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Abstract

Air pollution levels are uneven within cities, contributing to persistent health disparities between neighborhoods and population

sub-groups. Highly spatially resolved information on pollution levels and disease rates is necessary to characterize inequities

in air pollution exposure and related health We leverage recent advances in deriving surface pollution levels from satellite

remote sensing and granular data in disease rates for one city, Washington, DC, to assess intra-urban heterogeneity in fine

particulate matter (PM5)- attributable mortality and We estimate PM2.5-attributable cases of all-cause mortality, chronic

obstructive pulmonary disease, ischaemic heart disease, lung cancer, stroke, and asthma emergency department (ED) visits

using epidemiologically-derived health impact Data inputs include satellite-derived annual mean surface PM5 concentrations;

age-resolved population estimates; and statistical neighborhood-, zip code- and ward-scale disease counts. We find that PM5

concentrations and associated health burdens have decreased in DC between 2000 and 2018, from approximately 240 to 120

cause-specific deaths and from 40 to 30 asthma ED visits per year (between 2014 and 2018). However, remaining PM5-

attributable health risks are unevenly and inequitably distributed across the Higher PM2.5-attributable disease burdens were

found in neighborhoods with larger proportions of people of color, lower household income, and lower educational Our study

adds to the growing body of literature documenting the inequity in air pollution exposure levels and pollution health risks

between population sub-groups, and highlights the need for both high-resolution disease rates and concentration estimates for

understanding intra-urban disparities in air pollution-related health risks.

1



1 

Estimating intra-urban inequities in PM2.5-attributable health impacts: A case 1 

study for Washington, DC 2 

 3 

Maria D. Castilloa, Patrick L. Kinneyb, Veronica Southerlanda, C. Anneta Arnoc, Kelly Crawfordd, 4 

Aaron van Donkelaare,f, Melanie Hammerf, Randall V. Martinf,e, Susan C. Anenberga* 5 

 6 

a George Washington University Milken Institute School of Public Health, Department of Environmental 7 

and Occupational Health, 950 New Hampshire Ave NW, Washington, DC, USA, 20052  8 

b Boston University School of Public Health, Department of Environmental Health, 715 Albany Street, 9 

Talbot 4W, Boston, Massachusetts, USA, 02118 10 

c District of Columbia Department of Health, Office of Health Equity, 899 North Capitol Street NE, 11 

Washington, DC, USA 20002 12 

d District of Columbia Department of Energy & Environment, Air Quality Division, 1200 First Street NE, 13 

Washington, DC, USA, 20002 14 

e Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 4R2, Canada 15 

f Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical 16 

Engineering, Washington University in St. Louis, St. Louis, MO, USA, 63130 17 

 18 

*Corresponding author: S. C. Anenberg, 950 New Hampshire Ave NW, Washington, DC 20052, 19 

sanenberg@gwu.edu, 1-202-994-2392 20 

 21 

Key Points:  22 

1. Fine particulate matter-attributable health risks are unevenly and inequitably distributed 23 

across Washington, DC  24 

2. Higher PM2.5-attributable disease burdens are found in neighborhoods with larger proportions 25 

of people of color in Washington, DC 26 

3. High-resolution disease and concentration estimates are needed to understand intra-urban 27 

disparities in air pollution-related health risks 28 
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Abstract: Air pollution levels are uneven within cities, contributing to persistent health 32 

disparities between neighborhoods and population sub-groups. Highly spatially resolved 33 

information on pollution levels and disease rates is necessary to characterize inequities in air 34 

pollution exposure and related health risks. We leverage recent advances in deriving surface 35 

pollution levels from satellite remote sensing and granular data in disease rates for one city, 36 

Washington, DC, to assess intra-urban heterogeneity in fine particulate matter (PM2.5)-37 

attributable mortality and morbidity. We estimate PM2.5-attributable cases of all-cause mortality, 38 

chronic obstructive pulmonary disease, ischaemic heart disease, lung cancer, stroke, and asthma 39 

emergency department (ED) visits using epidemiologically-derived health impact functions. Data 40 

inputs include satellite-derived annual mean surface PM2.5 concentrations; age-resolved 41 

population estimates; and statistical neighborhood-, zip code- and ward-scale disease counts. We 42 

find that PM2.5 concentrations and associated health burdens have decreased in DC between 2000 43 

and 2018, from approximately 240 to 120 cause-specific deaths and from 40 to 30 asthma ED 44 

visits per year (between 2014 and 2018). However, remaining PM2.5-attributable health risks are 45 

unevenly and inequitably distributed across the District. Higher PM2.5-attributable disease 46 

burdens were found in neighborhoods with larger proportions of people of color, lower 47 

household income, and lower educational attainment. Our study adds to the growing body of 48 

literature documenting the inequity in air pollution exposure levels and pollution health risks 49 

between population sub-groups, and highlights the need for both high-resolution disease rates 50 

and concentration estimates for understanding intra-urban disparities in air pollution-related 51 

health risks.  52 

 53 

 54 

 55 
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 59 

 60 

 61 

 62 
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1. INTRODUCTION  63 

Ambient air pollution in cities is of growing concern due to expected population growth, rapid 64 

urbanization, and rising pollution levels in many cities. Extensive epidemiological literature 65 

reveals strong associations between ambient fine particulate matter of aerodynamic diameter less 66 

than 2.5 μm (PM2.5) and mortality and morbidity outcomes, including cardiovascular and 67 

respiratory diseases and lung cancer (Brauer et al., 2012; Burnett et al., 2018; Cohen et al., 68 

2017), and asthma incidence and exacerbation (Khreis et al., 2017; Orellano et al., 2017). An 69 

emerging body of literature also suggests associations with additional health outcomes, including 70 

diabetes (Bowe et al., 2018; Eze et al., 2015; Yang et al., 2020); neural, behavioral and cognitive 71 

changes (de Prado Bert et al., 2018); happiness and well-being (Zheng et al., 2019); and low 72 

birth weight (Bell et al., 2010; Ebisu & Bell, 2012; Malley et al., 2017). Air pollution is 73 

considered the leading environmental risk factor and among the leading overall risk factors for 74 

global mortality (Cohen et al., 2017; Landrigan et al., 2018; Murray et al., 2020). In the U.S., 75 

PM2.5 is estimated to be responsible for 100,000-200,000 premature deaths each year, with the 76 

range dependent largely on whether all or only anthropogenic PM2.5 is included, the risk 77 

functions used, the mortality causes included, and the year of analysis (Bowe et al., 2019; Fann 78 

et al., 2018; Thakrar et al., 2020; Vodonos & Schwartz, 2021). 79 

Overall, air quality in the U.S. has improved dramatically since the 1970 Clean Air Act and its 80 

1990 Amendments (U.S. EPA, 2020). However, it has not improved equitably. Literature reveals 81 

that throughout the U.S., lower income, minority, and marginalized populations experience 82 

higher air pollution exposure levels and associated health impacts (Hajat et al., 2015; Tessum et 83 

al., 2019). These communities often live near major air pollution sources, such as major 84 

roadways, shipping ports, airports, and industrial facilities, resulting from decades of race-biased 85 

policies (both implicit and explicit) in housing, zoning, facility siting, and transportation (Mohai 86 

& Saha, 2015). Today, the same communities that bore the greatest burden of harm decades ago 87 

continue to face the greatest public health threats associated with long-term exposure to air 88 

pollution (Colmer et al., 2020). The National Ambient Air Quality Standards (NAAQS) in its 89 

current form is, essentially, a one-size-fits-all universal approach that lacks specificity and treats 90 

all communities and subsects the same. This approach produces unequal impacts and reinforces 91 

inequitable outcomes even when implemented with the best of intentions.  92 
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Over the last few years, several U.S. states have implemented ground-breaking laws and policies  93 

to address air pollution inequity in their air quality management programs, including California’s 94 

Assembly Bill (AB) 617 and its resulting Community Air Protection Program, and the New 95 

Jersey Law NJ S232 (20R), which establish community emissions reductions programs and 96 

protect communities from projects that pose local health and environmental risks, respectively. 97 

Similarly, multi-state programs have emerged that aim to collaboratively and equitably reduce 98 

greenhouse gases and air pollutants, such as the Medium-and Heavy-Duty Zero Emission 99 

Vehicle (MHD-ZEV) Initiative, signed onto by 13 states and the District of Columbia, and the 100 

Transportation Climate Initiative (TCI) supported by 12 Northeast and Mid-Atlantic states and 101 

the District of Columbia.  More recently, in January 2021, the Biden Administration issued an 102 

Executive Order that elevated the federal government’s actions to address environmental 103 

injustice.  104 

Addressing environmental injustice requires information about air pollution exposure levels 105 

within at-risk communities, which is beyond the intent and capability of the existing network of 106 

federal reference monitors throughout North America and the spatial resolution of regional 107 

chemical transport models. In the District of Columbia, for example, researchers found that fine-108 

scale emissions source attribution can reveal environmental injustices that may be obscured 109 

when using more coarsely resolved regional data inputs (Northcross et al., 2020). New 110 

techniques, both emerging and maturing, are being deployed to conduct air quality 111 

characterization and surveillance at high spatial resolutions. Techniques include distributed low-112 

cost sensor networks (Ahangar et al., 2019; Castillo et al., 2019; Matte et al., 2013), mobile 113 

monitoring on vehicles driving through cities (Apte et al., 2017; Messier et al., 2018; Miller et 114 

al., 2020; Southerland et al., 2021), and satellite remote sensing (Demetillo et al., 2020; Kerr et 115 

al., 2021; Southerland et al., 2021). With relatively high spatial resolution (~1km x 1km) and full 116 

geographical coverage, satellite remote sensing could be of particular value for targeted 117 

assessment of air pollution exposures and health impacts in cities where low-cost sensor 118 

networks and mobile monitoring data are not available.  119 

Beyond information about air quality levels, fine-scale information on disease rates is important 120 

to understand not just inequities in air pollution exposure, but also inequities in air pollution-121 

related health risks (Southerland et al., 2021). Geographic, economic and racial health inequities 122 
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are a known issue in the District (Chandra et al., 2013; Health Equity Report: District of 123 

Columbia 2018, 2019). The recently published Health Equity Report for the District of Columbia 124 

(DC HER) 2018 analyzed health data in the District by Proximal Neighborhood Groups (PNGs), 125 

also referred to as statistical neighborhoods. For simplicity, we refer henceforth to the 51 PNGs 126 

as “neighborhoods.” The DC HER reported a high degree of environmental and health inequity 127 

within the District, with asthma emergency department (ED) visit rates being one order of 128 

magnitude higher in most affected neighborhoods compared to least affected neighborhoods. 129 

Furthermore, life expectancy differs by 21 years between neighborhoods at the two ends of the 130 

spectrum.  131 

Given the District’s disparities in air pollution exposure and disease rates, and the potential it has 132 

to become a role model in creating collaborative actions for change, we use the District as a case 133 

study to assess intra-urban heterogeneity in PM2.5-attributable health impacts. We explore the 134 

degree of disparity in estimated PM2.5-attributable cases of mortality and disease exacerbation 135 

between neighborhoods throughout the District using a high-resolution satellite-derived PM2.5 136 

concentration dataset and two high-resolution datasets for disease rates - one based on local 137 

administrative data and one using a small-scale estimation technique by the U.S. Centers for 138 

Disease Control and Prevention (CDC). By comparing the application of these two datasets, our 139 

study shows whether using estimated rather than more cumbersome administrative data for 140 

disease rates can identify similar spatial patterns of air pollution-attributable health risks. We 141 

anticipate that our study can both inform mitigation approaches aimed at reducing environmental 142 

health disparities in the District and advance the development of technical approaches for 143 

estimating air pollution-related health inequities within cities. 144 

 145 

2. METHODS 146 

2.1. Health impact function 147 

We apply widely used epidemiologically-derived health impacts functions to estimate mortality- 148 

and morbidity attributable to PM2.5 (e.g. Anenberg et al., 2010; Fann et al., 2017). We estimate 149 

annual PM2.5-attributable cases of all-cause mortality, ischaemic heart disease (IHD), chronic 150 
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obstructive pulmonary disease (COPD), stroke, lung cancer, and asthma ED visits. These health 151 

outcomes have been determined to be causally associated with PM2.5 by either the U.S. EPA 152 

(U.S. EPA, 2019) or the Global Burden of Disease (GBD) study (Murray et al., 2020). All 153 

analyses are conducted using Geospatial Data Abstraction Library (GDAL), Quantum 154 

Geographic Information System (QGIS 3.6.2) and the Statistical Package R/3.6.3.  155 

Table 1. Relative risks for all-cause and cause-specific mortality, and asthma emergency department 156 

visits used in the PM2.5-attributable health impacts functions.  157 

Health Outcome Relative Risk (95% 

Confidence Interval) 

Age Group 

(years) 

Study  Population Studied 

Asthma ED Visits 1.04 (1.01, 1.07) 0-99 Mar et al. 2010 Greater Tacoma, WA 

All-cause mortality 1.06 (1.04, 1.08) 0-99 Turner et al. 

2016 

CPS-II (American Cancer 

Society) 

Chronic Obstructive 

Pulmonary Disease 

1.10 (1.01, 1.19) 30-99 Turner et al. 

2016 

CPS-II (American Cancer 

Society)  

Ischemic Heart Disease 1.14 (1.02, 1.22) 30-99 Turner et al. 

2016 

CPS-II (American Cancer 

Society) 

Lung Cancer 1.09 (1.03, 1.16) 30-99 Turner et al. 

2016 

CPS-II (American Cancer 

Society) 

Stroke 1.11 (1.05, 1.17) 30-99 Turner et al. 

2016 

CPS-II (American Cancer 

Society) 

 158 

For each grid cell (~1×1 km) in the District, we estimate the annual excess cases of mortality and 159 

asthma ED visit rates that are attributable to PM2.5 (∆Mort in Eq. 1) for each health outcome 160 

separately, applying cause-specific concentration-response factors (𝛽) from the relative risks 161 

(RR) shown in Table 1, the baseline disease rates (BDR) described in Table 2, and gridded PM2.5 162 

concentrations (∆x) and population estimates (Pop). We use log-linear relationships between 163 

concentration and RR, consistent with previous studies (Anenberg et al., 2010; Fann et al., 2012, 164 

2017). We then aggregate the resulting estimated PM2.5-attributable cases of mortality and 165 

morbidity to the neighborhood-, zip code-, ward-, and city-levels accordingly.  166 

∆𝑀𝑜𝑟𝑡 = (1− 𝑒
−𝛽∆𝑥

)  ×  𝐵𝐷𝑅 × 𝑃𝑜𝑝  ,  (1) 167 

We estimate: 1) annual mean PM2.5-attributable excess mortality and morbidity from 2000 to 168 

2018 using annual BDR and PM2.5 data, and 2) 5-year mean PM2.5-attributable excess mortality 169 
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and morbidity (2014-2018 for asthma ED visits and 2011-2015 for all other health endpoints) 170 

using 5-year averages of both BDR and PM2.5 concentrations to remove the influence of 171 

interannual variability in both of these variables. To disentangle the influence of temporal 172 

changes in PM2.5 and disease rates separately, we also estimate PM2.5-attributable health impacts 173 

using PM2.5 concentrations from 2018 (8.7 μg/m3) with year-specific BDR between 2000 and 174 

2018.  175 

Table 2: Characteristics of the health data obtained from the District of Columbia Department of Health 176 

for the years 2000 and 2015, and 2014 to 2018 for asthma; annual average health outcome cases in the 177 

District; mean (and range) of the annual average cases across neighborhoods, zip codes, or wards; 2010 178 

population from SEDAC; and annual average health outcome rates computed using the District’s total 179 

cases and SEDAC population data per 100,000 people (and per 10,000 people for asthma). 180 

Health outcome of 

interest 
Spatial 

resolution 
Ages 

included 
Mean 

annual 

cases (DC-

wide) 

Mean (range) cases 

across 

neighborhoods, zip 

codes, or wards 

Population 

(DC-wide) 
Age-standardized 

rates (DC-wide) 

Asthma Emergency 

Department (ED) 

Visits Zip code (n=26) All ages 7,103 263 (3-1311) 627,656 113 

All-cause mortality 
Neighborhood 

(n=47) All ages 4,702 98 (13-177) 627,656 749 

Chronic Obstructive 

Pulmonary Disease Ward (n=8) 
Ages 30-99 

years 124 14 (10-21) 358,884 35 

Ischemic Heart 

Disease 
Neighborhood 

(n=47) 
Ages 25-99 

years 840 17 (8-28) 358,884 234 

Lung Cancer Ward (n=8) 
Ages 30 - 99 

years 258 30 (15-45) 358,884 72 

Stroke Ward (n=8) 
Ages 25 - 99 

years 89 10 (6-16) 358,884 25 

 181 

2.2. Relative risks  182 

We use epidemiologically-derived, cause-specific RR estimates representing the association 183 

between annual average PM2.5 concentration estimates and incidence of the disease outcomes of 184 

interest (Table 1), consistent with the U.S. Environmental Protection Agency’s (EPA) most 185 

recent Regulatory Impact Analysis for PM2.5 (U.S. EPA, 2012). City-specific RR estimates for 186 

the District are not available. For all mortality outcomes, we derive the RRs from the American 187 

Cancer Society’s (ACS) Cancer Prevention Study II (CPS-II) which included 1.2 million 188 

participants of at least 30 years of age in the U.S. from all states, the District, and Puerto Rico 189 
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(Turner et al., 2016). For asthma ED visits, we use the RR from a study conducted in the greater 190 

Tacoma, Washington area (Mar et al., 2010), which was applied nationally in the most recent 191 

U.S. EPA Regulatory Impact Analysis for PM2.5 (U.S. EPA, 2012). While the RR for asthma ED 192 

visits that we derive from Mar et al. (2010) is based on daily PM2.5 concentrations, we use annual 193 

average PM2.5 and assume that the annual attributable asthma ED visits are approximately 194 

equivalent to the sum of daily attributable asthma ED visits.  195 

These RRs are used widely throughout the literature and by the U.S. EPA for regulatory analysis. 196 

In the case of mortality outcomes, the studies have the advantage of a nation-wide cohort with 197 

high statistical power. However, extrapolating these RRs to specific populations in the District 198 

may obscure differences in concentration-response relationships between cities. In addition, the 199 

population groups in these studies are not reflective of the racial composition of the population in 200 

the District, and applying these RRs to multiple population subgroups within an individual city, 201 

as we are doing here, ignores differential quality and access to healthcare, as well as other social 202 

determinants of health. Without within-city studies of PM2.5 health effects in the District, 203 

extrapolating from these larger studies is necessary. 204 

2.3. PM2.5 concentrations  205 

We use annual mean PM2.5 concentration estimates from a North American satellite-derived 206 

dataset (V4.NA.03) with a spatial resolution of 0.01° x 0.01° (~1 km2).  This dataset relates the 207 

combined aerosol optical depth (AOD) from multiple satellite retrievals to surface PM2.5 208 

concentrations using the spatiotemporally-varying geophysical relationship between AOD and 209 

PM2.5 simulated by the GEOS-Chem chemical transport model. These geophysical values are 210 

calibrated to ground-based monitors using a geographically weighted regression. V4.NA.03 211 

combines the geophysical output of V4.GL.03 (Hammer et al., 2020) with the regional 212 

methodology of V4.NA.02 (van Donkelaar et al., 2019). Gridded annual mean PM2.5 213 

concentrations vary within the District by up to ~2 μg/m3 (Fig. S1). The city-wide 5-year average 214 

annual PM2.5 concentration decreased from 17.1 μg/m3 in 2000-2004 to 10.0 μg/m3 in 2014-2018 215 

(Table S1). 216 

While a full evaluation of the satellite-derived PM2.5 concentrations against ground 217 

measurements is not possible with only three Federal Reference Monitors in our study location 218 
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and period, the satellite-derived annual average PM2.5 concentrations were generally consistent 219 

with observations (Fig. S2). There was a slight overestimation in the satellite-derived 220 

concentrations of ~0.5 μg/m3 but the spatial distribution agrees well with observations.  221 

2.4. Baseline disease rates, population, and demographic data 222 

We use annual baseline mortality counts by neighborhood (n = 51) for the years 2000 to 2015, 223 

and annual baseline asthma ED visits by zip code (n = 26) for the years 2014 to 2018 from the 224 

District’s Department of Health (DOH). Baseline counts smaller than five (n < 5) are suppressed 225 

to protect privacy, resulting in 50% - 95% missing data for COPD, lung cancer and stroke. For 226 

these health endpoints, we apply counts aggregated by ward (n = 8) to achieve more spatially 227 

complete data (95%). IHD and all-cause mortality counts are available for 47 out of 51 228 

neighborhoods (Table 2). Remaining neighborhoods and wards with suppressed values are 229 

assigned Count = 2.5 (the midpoint of 1-4, the values suppressed by DOH) as the spatiotemporal 230 

variability in health outcomes does not allow us to estimate a number to replace missing values. 231 

Neighborhoods and wards overlays are presented in Fig. S3.   232 

We use population estimates from the Socioeconomic Data and Applications Center (SEDAC) 233 

2010 population dataset. Population counts from SEDAC consist of estimates from the Gridded 234 

Population of the World (GPW), Version 4, by the Center for International Earth Science 235 

Information Network (CIESIN) at 30 Arc-Second (~1×1 km) resolution (Center For International 236 

Earth Science Information Network-CIESIN-Columbia University, 2018). Using this dataset, we 237 

create two population sub-categories (shown in Table 2) based on the same age groups that 238 

match the RRs in Table 1 and use these in our health impact function (Eq. 1). We also use the 239 

SEDAC population dataset to compute disease rates from the DOH disease count data, as rates 240 

are needed to estimate PM2.5-attributable health impacts at the gridcell level. 241 

To evaluate whether estimated disease rates can be used in lieu of more cumbersome (and 242 

sometimes unavailable) city-specific administrative data to capture intra-city heterogeneity in air 243 

pollution health risks, we compare small-area disease rate estimates from the CDC 500 Cities 244 

with DOH data for four health outcomes: asthma ED visits, COPD, lung cancer, and stroke. 245 

While the CDC 500 Cities data have the advantage of high spatial resolution (census tract level) 246 

and full spatial coverage across the District, the specific health endpoints and age groups 247 
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represented in the CDC 500 Cities data do not exactly match those used in the epidemiological 248 

studies from which we draw RR estimates nor the DOH data. For example, the CDC 500 Cities 249 

dataset includes cancer, but not lung cancer specifically; therefore, we assume that the spatial 250 

distribution of cancer data also reflects the spatial distribution of lung cancer across the District. 251 

The CDC 500 Cities data also represent disease prevalence among adults aged 18 and older, 252 

while we need incidence rates to estimate PM2.5-attributable mortality and morbidity. We 253 

therefore develop new estimated tract-level baseline incidence rates for our diseases and age 254 

groups of interest by retaining the District’s average disease incidence rate from DOH and the 255 

spatial distribution of disease prevalence from CDC 500 Cities. This is an approximation 256 

approach, recognizing that the spatial pattern of disease incidence and prevalence may not be 257 

fully aligned.  258 

Specifically, for each health outcome included in our study, we use the CDC 500 Cities DC 259 

average (CDC 500 Prevalence(city)) and tract-level prevalence rate (CDC 500 Prevalence(tract)) to 260 

calculate the tract-to-city prevalence ratio (Equation 2). We then multiply this ratio by our DOH 261 

city-wide baseline disease incidence rate (DOH BDR(city)) to obtain a combined CDC-DOH tract-262 

level baseline disease incidence rate (CDC-DOH BDR(tract)) that retains the total city-wide 263 

incidence rate from DOH and the census tract-level spatial distribution of prevalence from CDC 264 

500 Cities.  265 

(CDC 500 Prevalence(tract)/CDC 500 Prevalence(city)) x DOH BDR(city)=CDC-DOH BDR(tract),  (2) 266 

We apply these new integrated CDC-DOH BDR estimates to calculate PM2.5-attributable health 267 

impacts across DC and compare results with those obtained from applying the DOH rates 268 

directly.  269 

We explore differences in estimated PM2.5-attributable mortality and morbidity outcomes 270 

between population sub-groups using five social, economic, demographic and health outcome 271 

factors at the neighborhood level: education (percent residents 25 years or older with high school 272 

diploma or higher; the District mean = 92%, range = 79% - 99%), unemployment (percent 273 

residents 16 years or older unemployed; mean = 8%, range = 2% - 30%), income (median 274 

household income and percent residents living in poverty; mean = $94,537, range = $25,311-275 

$200,031, and mean = 15%, range = 2% - 40%, respectively), race and ethnicity (% Black alone, 276 
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% White alone, % Latino/Hispanic, % Asian alone; means = 36%, 46%, 11%, 4%, respectively), 277 

and life expectancy at birth (years; mean = 79, range = 68-89). Data were extracted from the DC 278 

HER, which uses socio-demographic data from the US Census Bureau 2011-2015 American 279 

Community Survey (ACS) 5-year estimates, and life expectancy data from the DOH Center for 280 

Policy, Planning and Evaluation. 281 

3. RESULTS 282 

We first report the total number of estimated PM2.5-attributable deaths and asthma ED visits 283 

across the District using 5-year average PM2.5 concentrations and administrative disease rates 284 

(2014-2018 average for asthma ED visits and 2011-2015 for all other health endpoints). We 285 

estimate that approximately 220, 10, 90, 20, 10 excess all-cause, COPD, IHD, lung cancer, and 286 

stroke deaths, respectively, and 40 asthma ED visits could be attributed to PM2.5 pollution in the 287 

District annually. We next estimate temporal trends using year-specific concentrations and 288 

administrative disease rates. Declining PM2.5 concentrations and BDR together contribute to an 289 

overall decreasing trend in PM2.5-attributable excess cases in the District, with PM2.5-attributable 290 

all-cause mortality dropping from 520 excess cases in 2000 to 260 in 2015 (Fig. 1). To 291 

disentangle the influence of PM2.5 versus BDR changes on the temporal trend in PM2.5-292 

attributable mortality, we compare PM2.5-attributable deaths calculated using annually varying 293 

PM2.5 concentration and BDR versus those calculated using constant 2018 PM2.5 concentrations 294 

(8.7 μg/m3) and annually varying BDR (Fig. 1b). Between the years 2000 and 2015, 295 

approximately 30% of the cumulative PM2.5-attributable deaths across this time period (60, 540, 296 

110, 50, or 1,620 deaths from COPD, IHD, LC, stroke, and all-causes, respectively) could have 297 

been avoided if historical PM2.5 concentrations were as low as the 2018 mean (Table S2). 298 
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 299 

Figure 1: Temporal trends in a) annual baseline disease rates from District of Columbia Department of 300 

Health and annual mean PM2.5 concentrations (µg/m3, black dotted line) between 2000 and 2018; b) 301 

annual PM2.5-attributable deaths (“excess cases”) between 2000 and 2015, and PM2.5-attributable asthma 302 

ED visits between 2014 and 2018. In panel b, solid line represents the application of annual baseline 303 

disease rates (BDR) and PM2.5, and dashed lines represent the application of annual BDR with 2018 PM2.5 304 

concentrations. Health endpoints: ALL = All-cause mortality, AST = Asthma ED visits, COPD = Chronic 305 

Obstructive Pulmonary Disease, IHD = Ischemic Heart Disease, LC = Lung Cancer, STR = Stroke. 306 
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 307 

Figure 2: PM2.5-attributable excess mortality and asthma ED visit rates at the neighborhood scale (2011-308 

2015 average). Baseline disease rates underlying these estimates from the DC DOH are at the 309 

neighborhood-level for all-cause mortality (ALL) and ischaemic heart disease (IHD); zip code-level for 310 

asthma ED visits (AST); and ward-level for chronic obstructive pulmonary disease (COPD), lung cancer 311 

(LC), and stroke (STR).  312 
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 313 

Figure 3: PM2.5-attributable health impacts (2011-2015 average) at the neighborhood scale. Top: The 314 

distribution of PM2.5-attributable mortality rates (per 100,000 people for all mortality outcomes and per 315 

10,000 people for asthma ED visits) for each health endpoint and each of the 47 DC neighborhoods with 316 

available health data. Bottom: The distribution of sociodemographic variables across DC neighborhoods 317 

(see Methods for variable definitions). The color gradient used in all panels represents that of the PM2.5-318 

attributable all-cause mortality rates (inset legend). Data points are randomly scattered across the x axis 319 

for plotting purposes.   320 

We next explore the spatial distribution of these PM2.5-attributable health impacts across the 321 

District. Estimated PM2.5-attributable mortality and morbidity rates are higher along the east to 322 

south city border for all health endpoints, and are also relatively high in the northeast (Fig. 2). 323 

While neighborhoods located closer to downtown are more densely populated (Fig. S1), PM2.5-324 

attributable mortality rates (per 100,000 people) generally increase with increasing distance from 325 

the city center. The highest PM2.5-attributable all-cause mortality rates are more than four times 326 



15 

higher in the most (Fort Dupont and Marshall Heights, both located in Ward 7) versus least 327 

(Woodley Park and Georgetown East, located in Wards 3 and 2, respectively) impacted 328 

neighborhoods, as shown in Fig. 3 and Table S3. The neighborhoods with the 10 highest (mostly 329 

in wards 5, 7 and 8) and 10 lowest (mostly in wards 1-3) PM2.5-attributable all-cause mortality 330 

rates are geographically segregated. The neighborhoods with the highest PM2.5-attributable 331 

mortality rates have 10% lower education and employment rates, 10% more residents living in 332 

poverty, $61,000 lower median household income, and about 10 fewer years of life expectancy 333 

(Fig. S4). The top 10 neighborhoods also have 54% higher proportions of Blacks and 44% lower 334 

proportions of Whites (Fig. 4 and Table S3). 335 

 336 

Figure 4: PM2.5-attributable mortality rates (per 100,000 people) for all-cause mortality and percent (%) 337 

Black distribution by neighborhood across Washington, DC. Data represent equal intervals and 2011-338 

2015 means. 339 

PM2.5-attributable mortality rates appear to follow the spatial patterns of the BDR inputs (Fig. 340 

S5) more so than that of the PM2.5 inputs (Fig. S1). For all-cause mortality and IHD, health 341 

outcomes for which BDR were available at the neighborhood-level, PM2.5-attributable excess 342 

mortality rates range by a factor of five and eight (from 17 to 90, and 7 to 58 cases per 100,000 343 



16 

people) respectively, across the District’s neighborhoods. Contrastingly, for the health outcomes 344 

with ward-level BDR (COPD, LC and STR), PM2.5-attributable mortality rates show less 345 

variation, with ranges differing by a factor of ~3-5. PM2.5-attributable asthma ED visit rates (with 346 

BDR at the zip code-level, n = 26), also show spatial homogeneity between neighborhoods 347 

within zip codes (i.e. more heterogeneity within wards but not within zip codes).  348 

We next compare the application of administrative versus estimated BDR on PM2.5-attributable 349 

mortality rates. The overall spatial distributions of BDR across the District differ between the 350 

DOH dataset and the integrated CDC-DOH dataset, though are more similar for asthma, COPD, 351 

and stroke than for lung cancer (Fig. 5). Differences in PM2.5-attributable mortality and 352 

morbidity rates estimated using the two BDR datasets were more widespread for asthma ED 353 

visits compared with COPD, lung cancer and stroke (mean percent differences of 12, -7, -9, 354 

respectively, compared with 187 for asthma, although with relatively large standard deviations of 355 

32, 45, and 25, respectively). Over- and under-estimation by the application of the integrated 356 

CDC-DOH estimated BDR are more unevenly distributed for COPD and stroke.  357 

4. DISCUSSION 358 

Following national trends, PM2.5 concentrations and PM2.5-attributable deaths have halved 359 

locally in the District during our study period. The District-wide mean annual average PM2.5 360 

concentrations decreased from 17 to 8.7 μg/m3 between 2000 and 2018. Consequently, total 361 

estimated PM2.5-attributable excess deaths for four cause-specific mortality outcomes combined 362 

(COPD, IHD, lung cancer and stroke) dropped from approximately 240 in 2000 to 120 in 2015. 363 

PM2.5-attributable asthma ED visits also declined, from approximately 40 cases in 2014 to 30 364 

cases in 2018. Estimated PM2.5-attributable mortality and morbidity rates differed by up to a 365 

factor of five between wards and a factor of eight between neighborhoods. For example, PM2.5-366 

attributable all-cause deaths ranged from 17 to 90 per 100,000 people across neighborhoods, and 367 

PM2.5-attributable IHD deaths ranged from 7 to 58 per 100,000 people.  368 
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 369 

Figure 5: Neighborhood-level PM2.5-attributable rates for asthma ED visits (Asthma) per 10,000 people and PM2.5-370 

attributable mortality rates for COPD, lung cancer (LC) and stroke per 100,000 people using a) DOH disease rates 371 

and b) the integrated CDC-DOH disease rates, and c) percent difference between a) and b) [(CDC-DOH - 372 

DOH)/DOH]. 373 
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This spatial heterogeneity reveals both racial and sociodemographic inequities in the District’s 374 

PM2.5-attributable health burden. Specifically, we find that PM2.5 health risks are largest for 375 

neighborhoods with a high proportion of people of color, located in Wards 7 and 8 in the 376 

District’s southeast. These neighborhoods also have lower income levels and lower educational 377 

attainment compared with the District average. Our analysis suggests that the same 378 

neighborhoods have substantially larger PM2.5-attributable mortality and morbidity rates 379 

compared with neighborhoods that have a higher percentage of White populations and higher 380 

levels of household income and educational attainment. These results are consistent with the 381 

prior literature demonstrating that PM2.5 exposure and associated health impacts are unevenly 382 

and inequitably distributed across race/ethnicity, age and socioeconomic categories (Ebisu & 383 

Bell, 2012; Southerland et al., 2021; Tessum et al., 2019; Yitshak-Sade et al., 2019), and adds to 384 

the literature documenting inequity in air pollution exposure levels and pollution health risks 385 

between population sub-groups in the District (Chandra et al., 2013). By considering the 386 

influence of intra-city heterogeneity in disease rates, we extend the literature to incorporate not 387 

just inequitable exposure, but also population vulnerability to pollution, similar to the analyses 388 

for New York City by Kheirbek et al. (2013) and the San Francisco Bay Area, California by 389 

Southerland et al. (2021). 390 

The intra-city variation in our estimated PM2.5-attributable mortality and morbidity cases is 391 

driven by both disease rates and PM2.5 concentrations. While gridded PM2.5 varies spatially 392 

across the District by ~2 μg/m3 (with higher concentrations in the northeast), BDR are five times 393 

higher in the southeast wards for COPD, lung cancer and stroke, up to nine times higher in 394 

southeast neighborhoods for all-cause mortality and IHD, and over 30 times higher in southeast 395 

zip codes for asthma ED visits, compared with wards, neighborhoods and zip codes in the 396 

District’s northwest, respectively. We found that variation in fine-scale BDR drives the spatial 397 

heterogeneity in estimated PM2.5-attributable mortality and morbidity, consistent with 398 

Southerland et al. (2021), though the coarse resolution of the data inputs to the PM2.5 399 

concentration model preclude our ability to draw a strong conclusion from this result. Our results 400 

may suggest that the satellite-derived PM2.5 concentrations are not showing the extent of 401 

heterogeneity of PM2.5 concentrations at the street and block level. 402 
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Our study has several limitations and uncertainties. The variability of resolutions associated with 403 

datasets used to produce the satellite-derived PM2.5 concentrations may limit their ability to fully 404 

represent intra-city variation. While these input datasets have resolutions as high as 1×1 km, the 405 

combined effect of coarser inputs may reduce the spatial heterogeneity indicated between 406 

neighborhoods. Exposure misclassification can in turn create uncertainties in risk estimates and 407 

potentially disadvantage already vulnerable populations (Northcross et al., 2020). High 408 

resolution BDR also contributes to uncertainties in intra-urban air pollution health impact 409 

estimates. We found that using more easily accessible estimated BDR from the CDC 500 Cities 410 

project in lieu of administrative data yielded considerably different spatial patterns of estimated 411 

PM2.5-attributable disease rates.  412 

Our results suggest that evaluating PM2.5 in regards to the health-based National Ambient Air 413 

Quality Standard must consider both intra-urban variation in concentrations and disease rates to 414 

address impacts on certain vulnerable populations, in particular communities of color. Black and 415 

Native American people have statistically significantly higher asthma rates than their 416 

counterparts in other races (CDC, 2019). Although persistent, these health inequities are neither 417 

natural nor inevitable (Health Equity Report: District of Columbia 2018, 2019). Given the 418 

relationship between air pollution and asthma exacerbation, an outcomes-focused equity lens that 419 

is intentional in its protection of historically marginalized communities, especially those that 420 

experience worse air quality-related health effects, is critical to reduce air pollution inequities. 421 

The D.C. Law 23-181. Racial Equity Achieves Results (REACH) Amendment Act of 2020, 422 

which requires that racial equity impact analysis be conducted by each agency and council for 423 

each new piece of legislation, underscores growing interest and need for analysis focused on 424 

differential racial impacts, such as premature mortality, on historically disadvantaged and highly 425 

impacted communities (DOEE Ozone NAAQS Comment Letter, 2020; Ozone NAAQS Public 426 

Hearing, 2020). 427 

Our results also indicate that quantitatively characterizing neighborhood-scale differences in 428 

PM2.5-related health risks would continue to benefit from advances in fine resolution information 429 

on both PM2.5 concentration data and intra-city baseline disease rates. In alignment with 430 

Kheirbek et al. (2013) and Southerland et al. (2021), we found that fine-scale baseline disease 431 

data better characterize population subgroups’ susceptibility and disparities, which is necessary 432 
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to aid in policy-making to reduce urban health inequities, even for pollutants that are relatively 433 

spatially homogeneous, as is PM2.5. However, the racial and ethnic inequities may be 434 

underestimated in this and other recent studies that apply generalizable relative risks from large 435 

nation-wide cohorts and/or that extrapolate relative risks from one population to another, which 436 

can obscure differences in concentration-response relationships between neighborhoods and 437 

population sub-groups. There is a trade-off, as large cohorts have more statistical power and 438 

population-specific studies may be limited by large statistical error (e.g. Alexeeff et al., 2018). 439 

Future studies may assess the potential for using population-specific relative risks to characterize 440 

inequities in air pollution-related health risks.  441 

While PM2.5 concentrations have been decreasing across the U.S. since 1990, owing to effective 442 

environmental policies, PM2.5 air pollution still contributes 60,000-100,000 premature deaths 443 

each year nationally (Fann et al., 2017; Goodkind et al., 2019; Murray et al., 2020), and these air 444 

pollution-related health risks continue to be inequitably distributed (e.g. Colmer et al., 2020; 445 

Tessum et al., 2019). Furthermore, ground-based monitoring continues to be sparsely distributed, 446 

which is insufficient for assessing the spatial distribution of pollution levels and associated 447 

health impacts within cities. Future studies may consider improving intra-city PM2.5 448 

concentration estimates by integrating multiple exposure assessment approaches, including low-449 

cost sensors, mobile monitoring, statistical techniques such as land use regression modeling, 450 

chemical transport modeling, and satellite observations to capture air pollution exposure 451 

inequities more fully (Ahangar et al., 2019; Castillo et al., 2019; Hammer et al., 2020). 452 

Estimation techniques to generate high-resolution baseline disease rates are also needed to 453 

consider population vulnerability to air pollution, as inequities exist not just in exposure levels, 454 

but in the health outcomes attributable to those exposure levels. 455 

5. CONCLUSION 456 

We assessed spatiotemporal trends in the health burden of PM2.5 pollution in Washington, DC 457 

and its 51-statistical neighborhoods. While annual average PM2.5 concentrations have decreased 458 

between 2000 and 2018, PM2.5 still contributes to disease burdens in the District, and PM2.5-459 

attributable health impacts are unevenly and inequitably distributed. The highest attributable 460 

burdens are estimated to occur in neighborhoods that have larger proportions of people of color, 461 
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as well as lower household income and lower educational attainment. Our results also indicate 462 

that quantitatively characterizing neighborhood-scale differences in PM2.5-related health risks 463 

within cities, either in the U.S. or globally, would benefit from advances in fine resolution 464 

information on both PM2.5 concentration data and intra-city baseline disease rates. 465 
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Table S1: Annual average PM2.5 concentrations (μg/m3) derived from high spatial resolution satellite data

(Hammer et al., 2020; van Donkelaar et al., 2019) in each of the eight wards in Washington, DC as well as

the District-wide mean, standard deviation (SD), minimum (Min), and maximum (Max) values for each

year from 2000 to 2018.

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Ward

1 16.0 15.9 15.0 14.1 14.4 15.1 13.5 13.6 12.0 10.5 11.1 10.7 10.4 9.2 9.5 9.8 8.7 8.3 8.0

2 16.7 16.6 15.5 14.6 14.8 15.3 13.8 13.9 12.3 10.7 11.3 10.9 10.6 9.6 9.6 10.0 9.1 8.9 8.9

3 16.5 16.3 15.5 14.4 14.7 15.1 13.7 13.7 12.1 10.5 11.2 10.8 10.6 9.6 9.6 10.0 9.0 8.9 9.3

4 16.1 15.9 14.9 14.2 14.4 15.2 13.4 13.6 12.2 10.6 11.3 10.8 10.4 9.2 9.6 9.9 8.7 8.3 8.3

5 16.4 16.0 15.1 14.4 14.5 15.0 13.4 13.6 12.1 10.4 11.1 11.0 10.4 9.6 9.6 9.7 8.9 8.6 9.0

6 16.5 16.2 15.4 14.4 14.6 15.2 13.6 13.7 12.1 10.4 11.2 11.0 10.6 9.7 9.6 10.0 9.0 8.8 9.1

7 15.6 15.3 14.5 13.8 13.9 14.5 12.8 13.2 11.8 10.1 10.9 10.8 10.1 9.3 9.4 9.5 8.6 8.1 8.7

8 15.6 15.2 14.6 13.7 13.9 14.5 13.0 13.1 11.8 10.1 11.0 11.1 10.4 9.4 9.6 9.7 8.7 8.1 8.7

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

DC

Mean 17.0 16.9 17.6 18.1 15.8 16.6 13.8 14.3 11.4 10.8 11.6 12.8 11.8 10.6 10.9 12.6 10.2 8.5 8.7

SD 0.93 0.91 0.86 0.96 0.83 0.90 0.78 0.77 0.69 0.70 0.69 0.76 0.71 0.66 0.68 0.68 0.60 0.53 0.70

Min 14.5 15 15.5 16 14 14.3 12 12.3 10 9 10 11 10 9 9.5 11 9 7 6.3

Max 19 19 19.8 20.3 17.8 18.8 15.5 16 13 12 13 14.3 13 12 12 14 11.5 9.2 9.5

2



Table S2: PM2.5-attributable deaths and asthma ED visits throughout Washington, DC that would have been

avoided if each year’s PM2.5 concentrations were set at 2018 levels (District-wide average PM2.5 = 8.7

μg/m3). a) PM2.5-attributable all-cause mortality deaths that would have been avoided annually; and b) total

cumulative PM2.5-attributable cases for each health endpoint that would have been avoided between 2000

and 2015 (2014-2018 for asthma ED visits).

a) Year
Avoided
Deaths

b)
Health
Endpoint

Avoided
Cases

2000 279 COPD 58

2001 210 IHD 538

2002 183 LC 110

2003 121 Stroke 48

2004 135 All-Cause 1,617

2005 166 Asthma 5

2006 118

2007 122

2008 79

2009 28

2010 50

2011 44

2012 33

2013 15

2014 14

2015 21
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Table S3: Five-year (2011-2015) mean PM2.5-attributable mortality rates (per 100,000) and asthma ED visit rates (per 10,000) and
selected social determinants of health in each statistical neighborhood in the District. Four neighborhoods (Georgetown, National
Mall, Naval Station & Air Force, and Stadium Armory) were omitted given their low population counts and/or had suppressed
values in the nine key drivers of health. Table is sorted in ascending order for estimated PM2.5-attributable all-cause mortality rate.
Neighborhood Attributable Rates (per 100,000 people) Socio-Economic indicators Life

Expectancy
at Birth
(years)

Race and Ethnicity

All-
Cause

Asthma
ED
Visits

COPD IHD Lung
Cancer

Stroke Education
(%)

Employment
(%)

Median
Household
Income ($)

Residents
Living in
Poverty (%)

%
White

%
Black

%
Hispanic/
Latino

%
Asian

WOODLEY PARK 17 1 3 7 3.1 2.3 98 3 139,744 7 89 71 8 12 6

GEORGETOWN EAST 17 1 2 11 2.8 0.7 99 3 132,021 10 87 73 5 11 8

GWU 18 1 2 20 2.8 0.7 NA NA NA NA NA 69 6 11 11

ADAMS MORGAN 20 3 2 9 3.9 1.1 96 5 96,194 7 85 63 12 16 6

U ST/PLEASANT 21 5 2 12 4.1 1.2 89 7 94,614 12 82 45 34 13 5

KENT/PALISADES 22 1 3 13 3.1 2.3 98 6 161,252 9 88 71 7 11 8

CAPITOL HILL 23 4 3 12 5.1 1.8 98 3 121,668 6 86 65 21 7 3

LOGAN CIRCLE/SHAW 28 4 2 19 3.4 1.0 91 4 94,043 11 81 54 24 11 8

SHEPHERD PARK 28 2 3 16 4.9 2.2 93 12 102,053 11 83 29 46 21 2

TENLEYTOWN 28 1 3 16 3.1 2.3 99 2 136,641 5 87 71 7 11 7
Lowest attributable rates
(10-neighborhood mean) 22 2 2 14 4 2 95 5 119,803 9 86 61 17 12 6

CATHEDRAL HEIGHTS 30 1 3 19 3.0 2.1 97 4 90,124 16 89 71 7 11 7

SOUTH COLUMBIA HEIGHTS 30 3 2 17 4.1 1.2 90 8 82,241 14 79 45 28 18 6

FOREST HILLS 31 1 3 18 3.1 2.3 99 4 113,269 9 87 67 11 14 5

MOUNT PLEASANT 32 6 2 30 4.1 1.2 89 5 71,837 12 79 45 21 26 4

UNION STATION 32 7 3 16 5.1 1.8 95 5 110,907 10 78 51 36 6 5

16th ST HEIGHTS 33 6 3 18 4.8 2.2 83 8 75,848 13 80 32 38 24 4

SAINT ELIZABETHS 33 14 5 17 8.8 2.9 NA 18 25,311 40 68 15 78 5 1

CHINATOWN 38 4 2 24 3.8 1.2 89 5 82,789 18 78 52 24 11 10

COLUMBIA HEIGHTS 41 6 2 24 4.2 1.2 79 7 70,554 17 80 37 32 23 5

HILL EAST 41 3 3 26 5.1 1.8 92 9 92,617 14 78 47 41 6 2

DC MEDICAL CENTER 44 6 4 57 6.3 3.1 NA NA NA NA NA 30 49 15 3

BARNABY WOODS 44 1 3 22 4.8 2.2 99 3 200,031 2 87 53 26 14 5

BLOOMINGDALE 46 6 4 33 6.4 3.1 91 9 87,146 12 76 37 47 7 5

DOUGLASS 47 13 5 34 8.7 2.8 82 23 31,319 37 72 2 92 3 0

KINGMAN PARK 48 7 3 31 5.3 2.0 92 8 91,073 12 77 39 49 6 2

HISTORIC ANACOSTIA 50 13 5 27 8.9 2.9 83 15 28,790 37 70 3 92 3 0

EASTLAND GARDENS 52 14 4 27 7.5 3.6 79 21 31,333 34 73 3 91 4 0

LAMOND RIGGS 52 6 4 27 5.3 2.5 89 15 67,745 9 81 17 62 17 2

TWINING 52 13 4 25 8.0 3.3 88 16 47,486 21 75 4 90 3 1

PETWORTH 52 6 3 29 4.8 2.2 86 12 77,020 13 79 22 51 22 3

BRENTWOOD 52 9 4 33 6.4 3.2 87 15 61,739 19 77 20 67 8 3

BRIGHTWOOD 53 5 3 28 4.9 2.2 84 9 66,395 13 81 25 50 19 2

SW/WATERFRONT 57 7 3 33 5.1 1.8 94 7 76,429 14 78 50 35 8 4

BELLEVUE 57 15 5 38 8.8 2.9 83 30 32,562 40 74 8 86 3 0

CONGRESS HEIGHTS/SHIPLEY59 16 5 58 8.8 2.9 82 27 28,711 39 72 2 93 3 0

EDGEWOOD 60 7 4 46 6.4 3.2 84 20 41,171 29 79 31 52 11 4

NAYLOR/HILLCREST 61 13 4 39 7.8 3.3 84 17 37,771 35 73 3 91 3 1

4



MICHIGAN PARK 62 6 4 38 6.4 3.2 86 16 57,943 12 82 24 56 15 2

TRINIDAD 66 7 4 36 6.4 3.2 80 18 36,655 29 71 27 62 6 3

FORT LINCOLN/GATEWAY 66 9 4 55 6.4 3.2 81 14 51,454 19 76 9 82 6 1

BRIGHTWOOD PARK 66 6 3 40 4.9 2.2 87 10 61,476 16 77 16 60 19 2

WOODRIDGE 66 9 4 42 6.5 3.2 93 14 85,947 11 79 17 69 9 2

CHEVY CHASE 68 1 3 40 3.8 2.3 94 4 115,697 9 83 73 8 10 6

LINCOLN HEIGHTS 72 14 4 38 7.6 3.6 81 21 36,577 26 73 1 93 4 0

WASHINGTON HIGHLANDS 74 16 5 46 8.7 2.8 NA NA 28,468 39 72 1 95 2 0

MARSHALL HEIGHTS 74 14 4 38 7.4 3.5 84 20 43,043 29 72 1 94 3 0

FORT DUPONT 90 13 4 46 7.5 3.6 82 24 35,545 31 75 1 93 4 1
Highest attributable rates
(10-neighborhood mean) 70 9 4 42 7 3 85 16 55,281 22 76 17 71 8 2

District of Columbia means 46 7 4 29 6 2 89% 10 $70,848 40% 79 36% 46% 11% 4%
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Fig S1: Five-year mean PM2.5 concentrations (μg/m3) for a) 2011-2015 and c) 2014-2018 (van Donkelaar et

al., 2019); and Socioeconomic Data and Applications Center (SEDAC) 2010 population count estimates

from the Gridded Population of the World (GPW), Version 4, by the Center for International Earth Science

Information Network (Center For International Earth Science Information Network-CIESIN-Columbia

University, 2018) for b) 30-99 years of age and d) all ages. Estimates are displayed on a 100 m x 100 m

resolution grid overlaid on the outline of the District of Columbia.
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Station River Terrace Hains Point McMillan

Year Satellite Monitor Satellite Monitor Satellite Monitor

2011 10.9 10.4 10.7 10.2 11.1 10.3

2012 10.7 9.8 10.5 9.8 10.4 9.6

2013 9.7 9.3 8.4 8.3 9.7 9.1

2014 9.7 10.2 9.6 9.1 9.6 9.4

2015 10.1 NA 10.0 9.2 9.8 8.9

2011-2015 10.2 9.9 9.8 9.3 10.1 9.6

Fig S2: Comparison of PM2.5 concentrations (μg/m3) derived from high spatial resolution satellite data

(Hammer et al., 2020; van Donkelaar et al., 2019) and ground-based monitors (Federal Reference and

Equivalent Methods - FRM/FEM). Top: Five-year (2011 - 2015) average concentrations (μg/m3) from

satellite data (raster layer at ~1 x 1km) and three ground-based monitors (located in Wards 1, 2 and 7, in

PNGs U St/Pleasant, National Mall, and Fort Dupont, respectively). Bottom: Annual comparisons of PM2.5

concentrations (μg/m3) between 2011 and 2015, as well as 5-year average comparison for each of the three

monitoring stations that were available for these years. Satellite data values correspond to the grid cells

where the ground-based monitors are located.
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Fig S3: District of Columbia’s 51 Proximal Neighborhood Groups (PNGs) defined by the District of

Columbia Department of Health (DOH) and Ward overlays (1-8), and a list of PNGs abbreviations and

names. Shapefiles retrieved from Open Data DC (https://opendata.dc.gov/) and Figure produced in

Quantum Geographic Information System (QGIS 3.6.2).
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Figure S4: PM2.5-attributable all-cause mortality rates (per 100,000 people) and life expectancy at birth (in

years) from the District of Columbia Department of Health (DOH) Center for Policy, Planning and

Evaluation. Data represent 2011-2015 means.
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Fig S5: Five-year mean baseline disease rates (cases per 100,000 people for all mortality outcomes and per

10,000 people for asthma ED visits) from the District of Columbia Department of Health between 2011 and

2015 for all mortality outcomes, and between 2014 to 2018 for asthma ED visits. Data resolution is at the

neighborhood-level for all-cause mortality (ALL) and ischaemic heart disease (IHD); zip code-level for

asthma ED visits (AST); and ward-level for chronic obstructive pulmonary disease (COPD), lung cancer

(LC), and stroke (STR). Colors represent five equal intervals for each health outcome of interest.
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