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Abstract

Geostationary satellites observe the earth surface and atmosphere with a short repeat time which can thus provide aerosol

parameters with high temporal resolution. Due to the limited information content in satellite data, and the coupling between the

signals received from the surface and the atmosphere, the accurate retrieval of multiple aerosol parameters over land is difficult.

Here we propose a Neural Network AEROsol retrieval framework for Geostationary satellite (NNAeroG) which can potentially

be applied to different instruments to retrieve various aerosol parameters. NNAeroG was applied for aerosol retrieval using

data from the Advanced Himawari Imager on Himawari-8 and the results were evaluated versus independent ground-based sun

photometer reference data. The retrieved Aerosol Optical Depth, Ångström Exponent and Fine Mode Fraction are significantly

better than the official JAXA aerosol products. The use of thermal infrared bands is meaningful for aerosol retrieval.
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Abstract 26 

Geostationary satellites observe the earth surface and atmosphere with a short repeat time which 27 

can thus provide aerosol parameters with high temporal resolution. Due to the limited 28 

information content in satellite data, and the coupling between the signals received from the 29 

surface and the atmosphere, the accurate retrieval of multiple aerosol parameters over land is 30 

difficult. Here we propose a Neural Network AEROsol retrieval framework for Geostationary 31 

satellite (NNAeroG) which can potentially be applied to different instruments to retrieve various 32 

aerosol parameters. NNAeroG was applied for aerosol retrieval using data from the Advanced 33 

Himawari Imager on Himawari-8 and the results were evaluated versus independent ground-34 

based sun photometer reference data. The retrieved Aerosol Optical Depth, Ångström Exponent 35 

and Fine Mode Fraction are significantly better than the official JAXA aerosol products. The use 36 

of thermal infrared bands is meaningful for aerosol retrieval. 37 

Plain Language Summary 38 

Atmospheric aerosol particles have a large influence on the Earth’ climate, on air quality, human 39 

health and many different processes in the atmosphere. The amount and the size of aerosol 40 

particles are important. Satellite-based optical sensors can be used to observe aerosol properties, 41 

by the detection of solar radiation reflected by the particles at different wavelengths and in 42 

different directions. The radiation reflected by aerosols needs to be separated from the reflection 43 

from the Earth surface. Methods have been developed to achieve this, over different types of 44 

surfaces. Most satellites used for aerosol detection, observe any location on Earth only once per 45 

day. Geostationary satellite can observe the earth many times each day. We successfully 46 

developed a method to obtain information on both the amount of aerosols and the size of the 47 

particles using geostationary satellite observations in a neural network method named NNAeroG.  48 

1 Introduction 49 

Atmospheric aerosols have key influences on global climate and environment (Kaufman 50 

et al., 2002). Measurements using ground-based instruments can provide a multitude of aerosol 51 

parameters which together characterize the aerosol microphysical and chemical properties in 52 

great detail and with high accuracy. Ground-based measurements however apply to local 53 

conditions with a limited spatial extend.  In contrast, satellite measurements using radiometers 54 
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can provide aerosol information over large spatial scales with global coverage (Levy et al., 55 

2013), but for less parameters, with less detail and lower accuracy. The use of space-borne 56 

radiometers to obtain aerosol information from the radiances or reflectances measured at the Top 57 

Of the Atmosphere (TOA), requires the development of retrieval methods based on radiative 58 

transfer models. To optimally use the sensor characteristics, such as multiple wavelengths, 59 

multiple views and polarization information, different types of algorithms have been developed. 60 

For sensors in a Sun-synchronous orbit, algorithms such as Dark Target (DT) (Levy et al., 2013), 61 

Deep Blue (DB) (Hsu et al., 2006), Multi-Angle Implementation of Atmospheric Correction 62 

(MAIAC) (Lyapustin et al., 2011), AATSR dual-view (ADV) (Kolmonen et al., 2016), MISR 63 

aerosol retrieval method (Kahn and Gaitley, 2015), Generalized Retrieval of Aerosol and Surface 64 

Properties (GRASP) (Dubovik et al., 2011), etc., have been developed to retrieve aerosol 65 

properties from different sensors. Sensors in a sun-synchronous orbit may offer near-daily global 66 

coverage (e.g. MODIS, VIIRS, POLDER, MERIS) or in several days (MISR, AATSR, SLSTR), 67 

depending on their swath. Geostationary satellites view a specific part of the Earth but with high 68 

temporal resolution which can thus be used to provide aerosol information suitable to track the 69 

evolution of aerosol properties (Sowden et al., 2019). Methods to retrieve aerosol properties from 70 

geostationary satellites have been developed, such as GOCI Yonsei Aerosol Retrieval (YAER) 71 

(Choi et al., 2016), for MSG/SEVIRI (Bennouna et al., 2009; Govaerts and Lufarelli, 2018) and 72 

the Advanced Himawari Imager (AHI) on Himawari-8 which is the subject of this paper. 73 

A number of aerosol retrieval methods were developed for Himawari-8/AHI. The official 74 

aerosol products of AHI, available from the Japan Aerospace Exploration Agency (JAXA), are 75 

retrieved by a DB-type method (Yoshida et al., 2018). Ge et al. (2018) proposed a DT method 76 

for Himawari-8/AHI aerosol retrieval by defining a new Normalized Difference Vegetation 77 

Index (NDVI) calculated from the 0.86 µm and 2.3 µm wavebands; the retrieved AOD had an R2 78 

of 0.81with ground-based network measurements. Yan et al. (2018) proposed a minimum albedo 79 

aerosol retrieval method (MAARM) to retrieve AOD, Ångström Exponent (AE) and Fine Mode 80 

Fraction (FMF). However, the accuracies of AE and FMF were not high. Recently, Su et al. 81 

(2021) proposed a High-Precision Aerosol Retrieval Algorithm (HiPARA) which employs a 82 

monthly spectral reflectance ratio library and aerosol type from Aerosol Robotic Network 83 

(AERONET) statistics to retrieve AOD. Gao et al. (2021) improved the surface reflectance 84 

estimation of the DT method by taking into account the land cover, NDVI and scattering angle. 85 
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The retrieved AOD in the study of Su et al. (2021) and Gao et al. (2021) has a better accuracy 86 

than the JAXA AOD. Huttunen et al. (2016) compared 6 methods of AOD retrieval including 87 

one radiative transfer modeling LUT (Look Up Table) method, one non-linear regression method 88 

and four machine learning methods and learned that the LUT method assumes parameters such 89 

as Single Scattering Albedo (SSA) which introduced more uncertainties into the products, 90 

whereas, the machine learning methods did not use any assumptions and their performance was 91 

better.  92 

Machine learning has been used as a new technique to solve the complicated aerosol 93 

retrieval problems with good results. Chen et al. (2020) proposed a Neural Network AEROsol 94 

(NNAero) retrieval method for the use with MODerate resolution Imaging Spectroradiometer 95 

(MODIS) data, which could jointly retrieve AOD and FMF with a significant improvement of 96 

accuracy. For Himawari-8/AHI, She et al. (2020) trained a deep neural network by AERONET 97 

observations to retrieve AOD using reflectances in 6 wavebands, and achieved better AOD 98 

accuracy than JAXA AOD. 99 

 In this paper, a framework for a Neural Network AEROsol Retrieval algorithm for 100 

Geostationary Satellite (NNAeroG) is presented based on the work of Chen et al. (2020). In 101 

contrast to sun-synchronous satellites, a geostationary satellite like Himawari-8 provides 102 

multiple observations over the same location which can be used in time series algorithms (e.g., 103 

Li et al., 2020). Like aerosol retrieval algorithms mentioned above, Chen et al. (2020) and She et 104 

al. (2020) used only reflective spectral bands covering the visible and near infrared (VNIR) and 105 

the shortwave infrared (SWIR) parts of the solar spectrum. In fact, efforts to include thermal 106 

infrared (TIR) bands for aerosol retrieval have been made for aerosol type (Clarisse et al., 2013) 107 

and dust aerosol (Sowden and Blake, 2020). For the use of TIR wavelengths, only the radiance at 108 

TOA is needed which circumvents problems associated with separation of the aerosol and 109 

surface contributions. The use of time series and TIR wavelengths constitutes a substantial  110 

improvement of NNAeroG as compared with NNAero. For the neural network training and 111 

validation, the output data were extracted which are available from sun photometers in the 112 

AERONET (Holben et al., 1998) and Sun–Sky Radiometer Observation Network (SONET) (Li 113 

et al., 2018) networks. The study area is China. The importance of input features (spectral bands 114 

and geometric angles) was given using the Extreme Gradient Boosting (XGBoost) model (Gui et 115 

al., 2020). 116 
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2 Materials 117 

2.1 Himawari-8/AHI data 118 

  Himawari-8 is a Japanese weather satellite which was launched on 7 October 2014 in a 119 

geostationary orbit at a height of 35793 km at 140.7°E, with a spatial coverage of 150° by 150°. 120 

The primary instrument onboard Himawari-8 is the Advanced Himawari Imager (AHI) which 121 

measures upwelling radiation at TOA in 16 spectral bands (listed in Table S1 in the supporting 122 

information) with a spatial resolution down to 500 m every 10 minutes (fullldisk). AHI solar 123 

zenith angle, viewing zenith angle, relative azimuth angle (solar azimuth angle minus viewing 124 

azimuth angle), TOA reflectances in 6 VNIR and SWIR bands and brightness temperatures in 10 125 

TIR bands were collected for each cloud-free pixel. Thus, in total 19 features are available and 126 

some of them will be selected for retrieval by XGBoost. In this study, level 1 data and aerosol 127 

products data during the years of 2016 - 2019 were used. 128 

The AHI data formatted in netCDF were downloaded from the JAXA “P-Tree” system 129 

(ftp://ftp.ptree.jaxa.jp). The AHI level 1 calibrated data are gridded in pixels of 0.02º and contain 130 

the Earth surface albedo measured at TOA in bands 1-6, and the brightness temperatures 131 

measured at TOA in bands 7-16. We calculated the reflectances from the Level 1 albedo in bands 132 

1-6 using 133 

𝜌                                                                    (1) 134 

where 𝜌  is the TOA reflectance at wavelength λ, 𝛼  is the TOA albedo, and 𝜃  is the solar 135 

zenith angle.  136 

JAXA aerosol products of Himawari-8/AHI are also available from the “P-Tree” system. 137 

The JAXA aerosol product is gridded in pixels of 0.05º and contain AOD, AE and FMF. Cloud 138 

products available in P-Tree are used to select cloud-free pixels (Shang et al., 2017). 139 

2.2 Ground-based data and study area 140 

Reference aerosol products for the training of the NNAeroG and the validation of the 141 

results were obtained from two sun photometer networks in China, i.e. AERONET and SONET. 142 

The level 2.0 data of AERONET (Version 3.0) and SONET were used in this study. The mean 143 

values of AOD, AE, FMF over ± 30 min from the satellite imaging time were extracted to match 144 
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the satellite data at the same location (Levy et al., 2013) with spatial match as shown in Table 145 

S1. Data from 12 AERONET sites and 16 SONET sites (not common with the 12 AERONET 146 

sites) during the years of 2016 - 2019 were collected. All sites are indicated in Figure S1.  The 147 

Himawari-8/AHI covers all China except for a small part west of 80°E. Only land surfaces in 148 

China covered by AHI were considered in this paper. 149 

3 Algorithm framework development 150 

3.1 Algorithm framework strategy 151 

The geostationary satellite data have three dimensions (spectral, spatial, and temporal 152 

information) that could be used to constrain aerosol retrieval. In Chen et al. (2020), the retrieval 153 

of MODIS AOD and FMF were achieved using the spectral and spatial information. Here we 154 

propose the NNAeroG with all three dimensions. The flowchart of the NNAeroG algorithm 155 

framework is shown in Figure 1.  156 
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 157 

Figure 1. Flowchart of NNAeroG algorithm. 158 

In the first step, the machine learning samples for neural network model training and 159 

validation, including the geostationary satellite data as input and the ground-based data as output, 160 

were prepared. After temporal and spatial matching, all samples were divided into two parts, 161 

training and validation, to ensure that the validation samples are independent of the training 162 

samples. As shown in Figure S1, sites with their names in red were selected for independent 163 

validation. And then, data augmentation produces more samples to create a uniform distribution. 164 

For example, there are less samples with FMF < 0.2 which would lead to a lack of learning for 165 

coarse aerosols, so we can copy these samples, with addition of 2% Gaussian noise, as 166 

augmentation. It is noted that quality control can filter unsuitable data such as cloud-167 
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contaminated pixels. Every input value would be transferred in [0, 1] to obtain good fitting 168 

results of neural network. 169 

In the second step, the geostationary data in one sample has multi-spectral, multi-170 

temporal and multi-pixels (sub-image centered on the site). Which one is the important feature 171 

for the aerosol retrieval? Radiative transfer theory and previous aerosol retrieval algorithms can 172 

provide optional preferences. At the same time, the decision tree based XGBoost machine 173 

learning method can provide the importance value of each input feature.  174 

In the third step, to establish a machine learning model, the neural network is 175 

recommended for its excellent non-linear fitting ability (Yan et al., 2020; She et al., 2020). More 176 

important, XGBoost, which is based on the decision tree with thresholds, has a potential 177 

capability to select which is the important feature for retrieval from spectral bands.  178 

In the fourth step, the NNM was developed. Temporal and spatial information were 179 

selected according to the NNM test results. The number of input features N were defined by: 180 

𝑁 𝑟𝑜𝑢𝑛𝑑 𝑆 𝑅 𝑇 𝑁                                           (2) 181 

Where Spix is the side length of the pixels square in the satellite image centered over each 182 

ground-based site, here Spix≤7 with the assumption that aerosol is homogeneous over an area of 183 

less than 14 km × 14 km. RDark is the ratio of the dark and clear-sky pixels in each area of Spix × 184 

Spix pixels. The darkness order of pixels is given by the TOA reflectance at 2.3 μm which is used 185 

to enhance the number of pixels with a relatively large atmospheric contribution to the TOA 186 

signal by selecting pixels with the darkest surface. NSB (≤19) is the number of features selected 187 

by XGBoost from the 19 angles, spectral reflectances and brightness temperatures, in the second 188 

step. T is the number of temporal satellite data, here T = 1 or 3.  189 

In the fifth step, the NNM was trained by the selected spectral, spatial and temporal input 190 

features. With the independent test (also validation), the architecture and its parameters of NNM 191 

were fixed.  192 

Finally, the fixed NNM could be used to predict (or retrieve) aerosol with large amount 193 

of remote sensing data.  194 

3.2 Neural network model 195 

A neural network shows better performance for nonlinear regression than other machine 196 

learning methods such as XGBoost and RF (Random Forest) (Yan et al., 2020). We also tested 197 
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different machine learning methods, but the neural network was selected for NNAeroG because 198 

of the best performance. The NNM architecture for NNAeroG was designed as shown in Figure 199 

S2.  200 

In the full connected layer (FC), the basic unit is neuron (blue circle in Figure S2), which is a 201 

weighted summation of its inputs. The output of a neuron is expressed as 202 

𝑧 ∑ 𝜔 ∗ 𝑥                                                                (3) 203 

where 𝜔  is the weighting coefficient for the input x . The training process is to obtain the best 204 

𝜔  to achieve the best prediction accuracy. In Figure S2, the NNM is composed of three parts: 205 

input, hidden layers and output.  206 

3.3 Application to Himawari-8/AHI and comparison with NNAero 207 

The development of NNAeroG is based on the NNAero algorithm designed for MODIS 208 

FMF retrieval (Chen et al., 2020). Because of the differences between the AHI and MODIS 209 

sensors, NNAero cannot be directly applied to AHI. Therefore, for the development of 210 

NNAeroG the following changes were introduced. 211 

The Himawari-8/AHI data have lower spatial resolution and higher temporal resolution 212 

as compared to MODIS. For the application of NNAeroG on Himawari-8/AHI, the settings of 213 

NNAeroG on Himawari-8 and comparisons with NNAero on MODIS are presented in Table S2. 214 

Compared with NNAero, NNAeroG employs separated NNM for every aerosol 215 

parameter retrieval. The FCNN architecture employed in NNM is not sensitive to the shape or 216 

texture characteristics of the ground-based site. Samples from a single site collected at different 217 

times are independent. Therefore, the independent validation (or test) data from sites which were 218 

not used for training are not necessary. However, to ensure strictly independent validation, in this 219 

study data from sites used for training were not used for validation. The input satellite data only 220 

include TOA reflectances and brightness temperatures, but no surface reflectances. All 221 

advantages of NNAeroG are shown in Table S2 as bold font. 222 
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4 Result and discussion 223 

4.1 Selection of input features 224 

The importance of each of the AHI input features was analyzed by XGBoost. The results 225 

of this analysis are presented in Figure 2, which shows that for the retrieval of AOD with the 226 

NNM, the 6.2μm, 6.9μm, 8.6μm, 11.2μm, 12.4μm wavelength bands have the lowest 227 

importance; therefore these bands were not used as input. For the retrieval of AE and FMF there 228 

is no significant difference between the input features which were thus all retained.  229 
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Figure 2. Aerosol retrieval importance of Himawari-8/AHI input features. The numbers on the 231 

horizontal axis are spectral bands in μm. SZ, VZ and RA are solar zenith angle, viewing zenith 232 

angle and relative azimuth angle respectively. 233 

According to Eq. 2, the spatial (Spix, RDark) and temporal information (T) was tested by 234 

NNMs for AOD, AE and FMF. Assuming that AE and FMF do not change during 20 min, 3 AHI 235 

images (±10 min around the sun photometer measurement) were used together as input in the 236 

retrieval. The settings are shown in Table 1. 237 

Table 1. Spectral, spatial and temporal settings for NNAeroG retrieval using Himawari-8/AHI data 238 

Aerosol 

parameter 

Spectral and angles Spatial (pixel) Temporal N in Eq.2 

AOD 11 bands + 3 angles 1  single 14 

AE 16 bands + 3 angles Round(72×0.5) = 25 3 observations 475 

FMF 16 bands + 3 angles Round(52×0.4) = 10 3 observations 190 

4.2 Validation 239 

For strictly independent validation, the test dataset needs to include only samples from 240 

the ground-based sites which were not used in the NNM training (Chen et al., 2020; She et al., 241 
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2020). Scatterplots of the AOD, AE and FMF retrieved using NNAeroG versus AERONET and 242 

SONET reference data are presented in Figure 3, for both the training data set and the 243 

independent validation data set. Also shown are similar plots for the JAXA operational data. It is 244 

noted that in Figure 3 the spatial resolution for the JAXA products is 5 km and for the 245 

NNAeroG-retrieved data it is 2 km.  246 
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Figure 3. Scatterplots of Himawari-8/AHI retrieved AOD, AE and FMF versus AERONET and 250 

SONET reference data. The left column shows scatterplots for NNAeroG products over the 251 

training sites, i.e. versus the same data that were used for training the NNM. The middle column 252 

shows scatterplots for NNAeroG products over sites that were not used in the NNM training. 253 

Scatterplots for the JAXA products are presented in the right column. The red lines are the EE 254 

envelopes for AOD, AE and FMF of ± (0.05 + 15%), ± 25% and ± 25%, respectively. 255 
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The scatterplots in Figure 3, middle column, show that for the NNAeroG retrievals over 256 

the validation sites, 63.7% of the AOD data are within the EE envelope of ± (0.05 + 15%), 257 

60.9% of the AE and 65.6% of the FMF are within the EE of ± 25%. The data in Figure 3 and 258 

the statistical metrics for the comparison of the NNAeroG and JAXA products in Table S3 show 259 

the significant improvement of the retrieval accuracy of the NNAeroG AOD, AE and FMF 260 

products over those from the JAXA algorithm. Note however, that NNAeroG overestimates the 261 

AOD and FMF, and underestimates the AE. The values of RMSE, MAE, R2 and R indicate the 262 

better accuracy for AOD than for than AE and FMF.  263 

4.3 High temporal resolution products 264 

Using the trained NNMs of NNAeroG, time series of aerosol parameters can be retrieved. 265 

Hourly high temporal resolution aerosol products (AOD, AE, and FMF) for September 20, 2020, 266 

from 01:00 to 10:00, are presented in Figure S3, which shows that the high spatial and temporal 267 

resolution of the NNAeroG retrievals provide detailed information on the spatial distribution of 268 

the aerosol properties and their temporal evolution. Specifically, from UTC 01:00 to 07:00, the 269 

AOD decreases over the North China Plain (NCP) and the area toward the Mongolia border, 270 

whereas the coverage increases. At the same time, the FMF over the NCP and to the north of the 271 

NCP increased indicating stronger dominatin of fine mode particles. The data in Figure S3 show 272 

that the high spatial and temporal resolution is helpful for monitoring the evolution of regional 273 

air quality. 274 

5 Conclusions 275 

The NNAeroG algorithm framework is proposed for aerosol retrieval using data from 276 

geostationary satellites. In the development of the framework, the satellite spectral, spatial and 277 

temporal information were selected using the decision tree machine learning method, which can 278 

help to filter the important input features. The spectral information is the most important input 279 

for AOD retrieval using the machine learning method. Because more observations are needed to 280 

constrain AE and FMF retrievals, more spatial pixels, 3 consecutive observations within 20 281 

minutes, and all spectral bands, including TIR bands, are jointly used as input. Then, the neural 282 

network model for each aerosol parameter retrieval was developed and trained by using both 283 

geostationary satellite and ground-based data.  284 
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After training was completed, the NNAeroG was applied to Himawari-8/AHI data to 285 

produce AOD, AE and FMF retrievals with 2 km spatial resolution and 10 min temporal 286 

resolution. The results were validated against independent reference data from the AERONET 287 

and SONET sun photometer networks. The validation results show that the accuracy of the 288 

NNAeroG aerosol products is significantly better than that of the JAXA version 2.1 aerosol 289 

products. The NNAeroG results indicate that the geostationary satellite data can be used to 290 

retrieve aerosol with higher accuracy not only for AOD but also for other parameters.The 291 

proposed NNAeroG provides a generic aerosol retrieval framework which also has a potential 292 

for application to other geostationary satellites such as FengYun-4. 293 
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