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Abstract

Projections of the winter North Atlantic circulation exhibit large spread. Coupled Model Intercomparison Project archives

typically provide only a few ensemble members per model, rendering it difficult to quantify reducible model structural uncertainty

and irreducible internal variability (IV) in projections. We estimate using the Multi-Model Large Ensemble Archive that model

structural differences explain two-thirds of the spread in late 21st century (2080-2099) projections of the winter North Atlantic

Oscillation (NAO). This estimate is biased by systematic model errors in the forced NAO response and IV. Across the North

Atlantic, the NAO explains a substantial fraction of the spread in mean sea level pressure (MSLP) projections due to IV, except

in the central North Atlantic. Conversely, the spread in North Atlantic MSLP projections associated with model differences

is largely unexplained by the NAO. Therefore, improving understanding of the NAO alone may not constrain the reducible

uncertainty in North Atlantic MSLP projections.

1



manuscript submitted to Geophysical Research Letters 

 

Sources of uncertainty in multi-model large ensemble projections of the 1 

winter North Atlantic Oscillation 2 

C. M. McKenna
1
 and A. C. Maycock

1
 3 

1
 School of Earth and Environment, University of Leeds, Leeds, UK 4 

Corresponding author: Christine McKenna (C.McKenna1@leeds.ac.uk) 5 

 6 

Key Points: 7 

 Model structural differences cause 2/3 of spread in North Atlantic Oscillation (NAO) 8 

projections for 2080-2099 and internal variability 1/3 9 

 The NAO explains a large part of the spread (>40% locally) in North Atlantic mean sea 10 

level pressure projections due to internal variability 11 

 At least 15 ensemble members are needed to detect a forced NAO response of 1 hPa, 12 

typical of the changes modelled by 2080-2099 under RCP8.5 13 
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Abstract 25 

Projections of the winter North Atlantic circulation exhibit large spread. Coupled Model 26 

Intercomparison Project archives typically provide only a few ensemble members per model, 27 

rendering it difficult to quantify reducible model structural uncertainty and irreducible internal 28 

variability (IV) in projections. We estimate using the Multi-Model Large Ensemble Archive that 29 

model structural differences explain two-thirds of the spread in late 21
st
 century (2080-2099) 30 

projections of the winter North Atlantic Oscillation (NAO). This estimate is biased by systematic 31 

model errors in the forced NAO response and IV. Across the North Atlantic, the NAO explains a 32 

substantial fraction of the spread in mean sea level pressure (MSLP) projections due to IV, 33 

except in the central North Atlantic. Conversely, the spread in North Atlantic MSLP projections 34 

associated with model differences is largely unexplained by the NAO. Therefore, improving 35 

understanding of the NAO alone may not constrain the reducible uncertainty in North Atlantic 36 

MSLP projections.    37 

 38 

Plain Language Summary 39 

Variations in atmospheric circulation over the North Atlantic in winter are dominated by the 40 

North Atlantic Oscillation (NAO) pattern, which has a strong influence on regional climate and 41 

is often associated with severe weather events. It is uncertain how the NAO will respond to 42 

future changes in climate driven by human activity. This uncertainty in future projections has 43 

two main sources, which are yet to be fully quantified: first, there are large natural variations in 44 

the NAO on the timescale of many decades, which can mask the effect of long-term climate 45 

change on the NAO; second, different climate models have different representations of physical 46 

processes, which can lead to differences in the future climates they simulate. Here we estimate, 47 

using an unprecedented number of simulations from different climate models, that model 48 

structural differences explain the majority of uncertainty in late 21
st
 century NAO projections. 49 

This result is important because it suggests that uncertainty in NAO projections could be reduced 50 

with improved knowledge of the physical processes involved. However, the NAO itself does not 51 

explain much of the model structural uncertainty in regional sea level pressure projections in and 52 

around the North Atlantic basin, suggesting other dynamical processes must be understood. 53 
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1 Introduction 54 

The North Atlantic atmospheric circulation has a strong influence on Northern 55 

Hemisphere regional climate and is often associated with severe weather events (Buehler et al., 56 

2011; Hurrell et al., 2003). For a given future greenhouse gas and aerosol forcing scenario, 57 

previous studies have found substantial spread in projections of late 21
st
 century North Atlantic 58 

circulation change across models from the Coupled Model Intercomparison Project Phases 5 and 59 

6 (CMIP5 and CMIP6; Collins et al., 2013; Oudar et al., 2020; Shepherd, 2014; Zappa et al., 60 

2018). The model spread partly arises from competing large-scale drivers, such as upper and 61 

lower tropospheric temperature gradient changes (Harvey et al., 2014) and stratospheric 62 

circulation (Manzini et al., 2014; Simpson, Hitchcock, et al., 2018), with the relative dominance 63 

of each factor differing across models (Zappa & Shepherd, 2017).  64 

The extent to which the spread in multi-model projections of the North Atlantic 65 

circulation is from model structural differences versus internal climate variability (IV) remains 66 

an open question. This is partly because models contributing to CMIP5/6 typically only provide 67 

a small number of realisations with different initial conditions and the same external forcing to 68 

sample IV. This makes it difficult to quantify the contributions of model structural uncertainty 69 

and IV to the spread in projections without making assumptions (e.g., approximating 21
st
 century 70 

IV using IV in a stationary pre-industrial climate; Hawkins & Sutton, 2009). 71 

This study aims to advance understanding of the roles of model structural error and IV in  72 

North Atlantic circulation projections. To achieve this, we use the recently available Multi-73 

Model Large Ensemble Archive (MMLEA; Deser et al., 2020) and data from CMIP5/6. We 74 

focus on the leading mode of variability in the North Atlantic circulation – the North Atlantic 75 

Oscillation (NAO) – which is associated with changes in the strength and latitude of the eddy-76 

driven jet (Woollings et al., 2010). To guide our investigation, we address the following 77 

questions: 78 

1. What are the relative contributions of IV and model structural uncertainty to spread in 79 

NAO projections? 80 

2. When do the forced NAO response and model differences in this response emerge from 81 

IV in the 21
st
 century? 82 



manuscript submitted to Geophysical Research Letters 

 

3. What is the minimum number of ensemble members required to separate the forced NAO 83 

response, and model differences in this response, from IV?  84 

4. To what extent is spread in North Atlantic circulation projections explained by the NAO? 85 

Addressing these questions will aid the interpretation of North Atlantic circulation projections, 86 

improving their utility, and provide guidance for designing future model experiments.  87 

 88 

2 Methods 89 

2.1 Datasets 90 

The MMLEA contains large (16-100 member) initial-condition ensembles for 7 91 

comprehensive climate models (Table S1; Hazeleger et al., 2010; Jeffrey et al., 2013; Kay et al., 92 

2015; Kirchmeier-Young et al., 2017; Maher et al., 2019; Rodgers et al., 2015; Schlunegger et 93 

al., 2019; Sun et al., 2018). We use historical and Representative Concentration Pathway 94 

(RCP)8.5 simulations from the MMLEA models for the common period 1950-2099. RCP8.5 was 95 

chosen because only a small subset of the models is available for other RCPs. Since GFDL-96 

ESM2M and GFDL-CM3 have similar atmosphere, ocean, sea-ice and land components (Maher 97 

et al., 2021), and give similar results, we discard the smaller GFDL-CM3 ensemble from the 98 

MMLEA analysis. The winter North Atlantic circulation is described using monthly mean sea 99 

level pressure (MSLP) data averaged over December to February (DJF). Following Collins et al. 100 

(2013), the long-term climate response is computed as the 20-year epoch difference between a 101 

future period and a near-present-day period (updated to 1995-2014; year is for January).  102 

We also use historical and RCP8.5 simulations from 39 CMIP5 models (Taylor et al., 103 

2012), and historical and Shared Socioeconomic Pathway (SSP)5-8.5 simulations from 36 104 

CMIP6 models (Eyring et al., 2016); Table S2. The forcing scenarios changed in CMIP6, where 105 

SSP5-8.5 has the most similar total end-of-century radiative forcing to RCP8.5 (Meinshausen et 106 

al., 2020). However, there are differences in the mix of forcings between the RCP and SSP 107 

scenarios (Meinshausen et al., 2011, 2020) to be borne in mind when comparing results.  108 
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Generally, only a few ensemble members are available for the CMIP5/6 simulations, so 109 

we estimate IV using the pre-industrial control (piControl) runs. Model drift is eliminated by 110 

subtracting each run’s long-term linear trend. Various observation-based datasets are used to 111 

evaluate the spread in model projections against observed IV. Since multi-decadal timescales are 112 

our focus, we use two centennial-scale reanalysis datasets: the NOAA-CIRES-DOE 20
th

 Century 113 

Reanalysis version 3 (20CRv3; Compo et al., 2011; Slivinski et al., 2019) and the ECMWF 20
th

 114 

Century Reanalysis (ERA20C; Poli et al., 2016). An 1000 member “Observational Large 115 

Ensemble” (Obs LE; McKinnon & Deser, 2018) is also used, which contains synthetic historical 116 

trajectories produced by a statistical model based on observed climate statistics. We use the full 117 

extent of Obs LE (1921-2014), and the longer common period of 1900-2010 for 20CRv3 and 118 

ERA20C to minimise sampling issues. Forced trends in 20CRv3 and ERA20C are estimated and 119 

removed using linear least squares regression; Obs LE by construction has no forced MSLP trend 120 

(McKinnon & Deser, 2018).  121 

All model and observation-based data were bilinearly interpolated onto a common 2° 122 

horizontal grid; this procedure does not alter our results. 123 

2.2 NAO definition 124 

Following Stephenson et al. (2006) and Baker et al. (2018), the NAO index is defined as 125 

the difference in area-averaged MSLP between a southern box (90W-60E, 20N-55N) and a 126 

northern box (90W-60E, 55N-90N) in the North Atlantic. This index is less sensitive to 127 

differences in centres of action between observations and models than the station-based index 128 

(Hurrell et al., 2003; Stephenson et al., 2006), and is also less variable enabling easier detection 129 

of a forced NAO response from IV. Furthermore, it is less affected by issues of interpretability 130 

that occur when using a mathematically constructed EOF-based index (Ambaum et al., 2001; 131 

Dommenget & Latif, 2002; Stephenson et al., 2006).   132 

Each MMLEA model’s historical NAO pattern (Figure S1) is constructed from the 133 

regression slopes obtained by regressing historical (1951-2014) timeseries of DJF MSLP at each 134 

grid-point onto the NAO index timeseries; using a future period gives similar results. All 135 

timeseries are first linearly detrended. The pattern is defined separately for each ensemble 136 

member and then the ensemble mean is calculated (Simpson et al., 2020). The NAO-congruent 137 
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part of an MSLP anomaly map is obtained by multiplying the historical NAO pattern by the 138 

NAO index anomaly. Figure S1 also shows observation-based and CMIP5/6 multi-model mean 139 

(MMM) historical NAO patterns; largely, the modelled and observation-based patterns are 140 

highly correlated.  141 

2.3 Statistical methods 142 

In each MMLEA model, uncertainty due to IV is mainly estimated as the standard 143 

deviation across ensemble members (Deser et al., 2012). The externally forced response is 144 

estimated using the ensemble mean. The percentage variance contribution of IV (%UIV) and of 145 

model structural differences (%UMD) to the total uncertainty in MMLEA projections is quantified 146 

following Maher et al. (2021; Text S1).  147 

A forced response is described as “robust” if it is statistically detectable from IV at the 148 

95% confidence level. Two-sided confidence intervals for a forced response (µ) are calculated as 149 

𝜇 ± 𝑡𝜎/√𝑁 (von Storch & Zwiers, 1999). t is the Student’s t-distribution value for p=0.025 and 150 

N−1 degrees of freedom, σ is the inter-member standard deviation of the epoch difference, and N 151 

is the ensemble size.  152 

To estimate the minimum ensemble size (Nmin) required to detect a robust forced NAO 153 

index response of a given magnitude (X) between any two 20-year epochs, we follow Screen et 154 

al. (2014) and re-arrange a two-sided Student’s t-test for a difference of means (Text S2): 155 

𝑁min = 2𝑡𝑐
2 × (𝜎/𝑋)2.   156 

tc  is for p=0.025 and 2Nmin−2 degrees of freedom, and σ is the standard deviation of 20-year 157 

epoch means due to IV. Nmin is calculated for a difference in forced response (X) where σ is for 158 

differences in 20-year means.  159 

 160 

3 Results 161 

Figure 1 shows winter NAO index anomalies between 2080-2099 and 1995-2014 in the 162 

CMIP6, CMIP5 and MMLEA models. For both CMIP5/6 ensembles, the MMM response in the 163 
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NAO index is ~1.5 hPa. However, the MMM responses are generally small compared to the 164 

spread across the individual models. While some models have large positive NAO anomalies 165 

exceeding their modelled range of IV, most modelled anomalies are smaller than IV. The range 166 

of NAO anomalies is 6 hPa in CMIP6 and 7 hPa in CMIP5 – comparable to the observed range 167 

of NAO variability (Figure 1, grey box) – where 86% and 79% of models agree on sign 168 

respectively.  169 

Given many CMIP5/6 models only have one ensemble member available, it is impossible 170 

to separate the spread in projections into parts due to structural model differences and IV. 171 

Despite this limitation, uncertainty in projections is often examined using these models (e.g., 172 

Hawkins & Sutton, 2009). The MMLEA models suggest there are indeed substantial inter-model 173 

differences in the forced response of up to 5 hPa (Figure 1, coloured circles). Using Maher et al. 174 

(2021)’s uncertainty decomposition, we find that model structural differences and IV contribute 175 

to 66% and 34%, respectively, of the total uncertainty in MMLEA NAO projections. The 176 

following sections examine each source of uncertainty in detail.  177 

3.1 Uncertainty from internal variability 178 

In several MMLEA models, the forced winter NAO response is smaller than IV as 179 

measured by the ensemble spread (Figure 1). Using the ensemble spread to assess the range of 180 

possible futures assumes that the models adequately represent observed NAO variability. 181 

However, as in previous studies (Bracegirdle et al., 2018; Kim et al., 2018; Kravtsov, 2017; 182 

Simpson, Deser, et al., 2018; Wang et al., 2017), we find that most CMIP5/6 and MMLEA 183 

models underestimate low frequency NAO variability compared to observation-based datasets 184 

(Figure 1, black whiskers versus grey lines; Tables S1-S2). The model projections may therefore 185 

be overconfident: i.e., a larger part of the uncertainty in the future real-world NAO response may 186 

be from IV. When model-based estimates of IV are adjusted to an observation-based estimate 187 

(Text S1), IV and model structural differences each contribute to half of the total uncertainty in 188 

the adjusted MMLEA projections. These estimates also depend on the models simulating a 189 

realistic forced NAO response; Section 4 discusses this further. 190 

Now we ask to what extent the NAO explains uncertainty in North Atlantic circulation 191 

projections due to IV. Figure 2 presents for each MMLEA model a decomposition of the total 192 
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ensemble spread in MSLP (top row) into an NAO-congruent part (second row) and a residual 193 

(third row). The total uncertainty from IV is generally largest at high northern latitudes, 194 

extending from Greenland to Northern Europe, as well as in the central North Atlantic. There is 195 

also larger uncertainty from IV in north-eastern North America and continental Europe. The 196 

NAO contributes to a large proportion (>50%; Figure 2, bottom row) of the uncertainty in MSLP 197 

projections at high latitudes, and a substantial proportion (up to 50%) of the uncertainty around 198 

the Mediterranean region. The large residual uncertainty in projections in the central Atlantic and 199 

western Europe is largely associated with the East Atlantic (EA) pattern (Figure S2), the second 200 

dominant mode of circulation variability in the North Atlantic sector (Barnston & Livezey, 1987; 201 

Moore et al., 2011; Wallace & Gutzler, 1981). 202 

3.2 Uncertainty in the forced response 203 

Figure 1 shows structural differences in the late 21
st
 century forced NAO response across 204 

the MMLEA models. Here we ask: when do the forced NAO response and model structural 205 

differences in the response become detectable from IV? In the early-to-mid 21
st
 century, most 206 

individual model responses are small and non-robust (Figure 3a-b). GFDL-ESM2M is one 207 

exception, having a relatively large and robust positive NAO response by 2020-2039. By 2060-208 

2079, most of the model responses become large enough to be detected from IV, except for EC-209 

EARTH due to its smaller response and ensemble size (Figure 3c). Regarding detection of model 210 

differences in response, in the mid-21
st
 century only GFDL-ESM2M is robustly distinguishable 211 

from the other models (Figure 3b). By 2060-2079, the only model with a negative NAO response 212 

(CanESM2; Böhnisch et al., 2020) becomes distinct from other models (Figure 3c). By 2080-213 

2099, CSIRO-Mk3.6 and MPI-ESM-LR develop stronger positive responses and become distinct 214 

from CESM1-CAM5 and EC-EARTH (Figure 3d). In short, most of the models simulate a robust 215 

forced NAO response by 2060-2079. However, most inter-model differences in the forced 216 

response are only detectable by 2080-2099, when %UMD first dominates over %UIV (Figure 3a-217 

d). This largely holds when the model-based IV estimates are adjusted to an observation-based 218 

estimate (Figure S3).  219 

We now calculate the minimum ensemble size (Nmin) required to robustly detect a forced 220 

NAO index response, and model differences in this response, given a certain magnitude of IV. 221 
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First, note that Nmin is larger when identifying differences in forced response between models 222 

than when identifying a response of equivalent magnitude in one model (Figure 3e-f). This is 223 

consistent with inter-model differences in forced response emerging from IV later. An NAO 224 

index response of 0.5 hPa – typical of early-to-mid 21
st
 century MMLEA responses (Figure 3a-b) 225 

– requires Nmin=10, 20 or 40 to detect in a model with low (2.5
th

 percentile), median, or high 226 

(97.5
th

 percentile) IV, basing the IV magnitude on the CMIP5/6 multi-model ensemble. For 227 

context, the interannual variability (standard deviation) in the DJF NAO index is ~4 hPa in the 228 

observation-based datasets. Nmin is doubled to 20, 40 or 80 to detect a difference in NAO index 229 

response of 0.5 hPa between two models. Nmin for a high IV model is similar to Nmin calculated 230 

using observation-based IV estimates. All subsequent results use the high IV estimate and thus 231 

provide an upper bound on Nmin. To detect larger NAO responses of 1 hPa and 2 hPa – typical of 232 

late 21
st
 century MMLEA responses (Figure 3c-d) – at least 15 or 5 members are required, 233 

respectively. This becomes 30 or 10 members for a difference in response. The largest MMLEA 234 

model response, and difference in response, of ~4 hPa in 2080-2099 (Figure 3d) requires only 3 235 

members to detect. Nmin is first minimised at 2 for a response of 5 hPa or a difference in response 236 

of 7 hPa.  Therefore, when considering more realistic IV estimates, most NAO anomalies and 237 

model differences in Figure 1 are non-robust in CMIP5/6 models with only 1 ensemble member. 238 

Finally, we ask to what extent inter-model spread in the forced response of North Atlantic 239 

circulation projects onto the NAO structure and, therefore, reflects differences in the response of 240 

the NAO to external forcing. The forced MSLP response is rather different across the MMLEA 241 

models (Figure 4, top row). For example, in CSIRO-Mk3.6, GFDL-ESM2M and MPI-ESM-LR 242 

there is a north-south dipole in pressure anomalies, which is not present in CanESM2, CESM1-243 

CAM5 and EC-EARTH. This is associated with inter-model spread in the NAO-congruent 244 

MSLP response (Figure 4, middle row). However, while a substantial portion of the forced North 245 

Atlantic MSLP response is NAO-congruent in some models (e.g., 80% in GFDL-ESM2M), this 246 

is not true of other models (e.g., EC-EARTH), and there are large residuals in all models (Figure 247 

4, bottom row). Besides limited regions at high latitudes and in Southern Europe, the MSLP 248 

residuals contribute to the majority of the inter-model spread in the forced MSLP response (e.g., 249 

see Greenland, eastern North America and central Europe; Figure 4, far-right column).  250 
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4 Discussion and conclusions 251 

The results presented here have improved our understanding of North Atlantic circulation 252 

projections in various ways. 253 

First, while the CMIP5/6 models under RCP8.5/SSP5-8.5 show a mean response in the 254 

winter NAO index of ~1.5 hPa during the late 21
st
 century (2080-2099) compared to near-255 

present-day (1995-2014), the individual model responses span 6-7 hPa and less than 90% of 256 

models agree on the sign of response. The MMLEA models suggest that approximately two-257 

thirds of the large inter-model spread in CMIP5/6 could be explained by potentially reducible 258 

model structural differences and one-third by irreducible uncertainty from IV. While previous 259 

studies have noted the large spread in North Atlantic circulation projections (Section 1), this 260 

study is the first to quantify these sources of uncertainty using large initial-condition ensembles 261 

performed by a subset of CMIP5 models. The real-world relevance of this separation relies on 262 

models correctly reproducing the observed magnitude of low frequency IV and forced NAO 263 

response. We find the former is generally underestimated in models as in previous studies, but 264 

note the latter may also be underestimated (see below).   265 

Second, as expected from the relatively large IV of the winter NAO, we find a relatively 266 

long time horizon for detecting a forced NAO response. The MMLEA models suggest that the 267 

forced NAO response is only detectable from IV by 2060-2079 and that model structural 268 

uncertainty in the forced response is detectable by 2080-2099. Uncertainty in NAO projections is 269 

therefore largely irreducible for most of the 21
st
 century. While individual MMLEA models have 270 

larger NAO responses that are distinct from IV and other models earlier, this is generally not the 271 

case. This highlights a benefit of using the new MMLEA archive here, whereas previous studies 272 

have been limited to using a single-model large initial-condition ensemble to quantify the time of 273 

emergence of a forced circulation response (Deser et al., 2012, 2017).  274 

Third, we show that a relatively large ensemble size is required to robustly separate the 275 

forced NAO response, and model differences in this response, from IV. A typical response (or 276 

model difference) of 1-2 hPa over the 21
st
 century requires at least 15-5 (30-10) ensemble 277 

members to detect based on realistic estimates of IV. Even for very large responses (model 278 

differences) of around 5 hPa (7 hPa), 2 members are required for detection – meaning the 279 
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majority of model responses and differences are non-robust in CMIP5/6 models with only 1 280 

ensemble member. This result is relevant to the growing application of emergent constraint 281 

techniques for narrowing uncertainty in future projections, as this relies on knowledge of the 282 

forced response and differences in forced responses across ensembles of models. Future model 283 

intercomparison experiment designs should consider the required ensemble sizes for examining 284 

regional climate signals (e.g., Milinski et al., 2020).   285 

Finally, we have examined the extent to which the spread in North Atlantic MSLP 286 

projections is NAO-congruent. Regarding spread from IV, this is large in most North Atlantic 287 

regions and surrounding land areas, where the NAO explains over 50% of the inter-member 288 

spread in individual MMLEA models at higher latitudes and up to 50% around the 289 

Mediterranean region. The residual spread in the central Atlantic and western Europe is largely 290 

explained by the EA pattern. That the spread in projections from IV is largely explained by 291 

dominant modes of atmospheric variability agrees with Deser et al. (2012). These results build 292 

on those of Deser et al. (2017), who only analysed the NAO contribution to spread in projections 293 

from IV.  294 

Regarding inter-model spread in the forced North Atlantic MSLP response, while this is 295 

largely NAO-congruent at high latitudes and in Southern Europe, the majority of the spread is 296 

not NAO-congruent. Therefore, improving understanding of the NAO alone may not constrain 297 

the reducible uncertainty in North Atlantic MSLP projections. This is surprising considering 298 

previous work demonstrating the resemblance of externally forced model responses to the 299 

dominant modes of IV (Deser et al., 2004, 2012). The large residual uncertainty in the forced 300 

MSLP response over Greenland may be associated with local near-surface temperature changes 301 

over orography and/or the extrapolation of pressure to mean sea level.  302 

These results have some limitations. First, MSLP only provides one perspective of the 303 

circulation. When using the zonal wind at 850 hPa (U850), which is related to the meridional 304 

pressure gradient, we find a shift in the regions with large uncertainty from IV (Figure S4). 305 

Furthermore, inter-model spread in the forced U850 response appears more NAO-congruent over 306 

Europe than for MSLP (Figure S5).  307 
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Second, models appear to underestimate predictable forced NAO variations by a factor of 308 

2 on seasonal timescales (Baker et al., 2018; Dunstone et al., 2016; Eade et al., 2014; Scaife et 309 

al., 2014; Scaife & Smith, 2018) and by a factor of 10 on decadal timescales (Smith et al., 2020). 310 

This issue may also affect multi-decadal NAO projections, though given the limited temporal 311 

extent of the observational record this is difficult to assess. If it does, this implies an 312 

underestimation of model differences in the forced NAO response and therefore the contribution 313 

of the NAO to inter-model spread in the forced circulation response, as well as an overestimation 314 

of the time horizon and “true” ensemble size required to detect a forced NAO response from IV. 315 

A further limitation of our analysis is that the MMLEA models may not span the full range of 316 

forced NAO responses in the CMIP5/6 models. However, it is difficult to assess this given the 317 

small ensemble sizes for most CMIP5/6 models.  318 

The dynamical mechanisms responsible for inter-model spread in the forced North 319 

Atlantic circulation response need to be understood to identify potential physical constraints on 320 

the spread. Oudar et al. (2020) identified various mechanisms within CMIP5/6 projections, but 321 

could not determine which are relevant for spread from IV and/or model differences. Harvey et 322 

al. (2020)’s results suggest that mean state biases in the North Atlantic jet do not provide a useful 323 

constraint. Future studies could utilise MMLEA to investigate the dynamical mechanisms 324 

further. 325 
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Figure 1. Projections of the DJF NAO index for [2080-2099]−[1995-2014] in the CMIP6, 326 

CMIP5 and MMLEA models. For CMIP5/6 models, ensemble means are shown if more than 327 

one ensemble member is available. Hatching indicates a CMIP5/6 model anomaly that is larger 328 

than 2 standard deviations of model-specific IV (Text S3). Darker cyan/blue bars indicate the 329 

MMM. Whiskers for MMLEA models indicate the 2.5-97.5% range of responses across the 330 

ensemble members. Section 2.1 describes the model forcing scenarios. Grey lines show the 2.5-331 

97.5% range of 10
5
 differences in 20-year epoch means of different observation-based records 332 

(Section 2.1), selected by randomly resampling with replacement. Grey shaded box shows this 333 

range for Obs LE. The observation-based IV estimates are shifted by the CMIP6 MMM anomaly 334 

for comparison with the inter-model spread. 335 

Figure 2. Inter-member variance in projections of DJF MSLP for [2080-2099]−[1995-2014] 336 

for each MMLEA model. [Top row] Total (σ
2

tot); [Second row] NAO-congruent part (σ
2

nao); 337 

[Third row] Residual (σ
2
res); [Bottom row] Proportion of total variance explained by NAO. σ

2
nao 338 

is obtained by regressing the total inter-member spread in MSLP on the spread in NAO-339 

congruent MSLP at each grid-point. σ
2

res is the variance in the residuals of this regression. 340 

Figure 3. Detecting a forced response in DJF NAO index and inter-model differences in this 341 

response. a-d, NAO anomalies in MMLEA models for future 20-year epochs (1995-2014 342 

baseline). Whiskers are 95% confidence intervals and numbers indicate ensemble size. Section 343 

2.3 defines %UIV and %UMD. e, Nmin required to detect a forced NAO response of a given 344 

magnitude at the 95% confidence level based on IV estimates from MMLEA models, CMIP5/6 345 

models, and observation-based datasets (Text S2-S3). f, As in e but for detecting a difference in 346 

forced response; note different y-axis scale. Single CMIP5/6 models can be located within the 347 

grey plumes using Table S2. 348 

Figure 4. Projections of ensemble mean DJF MSLP for [2080-2099]−[1995-2014] for each 349 

MMLEA model, and their inter-model variance. [Top] Total; [Middle] NAO-congruent part; 350 

[Bottom] Residual. r
2
 is the squared area-weighted pattern correlation between the total response 351 

and the NAO-congruent part.  352 
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Introduction  

This document contains additional text, figures, and tables that provide more technical detail on 
the methods/datasets used and investigate the sensitivity of the results to our methodological 
choices. Text S1 provides more detail on the uncertainty decomposition method of Maher et al. 
(2021). Text S2 explains how Nmin is calculated in Figure 3. Text S3 explains how internal 
variability (IV) in the DJF NAO index was quantified for each model and observation-based 
dataset used. Figure S1 shows the historical NAO patterns used in Figures 2 and 4 to 
decompose an MSLP anomaly map into an NAO-congruent part and a residual. Figure S2 shows 
the effect of including the EA pattern in this decomposition for Figure 2. Figure S3 shows the 
effect of adjusting the model-based estimates of IV used in Figure 3a-d to an observation-based 
estimate of IV. Figures S4 and S5 are versions of Figures 2 and 4, respectively, but for the zonal 
wind at 850 hPa. Tables S1 and S2 respectively provide a detailed list of the MMLEA model 
simulations and CMIP5/6 model simulations used in the study.  
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Text S1. Separating uncertainty into parts due to IV and model structural differences 

The total uncertainty (U) in projections of the DJF NAO index (X) across the MMLEA models is 
separated into a part due to IV (UIV) and a part due to model structural differences (UMD) using 
the method of Maher et al. (2021). This method is described in detail below.  

The projected change in X in a single ensemble member (i) of a single MMLEA model (m) is 
given by: 
 
𝛥𝛥𝑋𝑋𝑚𝑚,𝑖𝑖 =  𝑋𝑋�𝑚𝑚,𝑖𝑖,fut − 𝑋𝑋�𝑚𝑚,𝑖𝑖,pres     
 
where overbars indicate a time mean over a future (fut) or near-present-day (pres) 20-year 
epoch. The forced response in X in a single model (m) is given by the ensemble mean projected 
change: 

𝛥𝛥𝑋𝑋𝑚𝑚,F = 1
𝑁𝑁𝑚𝑚

 ∑  𝛥𝛥𝑋𝑋𝑚𝑚,𝑖𝑖
𝑁𝑁𝑚𝑚
𝑖𝑖=1      

 
where Nm is the ensemble size for the model. The spread in 𝛥𝛥𝑋𝑋 across a model (m) due to IV is 
calculated as the inter-member standard deviation of the projected change: 
 

𝜎𝜎(𝛥𝛥𝑋𝑋𝑚𝑚)  = � 1
𝑁𝑁𝑚𝑚− 1

 ∑  (𝛥𝛥𝑋𝑋𝑚𝑚,𝑖𝑖 − 𝛥𝛥𝑋𝑋𝑚𝑚,𝐹𝐹)2𝑁𝑁𝑚𝑚
𝑖𝑖=1    . 

 
The uncertainty in 𝛥𝛥𝑋𝑋 due to IV (UIV) is then given by the average of the IV across the models: 
 

𝑈𝑈IV = �  1
𝑀𝑀

 ∑  𝜎𝜎2(𝛥𝛥𝑋𝑋𝑚𝑚)𝑀𝑀
𝑚𝑚=1      

 
where M is the number of MMLEA models.  

The MMM forced response in 𝛥𝛥𝑋𝑋 for the MMLEA models is calculated as the mean of the forced 
responses for each model: 
 
𝛥𝛥𝑋𝑋F =  1

𝑀𝑀 
∑  𝛥𝛥𝑋𝑋𝑚𝑚,F
𝑀𝑀
𝑚𝑚=1    . 

 
The variance in the forced response across the models is then estimated as: 
 
𝜎𝜎F2 = 𝐷𝐷2 − 𝐸𝐸2 
 
where D2 is the variance in the ensemble means: 

𝐷𝐷2 =  1
𝑀𝑀−1 

 ∑  (𝛥𝛥𝑋𝑋𝑚𝑚,F − 𝛥𝛥𝑋𝑋F)2𝑀𝑀
𝑚𝑚=1     
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and E2 removes the contribution of IV to the variance in the ensemble means. E2 is equal to the 
average mean squared error of the models: 
 
𝐸𝐸2 = 1

𝑀𝑀
 ∑ 𝜎𝜎2 (𝛥𝛥𝑋𝑋𝑚𝑚)

𝑁𝑁𝑚𝑚
𝑀𝑀
𝑚𝑚=1      .  

 
The uncertainty in 𝛥𝛥𝑋𝑋 due to model structural differences (UMD) is then estimated as: 
 
𝑈𝑈MD = �𝜎𝜎F2   .   

We quantify the contribution of UMD and UIV to the total uncertainty in projections (U), by 
calculating the percentage variance contribution of each (%UMD and %UIV) to the sum of UMD 
and UIV. To estimate the contributions of UMD and UIV to real-world uncertainty in the future NAO 
response, the model-based estimate of UIV is replaced with an observation-based estimate of IV. 
Specifically, the IV in each MMLEA model, 𝜎𝜎(𝛥𝛥𝑋𝑋𝑚𝑚), is replaced with an estimate of IV from Obs 
LE calculated as described in Text S3. Note that there are minimal differences to the results when 
using 20CRv3 or ERA20C.  

 

Text S2. Calculation of Nmin 

To estimate the minimum ensemble size (Nmin) required to detect a robust forced NAO index 
response of a given magnitude (X) between any two 20-year epochs, we follow the method of 
Screen et al. (2014).  

First, we calculate the Student’s t-statistic, t, for many different ensemble sizes, N, using a 
Student’s t-test for a difference of means (von Storch & Zwiers, 1999): 

𝑡𝑡 = 𝑋𝑋
𝜎𝜎�2/𝑁𝑁

    

where σ is the standard deviation of 20-year epoch means due to IV (Text S3). Note it is 
assumed that σ is constant for all N, which Screen et al. (2014) show is a reasonable assumption.  

Second, we define the difference, X, as statistically significant when t ≥ tc , where tc is the cutoff 
value of the Student’s t-distribution for a two-sided p-value of 0.025 and 2N-2 degrees of 
freedom. Nmin is the smallest value of N for which this is satisfied. Hence, Nmin is calculated by re-
arranging the Student’s t-test, and replacing t with tc and N with Nmin: 

𝑁𝑁min = 2𝑡𝑡𝑐𝑐2 × (𝜎𝜎/𝑋𝑋)2   . 
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Text S3. Methods for calculating IV 

All methods described below are applied to the DJF NAO index. 

For each CMIP5/6 model, the IV in 20-year epoch means (Table S2) is calculated as the standard 
deviation in non-overlapping 20-year epoch means from the piControl simulation. This is 
multiplied by the square root of 2 when a difference in 20-year epoch means is of interest; this 
assumes the two 20-year epochs are independent and have the same variance (Collins et al., 
2013). As in Collins et al. (2013), the median IV across all models is used for the MMM. Non-
overlapping 20-year epochs are used to ensure each sample is independent. 

The IV in 20-year epoch means for each MMLEA model (Table S1) is calculated as the inter-
member standard deviation of a 20-year epoch mean, where this is pooled (i.e., averaged) for all 
possible 20-year epochs over 1951-2099. The same method is used for Obs LE, but over the 
period 1922-2014. For ERA20C and 20CRv3, we use the standard deviation of all possible 20-
year epoch means over 1901-2010; given the limited temporal extent of these records, non-
overlapping segments could not be used. For consistency between all datasets considered, the 
IV for a difference in 20-year epoch means is the IV in 20-year epoch means multiplied by the 
square root of 2. In all cases we assume the IV is constant in time; analysing timeseries of the 
inter-member standard deviation in 20-year epoch means for the MMLEA models suggests this 
is a reasonable assumption.   
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Figure S1. Historical [1951-2014] DJF NAO patterns for the MMLEA models, CMIP5/6 
MMM and an observation-based dataset. Shading shows the change in MSLP (hPa) for a        
1 hPa positive change in NAO index. Patterns for each CMIP5/6 model and Obs LE are calculated 
in the same way as for the MMLEA models (Section 2.2). Ensemble means are used to define the 
patterns to minimise uncertainty in the NAO pattern due to IV (e.g., see Simpson et al., 2020). 
Obs LE is used for the observation-based NAO pattern because it is designed to be less affected 
by sampling issues; note that there are minimal differences when using 20CRv3 or ERA20C, or 
when using a longer historical period. r2 is the squared area-weighted pattern correlation 
between the modelled and observation-based NAO patterns. Largely, the modelled and 
observation-based patterns are highly correlated. The southern centre of action, however, is 
generally weaker in the models and in CSIRO-Mk3.6 the pattern is westward shifted. There is 
little improvement in the CMIP6 MMM compared to the CMIP5 MMM. 
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Figure S2. Same as Figure 2, but with the EA pattern included in the regression. [Top row] 
Total variance (σ2

tot); [Second row] Variance explained by the NAO and EA (σ2
naoEA); [Third row] 

Residual variance (σ2
res); [Bottom row] Proportion of total variance explained by the NAO and EA. 

σ2
naoEA is obtained through multivariate regression at each grid-point of the total inter-member 

spread in MSLP on the spread in NAO-congruent MSLP and spread in EA-congruent MSLP. σ2
res 

is the variance in the residuals of this regression. The EA pattern is characterised by a monopole 
in MSLP over the mid-latitude North Atlantic ocean (Barnston & Livezey, 1987; Moore et al., 
2011; Wallace & Gutzler, 1981). Following Moore et al. (2011), the EA index is calculated as the 
anomalous MSLP in the nearest gridbox to (52.5N, 27.5W). The EA-congruent part of the MSLP is 
obtained using the same procedure as for the NAO-congruent part (Section 2.2).   
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Figure S3. Same as Figure 3a-d, but with confidence intervals calculated by replacing the 
model-based estimates of IV with observation-based estimates of IV. Obs LE is used for the 
observation-based IV estimate because it is designed to be less affected by sampling issues; 
note that there are minimal differences when using 20CRv3 or ERA20C. IV is estimated as 
described in Text S3. %UIV and %UMD are defined as described in Text S1 using Obs LE to 
estimate IV.  

 

 

 

Figure S4. Same as top and bottom rows of Figure 2, but for U850. [Top row] Total variance 
(σ2

tot); [Bottom row] Proportion of total variance explained by the NAO (σ2
nao / σ2

tot). σ2
nao is 

obtained by regressing the total inter-member spread in U850 on the spread in NAO-congruent 
U850 at each grid-point. The NAO-congruent part of U850 is obtained using the same 
procedure as for MSLP (Section 2.2), but with the historical NAO pattern constructed by 
regressing historical timeseries of U850 at each grid-point onto the NAO index timeseries.      
EC-EARTH is omitted from the analysis because there was no three-dimensional zonal wind data 
available. 
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Figure S5. Same as far right column of Figure 4, but for U850. [Top] Total; [Middle] NAO-
congruent part; [Bottom] Residual. The NAO-congruent part of U850 is obtained using the same 
procedure as for MSLP (Section 2.2), but with the historical NAO pattern constructed by 
regressing historical timeseries of U850 at each grid-point onto the NAO index timeseries. EC-
EARTH is omitted from the analysis because there was no three-dimensional zonal wind data 
available. Note that similar results are obtained for the far right column of Figure 4 when EC-
EARTH is removed. Black contours show the MMM near-present-day (1995-2014) U850 
climatology with intervals of 10 m/s. 
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Table S1. List of MMLEA models with historical and RCP8.5 simulations. IV is for 20-year 
means of the DJF NAO index over 1951-2099 (see Text S3 for details). In all MMLEA models, this 
IV is underestimated compared to observation-based datasets (1.1 hPa, 1.2 hPa, and 1.2 hPa in 
Obs LE, 20CRv3, and ERA20C, respectively). Note that while the MMLEA does contain an 
ensemble for GFDL-ESM2M, there is no three-dimensional zonal wind data available for this 
model. We therefore use a similar 30 member ensemble from the Princeton Large Ensemble 
Archive (Schlunegger et al., 2019), which has three-dimensional zonal wind data available. The 
NAO index and MSLP results are very similar for the two ensembles. 

 

Model Modelling 
Centre 

CMIP 
generation 

Years No. of 
members 

IV 
(hPa) 

Reference 

CanESM2 CCCma CMIP5 1950-2100 50 0.72 Kirchmeier-Young 
et al. (2017) 

CESM1-CAM5 NCAR CMIP5 1920-2100 40 0.77 Kay et al. (2015) 

CSIRO-Mk3.6 CSIRO CMIP5 1850-2100 30 0.68 Jeffrey et al. (2013) 

EC-EARTH EC-Earth 
Consortium 

CMIP5 1860-2100 16 0.85 Hazeleger et al. 
(2010) 

GFDL-CM3 GFDL CMIP5 1920-2100 20 0.77 Sun et al. (2018) 

GFDL-ESM2M GFDL CMIP5 1950-2100 30 0.93 Rodgers et al. 
(2015); 
Schlunegger et al. 
(2019) 

MPI-ESM-LR MPI CMIP5 1850-2099 100 0.84 Maher et al. (2019) 
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Table S2. List of CMIP5/CMIP6 models with piControl, historical and RCP8.5/SSP5-8.5 
simulations. Numerical labels are for bars in Figure 1. Models are ranked in order of magnitude 
of IV in 20-year means of the DJF NAO index from the piControl simulations (see Text S3 for 
details), where rank 1 has the highest IV and rank 75 has the lowest. This enables each model to 
be located in the grey plumes of Figure 3e-f. In most models the IV is underestimated compared 
to observation-based datasets (respectively 1.11 hPa, 1.18 hPa, and 1.20 hPa in Obs LE, 20CRv3, 
and ERA20C). Note that for CMIP5 models that are also MMLEA models, the IV magnitudes 
listed here do not necessarily match those in Table S1. For example, based on the piControl 
simulations CESM1-CAM5 has a very low IV, but based on the MMLEA simulations it has an 
average IV. This likely reflects that the piControl IV is calculated from a relatively short simulation 
(319 years) with only 15 independent samples of 20-year means, while there are 40 independent 
ensemble members for the MMLEA simulations. It could also be that there are differences in the 
magnitude of IV between the pre-industrial state and historical/RCP8.5 state, but this cannot be 
determined with the limited piControl simulation length. 

 

Label Model Modelling 
Centre 

CMIP 
generation 

piControl 
length 
(years) 

Number of 
historical/ 
RCP/SSP 
members 

IV 
(hPa) 

IV 
rank 

1 ACCESS1.0 CSIRO- 
BOM 

CMIP5 500 1 0.62 66 

2 ACCESS1.3 CMIP5 500 1 0.84 23 

3 BCC-CSM1.1 BCC CMIP5 500 1 0.77 40 

4 BCC-CSM1.1-M CMIP5 400 1 0.86 18 

5 BNU-ESM BNU CMIP5 559 1 1.14 2 

6 CanESM2 CCCma CMIP5 996 5 0.68 56 

7 CCSM4 NCAR CMIP5 1051 6 0.83 27 

8 CESM1-BGC NSF-DOE- 
NCAR 

CMIP5 500 1 0.89 14 

9 CESM1-CAM5 CMIP5 319 3 0.52 72 

10 CESM1-WACCM CMIP5 200 3 0.45 74 

11 CMCC-CESM CMCC CMIP5 277 1 1.03 5 
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Label Model Modelling 
Centre 

CMIP 
generation 

piControl 
length 
(years) 

Number of 
historical/ 
RCP/SSP 
members 

IV 
(hPa) 

IV 
rank 

12 CMCC-CM CMCC CMIP5 330 1 0.67 59 

13 CMCC-CMS CMIP5 500 1 0.80 32 

14 CNRM-CM5 CNRM- 
CERFACS 

CMIP5 850 5 0.78 39 

15 CSIRO-Mk3.6.0 CSIRO- 
QCCCE 

CMIP5 500 10 0.67 60 

16 EC-EARTH ICHEC CMIP5 451 8 0.80 34 

17 FGOALS-g2 LASG- 
CESS 

CMIP5 700 1 0.64 63 

18 FIO-ESM FIO CMIP5 800 3 0.81 30 

19 GFDL-CM3 NOAA- 
GFDL 

CMIP5 500 1 0.66 61 

20 GFDL-ESM2G CMIP5 500 1 0.93 11 

21 GFDL-ESM2M CMIP5 500 1 0.74 47 

22 GISS-E2-H NASA- 
GISS 

CMIP5 780 2 0.63 65 

23 GISS-E2-H-CC CMIP5 251 1 0.37 75 

24 GISS-E2-R CMIP5 850 2 0.80 31 

25 GISS-E2-R-CC CMIP5 251 1 0.75 44 

26 HadGEM2-CC MOHC CMIP5 240 3 0.84 26 

27 HadGEM2-ES CMIP5 576 4 0.86 20 

28 INM-CM4 INM CMIP5 500 1 0.74 46 

29 IPSL-CM5A-LR IPSL CMIP5 1000 4 0.82 28 
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Label Model Modelling 
Centre 

CMIP 
generation 

piControl 
length 
(years) 

Number of 
historical/ 
RCP/SSP 
members 

IV 
(hPa) 

IV 
rank 

30 IPSL-CM5A-MR IPSL CMIP5 300 1 0.61 67 

31 IPSL-CM5B-LR CMIP5 300 1 1.25 1 

32 MIROC-ESM MIROC CMIP5 630 1 0.79 35 

33 MIROC-ESM-CHEM CMIP5 255 1 0.71 51 

34 MIROC5 CMIP5 670 3 0.55 71 

35 MPI-ESM-LR MPI-M 
 

CMIP5 1000 3 0.93 10 

36 MPI-ESM-MR CMIP5 1000 1 0.80 33 

37 MRI-CGCM3 MRI CMIP5 500 1 0.94 9 

38 NorESM1-M NCC CMIP5 501 1 0.78 38 

39 NorESM1-ME CMIP5 252 1 1.03 7 

40 ACCESS-CM2 CSIRO- 
ARCCSS 

CMIP6 500 1 0.84 24 

41 ACCESS-ESM1.5 CSIRO CMIP6 900 1 0.60 69 

42 AWI-CM1.1-MR AWI CMIP6 500 1 0.78 37 

43 BCC-CSM2-MR BCC CMIP6 600 1 1.09 3 

44 CAMS-CSM1.0 CAMS CMIP6 500 1 0.92 12 

45 CanESM5 CCCma CMIP6 1000 25 0.86 21 

46 CanESM5-CanOE 501 1 0.75 45 
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Label Model Modelling 
Centre 

CMIP 
generation 

piControl 
length 
(years) 

Number of 
historical/ 
RCP/SSP 
members 

IV 
(hPa) 

IV 
rank 

47 CESM2 NCAR CMIP6 1200 1 0.99 8 

48 CESM2-WACCM CMIP6 499 3 0.81 29 

49 CIESM THU CMIP6 500 1 0.69 54 

50 CMCC-CM2-SR5 CMCC CMIP6 500 1 0.76 43 

51 CNRM-CM6.1 CNRM- 
CERFACS 

CMIP6 500 6 0.85 22 

52 CNRM-CM6.1-HR CMIP6 300 1 0.63 64 

53 CNRM-ESM2.1 CMIP6 500 5 1.06 4 

54 EC-Earth3-Veg EC-Earth- 
Consortium 

CMIP6 500 1 0.76 42 

55 FGOALS-f3-L CAS CMIP6 561 1 0.79 36 

56 FGOALS-g3 CMIP6 700 1 0.68 57 

57 FIO-ESM2.0 FIO-QLNM CMIP6 575 1 0.61 68 

58 GFDL-CM4 NOAA- 
GFDL 

CMIP6 500 1 0.70 53 

59 GFDL-ESM4 CMIP6 500 1 0.90 13 

60 HadGEM3-GC3.1-LL MOHC CMIP6 500 4 0.67 58 

61 HadGEM3-GC3.1-MM CMIP6 500 4 0.86 19 

62 INM-CM4.8 INM CMIP6 531 1 0.56 70 

63 INM-CM5.0 CMIP6 1201 1 0.64 62 
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Label Model Modelling 
Centre 

CMIP 
generation 

piControl 
length 
(years) 

Number of 
historical/ 
RCP/SSP 
members 

IV 
(hPa) 

IV 
rank 

64 IPSL-CM6A-LR IPSL CMIP6 2000 3 0.88 15 

65 KACE1.0-G NIMS-KMA CMIP6 450 1 0.87 16 

66 KIOST-ESM KIOST CMIP6 500 1 0.72 49 

67 MIROC-ES2L MIROC CMIP6 500 1 0.51 73 

68 MIROC6 CMIP6 800 3 0.70 52 

69 MPI-ESM1.2-HR MPI-M CMIP6 500 1 0.86 17 

70 MPI-ESM1.2-LR CMIP6 1000 1 0.69 55 

71 MRI-ESM2.0 MRI CMIP6 701 1 0.84 25 

72 NESM3 NUIST CMIP6 500 1 0.77 41 

73 NorESM2-LM NCC CMIP6 501 1 1.03 6 

74 NorESM2-MM CMIP6 500 1 0.71 50 

75 UKESM1.0-LL MOHC CMIP6 1880 5 0.73 48 
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