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Abstract

The state and evolution of the North Pacific jet (NPJ) stream strongly influences the character of the downstream synoptic-scale

flow pattern over North America. This study employs data from nine models within the Subseasonal-to-Seasonal Reforecast

Database hosted by the European Centre for Medium-Range Weather Forecasts to examine the subseasonal (2 weeks–1 month)

predictability of the NPJ through the lens of an NPJ phase diagram. The NPJ phase diagram provides a visual representation of

the state and evolution of the NPJ with respect to the two leading modes of NPJ variability. The first mode of NPJ variability

corresponds to a zonal extension or retraction of the climatological jet-exit region, whereas the second mode corresponds to a

poleward or equatorward shift of the climatological jet-exit region. The analysis reveals that ensemble forecasts of the prevailing

NPJ regime, as determined from the NPJ phase diagram, are skillful into week 3 of the forecast period. Forecasts initialized

during a jet retraction, or verifying during a jet retraction and equatorward shift, feature the largest forecast errors during

weeks 1–2 of the forecast period for all models. Beyond week 2, the verifying NPJ regime characterized by the largest forecast

error varies by model and is related to forecast frequency biases in the prediction of each NPJ regime at subseasonal time scales.

Examination of the worst-performing 21-day forecasts from each model demonstrates that the worst-performing forecasts are

uniformly associated with development, maintenance, and decay of upper-tropospheric ridges over the high-latitude North

Pacific.
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1) Skillful predictions of the prevailing North Pacific jet regime extend into the week 3 33 

forecast period. 34 

2) Bias-corrected forecasts verifying during jet retraction or equatorward shift regimes 35 

feature the largest errors at subseasonal lead times. 36 

3) The worst 21-day forecasts from each model are associated with the development, 37 

maintenance, and decay of upper-tropospheric ridges. 38 
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Abstract 39 
 40 
The state and evolution of the North Pacific jet (NPJ) stream strongly influences the character of 41 

the downstream synoptic-scale flow pattern over North America. This study employs data from 42 

nine models within the Subseasonal-to-Seasonal Reforecast Database hosted by the European 43 

Centre for Medium-Range Weather Forecasts to examine the subseasonal (2 weeks–1 month) 44 

predictability of the NPJ through the lens of an NPJ phase diagram. The NPJ phase diagram 45 

provides a visual representation of the state and evolution of the NPJ with respect to the two 46 

leading modes of NPJ variability. The first mode of NPJ variability corresponds to a zonal 47 

extension or retraction of the climatological jet-exit region, whereas the second mode 48 

corresponds to a poleward or equatorward shift of the climatological jet-exit region. The analysis 49 

reveals that ensemble forecasts of the prevailing NPJ regime, as determined from the NPJ phase 50 

diagram, are skillful into week 3 of the forecast period. Forecasts initialized during a jet 51 

retraction, or verifying during a jet retraction and equatorward shift, generally feature the largest 52 

errors during the forecast period. Examination of the worst-performing 21-day forecasts from 53 

each model demonstrates that the worst-performing forecasts are uniformly associated with 54 

development, maintenance, and decay of upper-tropospheric ridges over the high-latitude North 55 

Pacific. These results demonstrate that bias-corrected NPJ phase diagram forecasts have the 56 

potential to identify periods that may exhibit enhanced forecast skill at subseasonal lead times 57 

based on the anticipated NPJ evolution. 58 

 59 

 60 

 61 

 62 
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Plain Language Summary 63 

The jet stream is a ribbon of rapidly moving air that circumnavigates the globe approximately 12 64 

km above the Earth’s surface. The evolution of a segment of the jet stream over the North 65 

Pacific, hereafter referred to as the North Pacific jet (NPJ), exerts an important influence on 66 

downstream weather conditions over North America. Consequently, this study examines the 67 

extent to which forecast models can accurately capture the state and evolution of the NPJ 2–4 68 

weeks in advance. The analysis reveals that an elongated or poleward shifted NPJ is generally 69 

characterized by enhanced forecast accuracy, whereas a wavier or split NPJ is generally 70 

characterized by reduced forecast accuracy. Recognition of these NPJ configurations within a 71 

real time forecast environment can provide “windows of opportunity”, in which conditions over 72 

the North Pacific and North America can be forecasted with a higher degree of precision 73 

compared to climatology up to 4 weeks in advance. 74 

 75 
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1. Introduction 86 

 The improvement of subseasonal (2 weeks to 1 month) forecasts has been a priority for 87 

the meteorological community and its partners (NRC, 2010; NAS, 2018) given that this time 88 

scale is characterized by a forecast skill “gap” within numerical weather prediction models. In 89 

particular, skillful forecasts on shorter (i.e., weather) time scales predominantly arise from 90 

atmospheric initial conditions, whereas skillful forecasts on longer (i.e., seasonal) time scales 91 

predominantly arise from low frequency climate variations such as sea-surface temperature and 92 

soil moisture fluctuations (e.g., NRC, 2010; NAS, 2018; Vitart et al., 2017; Pegion et al., 2019; 93 

Meehl et al., 2021). Consequently, the subseasonal time scale lies in a transition period during 94 

which forecast skill is not as effectively derived from atmospheric initial conditions or low 95 

frequency climate variations. Nevertheless, subseasonal forecasts offer considerable value to 96 

stakeholders, including individuals in emergency management, agriculture, water management, 97 

and public health (White et al., 2017; Pegion et al., 2019), who can act to mitigate risks from the 98 

occurrence of anomalous weather conditions. 99 

 The identification and prediction of “weather regimes”, which are defined as reoccurring 100 

and/or persistent large-scale atmospheric patterns maintained by synoptic-scale weather systems 101 

(e.g., Reinhold & Pierrehumbert, 1982; Vautard, 1990; Ferranti et al., 2015, 2018; Straus et al., 102 

2017; Vigaud et al. 2018; Lee et al. 2019; Winters et al. 2019a; Robertson et al., 2020), represent 103 

burgeoning areas of research relevant to the subseasonal time scale. Weather regimes can be 104 

defined over a spectrum of spatial domains, such as the Northern Hemisphere (e.g., Mo & Ghil, 105 

1988; Kimoto & Ghil, 1993; Corti et al., 1999), the Euro–Atlantic sector (e.g., Vautard, 1990; 106 

Michelangeli et al., 1995; Cassou, 2008; Dawson & Palmer, 2014; Ferranti et al., 2015, 2018; 107 

Grams et al., 2017; Matsueda & Palmer, 2018), and the Pacific–North American sector (e.g., 108 
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Robertson & Ghil, 1999; Straus et al., 2007; Riddle et al., 2013; Matsueda & Kyouda, 2016; 109 

Vigaud et al., 2018; Amini & Straus, 2019; Lee et al., 2019; Winters et al., 2019a; Robertson et 110 

al., 2020). Knowledge of the prevailing or forecasted weather regime subsequently provides 111 

insight into the character of the large-scale flow pattern over a region as well as the relative 112 

likelihood for anomalous sensible weather to develop in conjunction with that regime. 113 

 Examinations into the predictability of weather regimes have been predominantly focused 114 

on the Euro-Atlantic sector (e.g., Ferranti et al. 2015, 2018; Matsueda & Palmer, 2018). A 115 

common thread among these examinations is that forecast models have difficulty capturing the 116 

onset, maintenance, and decay of upper-tropospheric blocking events, which has implications for 117 

the occurrence of high-impact weather events over Europe, such as cold-air outbreaks and heat 118 

waves (e.g., Jung et al., 2011; Ferranti et al., 2018; Quandt et al., 2019). Evaluation of the 119 

predictability of weather regimes over North America has recently received greater attention. In 120 

particular, Vigaud et al. (2018) and Robertson et al. (2020) demonstrate that the predictability of 121 

North American weather regimes, as defined from a k-means clustering analysis of 500-hPa 122 

geopotential height, is generally on the order of two weeks. Robertson et al. (2020) observe, 123 

however, that there are “forecasts of opportunity” in which the prevailing weather regime may be 124 

predicted with skill up to four weeks in advance. These forecasts of opportunity were found to 125 

coincide with periods influenced by low frequency modes of climate variability such as the El 126 

Niño–Southern Oscillation and the Madden–Julian Oscillation. 127 

  The North Pacific jet (NPJ) stream represents a synoptic-scale feature whose state and 128 

evolution serves as a conduit between the aforementioned modes of low frequency climate 129 

variability and the character of the downstream large-scale flow pattern over North America 130 

(e.g., Cordeira & Bosart, 2010; Archambault et al., 2015; Bosart et al., 2017; Griffin & Martin, 131 
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2017; Vigaud et al. 2018; Winters et al., 2019a,b; Robertson et al., 2020). Therefore, accurate 132 

forecasts of the state and evolution of the NPJ may also exhibit the potential to inform 133 

predictions of weather conditions over North America. Winters et al. (2019a) developed an NPJ 134 

phase diagram on the basis of this observation to objectively track the state and evolution of the 135 

NPJ using output from reanalysis products and numerical weather prediction models. The NPJ 136 

phase diagram is constructed from the two-leading empirical orthogonal functions (EOFs) of 137 

250-hPa zonal wind anomalies over the North Pacific during September–May. The first EOF 138 

corresponds to a zonal extension or retraction of the climatological exit region of the NPJ, 139 

whereas the second EOF corresponds to a poleward or equatorward shift of the climatological 140 

exit region of the NPJ. Figure 1 shows the characteristic large-scale flow patterns associated with 141 

the four primary NPJ regimes derived from the NPJ phase diagram and reveals that each NPJ 142 

regime is associated with distinct temperature and sea-level pressure anomaly patterns across the 143 

Pacific–North American sector. Winters et al. (2019b) and Turasky (2019) further demonstrate 144 

that the frequencies of continental U.S. extreme temperature events and landfalling atmospheric 145 

river events along the U.S. west coast are significantly modulated by the antecedent state and 146 

evolution of the NPJ as determined from the NPJ phase diagram. 147 

 Predicated on the relationship between each NPJ regime and the large-scale flow pattern 148 

over North America, Winters et al. (2019a) conducted an evaluation of the medium-range (6–10-149 

day) forecast skill associated with each NPJ regime by calculating 9-day ensemble forecasts of 150 

the state and evolution of the NPJ in the context of the NPJ phase diagram using the GEFS 151 

Reforecast Version 2 dataset (Hamill et al., 2013). Their analysis found that ensemble mean 152 

forecasts verifying during jet retraction and equatorward shift regimes were associated with 153 

larger medium-range forecast errors than forecasts verifying during jet extension and poleward 154 
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shift regimes. Consideration of the worst-performing 9-day NPJ phase diagram forecasts also 155 

found that the worst forecasts occurred in conjunction with rapid NPJ regime transitions towards 156 

an equatorward shift regime as well as the development of North Pacific blocking ridges. 157 

  A limitation to the Winters et al. (2019a) analysis is that it focuses on one ensemble 158 

prediction system and does not consider the extent to which the forecast skill of the NPJ extends 159 

into subseasonal time scales. Furthermore, prior work on North American weather regimes does 160 

not quantify the forecast skill associated with regime transitions, which are periods that can often 161 

lead to substantial downstream impacts over North America (e.g., Bosart et al., 2017). The NPJ 162 

phase diagram is well suited for such an analysis, much like those diagrams used by Matsueda & 163 

Palmer (2018) and Ferranti et al. (2018) to describe Euro-Atlantic weather regimes, since it 164 

allows for observable transitions between regimes and serves as an objective tool to evaluate the 165 

ability of models to simulate the cumulative upper-tropospheric flow response to tropical and 166 

midlatitude forcing. The remainder of this study is organized as follows. Section 2 discusses the 167 

data and methodology used to construct the NPJ phase diagram and NPJ phase diagram 168 

forecasts. Section 3 examines the biases and multi-model skill of NPJ phase diagram forecasts. 169 

Section 4 considers the evolution of the synoptic-scale flow pattern associated with the best- and 170 

worst-performing NPJ phase diagram forecasts from each model, and section 5 provides a 171 

discussion of the main conclusions from this work. 172 

  173 

2. Data and methods 174 

2.1. Data 175 

 This study uses data at 6-h intervals during September–May 1979–2019 from the 176 

National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis 177 
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(CFSR; Saha et al., 2010, 2014) as well as data during September–May from the Subseasonal-to-178 

Seasonal (S2S) Reforecast Database hosted by the European Centre for Medium-Range Weather 179 

Forecasts (ECMWF; Vitart et al., 2017). The CFSR features 0.5° horizontal grid spacing and 64 180 

vertical levels that extend from the surface to 0.26 hPa. The S2S Reforecast Database consists of 181 

reforecasts from 11 operational centers, each with a different reforecast period, ensemble size, 182 

forecast frequency, forecast length, and model version. Reforecast data are stored on 10 pressure 183 

levels and a 1.5° × 1.5° latitude-longitude grid, are initialized at 0000 UTC, and are available at 184 

forecast lead times as long as 32–61 days at 24-h intervals. Exceptions to this format are 185 

reforecasts from the Australian Bureau of Meteorology (BoM), which are stored on a gaussian 186 

grid, and reforecasts from the Japan Meteorological Agency (JMA), which are initialized at 1200 187 

UTC.  188 

 To ensure uniformity in the forthcoming analyses, this study does not consider 189 

reforecasts from the BoM and JMA, and only uses reforecasts from the nine operational centers 190 

identified in Table 1. These centers include Environment and Climate Change Canada (ECCC), 191 

Météo-France/Centre National de Recherche Meteorologiques (CNRM), the Institute of 192 

Atmospheric Sciences and Climate of the National Research Council (ISAC), the Korea 193 

Meteorological Administration (KMA), NCEP, the UK Met Office (UKMO), the 194 

Hydrometeorological Center of Russia (HMCR), ECMWF, and the China Meteorological 195 

Administration (CMA). The reforecasts from a particular center are constructed using either a 196 

“fixed” version of a forecast model or “on the fly” using the current version of a forecast model 197 

on the date reforecasts were conducted. For this study, the most recent version of a forecast 198 

model prior to 2019 is used to acquire “fixed” reforecast data, and those reforecasts that were 199 

conducted during 2019 represent reforecast data that was compiled “on the fly”. Some “on the 200 



 9 

fly” reforecasts from the CMA model were also conducted during 2020 to ensure that reforecasts 201 

are available throughout September–May during the CMA’s reforecast period. Full details on the 202 

characteristics of each reforecast dataset are discussed at length in Vitart et al. (2017). 203 

2.2. The NPJ phase diagram 204 

 The NPJ phase diagram is constructed in an identical manner as in Winters et al. (2019a) 205 

with slight modifications to align with the format of the S2S Reforecast Database. Therefore, the 206 

forthcoming discussion in this subsection mirrors that from Winters et al. (2019a). First, CFSR 207 

data are regridded to 1.5° horizontal grid spacing to match the grid spacing of the reforecast data. 208 

Next, 300-hPa zonal wind anomalies from the CFSR are calculated at 6-h intervals during 209 

September–May 1979–2019 for each grid point within a North Pacific domain (10.5–79.5°N; 210 

100.5–240°E) that aligns with those used in prior work on NPJ variability (e.g., Jaffe et al., 2011; 211 

Griffin & Martin, 2017; Winters et al., 2019a,b). 300-hPa zonal wind anomalies are determined 212 

with respect to the CFSR climatology, which is calculated at 6-h intervals for each grid point by 213 

retaining the first four harmonics of the mean annual cycle. Note that S2S reforecast data are 214 

only available at 300 hPa and 200 hPa. Therefore, the use of 300-hPa zonal wind anomalies in 215 

this study represents a departure from the 250-hPa zonal wind anomalies that Winters et al. 216 

(2019a) employ in their development of the NPJ phase diagram.  217 

 A traditional EOF analysis (Wilks, 2011) is performed on the aforementioned 300-hPa 218 

zonal wind anomaly data from the CFSR to reveal the two leading modes of NPJ variability 219 

(Figs. 2a,b). EOF 1 explains 9.9% of the variance and corresponds to a zonal extension or 220 

retraction of the climatological jet-exit region. EOF 2 explains 7.2% of the variance and 221 

corresponds to a poleward or equatorward shift of the climatological jet-exit region. The two 222 

leading EOFs, and their explained variance, are similar to those found in prior work (e.g., 223 
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Athanasiadis et al., 2010; Jaffe et al., 2011; Griffin & Martin, 2017; Winters et al., 2019a), and 224 

are statistically well separated (North et al., 1982). To instill confidence that the identified NPJ 225 

regimes are robust, the same modes of NPJ variability found using 6-h data from the CFSR were 226 

also observed when EOF analyses were performed on monthly-averaged zonal wind anomaly 227 

data as well as on 6-h data from ERA-Interim (Dee et al., 2011). In particular, the correlation and 228 

median absolute difference between the principal component (PC) time series obtained from 229 

separate EOF analyses on CFSR and ERA-Interim data were 0.99 and 0.03, respectively. 230 

 The temporal evolution of the NPJ with respect to the two leading EOFs is characterized 231 

using the PC time series that are returned from the traditional EOF analysis. For this study, 6-h 232 

PC data are normalized to unit variance and are averaged over a 5-day period centered on each 233 

analysis time. This 5-day average of the PCs removes the high frequency variability of the jet on 234 

daily time scales but retains the lower frequency variability of the jet on synoptic time scales. 235 

The PCs at a particular analysis time can be visualized by plotting them on the NPJ phase 236 

diagram shown in Fig. 2c. The distance along the x-axis in the NPJ phase diagram identifies how 237 

strongly 300-hPa zonal wind anomalies at that time project onto EOF 1, where positive values 238 

represent a jet extension and negative values represent a jet retraction. The distance along the y-239 

axis in the NPJ phase diagram identifies how strongly 300-hPa zonal wind anomalies at that time 240 

project onto EOF 2, where positive values represent a poleward shift and negative values 241 

represent an equatorward shift. The projection of PCs onto the two leading EOFs over a selected 242 

time period produces a trajectory within the NPJ phase diagram that describes the NPJ evolution 243 

in the context of the two leading EOFs.  244 

 The NPJ phase diagram is subsequently used to classify the state of the NPJ into four NPJ 245 

regimes based on whether the magnitude of PC 1 or PC 2 is larger and whether the NPJ resides 246 
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at a distance of greater than 1 PC unit from the origin. A projection that falls within a radius of 1 247 

PC unit of the origin of the NPJ phase diagram represents an NPJ that does not project well onto 248 

the two leading EOFs or that resembles climatology. For reference, the NPJ typically resides 249 

within each of the four primary NPJ regimes approximately 15% of the time and within the unit 250 

circle centered on the origin approximately 40% of the time (Winters et al., 2019a). There are 251 

generally no preferred transitions between NPJ regimes (i.e., cross correlations between PC 1 252 

and PC 2 are close to zero at all time lags), and the autocorrelation functions for PC 1 and PC 2 253 

drop below 0.5 after 1 week (Fig. 3a), which can serve as a benchmark for the forthcoming 254 

analysis in section 3 that evaluates the forecast skill added by each S2S model (e.g., Pegion et al. 255 

2019; Domeisen & Butler, 2020; Feng et al. 2021). 256 

2.3. NPJ phase diagram reforecasts and verification 257 

 300-hPa zonal wind anomalies from the nine reforecast datasets identified in Table 1 are 258 

used to construct ensembles of NPJ phase diagram forecasts with forecast lead times as long as 259 

32–61 days, depending on the model. To start, 300-hPa zonal wind anomalies are calculated for 260 

each ensemble member and at every forecast lead time based on the CFSR climatology. This is 261 

done to provide a baseline quantification of forecast skill for each model and to identify any 262 

biases in each model’s representation of the NPJ. The zonal wind anomalies associated with each 263 

ensemble member forecast are then projected onto the two leading modes of NPJ variability 264 

shown in Fig. 2 to construct an ensemble of trajectories within the NPJ phase diagram that 265 

describe the forecast evolution of the NPJ (e.g., Fig. 3b). As with the CFSR data, the forecast 266 

PCs within a 5-day window centered on each forecast lead time are averaged together to remove 267 

high frequency variations of the NPJ on daily time scales. The 5-day average forecast PCs at 0-h, 268 

24-h, and 48-h lead times are specifically calculated by appending CFSR PCs 48-h, 24-h, and 0-h 269 



 12 

prior to the start of the forecast period onto the beginning of the forecast PC time series 270 

associated with each ensemble member. All ensemble member NPJ phase diagram forecasts 271 

initialized at the same time from a particular model are then averaged together to produce an 272 

ensemble mean NPJ phase diagram forecast. 273 

 NPJ phase diagram forecasts are evaluated by calculating the Euclidean distance between 274 

the ensemble mean forecast position of the NPJ within the NPJ phase diagram at a particular 275 

forecast lead time and the verifying position of the NPJ at that same forecast lead time using the 276 

CFSR. These Euclidean distance statistics are calculated for individual ensemble member NPJ 277 

phase diagram forecasts, as well. Note that a reanalysis product must be used for verification 278 

given that 0-h forecasts are not available at a daily frequency for each model within the S2S 279 

dataset. Forecasts are then classified based on the NPJ regime at the time of forecast initialization 280 

as well as the observed NPJ regime at the time of forecast verification using the position of the 281 

NPJ within the NPJ phase diagram according to Fig. 2c. This classification of forecasts permits 282 

an examination of the extent to which forecast performance varies across models and the four 283 

primary NPJ regimes. Forecasts verifying during the month of June are excluded from any 284 

calculated forecast statistics given that the NPJ phase diagram is derived solely from zonal wind 285 

anomaly data during September–May.  286 

 Once these baseline statistics are obtained, the analyses described above are repeated by 287 

calculating forecast 300-hPa zonal wind anomalies using each model’s lead-dependent 288 

climatology rather than the CFSR climatology. These analyses account for biases in each 289 

model’s representation of the NPJ as a function of forecast lead time and allow for a 290 

quantification of whether bias correction improves the predictive skill of the NPJ on S2S time 291 

scales. Each model’s lead-dependent climatology is constructed by averaging all forecasts at the 292 
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same forecast lead time that were initialized within 10 days of a selected calendar day during that 293 

model’s reforecast period. Similar to Robertson et al. (2020), no cross validation is used in the 294 

calculation of model climatologies. EOF analyses performed on the bias-corrected forecast 295 

anomalies from each model consistently reproduce the same two leading modes of NPJ 296 

variability shown in Figs. 2a,b (not shown). 297 

 The present study also identifies the synoptic-scale flow patterns and evolutions that are 298 

associated with the best- and worst-performing NPJ phase diagram forecasts from each model. 299 

For this purpose, the bias-corrected NPJ forecasts are used. The best- and worst-performing 300 

forecasts are identified in a similar manner as Winters et al. (2019a, see their Fig. 10 for a 301 

schematic) using both (1) the cumulative ensemble mean Euclidean distance error in the context 302 

of the NPJ phase diagram during days 3–21 of the forecast period and (2) the cumulative 303 

ensemble member Euclidean distance error during the same period. This forecast period is 304 

selected to remove the influence of CFSR PCs on short-lead forecast errors. The best-performing 305 

forecasts are those forecasts that rank in the lowest 10% in terms of both the cumulative 306 

ensemble mean error and the cumulative ensemble member error for a particular model, whereas 307 

the worst-performing forecasts are those forecasts that rank in the highest 10% in terms of both 308 

the cumulative ensemble mean error and the cumulative ensemble member error for a particular 309 

model. The use of both criteria identifies the best-performing forecasts as those that are accurate 310 

and confident (i.e., small ensemble spread). The worst-performing forecasts based on both 311 

criteria are those that are inaccurate and uncertain (i.e., large ensemble spread) or inaccurate but 312 

confident (i.e., small ensemble spread). Put another way, the worst-performing forecasts are 313 

those that are the most inaccurate, regardless of the ensemble spread. 314 

 315 
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3. Multi-model performance of NPJ phase diagram forecasts 316 

 The total number of valid NPJ phase diagram forecasts from each model (i.e., only those 317 

forecasts that are initialized and verified during September–May) is shown as a function of 318 

forecast lead time in Fig. 4a. Each model is associated with at least 500 valid NPJ phase diagram 319 

forecasts at every forecast lead time, with those models that feature a greater forecast frequency 320 

(i.e., the NCEP, ISAC, and ECMWF) characterized by larger sample sizes. While each model is 321 

initialized at different frequencies and over different years (Table 1), Fig. 4a reveals that there is 322 

a suitable sample size of reforecasts from each model from which to draw conclusions 323 

concerning the predictability of the NPJ on subseasonal timescales. 324 

 First, the analysis considers the baseline skill of NPJ phase diagram forecasts without the 325 

application of bias correction. The average ensemble mean distance error of NPJ phase diagram 326 

forecasts increases exponentially during week 1 of the forecast period, increases linearly during 327 

week 2, and levels off during week 3 for all models. The average ensemble mean error remains 328 

approximately constant thereafter, suggesting that any differentiable skill of NPJ phase diagram 329 

forecasts diminishes after 21 days (Fig. 4b). The difference in the average ensemble mean error 330 

between models at any forecast lead time is also no larger than 0.5 PC units, with the ECWMF 331 

model exhibiting the lowest average ensemble mean error at all forecast lead times for which it 332 

features a valid forecast. Note that the larger ensembles (e.g., ECMWF, CNRM, HMCR) aren’t 333 

uniformly associated with lower average ensemble mean errors, as the HMCR model ranks in the 334 

top 50% of all models in terms of its average ensemble mean error at every forecast lead time. 335 

Figure 4c shows the percent of ensemble member forecasts from each model that correctly 336 

identify the verifying NPJ regime at each forecast lead time and reveals that all models are 337 

significantly more skillful at identifying the prevailing NPJ regime compared to random chance 338 
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at lead times shorter than 21–28 days. The largest difference in performance between forecast 339 

models is maximized near the end of week 1 (Fig. 4c), where some models are approximately 340 

20% less accurate at identifying the prevailing NPJ regime than the best-performing model (i.e., 341 

ECMWF). 342 

 Motivated by the observation that NPJ phase diagram forecasts exhibit skill compared to 343 

climatology into weeks 3 and 4 of the forecast period (Figs. 4b,c), the forthcoming analysis 344 

considers the extent to which NPJ phase diagram forecast errors vary based on the initial NPJ 345 

configuration. Figures 5a,c,e,g show the number of forecasts from each model that are initialized 346 

within each of the four primary NPJ regimes as a function of forecast lead time. In contrast to 347 

earlier analyses, forecast error (Figs. 5b,d,f,h) is now expressed as a percentage relative to the 348 

average ensemble mean error of all forecasts from a particular model that are initialized within 349 

one of the four primary NPJ regimes. Forecasts that are initialized within the origin of the NPJ 350 

phase diagram are not factored into this analysis since the NPJ does not project strongly onto one 351 

of the leading modes of NPJ variability. Positive percentages indicate that ensemble mean 352 

forecast errors are larger than average when a model is initialized during a certain NPJ regime, 353 

whereas negative percentages indicate that ensemble mean forecast errors are smaller than 354 

average. 355 

 Figure 5d reveals that forecasts initialized during a jet retraction feature an ensemble 356 

mean forecast error that is 10–20% greater than each model’s average at a 7-day lead time, 357 

whereas forecasts initialized during a poleward shift feature errors that are 5–15% less than each 358 

model’s average at the same lead time (Fig. 5f). Forecasts initialized during a jet extension are 359 

characterized by errors that are between 10% less and 5% greater than each model’s average at 360 

0–2-week lead times (Fig. 5b), and forecasts initialized during an equatorward shift are 361 
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characterized by errors that are between 5% less and 10% greater than each model’s average at 362 

0–2-week lead times. At lead times beyond 2 weeks, the forecast errors associated with each NPJ 363 

regime are comparable to one another. Consequently, there does not appear to be a systematic 364 

difference in forecast performance based on the initial NPJ regime at lead times longer than 2 365 

weeks as the forecasts are further removed from the influence of the model’s initial conditions. 366 

 Figure 6 considers the ensemble mean forecast error associated with each model based on 367 

the NPJ regime at the time of forecast verification. This approach evaluates the extent to which 368 

forecast performance varies based on the character of the NPJ evolution following forecast 369 

initialization. The number of forecasts associated with each model as a function of the verifying 370 

NPJ regime are shown in Figs. 6a,c,e,g. Overall, NPJ phase diagram forecasts that verify during 371 

a jet retraction (Fig. 6d) or equatorward shift (Fig. 6h) exhibit systematically larger ensemble 372 

mean forecast errors than forecasts that verify during a jet extension (Fig. 6b) or poleward shift 373 

(Fig. 6f) at lead times less than 7 days. This result aligns with that found by Winters et al. 374 

(2019a) using the GEFS Reforecast Version 2 dataset and implies that forecasts associated with 375 

the development of a North Pacific ridge (Figs. 1c,f) during week 1 feature greater ensemble 376 

mean forecast errors across all models. 377 

At lead times longer than 7 days, the performance of NPJ phase diagram forecasts 378 

verifying during each NPJ regime is dependent on the model. In particular, the forecasts with the 379 

largest errors at lead times exceeding 2 weeks verify during an equatorward shift regime for the 380 

ECCC, CNRM, HMCR, ECMWF, and CMA models, during a poleward shift for the KMA and 381 

UKMO models, during a jet retraction for the NCEP model, and during a jet extension for the 382 

ISAC model (cf. Figs. 6b,d,f,h). Similar variability across models is also observed when 383 

considering the verifying NPJ regimes that exhibit the lowest forecast errors at lead times 384 



 17 

exceeding 2 weeks. Since the preceding analysis does not yet account for forecast model biases, 385 

the observed differences in forecast model performance based on the verifying NPJ regime at 386 

lead times exceeding 2 weeks may be related to frequency biases in the prediction of each NPJ 387 

regime. 388 

To this aim, Figures 7a–d depict the percent frequency that each NPJ regime is 389 

overforecast or underforecast in each model with respect to verification. Note that the ISAC 390 

model is not included in this initial analysis and will be discussed separately. For this analysis, 391 

each ensemble member initialized using a particular model is treated as a separate forecast of the 392 

NPJ regime. Figure 7a reveals that the NCEP model overforecasts the occurrence of jet 393 

extensions by approximately 30–40% compared to verification at lead times exceeding 2 weeks, 394 

whereas jet extensions are underforecast by all other models by as much as 20%. Conversely, all 395 

models overforecast the occurrence of jet retractions by as much as 30% at lead times exceeding 396 

2 weeks, except for the NCEP model, which underforecasts the occurrence of jet retractions by 397 

approximately 30% (Fig. 7b).  398 

 The frequency of poleward shift and equatorward shift forecasts compared to verification 399 

is more variable across models compared to jet extension and jet retraction forecasts. In 400 

particular, the HMCR, ECCC, and CNRM models overforecast the occurrence of poleward shifts 401 

at lead times exceeding 2 weeks, with an overforecast of poleward shifts by as much as 70–90% 402 

during week 4 in the HMCR model (Fig. 7c). Poleward shifts are underforecast by the CMA, 403 

ECMWF, NCEP, KMA, and UKMO models by as much as 30% compared to verification at lead 404 

times exceeding 2 weeks. Last, equatorward shifts are overforecast by 10–50% in the NCEP, 405 

CMA, UKMO, and KMA models, while the ECCC and HMCR models underforecast the 406 

occurrence of equatorward shifts by 20–60% (Fig. 7d). Notably, the frequency of CNRM and 407 
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ECMWF forecasts of equatorward shifts is comparable to verification throughout the forecast 408 

period. The ISAC model is a particularly interesting case (Fig. 7e), in which jet extensions are 409 

underforecast by close to 80% during weeks 2–4, and jet retractions are overforecast by 140–410 

200%. 411 

 Biases in the forecast frequency of each NPJ regime in Fig. 7 are associated with the 412 

forecast errors identified in Fig. 6. Namely, the largest ensemble mean forecast errors during 413 

weeks 2–4 in the ECCC, HMCR, KMA, UKMO, CFSR, and ISAC models are associated with 414 

the same verifying NPJ regime for which those models exhibit a low forecast frequency bias (cf. 415 

Figs. 6–7). As suggested by Ferranti et al. (2015), this observation implies that the reduced 416 

performance of model forecasts that verify in those respective NPJ regimes may be due to the 417 

misrepresentation of physical processes that lead to the development of those NPJ regimes. For 418 

the ECMWF, CNRM, and CMA models, which feature their largest forecast errors during 419 

periods that verify during an equatorward shift, there is not a clear low forecast frequency bias 420 

for equatorward shifts. In fact, the CMA exhibits a high forecast frequency bias for equatorward 421 

shifts compared to verification. This result implies that these three models are able to represent 422 

the physical processes that lead to the development of equatorward shifts with fidelity, but that 423 

equatorward shifts may be characterized by low intrinsic predictability. 424 

 The same analyses described above are repeated with bias-corrected NPJ phase diagram 425 

forecasts that utilize 300-hPa zonal wind anomalies based on each model’s lead-dependent 426 

climatology rather than the CFSR. The use of bias-corrected forecasts substantially reduces the 427 

regime frequency biases shown in Fig. 7. While not shown explicitly, all bias-corrected forecast 428 

statistics are similar to those shown in Fig. 3 and feature slightly reduced ensemble mean errors 429 

at lead times exceeding 2 weeks. Additionally, the classification of bias-corrected forecast errors 430 
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based on the NPJ regime at the time of forecast initialization is similar to the results shown in 431 

Fig. 5 (not shown). Substantial differences are noted in comparison to the baseline forecasts, 432 

however, when classifying bias-corrected forecast errors based on the verifying NPJ regime (cf., 433 

Figs. 6 and 8). Namely, bias-corrected forecast errors (Fig. 8) are not as substantial as those 434 

shown in Fig. 6, and there is a general agreement between model errors associated with each 435 

verifying NPJ regime at all forecast lead times. In particular, forecasts verifying during jet 436 

retractions and equatorward shifts typically exhibit larger than normal forecast errors, whereas 437 

forecasts verifying during jet extensions and poleward shifts typically exhibit reduced forecast 438 

errors compared to each model’s climatology. The general agreement among bias-corrected 439 

model errors for each verifying NPJ regime suggests that NPJ evolutions towards a jet retraction 440 

or equatorward shift may be characterized by a lower degree of intrinsic predictability than NPJ 441 

evolutions towards a jet extension or poleward shift. 442 

 Reliability diagrams that evaluate the probabilistic detection of the verifying NPJ regime 443 

for the three largest ensembles (i.e., CNRM, ECMWF, HMCR) further demonstrate that bias-444 

corrected NPJ phase diagram forecasts are underdispersive at forecast lead times exceeding 7 445 

days (Fig. 9). Consequently, ensemble forecasts from these three models tend to be 446 

overconfident in the development of a particular NPJ regime at medium-range and subseasonal 447 

lead times. In particular, both CNRM (Fig. 9a) and ECMWF (Fig. 9b) forecast probabilities 448 

exceeding 50% are overconfident by 5–20% at forecast lead times exceeding 14 days, whereas 449 

HMCR forecast probabilities exceeding 50% are overconfident by 20–40% (Fig. 9c). The 450 

reduced performance of HMCR forecasts compared to CNRM and ECMWF forecasts is also 451 

apparent in Fig. 9d, which reveals that the Brier Skill Score (Wilks 2011) for HMCR forecasts is 452 

less than that for the CNRM and ECMWF models at all forecast lead times. 453 



 20 

 454 

4. Synoptic-scale flow patterns associated with the best- and worst-performing forecasts 455 

 Results from the previous section suggest that the best- and worst-performing 456 

subseasonal NPJ phase diagram forecasts are associated with different NPJ regimes (e.g., Figs. 5 457 

and 8). Consequently, the forthcoming analysis considers the synoptic-scale characteristics of the 458 

21-day period following the initiation of a best- and worst-performing forecast from each model. 459 

As mentioned in section 2.3, the best-performing forecasts are those bias-corrected forecasts in 460 

which there is both a low cumulative ensemble mean distance error in the context of the NPJ 461 

phase diagram (i.e., an accurate forecast) and a low cumulative ensemble member distance error 462 

(i.e., a confident forecast) during days 3–21 of the forecast period. The worst-performing 463 

forecasts are those in which there is both a high cumulative ensemble mean distance error in the 464 

context of the NPJ phase diagram and a high cumulative ensemble member distance error (i.e., 465 

the most inaccurate forecasts). 466 

 The average position of the NPJ within the NPJ phase diagram on the date a best-467 

performing forecast is initialized from each forecast model is shown in Fig. 10a and reveals that 468 

the NPJ is generally displaced towards a poleward shift regime. The models are clustered near 469 

the origin, however, which suggests that the NPJ may also be close to its climatological state or 470 

exhibit considerable variability in its state at the time a best-performing forecast is initialized. 471 

The state of the NPJ at the start of a worst-performing forecast period is displaced towards a jet 472 

retraction or equatorward shift (Fig. 10b). This result aligns well with Figs. 5d,h, which indicate 473 

that forecast errors are often higher than each model’s average during the first 2 weeks of the 474 

forecast period when a model is initialized during those two NPJ regimes. 475 
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 Figures 10c,d illustrate the composite evolution of the NPJ during the 21-day period 476 

following the initialization of a best- and worst-performing forecast from each model. The 477 

composite evolution of the NPJ associated with each model is calculated by projecting 300-hPa 478 

zonal wind anomalies from the CFSR onto the NPJ phase diagram during the 21-day period 479 

following the initialization of each best- or worst-performing forecast, resulting in a series of 480 

trajectories within the NPJ phase diagram. These trajectories are then shifted so that they all 481 

begin at the origin of the NPJ phase diagram and the PCs corresponding to the same day after 482 

forecast initialization are averaged together to construct a composite trajectory. Note that the 483 

trajectories shown in Figs. 10c,d do not show forecast trajectories, but instead depict the how the 484 

NPJ evolved in reality following a best- or worst-performing forecast. 485 

 The composite CFSR trajectories during the 21-day period following a best-performing 486 

forecast from each model are clustered near the origin and exhibit a slight transition towards a jet 487 

extension or poleward shift during the first few days of the forecast period (Fig. 10c). The 21-day 488 

period following a worst-performing forecast, on the other hand, exhibits an opposite character 489 

(Fig. 10d). Namely, the worst-performing forecast periods generally feature an NPJ that evolves 490 

towards an equatorward shift or a jet retraction during the first half of the forecast period before 491 

returning towards the origin. Given that the NPJ is already displaced towards a jet retraction or 492 

equatorward shift at the time a worst-performing forecast is initialized (Fig. 10b), the NPJ 493 

trajectories shown in Fig. 10d indicate that the NPJ amplifies its projection onto these two NPJ 494 

regimes during the subsequent 21-day period. 495 

Figure 10e shows a composite of the ensemble mean NPJ phase diagram forecast 496 

trajectory associated with a worst-performing forecast from each model. Overall, each model’s 497 

forecast trajectory exhibits errors in the forecasted NPJ regime transition and/or in the amplitude 498 
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of a particular NPJ regime (cf., Figs. 10d,e). Furthermore, the forecast trajectories (Fig. 10e) are 499 

more biased towards a jet extension and poleward shift at the end of the 21-day forecast period 500 

than observations (Fig. 10d), which suggests the models may be too quick to transition the jet out 501 

of a jet retraction or equatorward shift regime. Given that both jet retractions and equatorward 502 

shifts feature upper-tropospheric ridging over the North Pacific (Figs. 1c,g), these differences 503 

between the forecast and observed trajectories indicate that forecast errors may be related to each 504 

model’s representation of physical processes that govern the extent and duration of North Pacific 505 

flow amplification. These physical processes can include the magnitude of diabatic heating and 506 

upper-level irrotational outflow associated with midlatitude cyclogenesis events along the North 507 

Pacific storm track (e.g., Torn & Hakim 2015; Teubler & Riemer 2016; Martinez-Alvarado et 508 

al., 2016; Bosart et al., 2017). 509 

 The synoptic-scale flow patterns associated with the worst-performing forecasts from 510 

each model are examined further by compositing CFSR mass and wind fields 0 days (Fig. 11), 511 

10 days (Fig. 12), and 20 days (Fig. 13) following the initialization of a worst-performing 512 

forecast. At the time of forecast initialization, every model features some degree of anomalous 513 

upper-tropospheric ridging over the central North Pacific (Fig. 11). For some models, such as the 514 

ECCC, CNRM, KMA, UKMO, ECMWF, and CMA (Figs. 11a,b,d,f,h,i), the North Pacific ridge 515 

is more anomalous, suggesting that the worst-performing forecasts for those models may be 516 

preferentially initialized during or immediately following ridge amplification rather than prior to 517 

ridge amplification. Ten days after forecast initialization, the synoptic-scale flow pattern features 518 

a well-developed upper-tropospheric ridge across the high-latitude North Pacific within each 519 

model (Fig. 12). The presence of a high-latitude ridge is consistent with both a jet retraction and 520 

equatorward shift regime (Figs. 1c,g), which are the same NPJ regimes that are generally 521 
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characterized by the greatest forecast errors at the time of forecast verification during the week 522 

1–2 forecast period (Figs. 8b,d). 523 

 Twenty days after the initialization of a worst-performing forecast, the composite upper-524 

tropospheric flow patterns feature considerable differences across models (Fig. 13). In particular, 525 

the ECCC, CNRM, NCEP, UKMO, ECMWF, and CMA models (Figs. 13a,b,e,f,h,i) continue to 526 

feature an amplified upper-tropospheric ridge over the North Pacific, albeit slightly farther west 527 

than observed in Fig. 12 in some cases. Conversely, the composite flow patterns following the 528 

worst-performing forecasts from the ISAC, KMA, and HMCR models (Figs. 13c,d,g) indicate 529 

that the upper-tropospheric ridge over the central North Pacific decays more rapidly than in the 530 

other models 20 days after forecast initialization. All models also exhibit considerable 531 

differences with respect to the character of the resultant flow pattern over North America. To 532 

synthesize the composite evolutions shown in Figs. 11–13, the largest NPJ phase diagram 533 

forecast errors from each model are clearly associated with North Pacific ridge amplification 534 

during the week 1–2 period. After that, the variable synoptic-scale flow patterns that prevail 20 535 

days after forecast initialization imply that aspects of the life cycle of North Pacific ridges, such 536 

as their persistence, retrogression, and decay, may hinder model performance. 537 

 Last, Winters et al. (2019b, their Fig. 13) demonstrate that periods in which the NPJ 538 

evolves towards an equatorward shift (similar to those trajectories shown in Fig. 10d) increase 539 

the likelihood of extreme cold events across the continental U.S. Indeed, the composite upper-540 

tropospheric flow pattern 10 days after a worst-performing forecast from each model features an 541 

anomalous trough over central Canada (Fig. 12). The longitudinal juxtaposition of a high-latitude 542 

ridge over the North Pacific and trough over central Canada subsequently favors the 543 

development of an anomalous surface anticyclone across Alaska and western Canada in the 544 
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aforementioned composites (Fig. 14). To the east of this anticyclone, perturbation northerly 545 

geostrophic flow is conducive to the equatorward transport of anomalously cold air towards 546 

southern Canada and the northern U.S. Therefore, the composite lower-tropospheric temperature 547 

patterns following a worst-performing forecast suggest that the worst-performing forecasts may 548 

coincide with the occurrence of North American cold-air outbreaks during the week 2 period, 549 

potentially limiting the prediction of those events. 550 

 551 

5. Conclusions 552 

 This study examines the subseasonal predictability of the state and evolution of the NPJ 553 

across nine models within the S2S Reforecast Database hosted by ECMWF (Vitart et al., 2017). 554 

The state and evolution of the NPJ is specifically examined in the context of an NPJ phase 555 

diagram (Winters et al., 2019a), which identifies periods during which the NPJ is characterized 556 

by an extended or retracted state, and during which the NPJ is poleward or equatorward shifted 557 

relative to its climatological position. 300-hPa zonal wind anomaly data from the S2S Reforecast 558 

Database are then projected onto the NPJ phase diagram to construct ensemble forecasts 559 

describing the state and evolution of the NPJ at subseasonal time scales. NPJ phase diagram 560 

forecasts are evaluated by considering the Euclidean distance between the forecast position of 561 

the NPJ within the NPJ phase diagram at a particular lead time and the verification position of 562 

the NPJ in the CFSR. Forecasts are also partitioned based on whether a forecast is initialized or 563 

verified during a particular NPJ regime to determine the extent to which verification statistics 564 

vary depending on those metrics. Last, the best- and worst-performing forecasts associated with 565 

each model are identified to examine the synoptic-scale flow evolution that characterizes the 21-566 

day period following a best- or worst-performing forecast from each model. 567 
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 An evaluation of NPJ phase diagram forecasts reveals that skillful predictions of the state 568 

and evolution of the NPJ can extend into the week 3 forecast period, with the ECMWF model 569 

featuring the lowest forecast errors among all models at every forecast lead time. The fact that 570 

the skill of NPJ phase diagram forecasts extends into the week 3 period is consistent with prior 571 

work on North American weather regimes, which suggest that skillful predictions are generally 572 

possible at lead times of 15 days (e.g., Vigaud et al., 2018; Robertson et al., 2020). NPJ phase 573 

diagram forecasts of the verifying NPJ regime from the three largest ensembles considered as 574 

part of this study (i.e., ECMWF, CNRM, HMCR) are also generally reliable at forecast lead 575 

times extending into weeks 2–3, but are uniformly underdispersive, and thus overconfident in the 576 

development of a particular NPJ regime. 577 

 Forecast errors in the context of the NPJ phase diagram vary depending on the NPJ 578 

regime at the time of forecast initialization during the first two weeks of the forecast period. 579 

Thereafter, forecast errors do not show much dependence on the initial NPJ regime as the model 580 

forecast is further removed from knowledge of atmospheric initial conditions. Overall, forecasts 581 

initialized during a jet retraction feature 7-day forecast errors that are 10–20% larger than all 582 

forecasts that are initialized during one of the four primary NPJ regimes, whereas forecasts 583 

initialized during a poleward shift feature forecast errors that are 5–15% smaller. Forecasts 584 

verifying during jet retractions and equatorward shifts also exhibit larger errors during the first 585 

two weeks of the forecast period compared to forecasts verifying during jet extensions and 586 

poleward shifts. Notably, both jet retractions and equatorward shifts are associated with the 587 

development of an upper-tropospheric North Pacific ridge, which can be strongly influenced by 588 

diabatic processes that occur within midlatitude cyclones along the Pacific storm track or in 589 

conjunction with tropical convection (e.g., Torn & Hakim, 2015; Teubler & Riemer, 2016; 590 



 26 

Martinez-Alvarado et al., 2016; Bosart et al., 2017; Breeden et al., 2020). The inability for 591 

models to represent the extent, magnitude, and cumulative influence of these diabatic processes 592 

on the upper-tropospheric flow pattern is hypothesized to contribute to the larger-than-average 593 

forecast errors associated with jet retractions and equatorward shifts during the first two weeks of 594 

the forecast period.  595 

 At lead times longer than two weeks, forecast errors associated with each NPJ regime 596 

appear to be strongly influenced by biases in each model’s representation of the jet at 597 

subseasonal lead times. Namely, NPJ regimes that were characterized by a low forecast 598 

frequency bias at subseasonal lead times within a particular model were often the same NPJ 599 

regimes that were associated with the largest forecast errors at the time of verification for that 600 

model. The use of bias-corrected forecasts resolved these forecast frequency biases and resulted 601 

in stronger agreement between forecast model errors at subseasonal lead times. Namely, 602 

forecasts verifying during jet retractions or equatorward shifts were generally associated with the 603 

largest forecast errors at subseasonal lead times. These results indicate that bias-corrected NPJ 604 

phase diagram forecasts have the potential to identify periods that may exhibit enhanced skill 605 

compared to each model’s climatology at subseasonal lead times based on the anticipated NPJ 606 

evolution. 607 

 The best-performing forecasts associated with each model occurred during periods in 608 

which the NPJ featured a slight poleward shift, whereas the worst-performing forecasts featured 609 

an NPJ that evolved towards a jet retraction or equatorward shift. Composites of the 21-day 610 

period following the initiation of a worst-performing forecast from each model indicated that the 611 

largest NPJ forecast errors coincided with the development of an upper-tropospheric North 612 

Pacific ridge during the first 10 days after forecast initialization and the subsequent maintenance, 613 
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retrogression, or decay of that ridge over the next 10 days. This result generalizes the analysis 614 

from Winters et al. (2019a), who found a similar flow pattern was associated with the worst-615 

performing forecasts on medium-range time scales in the GEFS Reforecast Version 2 dataset, 616 

and reaffirms that the life cycle of upper-tropospheric blocks remains a considerable 617 

predictability challenge at subseasonal lead times (e.g., D’Andrea et al., 1998; Pelly & Hoskins, 618 

2003; Ferranti et al., 2015; Matsueda & Palmer, 2018). 619 

 The results from this study motivate new avenues for future work. First, differences in the 620 

forecast frequency of NPJ regimes at lead times exceeding two weeks within the baseline 621 

forecasts from each model motivate further investigation into each model’s representation of 622 

physical processes that lead to the development of each NPJ regime (i.e., diabatic heating from 623 

midlatitude and tropical sources and its subsequent influence on the character of the upper-624 

tropospheric flow pattern). Second, the present results do not consider the extent to which 625 

forecast errors associated with each NPJ regime translate to forecast errors over the North 626 

American continent. Therefore, a study that considers the relationship between the prevailing 627 

NPJ regime and downstream forecast errors would be a worthwhile endeavor. Finally, North 628 

American weather is also influenced by the state and evolution of the synoptic-scale flow pattern 629 

over the North Atlantic. A similar approach as used in this study can be applied to the North 630 

Atlantic jet to examine the ability of models to accurately capture the state and evolution of that 631 

jet. 632 
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Tables 831 

Model Horizontal 
Resolution 

Reforecast 
Type 

Model 
Version 

Reforecast 
Period 

Reforecast 
Frequency 

Forecast 
Length 

Ensemble 
Members 

ECCC 1.5°×1.5° On the fly 2019 1998–2017 Every 7 
days 

32 days 4 

CNRM 1.5°×1.5° Fixed 12/01/14 1993–2014 4 / month 
 

61 days 15 

ISAC 1.5°×1.5° Fixed 06/08/17 1981–2010 Every 5 
days 

32 days 5 

KMA 1.5°×1.5° On the fly 2019 1991–2010 4 / month 60 days 
 

3 

NCEP 1.5°×1.5° Fixed 03/01/11 1999–2010 Daily 44 days 
 

4 

UKMO 1.5°×1.5° On the fly 2019 1993–2016 4 / month 60 days 
 

7 

HMCR 1.5°×1.5° On the fly 2019 1985–2010 Every 7 
days 

61 days 10 

ECMWF 1.5°×1.5° On the fly 2019 1999–2018 2 / week 46 days 
 

11 

CMA 1.5°×1.5° On the fly 2019–
2020 

2005–2018 2 / week 60 days 
 

4 

 832 

TABLE 1. Characteristics of the nine forecast models within the S2S Reforecast Database that 833 
are utilized as part of this study. 834 
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Figures 857 
 858 

 859 
 860 
FIG. 1. Composite mean 250-hPa wind speed (shaded according to the fill pattern; m s−1), 250-861 
hPa geopotential height (contoured in black every 120 m), and 250-hPa geopotential height 862 
anomalies (contoured every 30 m in red where positive and in dashed blue where negative) 4 863 
days following the initiation of (a) a jet extension, (c) a jet retraction, (e) a poleward shift, and 864 
(g) an equatorward shift NPJ regime. Composite anomalies of mean sea-level pressure 865 
(contoured every 2 hPa in solid black where positive and in dashed black where negative) and 866 
850-hPa temperature (shaded according to the legend every 1 K) 4 days following the initiation 867 
of (b) a jet extension, (d) a jet retraction, (f) a poleward shift, and (h) an equatorward shift NPJ 868 
regime. The numbers in the bottom right of each panel indicate the number of cases included in 869 
each composite. Stippled areas represent locations where the 250-hPa geopotential height 870 
anomalies or 850-hPa temperature anomalies are statistically distinct from climatology at the 871 
99% confidence level based on a two-sided Student’s t test. Figure and caption adapted from 872 
Winters et al. (2019a; their Fig. 5). © American Meteorological Society. Used with permission. 873 
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 875 
 876 
FIG. 2. September–May 300-hPa mean zonal wind is contoured in black every 5 m s−1 above 30 877 
m s−1, and the regression of 300-hPa zonal wind anomaly data onto standardized PC 1 (i.e., EOF 878 
1) is shaded. The variance of 300-hPa zonal wind anomalies during September–May that is 879 
explained by EOF 1 is listed in the top right of the panel. (b) As in (a), but for the regression of 880 
300-hPa zonal wind anomaly data onto standardized PC 2 (i.e., EOF 2). (c) Schematic depicting 881 
the NPJ phase diagram and the method used to classify the NPJ into an NPJ regime. 882 
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(a) NPJ EOF 1 – Jet Extension/Retraction 9.9% Variance
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 884 
 885 
FIG. 3. (a) Autocorrelation functions for PC 1 and PC 2 that are derived from an EOF analysis 886 
of 300-hPa zonal wind anomalies over the North Pacific during September–May within the 887 
CFSR. The thin horizontal black line corresponds to an autocorrelation of 0.5. (b) A sample 21-888 
day NPJ phase diagram ensemble forecast initialized at 0000 UTC 4 February 1999. Blue lines 889 
correspond to individual ensemble member forecasts and the thick black line corresponds to the 890 
ensemble mean forecast. The green diamond identifies the state of the NPJ at the time of forecast 891 
initialization and red diamonds identify the state of the NPJ at the end of the 21-day forecast 892 
period for each ensemble member and the ensemble mean. 893 
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 895 

  896 
 897 
FIG. 4. (a) The total number of valid NPJ phase diagram forecasts initialized by each model at 898 
each forecast lead time. (b) The average Euclidean distance error (in principal component (PC) 899 
units) of ensemble mean NPJ phase diagram forecasts from each model as a function of forecast 900 
lead time. (c) The percent of ensemble member forecasts initialized from each model that 901 
correctly forecasted the verifying NPJ regime as a function of forecast lead time. The horizontal 902 
black bar identifies percentages that are statistically significant at the 99% confidence interval 903 
compared to random chance based on a bootstrap resampling test with replacement. 904 
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 943 
FIG. 5. The number of NPJ phase diagram forecasts from each model that were initialized 944 
during (a) a jet extension, (c) a jet retraction, (e) a poleward shift, and (g) an equatorward shift as 945 
a function of forecast lead time. The average Euclidean distance error of ensemble mean NPJ 946 
phase diagram forecasts from each model that were initialized during (b) a jet extension, (d) a jet 947 
retraction, (f) a poleward shift, and (h) an equatorward shift. All forecast model errors in (b,d,f,h) 948 
are expressed as a percentage greater or less than the average error of all NPJ phase diagram 949 
forecasts from that model that were initialized within one of the four primary NPJ regimes.  950 
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 953 
 954 
FIG. 6. The number of NPJ phase diagram forecasts from each model that verified during (a) a 955 
jet extension, (c) a jet retraction, (e) a poleward shift, and (g) an equatorward shift as a function 956 
of forecast lead time prior to verification. The average Euclidean distance error of ensemble 957 
mean NPJ phase diagram forecasts from each model that verified during (b) a jet extension, (d) a 958 
jet retraction, (f) a poleward shift, and (h) an equatorward shift. All forecast model errors in 959 
(b,d,f,h) are expressed as a percentage greater or less than the average error of all NPJ phase 960 
diagram forecasts from that model that verified within one of the four primary NPJ regimes.  961 
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 963 
FIG. 7. The percent frequency that (a) a jet extension, (b) a jet retraction, (c) a poleward shift, 964 
and (d) an equatorward shift is overforecast (positive percentages) or underforecast (negative 965 
percentages) by ensemble member NPJ phase diagram forecasts from each model relative to 966 
verification at every forecast lead time. (e) The percent frequency that each NPJ regime is 967 
overforecast or underforecast relative to verification at each forecast lead time for the ISAC 968 
model. 969 
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 972 
 973 
FIG. 8. As in Figs. 6b,d,f,h, but showing the errors associated with bias-corrected NPJ phase 974 
diagram forecasts from each model as a function of forecast lead time for forecasts that verify 975 
during (a) a jet extension, (b) a jet retraction, (c) a poleward shift, and (d) an equatorward shift. 976 
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 978 
FIG. 9. Reliability diagrams at a variety of forecast lead times for the (a) CNRM, (b) ECMWF, 979 
and (c) HMCR bias-corrected ensembles. Shown in these diagrams are the probability that a 980 
particular NPJ regime is forecast to occur at a given lead time versus the percent of time that the 981 
forecasted NPJ regime verified. The thick black line represents a perfectly reliable forecast, and 982 
the colored dots show the number of forecasts within each probabilistic bin on a log scale as a 983 
function of forecast lead time. (d) The Brier Skill Scores associated with CNRM, HMCR, and 984 
ECMWF probabilistic forecasts as a function of forecast lead time. 985 
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 987 
 988 
FIG. 10. The average position of the NPJ within the NPJ phase diagram at the time (a) a best-989 
performing forecast and (b) a worst-performing forecast is initialized from each model. 990 
Trajectories showing the composite evolution of the NPJ within the NPJ phase diagram during 991 
the 21-day period after the initiation of (c) a best-performing forecast and (d) a worst-performing 992 
forecast from each model. (e) The composite ensemble mean 21-day forecast trajectories 993 
constructed from the worst-performing NPJ phase diagram forecasts from each model. 994 
  995 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Je
t R

et
ra

ct
io

n

Je
t E

xt
en

si
on

Equatorward Shift

Poleward Shift
(a) Best Forecast Periods

PC 1

PC
 2

CMA
ECMWF
HMCR
UKMO

NCEP
KMA
ISAC
CNRM
ECCC

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Je
t R

et
ra

ct
io

n

Je
t E

xt
en

si
on

Equatorward Shift

Poleward Shift
(c) Best Forecast Periods

Change in PC 1

C
ha

ng
e 

in
 P

C
 2

CMA
ECMWF
HMCR
UKMO

NCEP
KMA
ISAC
CNRM
ECCC

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Je
t R

et
ra

ct
io

n

Je
t E

xt
en

si
on

Equatorward Shift

Poleward Shift
(b) Worst Forecast Periods

PC 1

PC
 2

CMA
ECMWF
HMCR
UKMO

NCEP
KMA
ISAC
CNRM
ECCC

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Je
t R

et
ra

ct
io

n

Je
t E

xt
en

si
on

Equatorward Shift

Poleward Shift
(d) Worst Forecast Periods

Change in PC 1

C
ha

ng
e 

in
 P

C
 2

CMA
ECMWF
HMCR
UKMO

NCEP
KMA
ISAC
CNRM
ECCC

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Je
t R

et
ra

ct
io

n

Je
t E

xt
en

si
on

Equatorward Shift

Poleward Shift
(e) Composite Mean Forecasts during Worst Forecast Periods

Change in PC 1

C
ha

ng
e 

in
 P

C
 2

CMA
ECMWF
HMCR
UKMO

NCEP
KMA
ISAC
CNRM
ECCC



 48 

 996 
 997 
FIG. 11. Composite mean 250-hPa wind speed (shaded according to the fill pattern; m s–1), 250-998 
hPa geopotential height (contoured in black every 120 m), and 250-hPa geopotential height 999 
anomalies (contoured every 30 m in red where positive and in dashed blue where negative) from 1000 
the CFSR at the time a worst-performing forecast is initialized from the (a) ECCC, (b) CNRM, 1001 
(c) ISAC, (d) KMA, (e) NCEP, (f) UKMO, (g) HMCR, (h) ECMWF, and (i) CMA model. 1002 
Hatched regions indicate geopotential height anomalies that are statistically distinct from 1003 
climatology at the 95% confidence interval using a two-sided Student’s t test. 1004 
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 1006 
FIG. 12. As in Fig. 11, but showing composites from the CFSR 10 days after the initialization of 1007 
a worst-performing forecast from each model. 1008 
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 1010 
FIG. 13. As in Fig. 11, but showing composites from the CFSR 20 days after the initialization of 1011 
a worst-performing forecast from each model. 1012 
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 1013 
 1014 
FIG. 14. Composite mean 850-hPa temperature anomalies (shaded according to the legend every 1015 
1 K), and mean sea-level pressure anomalies (contoured every 2 hPa in solid black where 1016 
positive and in dashed black where negative) from the CFSR 10 days after a worst-performing 1017 
forecast is initialized from the (a) ECCC, (b) CNRM, (c) ISAC, (d) KMA, (e) NCEP, (f) UKMO, 1018 
(g) HMCR, (h) ECMWF, and (i) CMA model. Hatched regions indicate 850-hPa temperature 1019 
anomalies that are statistically distinct from climatology at the 95% confidence interval using a 1020 
two-sided Student’s t test. 1021 
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