually
interested in time and space scales that are too large for the turbulent flow to be resolved by
DNS, LES or RANS, requiring the turbulent exchange to be parametrized (Ashworth et al., 2015;
Bryan et al., 2012; Forkel et al., 2006; B. Wang et al., 2017). These parametrizations are usually
based  on  K–theory,  which  is  flawed  around  forests  and  other  rough  surfaces  (Monteith  &
Unsworth,  2008).  Model  predictions  of  BVOCs  and  their  oxidation  products  can  be  very
sensitive to the turbulence parameterization used  (Bryan et al., 2012; Makar et al., 2017). It is
therefore important to make the parametrizations as robust as possible.

Fragment-scale LES models can simulate counter-gradient transport and are therefore likely to
be indispensable tools in developing chemistry parametrizations that scale to large space and
time resolutions. Due to the complexity of the task, there have been few attempts to investigate
forest chemistry while resolving turbulence. However, the urban literature is an excellent source
of relevant techniques (e.g., Bright et al., 2013; Buccolieri et al., 2018; Khan et al., 2020; Kwak
et al., 2015; Liao et al., 2014; Zhong et al., 2016, and references in each). 

One possible path is to couple chemistry models to LES, a technique which has recently been
used  to  investigate  chemical  transformation,  transport,  and  deposition  of  air  pollutants  in
realistically shaped urban areas (Khan et al., 2020). However, the computational expense of the
coupled approach heavily restricts  the resolution of the domain and the number of chemical
species that can be investigated in each run. Another approach is to model chemistry inside a
forest  air  space using ‘box models’,  which treat  the air  space as a fixed volume into which
species are emitted and are able to react. Box models require the characteristics of the turbulence
to  be  specified  a  priori,  such  as  through  an  exchange  velocity  between  the  box  and  its
surroundings. This simplification allows computing resources to be reallocated to more complex
chemistry or particle microphysics than is possible when the turbulence is highly resolved using
RANS or  LES.  Box models  are  widely  used  to  model  street  canyon  chemistry  (Holmes  &
Morawska,  2006;  Fabio  Murena,  2012;  Zhong  et  al.,  2016) and  have  been  used  for  one-
dimensional  investigations  of forest–atmosphere  exchange and BVOC chemistry across large
homogeneous canopies (Ashworth et al., 2015; Pugh et al., 2011). In patchy landscapes, multiple
boxes would be required to account for the fluid dynamical regions that form around forest edges
and clearings.  The urban literature  offers a  precedent  for dividing air  spaces into dynamical
regions. For example, models of street canyon chemistry have used multiple boxes to represent
the  ‘compartmentalization’  of  fluid  dynamical  phenomena  such  as  counter-rotating  vortices
(Kwak & Baik, 2014; F. Murena et al., 2011; Fabio Murena, 2012; Zhong et al., 2016, 2018). 
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5.3.2 Modeling particle deposition in forests

Many studies of scalar quantities (Poggi et al. 2006) and particles (Aylor and Flesch 2001) in
vegetation adopt a Lagrangian stochastic modeling (LSM) approach, which requires the vertical
profiles  of  turbulence  statistics  to  be  specified  a  priori.  However,  around  patchy  forests,
determining a priori vertical profiles is extremely difficult because the dynamics are so spatially
varied. There have been a handful of attempts to incorporate non-Gaussian turbulence in an LSM
framework,  with varying success  (e.g.,  Reynolds,  2012).  More recently,  several groups have
adopted an Eulerian specification of the flow field to model particle deposition. Around patchy
forests, Eulerian models offer the advantage of resolving the velocity statistics directly down to
the scale  of their  grids.  This does not necessarily  affect  the predictive  ability  of the models
around vegetation. For example, Gleicher et al. (2014) simulated more accurate concentrations of
spores in a homogeneous maize canopy using an Eulerian LES model than using their equivalent
LSM. However,  an inherent difficultly using LES is that  canopy deposition occurs at  spatial
scales much finer than the spatial filter and therefore must be parametrized. One method is to
include a sink term in the conservation equation,

S=Eϕα ϕl|U|,
(8 )

whereα  is  the  attenuation  coefficient  (see  section  4.1),  ϕl the  resolved  local  particle
concentration,  and  Eϕ the efficiency of particle  deposition  (Friedlander,  2000;  M. Lin et  al.,
2012; X. Lin et al., 2018).  Pan et al. (2014a) use a similar approach, modifying the deposition
model in Aylor and Flesch (2001) to generate a sink term linked to PAD,

S=Eϕ (Px+P y)a ( z )ϕ l|U|.

(9 )

This formulation considers the distribution of the forest density directly though the incorporation
of PAD, as a (z), and the projection coefficients P x and P y, which respectively account for the
PAD facing  the  streamwise  and spanwise  directions.  Ground  deposition  of  particles  can  be
modelled using a surface flux boundary condition. We contrast the formulations in equations (8)
and (9) with the sink term for a passive scalar used by Edburg et al. (2012), S=−vϕ a ( z )ϕ l (vϕ is
the dry deposition velocity),  which does not account for wind speed (section 4.1).  Lin et  al.
(2018) and Pan et al. (2014a) use slightly different formulations for the deposition efficiency Eϕ

based,  respectively, on a parametrization of molecular diffusion and on observations of particle
impaction onto cylinders (similar approaches are common when investigating particle deposition
onto fibers (Friedlander, 2000)). The deposition efficiency term Eϕ accounts for the momentum
and size of the particles, so that equations (8) and (9) are solved separately for each particle size,
with the only difference between the solutions resulting from the approximation of the deposition
efficiency (the same is true for the surface-flux parametrization representing ground deposition). 

The  mechanisms  of  particle  deposition,  and  hence  deposition  velocities,  are  highly  size-
dependent for the size ranges of particles commonly encountered in forests (Litschike & Kuttler,
2008). Lin et al. (2018) found the deposition velocity decreased sharply with increasing particle

30

45

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

46



manuscript submitted to Reviews of Geophysics

size for the range of sizes they investigated (diameters 10–50 nm). Pan et al. (2014a) investigate
size indirectly through the ratio of the particle settling velocity w s to the friction velocity u¿, with
‘light’ particles having w s/u¿≈0.04≪1, and ‘heavy’ particles  w s/u¿≈0.2. They show, for large
values of w s /u¿ (heavy particles) and sources near the ground, few particles escape the canopy,
reflecting their empirical observation that plant diseases initiated deep within a canopy move
upward to  the  canopy  top  before  spreading.  Unsurprisingly,  more  particles  are  deposited  in
denser  vegetation  (Branford  et  al.,  2004),  particularly  at  z ≈hc,  and  therefore  lower
concentrations  of  particles  occur  deep  in  the  canopy.  The  rate  of  dry  deposition  generally
increases with increasing turbulence because the thickness of the quasi-laminar boundary layers
around plant elements is reduced, therefore increasing the probability of impaction (Fowler et al.,
2009). However, the rate at which particles are deposited depends on the tree species. Studies of
urban trees indicate deposition onto conifers is more efficient than onto broadleaf trees (L. Chen
et al., 2017; Pace & Grote, 2020). Beyond these general observations, there appears to be no
clear dependence of fluxes or deposition of fine particles on broad-brush measures of the canopy
morphology  (Katul  et  al.,  2011;  X.  Lin  et  al.,  2018).  Deposition  patterns  appear  to  depend
strongly on the complex arrangement of plant area in forests and other plant canopies (Fowler et
al., 2009). 

A future task, straddling in-canopy chemistry and trace-gas deposition,  is to investigate  how
forest  patchiness  and more complicated  weather  conditions  affect  the  rate  of  deposition  and
stomatal uptake of trace gases. For example, particle impaction can be several times higher in
unstable conditions versus stable ones  (Chiesa et  al.,  2019; Fowler et al.,  2009; Pryor et  al.,
2008).  This  suggests  leaf  related  removal  by  forests  is  likely  much  lower  at  night  than
measurements taken during the day would suggest; impaction is much lower in stable, nocturnal
conditions and the stomata are mostly closed at night. Local atmospheric stability gradients, such
as from patchy heating from sunlight, may produce apparent fluxes when particles and gases
trapped in stable conditions are eventually released in convective plumes (Chiesa et al., 2019).
Most  models  of  spore  dispersal  in  forests,  including  those  cited  above,  consider  only  dry
deposition, which is a major simplification in many climates where forests are found, and pay
little attention to the resuspension of deposited particles. However, the rates of particle removal
by  rain  and  resuspension  by  depend  on  species  composition  and  the  local  meteorological
conditions, such as the frequency and intensity of rainfall events (L. Chen et al., 2017). Airborne
fungal spore concentrations in forests are generally higher in wet conditions (Crandall & Gilbert,
2017), which are physiologically favorable to certain fungal species such as  Ganoderma spp.
(Stępalska & Wołek, 2009). Air vortex rings, which can carry dry-dispersed spores away from
the host plant, form around the impact site when raindrops hit plant surfaces,  (S. Kim et al.,
2019). This process, which is not accounted for in current models, is likely significant in the
transmission of fungal spores because particles transported by the air vortices can reach beyond
the  laminar  boundary  layer  around  plant  surfaces,  enabling  long-distance  transport  in  the
turbulent flow. 
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6 Forest structure and wind  

6.1 Adaptation to wind loading

Wind affects all aerial parts of forests on time and space scales from those of the smallest eddy to
those of climate variation and tree lifetimes.  Many plants respond to wind by reducing their
surface area to minimize drag, and therefore lower the likelihood of damage from wind loading.
On longer  timescales,  plants  may apportion  biomass  in such a  way as to  acclimate  to  wind
direction and intensity, a process known as thigmomorphogenesis.  Figure  7a,  for  example,
shows a hawthorn tree on the Isle of Wight, UK that has undergone thigmomorphogenesis to
minimize  drag  from the  prevailing  south-westerly  wind.  Other  examples  of  wind adaptation
include the different root architectures of trees growing in windy environments compared with
sheltered trees (Cucchi et al., 2004; Nicoll & Ray, 1996; Ramos-Rivera et al., 2020), trees at the
upstream edge of a forest having stiffer wood than those further inside the stand  (Brüchert &
Gardiner, 2006; Cucchi et al., 2004), and trees exposed to high winds developing lower crown
densities, comprising a smaller number of smaller leaves  (Telewski, 2009; Telewski & Pruyn,
1998). This adaptation is a trade-off for the trees, with increased resistance to wind loading and
other environmental stresses coming at the expense of slower growth (Hirons & Thomas, 2018).
For further background on the permanent response of trees to wind loading, see, for example,
Telewski and Pruyn (1998), Telewski (2009), Hirons and Thomas (2018).

Figure 7. (a – left) A wind modified hawthorn (Crataegus monogyna) on the Isle of Wight, UK;
and (b – right) leaves of a cottonwood (Populus deltoides) curling in high wind.

On shorter timescales, trees and other plants reconfigure elastically to reduce drag forces in high
winds, which is visible in the everyday observation of leaves curling (e.g., Figure 7b) and tree
branches thrashing in high wind. At the stand level, this reconfiguration is evident from coherent
‘honami’ waves passing through a field of wheat  (Inoue, 1955; Maitani, 1979), from wavelet
analysis of pine plantations (Schindler et al., 2012), and in video footage of forests taken above
the crowns (Harper, BIFoR FACE site, private communication 2021). At low wind speeds, the
movement of individual leaves dominates foliage reconfiguration, with the erratic movement of
branches, known as ‘buffeting’, dominating at higher speeds (Tadrist et al., 2018). The size, type
and shape of the leaves determines their behavior in wind, even at low speeds. Leaf fluttering is
not simply a by-product of the leaves’ flexibility, which alone would tend to increase their drag
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through flapping in the manner of flags  (Virot et al., 2013). Instead, the leaves of many tree
species curl up to form cones and cylinders, which become tighter with increasing wind speed
(Vogel, 1989). 

6.2 Plant reconfiguration and drag

The distributed-drag method accounts for the average aerodynamic drag the plants impose over
some spatial scale larger than individual twigs and leaves. There is nothing in the formulation
that accounts for the detailed morphology and mechanics of plants and trees. There would be no
difference between the treatments of a forest and a sponge of the same dimensions and porosity.
Plant reconfiguration is particularly relevant  to patchy forests because the flow is  constantly
adjusting and readjusting as it moves across gaps and clearings. Capturing this reconfiguration
directly in fragment-scale models is currently unworkable because of the computational expense
of simulating the motion of flexible bodies in turbulent flow. However, it may be partly captured
by modifying the drag parametrization in equation (6).  For example,  one could consider the
PAD, represented in a (z) in equation (6), as varying with velocity (Speck, 2003), or replace the
drag coefficient  Cd, with a shape factor that varies with the flow  (Gaylord & Denny, 1997).
However,  these  approaches  require  a  detailed  three-dimensional  knowledge  of  the  forest
structure and its response to wind loading. A more empirical approach is to proceed from the
observation that reconfiguration leads to a lower increase of drag with velocity than could be
expected by assuming a (z) and Cd both take constant values (Vogel, 1989). Therefore, instead of

having the drag f i∝U 2, we have f i∝U 2+B, where B is known as the Vogel number (De Langre,
2008; Vogel, 2020). B therefore acts as an empirical modification to equation (6) to account for
the  variation  of  a (z) and  Cd with  velocity.  Negative  values  of  B  imply  that,  because  of
reconfiguration,  plant drag increases with velocity more slowly than the usual assumption of
velocity  squared.  Where  the  plants  do  not  reconfigure,  B→0 and  the  drag  increases
approximately with the square of the velocity. 

There  have  been  no  numerical  studies  of  this  instantaneous  reconfiguration  in  forests,  but
researchers have studied the effect in other vegetation canopies.  Pan et al. (2014a) use LES to
model the reconfiguration of a wheat canopy. They maintain the quadratic dependence of drag
on velocity  in  the drag parametrization  in  equation (6),  accounting  for plant  reconfiguration
using  a  velocity-dependent  drag  coefficient  Cd=(¿U∨¿ A v)

B,  where  Av is  a  velocity  scale

related to the shape and rigidity of the plants. They calculate values of  A v=¿ 0.29 m s-1 and
B=−0.74 by fitting experimental data to the Reynolds averaged momentum balance equation for
airflow through a uniform canopy. Using the variable Cd, their LES model simulated flow with
more accurate higher order statistics than the same model with a constant Cd value (with similar
performance with respect to the mean velocities, momentum transfer and TKE). Using a variable
Cd value also improved estimates  of momentum transport  by sweep motions penetrating the
canopy.  In  similar  work,  Pan  et  al.  (2014b) show  plants  reconfigure  more  at  higher  flow
velocities, reflecting the results of lab investigations on isolated plants (Tadrist et al., 2018). In
both Pan et al. (2014a, 2014b), the absolute values of Sku and Skw increase with a more negative
Vogel number—i.e. simulating more reconfiguration—as did the ratio of sweeps to ejections. To
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see why, taking  B=−0.74 from  Pan et al. (2014a) gives  f i∝U 1.26 in equation (6) rather than

f i∝U 2. This change slows the rate at which the drag force increases with increasing velocity,

leading to  a  greater  the  contrast  of  TKE inside and above the canopy.  The decrease  in  the
velocity exponent also increases the frequency and strength of sweep motions because strong
events (u'

>0) penetrate further into the canopy. The canopy drag length scale Lc increases when
the value of  Cd is smaller because stronger events are able to penetrate further into the forest
before drag halts their progress.

There are no published values of B that are immediately applicable to high-Re models of forest–
atmosphere exchange. Field studies of plant reconfiguration typically focus on time-averaged
adaptation over long time intervals, although measurements in poplar crowns show  Cd values
decrease with increasing wind speed across averaging periods as short as 1 s  (Koizumi et al.,
2010). Pan et al. (2014b) ran simulations using B=¿ 0, −¿2/3,  −¿1, and −¿4/3, finding that a
non-zero Vogel number improved the agreement of the simulations  with flume observations,
with the greatest fidelity obtained using  B=−¿ 1. Other estimates for B include  −1<B←2/3
from biomechanics theory (Gosselin et al., 2010). B≈−1 appears to be a robust measurement for
poroelastic  structures,  including  forests  and  other  vegetation  canopies  (Gosselin,  2019  and
references therein). As a starting point, we suggest 0 and −¿1 as approximate upper and lower
bounds for the Vogel number B.

6.3 Parametrizing plant reconfiguration 

6.3.1 Stochastic drag forcing 

The product Cda(z ) in equation (6) is typically approximated as a smoothly varying function of
height, with Cd taken as constant. However, Finnigan & Shaw (2008) raise the important point
that the dominant large eddies around forests have diameters in the order of  Ls∝hc (Bailey &
Stoll, 2016; Raupach et al., 1996). To resolve the structure of these eddies in numerical models,
the vertical filter needs to be much smaller than hc, for example, a filter of hc/25 is taken in the
model in Appendix A. At this resolution, we can no longer assume a (z) is a smooth function—
for example, notice the structural variation of the forest understories in Figure 4.  Finnigan &
Shaw (2008) propose representing  Cda(z ) through a stochastic variation overlaying a smooth
background  trend,  thereby  introducing  a  stochastic  forcing  into  the  resolved  momentum
equations.

To illustrate this argument, we retain the Case 2 forest from section 5.2, for which  C da(z ) is
uniform throughout the domain (see Appendix A for numerical details).  We define a Case 3,
which is of the same dimensions and mean density as Case 2. However, for Case 3, Cda ( z ) varies
randomly in space throughout the forest by  ±2 % of the value for Case 2, a small variation in
comparison to the natural variation of forests. The random spatial variation of Cda ( z ) is almost
imperceptible in the mean variables and second-order statistics such as the TKE and kinematic
turbulent momentum flux. However, Figure 8a shows the streamwise velocity skewness Sku at
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the upstream edge of the forest (x /hc ≈ 0–5) is less negative for Case 3 than it is for Case 2. The
value of Sku above the forest is more negative for Case 3 than it is for Case 2. The streamwise
velocity kurtosis K tu at the upstream edge of the forest (x /hc ≈ 0–5) is smaller for Case 3 than it
is for Case 2 within the forest, and larger for Case 3 than it is for Case 2 above the forest (Figure
8b). These statistics indicate the small stochastic forcing in Case 3 decreases the coherence of the
flow at  the  upstream edge—i.e.,  the  upstream edge behaves  less  like  a  bluff  body than the
homogeneous Case 2—leading to fewer lulls in the streamwise velocity within the forest but
more lulls just above the canopy. We do not generalize these results further because Cases 2 and
3 are highly idealized. But they support the conclusions of Dupont & Brunet (2008a) and Pan,
Chamecki,  et  al.  (2014),  for  example,  that  the  probability  distribution  of  gusts  indicated  by
higher-order  statistics  are  particularly  sensitive  to  the  model  setup,  including  any stochastic
element.

Figure 8. (a) Percentage difference in Sku; and (b) K tu between Case 2 and Case 3, as a total of
the maxima for Case 2. The changes are induced by the stochastic variations in Cda(z ) for Case
3. The green dashed line shows the presence of the forest. The x-axis is scaled so that 0 coincides
with the upstream edge of the forest for each case. ΔK t u is around 25 % for a few resolved cells
in (b). These values are suppressed to 15% to aid presentation.

6.3.2 Waving plants and biological backscatter

Velocity spectra of airflow around forests and other vegetation canopies often contain peaks that
correspond to plant  movement  (Cava & Katul,  2008;  Dupont  et  al.,  2018;  Finnigan,  1979a,
1979b). This indicates that energy is transferred in two directions—the flow perturbs the plants,
but the plants also perturb the flow. This effect is usually ignored in models at the fragment scale
and above on the assumption (usually implicit) that the turbulent structures generated by plant
movement are much smaller and less energetic than the dominant mixing-layer eddies. However,
this  neglects  the possibility  of resonant effects  occurring when the passage frequency of the
dominant  eddies  approaches  the  natural  frequency  f ❑0 of  the  moving  plants,  as  has  been
observed in crops (Py et al., 2006). Trees near the edges of forests, such as in patchy landscapes
and around clearings, are more susceptible to resonance effects than those further inside forest
stands (Dupont et al., 2018).
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Accounting for this  two-way transfer  of energy is  not  straightforward at  the fragment  scale.
Dupont et al. (2010) use LES to model a crop canopy as a poroelastic continuum, with plant
movement incorporated into the momentum equations as small mechanical oscillations of rigid
stems.  Other  researchers  had  previously  developed  models  coupling  wind  flow  and  plant
swaying  in  a  similar  way,  but  with  analytical  solutions  obtained  from  simplified  velocity
statistics  rather  than  through LES  (Gosselin  & de Langre,  2009;  Webb & Rudnicki,  2009).
Pivato et al. (2014) extend this approach, using LES to model the movement of pine trees as
simplified flexible cantilever beams. Their model includes the possibility large tree deflections
by strong gusts, which  Dupont et al. (2010) did not account for in their crop model. Pivato et
al.’s  model  performed  well  against  field  observations  and  more  complex  small-scale  plant
models in terms of the instantaneous tree response to gusts. 

The  direct  approaches  of  Dupont  et  al.  (2010) and  Pivato  et  al.  (2014) require  the  plant
architectures to be heavily simplified to be computationally feasible. This is not a major problem
for  tall,  slender  trees  such  as  maritime  pine,  the  subject  of  Pivato  et  al.  (2014).  However,
decurrent trees, which include many broadleaf species, are structurally more complex and can
have modes of vibration across several scales, for example, f 0≈0.5 Hz in the trunks and a few Hz
in the branches  (Schindler et al.,  2013). Capturing these interactions at the scale of an entire
forest would be very demanding computationally. A possible workaround in patchy landscapes is
to proceed from the observation that wind velocity spectra at forest edges contain peaks around
f ❑0, the natural frequency of the trees (Dupont et al., 2018). This motion is especially visible in
the spanwise direction because the turbulent velocity perturbations are smaller than those in the
streamwise direction. From a modeling point of view, the trees’ movement transfers energy from
the SGS to the smallest resolved scales (Piomelli et al., 1991), a process known as ‘backscatter’.
In general, backscatter is most apparent where small but energetic eddies are present (Mason &
Thomson, 1992), such as around forests and other complex structures. Studies of urban canopy
flow  provide  a  template  of  how  backscatter  could  be  incorporated  into  forest  models.  For
example, O’Neill et al. represent the stochastic effects of backscatter in their LES simulations of
the neutral surface layer (O’Neill et al., 2015) and street canyon flow (O’Neill et al., 2016) by
incorporating random acceleration fields a i in the momentum equations. This gives

∂U i

∂ t
=…+ f i+

∂
∂ x i {νSGS(

∂U i

∂x j

+
∂U j

x i
)}

⏟
SGSterms

+ai ,

(10 )

where  νSGS is SGS eddy viscosity and the ellipsis represents the other terms carried over from
equation (2b). Here, the Smagorinsky SGS scheme is shown. In principle, this approach could be
adopted for an LES of forest  canopy flows, ideally  with the acceleration terms  a i spaced at
frequencies corresponding to the movement of tree parts, while ensuring zero divergence. Selino
& Jones  (2013) adopt  a  similar  approach for  a  very different  purpose,  using  synthetic  SGS
turbulence to improve computer graphical animations of trees moving in wind.
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7 Conclusions: fragment-scale models in context 

Without a great leap in the understanding of fluid dynamics and the Navier–Stokes equations, it
is  not  possible  to  simulate  all  aspects  of  forest–atmosphere  exchange in  the turbulent  ABL.
Numerical  models  of  forest–atmosphere  exchange  can  therefore  never  act  entirely  as
computational wind tunnels. They are nonetheless an invaluable tool in interpreting observations,
and for performing experiments on scales relevant to ecology, commerce, and policy. It is an
exciting time to investigate forest–atmosphere exchange. Advances in non-destructive scanning
techniques (Liang et al., 2016; Raumonen et al., 2015), computing power, and theory are poised
to allow researchers to model exchange in realistic canopies, over large scales, using models
capable  of  resolving turbulence.  There is  a  growing body of  high-quality  observations  from
micrometeorological  campaigns  (Butterworth  et  al.,  2021;  Patton  et  al.,  2011),  long-term
ecosystem  monitoring  (Hicks  &  Baldocchi,  2020),  and  ecosystem-scale  FACE  experiments
(Drake et al., 2016; Hart et al., 2020; Norby et al., 2006) against which models can be tested and
improved. Moving beyond idealized cases, and ultimately fulfilling the potential of observational
networks and new modeling techniques, requires a concerted effort across scientific disciplines.
We conclude by framing progress and outstanding challenges under four overlapping headings.

7.1 Targeted observations in patchy landscapes 

The ability of turbulence-resolving models to simulate scalar transport in patchy landscapes is
essentially  unknown. A major hurdle  is  that there are  few public  datasets  against  which the
nascent  models  can be tested.  The observations  in  the Canopy Horizontal  Array Turbulence
Study (CHATS) in a walnut orchard are the apogee of surface measurements in a tree dominated
landscape  (Dupont  & Patton,  2012;  Patton  et  al.,  2011) and  a  valuable  resource  for  model
developers  (Ma  &  Liu,  2019).  However,  the  CHATS  measurements  were  made  in  a
homogeneous orchard on level ground and are therefore unsuitable for testing models’ ability to
handle patchiness, species diversity, and undulating topography. More measurements are needed,
especially  of  scalar  quantities  such  as  CO2,  water  vapor,  pollutants,  and  spores  in  patchy
landscapes.  For  practical  reasons,  these  measurements  may not  be  on  the  scale  of  CHATS.
However, existing eddy-covariance and FACE facilities have generated extensive timeseries that
may  be  exploited,  especially  if  combined  with  experiments  of  opportunity  and  targeted
observational campaigns around edges, gaps, and hills. For example, further experimental testing
will  determine the extent  to which scalar fluxes reach an approximate equilibrium in patchy
landscapes, and whether the chimney effect in the lee of hills is observed in nature as well as in
numerical models. Researchers are beginning to incorporate canopy exchange schemes in LES
models  (Ma & Liu,  2019).  However,  the schemes are often based on quite  coarse exchange
models,  such  as  the  CLM,  which  cannot  capture  all  the  complex  interactions  between  the
turbulent flow, leaf transpiration, and light levels that occur in forests  (Huang et al., 2015; D.
Kim et al., 2014). Fragment-scale models will eventually require a detailed coupling between the
light attenuation, the flow field, and evapotranspiration, supported by field observations.

7.2 Connection to larger scales 

Developments in theory and computing capacity are allowing researchers to begin incorporating
fragment-scale phenomena into full canopy exchange schemes and mesoscale numerical weather
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prediction models (Arthur et al., 2019; Bonan et al., 2018; Ma & Liu, 2019; Shao et al., 2013;
Yan et al., 2020). To be computationally feasible, these schemes rely on simplified versions of
the forest canopy  (Yan et al., 2020), a priori turbulence parameters  (Y. Chen et al., 2016), or
modifications  of  MOST  with  mixing-layer  length  scales  (Bonan  et  al.,  2018).  These
approximations  perform best  when  the  atmosphere  is  neutral  and  the  surface  homogeneous.
Further  work  is  needed  to  determine  whether  the  length  scales  and  approximations  can  be
modified to account for patchy landscapes and a larger range of atmospheric conditions. Robust
parametrizations for scalar quantities are particularly difficult to find. Missing theoretical links
may become apparent through further testing of LES against high-quality field measurements.
Another  relatively  unexplored  approach  is  to  reject  the  assumption  that  the  scalar  statistics
should always relate to those of the velocity field. For example, understanding the movement of
water  vapor  around  at  fragmented  forest  at  dusk  is  a  problem  that  may  not  yield  to  a
deterministic, drag-based treatment or approximate vertical turbulence profiles. The geometries
of velocity and scalar timeseries are often much less scale-dependent than their accompanying
physics  (Belušić & Mahrt, 2012; D. Chen et al., 2019; Kang, 2015). Turbulent events in these
timeseries  can  also  be  clustered  by  their  statistical  properties,  with  no  assumption  of  the
underlying physical  structures  (Kang et  al.,  2015;  Sun et  al.,  2015).  The timeseries  of well-
chosen turbulence measurements may reveal scale-independent behaviors to parametrize forest–
atmosphere exchange in terrain and conditions that are beyond the reach of current approaches.

7.3 Numerically efficient improvements to the forest structure 

Laser scanning allows researchers to include detailed, site-specific structural information in their
models  (Boudreault  et  al.,  2015;  Raumonen et  al.,  2015;  D.  Wang et  al.,  2020),  and virtual
canopy  generators  can  be  used  to  generate  realistic  forest  models  from a  small  number  of
structural variables  (Bohrer et al.,  2007). Models incorporating realistic forest structure show
very different patterns in gas exchange to those assuming the canopy to be homogeneous (Bohrer
et al., 2009; Boudreault et al., 2017; Schlegel et al., 2015). Researchers should include a careful
description  of  the  forest  morphology in  their  numerical  models,  particularly  when assessing
simulated results against observations, or in forests with a high proportion of edge region. Forest
models should account for the streamlining of plants in high wind conditions, particularly around
gaps, edges, and clearings. This can be accounted for efficiently in models by incorporating the
Vogel number  B into the parametrization of the aerodynamic drag  f i.  Plant movement at  an
ecosystem  scale  can  be  incorporated  through  poroelastic  and  mechanical  parametrizations
(Dupont et al.,  2010; Pivato et al.,  2014) or by the inclusion of a stochastic forcing into the
momentum equations at a frequency corresponding to plant movement.

7.4 Challenging weather and atmospheric conditions 

Numerical models allow low dimensionality experiments that are difficult to perform in the open
atmosphere.  A  common  simplification  is  that  of  an  isolated  forest  in  neutral  atmospheric
conditions. This removes all aspects of the atmosphere, other than a velocity field that is recycled
using  periodic  boundary  conditions.  In  nature,  however,  forests  are  subject  to  all  sorts  of
weather,  climatic,  atmospheric  conditions.  Stability  changes  quickly  in  time,  such as  around
dusk,  and  in  space,  such  as  where  radiation  emission/absorption  cause  completely  different
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atmospheric properties within a forest compared with the surroundings. Simulations of the entire
ABL will help explore these effects further  (Ma & Liu, 2019; Patton et al., 2016; Yan et al.,
2020). Local effects around gaps and areas of uneven heating should not be discounted. Further
research is needed into the effect of submeso motions on forest–atmosphere exchange. These are
difficult to model because they often manifest as intermittent turbulent bursts, but do not result
from mixing-layer-type eddies,  and therefore must be generated using mesoscale coupling or
synthetic turbulence. However, submeso motions are common in the atmospheric conditions that
tend to be most problematic for eddy-covariance measurements, such as during stable nights, and
discounting their  effect  from models introduces an unwelcome bias.  Rainfall  is  a significant
source of momentum into forests, affecting myriad ecological processes as well as the plants’
mechanical response to the flow. Raindrop-induced vortices can carry small particles away from
plant surfaces and into the turbulent flow. Wet conditions provide a major unexplored area for
numerical investigations of forest–atmosphere exchange because much of the world’s forested
area is situated in climates where precipitation is common.

Notation

ABL Atmospheric boundary layer.

ASL Atmospheric surface layer.

a (z) Layer-wise plant area density.

B Vogel number.

BIFoR Birmingham Institute of Forest Research.

(B)VOCs (Biogenic) volatile organic compounds.

Cd Drag coefficient.

CLM Community Land Model.

DNS Direct numerical simulation.

Eϕ Efficiency of particle deposition.

FACE Free-air carbon dioxide enrichment.

f i Aerodynamic drag.
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f 0 Natural frequency of moving plants.

g Gravitational acceleration.

hc Canopy height.

hd Displacement height.

ICR In-canopy recirculation region.

ISL Inertial sublayer. 

Ktui
Kurtosis of the velocity component ui.

L Hill half-length.

Lc Canopy drag length scale.

LES Large-eddy simulation.

Ls Shear length scale.

LSM Lagrangian stochastic modeling.

MOST Monin–Obukhov similarity theory.

Od Diameter of opening.

P Perturbation pressure.

PAD Plant area density.

PAI Plant area index.

Qhc
Specific flux at the crown top.

RANS Reynolds-average Navier–Stokes.

ℜ Reynolds number.
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RSL Roughness sublayer.

SGS Sub-grid scale.

Skui
Skewness of the velocity component ui.

Sϕ i
Source/sink of a scalar quantity ϕi.

TKE Turbulence kinetic energy.

UFP Ultrafine particles.

U hc
Mean streamwise wind speed at the crown top.

u¿ Friction velocity.

WRF Weather Research and Forecasting model.

w s Particle settling velocity.

x A Adjustment distance.

z i Boundary-layer height.

z0 Roughness length.

α Attenuation coefficient.

δ i3 Kronecker delta.

θv Virtual potential temperature.

θ0 Reference temperature.

νSGS Sub-grid scale eddy viscosity.

νϕ Dry deposition velocity.

σ ui
Standard deviation of the velocity component ui.
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τ Air parcel residence time.

ϕl Resolved local scalar concentration.
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8 Appendix A: numerical details of LES model 

8.1 Drag parametrization and simulated cases 

We simulate flow across different forests, with the presence of the aerial parts of the forests
represented using the drag parametrization in equation (6), f i=−Cda ( z )|U|⟨ui ⟩. We replace the
U i in  equation (6) with  ⟨u i⟩ here because we do not time average the variables until the post-

processing step. We specified a height-averaged sectional drag coefficient  Cd=¿ 0.2, a value
commonly used in previous studies (Table A1). Figure 9 shows the mean vertical profile of the
LAD, a (z), specified across all three cases. The profile  a (z) was derived from terrestrial lidar
surveys of the BIFoR FACE facility  (Hart et al., 2020), using the method in  Raumonen et al.
(2015), giving PAI ≈ 5.

Figure 9. Vertical profile of PAD a (z) (PAI ≈ 5) used in the LES model for Cases 1–3. Coloring
indicates that the trunks account for much of the PAD in the lower part of the canopy, and the
leaves account for much of the PAD in the upper part of the canopy. The coloring is illustrative
only and does not reflect the detailed composition of the BIFoR FACE facility.

We specified three cases:

 Case 1 –  We apply the distributed-drag method across the entire domain to simulate a
continuous, homogeneous forest. 
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 Case 2 – We apply the distributed-drag method over a patch extending 500 m in the
streamwise direction, and across the entire domain in the spanwise direction, to simulate
flow across a small, isolated forest. 

 Case 3 – As for Case 2 but, for each  forested cell,  Cda ( z ) (Case 3) taking a random

number (uniformly distributed) within the range C da ( z )(Case 2) ±2%. This introduces a
small spatial stocastic forcing into the momentum equations solved by the LES model via
the drag term in equation (6). However, the stochastic forcing does not directly vary with
time using this formulation. 

8.2 Transport Equations

We solved the transport equations using the LES mode of WRF version 3.6.1 (Skamarock et al.,
2008). The WRF model solves discretized forms of the spatially averaged momentum equations
using the Runge–Kutta time-integration scheme (Wicker & Skamarock, 2002),

∂⟨ui ⟩

∂ xi
=0 ,

(11a )

∂⟨ui ⟩

∂ t
+
∂⟨ui ⟩⟨u j ⟩

∂x j

=
−1
ρ

∂ ⟨ p ⟩

∂x i

+
∂ τ ij
∂ x j

+Bi+ f c ϵij 3 ( ⟨u j ⟩−U g , j )+ f i ,

(11b )

where ρ is the air density;⟨ p ⟩ is the spatially averaged pressure; τ ij is the kinematic mean stress
tensor, which represents the SGS stresses; Bi is the buoyancy force: Bi=−δi3gθ ' /θ, where θ is
the  potential  temperature  for  hydrostatic  balance,  and  θ ' is  the  temperature  variations  with
respect  to  θ;  f c is  the Coriolis  parameter;  ϵ ij 3 is  the  alternating  unit  tensor;  and  U g , j is  the
geostrophic velocity. Equation (11b) is closed by parametrizing the SGS stress tensor τ ij as 

τ ij=−2νSGS S ij ,
(12 )

Sij=
1
2 (

∂ ⟨u i⟩

∂ x j

+
∂ ⟨u j ⟩

∂ x i
) ,

(13 )

vSGS=ck √⟨ eSGS ⟩ (∆ x ∆ y ∆ z )
1
3 ,

(14 )

where ⟨ eSGS⟩ is the SGS TKE and ck=¿ 0.10 is a modelling constant. The prognostic equation
for the evolution of the term ⟨ eSGS⟩ is,
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∂⟨ eSGS ⟩

∂ t
+
∂⟨u j ⟩⟨ eSGS⟩

∂x j

=νSGS
∂

∂ x j
(
∂⟨ eSGS⟩

∂ x j
)+P r+F−

Cϵ ⟨eSGS ⟩

(∆ x∆ y ∆ z )

1
3

,

(15 )

where  Pr represents the shear- and buoyancy-production terms  (Skamarock et al., 2008),  C ϵ is
the dissipation coefficient (Moeng et al., 2007). The term F is a cascade term, which accounts for
additional dissipation of kinetic energy from air–forest  interactions at scales smaller than the
spatial filter (Shaw & Patton, 2003; Shaw & Schumann, 1992), with

F=−2Cd a(z)|U|⟨eSGS⟩ .
(16 )

8.3 Drag parametrization and simulated cases 

The simulated  domain  is  1435  × 1435  × 1000 m  in the streamwise,  spanwise,  and vertical
directions, respectively, comprising 287 × 287 × 79 grid cells. The horizontal grid resolution is 5
m in each direction, and the vertical resolution is increased from around 0.67 m in the lower half
of the forest to around 60 m at the top of the simulated domain. The mean height of the forest hc

is set  to 25 m for each case. For Cases 2 and 3, the upstream edge of the forest is situated
approximately 600 m from the inflow edge of the domain (Case 1 is forested across the entire
domain).  We  simulate  flow  under  neutral  conditions,  with  the  initial  profile  of  potential
temperature θ specified as a constant at 283.15 K at the bottom of the domain (up to z ≈ 475 m)
followed by a linear increase to 291.7 K at the top of the domain. We include a dampening layer
of  z ≈300 m at the top of the domain to minimize wave reflection  (Nottrott et al., 2014). The
geostrophic velocity components above the boundary layer top are set to U g = −¿6 m s-1 and V g

= −¿9.3 m s-1, and this specification yields a mean wind speed of 1.6 m s-1 from a flow direction
of 343o (approximately a northerly wind) at the crown top (z=hc). We use the meteorological
convention where the x-direction is aligned west–east and the y-direction south–north. 

Spin-up was 5 h, with cyclic boundary conditions for all dynamical variables in both horizontal
directions. After the spin-up, we ran the simulations for a further 120 min, taking samples at
intervals of 3 s. We time-averaged over the latter 100 min (denoted by T) of these samples (i.e.,
t 0=20min to  t 0+T=120 min). This process generates a three-dimensional time series of 2000

resolved samples in the form ⟨ϕ ⟩ ( x , y , z , t ).We derived the resolved turbulent statistics using (a)
time averages over the sampling period; and (b) spatial averages along the y-direction (Ly= 1435
m), over which the turbulent statistics are homogeneous. For each resolved variable,  ⟨ϕ ⟩, the
averaging process generates a two-dimensional function,

Φ ( x , z )=
1

T L y
∫

0

Ly

∫
t0

t0+T

⟨ϕ ⟩ ( x , y , z , t )dtdy ,

(17 )
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from which we calculate the statistics presented in Figures 5 and 8. The resolved fluctuating
component  of  ⟨ϕ ⟩ around  Φ is  defined  as⟨ϕ ' ⟩ ( x , y , z , t )=⟨ϕ ⟩ ( x , y , z , t )−Φ ( x , z ),  with  the

skewness Skui
= ⟨u i

'3 ⟩ /σui

3  and kurtosis Kt❑ui
=¿ ⟨ui

' 4 ⟩ /σui

4 . 
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Appendix B: Summary of modeling investigations of flow around forests

Table A1. Chronological summary of highly cited modeling investigations of flow around forests at the fragment scale. PAD and PAI,
respectively, refer to the plant area density/index, a (z) is a height-dependent function of the PAD, and Cd is the drag coefficient 

Study
Equations/

model
Distribution of PAD as a (z) Cd

PAI
range

(m2/m2)
Additional Features

Shaw & Schumann (1992) LES Artificially generated vertical profile for a deciduous forest. 0.15 2, 5

Dwyer et al. (1997) LES Artificially generated vertical profile for a deciduous forest 0.15 2, 5 Numerical setup based on Shaw & Schumann (1992)

Su et al. (1998) LES Artificially generated vertical profile for a deciduous forest 0.15 2 Numerical setup based on Shaw & Schumann (1992)

Shaw & Patton (2003) LES Artificially generated vertical profile for a deciduous forest 0.15 2

Watanabe (2004) LES Uniform vertical distribution 0.2 2

Finnigan & Belcher (2004)
Mixing-length

closure
Uniform vertical distribution 0.25 ≈ 4

Drag  parameters  are  approximations.  Analysis  is
mostly expressed in dimensionless terms

Katul et al. (2006)
Mixing-length

closure
Uniform vertical distribution 0.2 3

Investigated  carbon  dioxide  exchange  over  forested
hills

Yang et al. (2006b, a) LES Artificially generated vertical profile for a deciduous forest 0.15 2 Numerical setup based on Shaw & Schumann (1992)

Dupont & Brunet (2008a) LES
Four cases: (1) approximately vertically uniform; (2) sparse
trunk space and dense crown; (3) very dense crown and very
sparse trunk space; and (4) undergrowth in trunk space

≈0.5 2
PAI chosen so that the product cda ( z ) was the same

as in Raupach et al. (1987), where PAI ≈ 5

Dupont & Brunet (2008b) LES Uniform vertical distribution 0.2 2
Structure  of  the  upstream  edge  of  the  forest  was
varied across seven shapes and densities 

Dupont & Brunet (2008c) LES
Three cases: (1) approximately vertically uniform; (2) sparse
trunk space and dense crown; (3) undergrowth in trunk space

0.2 1–5

Cassiani et al. (2008) LES Artificially generated vertical profile for a deciduous forest 0.2 2–8
Forest structure approximately based on that of Duke
Forest (Katul & Albertson, 1998) 

Sogachev et al. (2008) RANS Foliage distribution based on beta probability density function 0.2 0.5–3 Investigated scalar transport around a forest edge

Ross (2008) LES Uniform vertical distribution 0.15 5 Simulated flow over forested ridges

Bohrer et al. (2009) LES Randomly generated heterogeneous canopy 0.15 1.4–3
1,000 virtual canopies generated for each simulation,
with randomized gaps of approximately crown width

Dupont & Brunet (2009) LES Artificially generated vertical profile for a deciduous forest 0.2 2, 5
Canopy structure approximately based on deciduous
forest reported in Neumann et al. (1989)

Dupont et al. (2011) LES
Dense canopy with sparse  trunk space to  approximate pine
plantation 

0.26 2
Includes five additional cases with the vertical profile
gradually relaxed towards a uniform distribution 
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Edburg et al. (2012) LES Artificially generated vertical profile for a deciduous forest 0.5 1

Schlegel et al. (2012) LES
Forest  dominated  by  Picea  abies.  PAD  varied  across
simulated domain

0.15 ≈ 7.1 PAD distribution derived from terrestrial Lidar 

Mueller et al. (2014) LES
Simplified vertical profiles estimates from observations in a
pine plantation and a deciduous forest

0.26 2
Setup taken from  Sylvain Dupont  et  al.  (2011) and
Hong Bing Su et al. (1998)

Boudreault et al. (2015) RANS
Forest dominated by Picea abies. Frontal area density varied
across simulated domain

0.2 ≈2.9
Vertical profile derived from aerial lidar scans of the
forested area

Xu et al. (2015)
Renormalization

Group
Vertical profile from measurements in a forest dominated by
spruce and pine ≈ 0.3 3.3

Two-dimensional  investigation  of  stably  stratified
flow around an idealized forested hill 

Kanani-Sühring & Raasch 
(2015)

LES Artificially generated vertical profile for a deciduous forest 0.2 1–8
Used  LES  to  investigate  scalar  transport  around  a
forest edge

Schlegel et al. (2015) LES
Forest  dominated  by  Picea  abies.  PAD  varied  across
simulated domain

0.15 ≈ 7.1
PAD  distribution  derived  from  terrestrial  lidar.
Developed preliminary work in Schlegel et al. (2012)

Ross & Harman (2015) LES Uniform vertical distribution 0.25 4 Simulated flow and scalar transport over forested hills

Kanani-Sühring & Raasch 

(2017)
LES Artificially generated vertical profile for a deciduous forest 0.2 1–8

Investigated scalar transport in the lee of the forest,
with multiple sources and sinks

Yan et al. (2017) LES
Simplified deciduous trees. Three cases: (1) bluff objects; (2)
bluff trunks and porous crowns; (3) fully porous trees ≈0.2 ≈ 5

Numerical  details couched in terms of bluff objects
(e.g. frontal area index) to be compared more easily to
wind-tunnel observations in Böhm et al. (2013)

Boudreault et al. (2017) LES

Two cases:  (1) heterogeneous PAD derived from terrestrial

lidar;  and  (2)  spatially  homogeneous  a (z) from averaged

data

0.2 6 Heterogeneous case included tapered upstream edge

Chen et al. (2019) LES
Horizontally  homogeneous.  Profile  derived  from  leaf  area
measurements in the Amazon rainforest

0.2 7
Simulated  flow  and  scalar  transport  over  forested
hills.  PAD  profiles  generated  from  observations
reported in Tóta et al. (2012) and Fuentes et al. (2016)

Ma & Liu (2019) LES Uniform vertical distribution 0.2 2.5
LES  coupled  with  multiple layer  canopy  exchange‐
model

Watanabe et al. (2020)
LES (Lattice
Boltzmann

method)
Uniform vertical distribution 0.2 2

The equations of motion are resolved using the lattice
Boltzmann  method  rather  than  solving  the
incompressible Navier–Stokes equations

Ma et al. (2020) LES
Three cases: (1) vertically uniform (2) sparse trunk space and
dense crown; (3) very sparse trunk space and dense crown

0.25 4
LES coupled with a multiple layer canopy exchange‐
model used to investigate transport of different scalars
across a forest edge

Yan et al. (2020) LES
Profile  generated  using  empirical  relationship  in  Lalic  and
Mihailovic (2004)

0.15 4.3
LES coupled to the mesoscale Weather Research and
Forecasting model. Grid resolution at the mesoscale
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