A subseasonal Earth system prediction framework with CESM2

Jadwiga H. Richter¹, Anne A. Glanville¹, James Edwards¹, Brian Kauffman¹, Nicholas Alexander Davis², Abigail Jaye¹, Hyemi Kim³, Nicholas Michael Pedatella¹, Lantao Sun⁴, Judith Berner¹, Who M Kim¹, Stephen Gerald Yeager¹, Gokhan Danabasoglu⁵, Julie M. Caron¹, and Keith W Oleson⁶

¹National Center for Atmospheric Research (UCAR)
²National Center for Atmospheric Research
³Stony Brook University
⁴Colorado State University
⁵National Center for Atmospheric Research (NCAR)
⁶NCAR, USA

November 21, 2022

Abstract

A framework to enable Earth system predictability research on the subseasonal timescale is developed with the Community Earth System Model, version 2 (CESM2) using two model configurations that differ in their atmospheric components. One configuration uses the Community Atmosphere Model, version 6 (CAM6) with its top near 40 km, referred to as CESM2(CAM6). The other employs the Whole Atmosphere Community Climate Model, version 6 (WACCM6) whose top extends to $\tilde{}$ 140 km in the vertical and it includes fully interactive tropospheric and stratospheric chemistry (CESM2(WACCM6)). Both configurations were used to carry out subseasonal reforecasts for the time period 1999 to 2020 following the Subseasonal Experiment's (SubX) protocol. CESM2(CAM6) and CESM2(WACCM6) show very similar subseasonal prediction skill of 2-meter temperature, precipitation, the Madden-Julian Oscillation (MJO), and North Atlantic Oscillation (NAO) to the Community Earth System Model, version 1 with the Community Atmosphere Model, version 5 (CESM1(CAM5)) and to operational models. CESM2(CAM6) and CESM2(WACCM6) reforecast sets provide a comprehensive dataset for predictability research of multiple Earth system components, including three-dimensional output for many variables, and output specific to the mesosphere and lower-thermosphere (MLT) region. We show that MLT variability can be predicted $\tilde{}$ 10 days in advance of sudden stratospheric warming events. Weekly real-time forecasts with CESM2(WACCM6) contribute to the multi-model mean ensemble forecast used to issue the NOAA weeks 3-4 outlooks. As a freely available community model, both CESM2 configurations can be used to carry out additional experiments to elucidate sources of subseasonal predictability.

1 2 3 4	A subseasonal Earth system prediction framework with CESM2
5 6	Jadwiga H. Richter ¹ , Anne A. Glanville ¹ , James Edwards ¹ , Brian Kauffman ¹ , Nicholas A.
7	Davis ² , Abigail Jaye ³ , Hyemi Kim ⁴ , Nicholas M. Pedatella ⁵ , Lantao Sun ⁶ , Judith Berner ^{3,1} , Who
8	M. Kim ¹ , Stephen G. Yeager ¹ , Gokhan Danabasoglu ¹ , Julie M. Caron ¹ , and Keith W. Oleson ¹
9	
10	¹ Climate and Global Dynamics Laboratory, National Center for Atmospheric Research,
11	Boulder, Colorado
12	² Atmospheric Chemistry Observations and Modeling Laboratory, National Center for
13	Atmospheric Research, Boulder, Colorado
14	³ Mesoscale and Microscale Meteorology Laboratory, National Center for Atmospheric
15	Research, Boulder, Colorado
16	⁴ School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York
17	⁵ High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado
18	⁶ Colorado State University, Fort Collins, Colorado
19 20	Key points: (140 char max each)
21	• A subseasonal research framework with CESM2(CAM6) and CESM2(WACCM6)
22	is described
23	Subseasonal prediction skill of CESM2(CAM6) and CESM2(WACCM6) is similar
24	to that of CESM1(CAM5) and operational models
25	• The new framework facilitates predictability research for multiple aspects of the
26	Earth system, including the mesosphere
	Corresponding Author: Jadwiga H. Richter, jrichter@ucar.edu

27 Abstract

28 A framework to enable Earth system predictability research on the subseasonal timescale is 29 developed with the Community Earth System Model, version 2 (CESM2) using two model 30 configurations that differ in their atmospheric components. One configuration uses the 31 Community Atmosphere Model, version 6 (CAM6) with its top near 40 km, referred to as 32 CESM2(CAM6). The other employs the Whole Atmosphere Community Climate Model, version 33 6 (WACCM6) whose top extends to ~ 140 km in the vertical and it includes fully interactive 34 tropospheric and stratospheric chemistry (CESM2(WACCM6)). Both configurations were used 35 to carry out subseasonal reforecasts for the time period 1999 to 2020 following the Subseasonal 36 Experiment's (SubX) protocol. CESM2(CAM6) and CESM2(WACCM6) show very similar 37 subseasonal prediction skill of 2-meter temperature, precipitation, the Madden-Julian Oscillation 38 (MJO), and North Atlantic Oscillation (NAO) to the Community Earth System Model, version 1 39 with the Community Atmosphere Model, version 5 (CESM1(CAM5)) and to operational models. 40 CESM2(CAM6) and CESM2(WACCM6) reforecast sets provide a comprehensive dataset for 41 predictability research of multiple Earth system components, including three-dimensional output 42 for many variables, and output specific to the mesosphere and lower-thermosphere (MLT) 43 region. We show that MLT variability can be predicted ~ 10 days in advance of sudden 44 stratospheric warming events. Weekly real-time forecasts with CESM2(WACCM6) contribute to 45 the multi-model mean ensemble forecast used to issue the NOAA weeks 3-4 outlooks. As a 46 freely available community model, both CESM2 configurations can be used to carry out 47 additional experiments to elucidate sources of subseasonal predictability. 48

49 Plain Language Summary

50	Sources of subseasonal (i.e., timescale of three to four weeks) predictability for surface
51	temperature, precipitation, and extreme events associated with subseasonal modes of variability
52	are not well understood. In addition, there has been little exploration of the predictability of land,
53	sea-ice, the stratosphere, and the mesosphere lower-thermosphere region. We describe here a
54	subseasonal prediction research framework based on two configurations of the Community Earth
55	System Model, version 2 (CESM2) that differ in their atmospheric components. Both
56	configurations demonstrate subseasonal prediction skill comparable to that of operational
57	models. Reforecasts carried out with two configurations of CESM2 provide a comprehensive
58	dataset for predictability research of multiple aspects of the Earth system, including the
59	mesosphere and lower thermosphere region. Real-time forecasts with these models contribute to
60	the multi-model mean ensemble forecast used to issue the National Oceanic and Atmospheric
61	Administration (NOAA) weeks 3-4 outlooks.
62 63 64 65 66	1 Introduction Interest and demand for skillful subseasonal predictions (i.e., targeting three to four
67	weeks) of the Earth system has grown in the recent decade. Multiple economic sectors such as
68	agriculture, energy, and water management could benefit from improved subseasonal predictions
69	(White et al. 2017). Such a need is a strong motivator of research of sources and limits of
70	subseasonal predictability, including identifying windows of opportunity for increased forecast
71	skill (Mariotti et al., 2020; NAS 2016). The international subseasonal-to seasonal (S2S) project
72	and database (Vitart et al., 2017; Vitart and Robinson 2018) and the National Oceanic and
73	Atmospheric Administration (NOAA) SubX project (Pegion et al., 2019) have been instrumental

carried out with multiple operational and research models that serve as a community basis for
research on predictability on S2S timescales.

77 Subseasonal prediction research has been focused mostly on prediction of the lowermost 78 atmosphere, in particular surface temperature and precipitation, and extreme events associated 79 with these, such as heat waves, droughts, heavy rainfall and cold outbreaks (Ford et al., 2018; de 80 Andrade et al., 2019; Xiang et al., 2020). Substantial effort has also been invested in assessing 81 predictability of dominant modes of variability on the subseasonal timescale, such as the Madden 82 Julian Oscillation (MJO) and the North Atlantic Oscillation (NAO) as these can be drivers for 83 extreme weather (e.g., Stan et al. 2017; Vitart et al., 2017; Kim et al., 2018; Lim et al., 2018; Sun 84 et al., 2020; Yamagami & Matsueda, 2020). A few recent studies have started examining the 85 predictability of sea-ice and noted a wide range of sea-ice prediction skill, with a multimodel 86 mean forecast being skillful out to 5 months (Wayand et al., 2019; Zampieri et al., 2018). There 87 has also been some exploration of the subseasonal predictability of various land model variables, 88 such as soil moisture and snowpack (Hanchen et al., 2019; Diro & Lin, 2020), however 89 predictability of other characteristics of land has not been explored. Several studies have looked 90 at the predictability of the stratosphere, mainly at the predictability of sudden stratospheric 91 warmings (SSWs), as they can significantly impact surface extreme weather especially over 92 Eurasia (Tripathi et al., 2015), and the predictability of the quasi-biennial oscillation (QBO) 93 which impacts the MJO (Lim et al., 2019; Kim et al., 2019a). Furthermore, there have only been 94 limited efforts aimed at addressing the predictability of variability at higher altitudes (i.e., 95 mesosphere, thermosphere, and ionosphere) as models used in S2S prediction typically do not 96 extend into that region of the atmosphere. These prior studies have been limited as they used 97 short reforecast periods (Wang et al., 2014; Pedatella et al., 2018a; Pedatella et al., 2019).

98	Variability of the mesosphere and lower-thermosphere (MLT) region drives a significant portion
99	of near-Earth space weather, which can cause adverse effects on communications and navigation
100	systems, and understanding the predictability in the MLT is thus an important component of
101	enhancing space weather forecasting (Jackson et al., 2019).
102	Stratosphere-troposphere interactions provide a potential source of predictability on the
103	S2S timescale because of their persistent and slow varying circulation anomalies (NAS, 2016).
104	Increased predictability is believed to primarily come from SSWs which are followed by
105	tropospheric circulation anomalies resembling the negative phase of the NAO. The QBO has
106	been shown to lead to enhanced predictability on seasonal timescales (e.g., Boer & Hamilton,
107	2008; Marshall & Scaife, 2009), and is predictable out to several years ahead (Scaife et al.,
108	2014b). Hence, a model that represents the QBO and SSWs well could potentially have more
109	skill on the subseasonal timescale.
110	Richter et al. (2020) described the utility of the Community Earth System Model, version
111	1, with the Community Atmosphere Model version 5 as its atmospheric component
112	(CESM1(CAM5)), a predecessor of CESM2, as a subseasonal prediction research model and
113	demonstrated that the prediction skill of key surface variables with that model was comparable to
114	the National Center for Environmental Prediction (NCEP) Climate Forecast System, version 2
115	(CFSv2) operational model. Here, we describe a new community resource for research on
116	subseasonal predictability of multiple components of the Earth system: a subseasonal prediction
117	system based on CESM2 with two configurations that differ in their atmospheric components.
118	One configuration uses the Community Atmosphere Model, version 6 (CAM6), referred to as
119	CESM2(CAM6). The other employs the Whole Atmosphere Community Climate Model, version
120	6 (WACCM6), and is referred to as CESM2(WACCM6). CESM2 is the newest version of the

121	NCAR coupled Earth system model used for the Coupled Model Intercomparison Project phase
122	6 (CMIP6) simulations (Danabasoglu et al., 2020). Both configurations of CESM2 include
123	prognostic atmospheric, land, ocean and sea-ice components and resolve the interactions
124	between them. Both configurations of the model include prognostic aerosols and
125	CESM2(WACCM6) also includes fully interactive tropospheric and stratospheric chemistry.
126	CESM2(WACCM6) has a very good representation of SSWs and an internally generated QBO,
127	hence it potentially could be more skillful, especially during SSW events, than models with
128	smaller vertical domains. Another unique aspect of CESM2(WACCM6) is the extension of the
129	model domain into the lower thermosphere, enabling investigations into the predictability at
130	MLT altitudes. SSW events are now recognized to have impacts throughout the whole
131	atmosphere (Baldwin et al., 2020; Pedatella et al., 2018b), including the mesosphere,
132	thermosphere, and ionosphere, where they influence the day-to-day weather of the near-Earth
133	space environment. It is, therefore, important to understand the predictability of the SSW effects
134	in the middle and upper atmosphere.
135	Weekly real-time forecasts are being generated since September 2020 with
136	CESM2(WACCM6) and since April 2021 with CESM2(CAM6), and they contribute to the
137	multi-model mean ensemble used to issue the experimental NOAA weeks 3-4 outlooks. The
138	motivation behind the inclusion of CESM2(WACCM6) into this NOAA Climate Test Bed
139	project is to examine how much improvement in surface prediction skill can be gained from the
140	inclusion of a well-represented stratosphere, especially during the boreal winter, when the
141	impacts of SSWs on the surface climate and impacts of the QBO on the MJO are the largest.
142	We describe here the S2S prediction framework, reforecasts, and near-real time forecasts
143	with CESM2(CAM6) and CESM2(WACCM6) including the extensive output of atmospheric,

144	land, ocean, and sea-ice models, with several key atmospheric variables reaching into the MLT
145	region. CESM2 is a community model and is freely available to the broader community. The
146	reforecast sets described here are designed to serve as a basis for future experiments with
147	CESM2(CAM6) and CESM2(WACCM6) investigating sources of subseasonal predictability.
148	
149	2 Model and System Description
150	2.1 Model Description
152	Subseasonal reforecasts and forecasts described here use the default released version of
153	CESM2. CESM2 is an open-source, comprehensive Earth system model designed primarily for
154	the studies of Earth's past, present and future climates. CESM2 includes ocean, atmosphere,
155	land, sea-ice, land-ice, river, and wave model components and is thoroughly documented in
156	Danabasoglu et al. (2020). The standard CESM2 uses a nominal 1º horizontal resolution (1.25°
157	in longitude and 0.9° in latitude in its atmospheric components). CAM6 is the default
158	atmospheric model. It has 32 vertical levels with the model lid near 2 hPa (\sim 40 km). CAM6 uses
159	the Zhang and McFarlane (1995) convection parameterization, the Cloud Layers Unified By
160	Binormals (CLUBB; Golaz et al., 2002; Larson, 2017) unified turbulence scheme, and the
161	updated Morrison-Gettelman microphysics scheme (MG2; Gettelman & Morrison, 2015). A
162	form drag parameterization of Beljaars et al. (2004) and an anisotropic gravity wave drag scheme
163	following Scinocca and McFarlane (2000) replace the turbulent mountain stress parameterization
164	that was used in CESM1. The aerosols in CAM6 are represented using the Modal Aerosol Model
165	version 4 (MAM4) as described in Liu et al. (2016).
166	CESM2(WACCM6) uses WACCM6 or the "high-top" version of the atmospheric model,
167	which is documented in detail in Gettleman et al. (2019). WACCM6 has the same horizontal

168	resolution as CAM6, however it has 70 vertical levels with a top near 4.5×10^{-6} hPa (~ 140 km).
169	The representation of atmospheric physics is identical to that in CAM6, with the only exception
170	being the representation of non-orographic gravity waves, which follows Richter et al. (2010)
171	with changes to tunable parameters described in Gettleman et al. (2019). The higher model lid
172	and parameterization of non-orographic gravity waves in WACCM6 allow for a better
173	representation of middle atmospheric dynamics as compared to CAM6 and the simulation of an
174	internally-generated QBO. Another key difference between CAM6 and WACCM6 is in the
175	representation of chemistry. The comprehensive chemistry module in WACCM6 includes
176	interactive tropospheric, stratospheric, and lower thermospheric chemistry (TSMLT) with 228
177	prognostic chemical species, described in detail in Gettleman et al. (2019). Differences in the
178	representation of aerosols and chemistry between CAM6 and WACCM6 do not significantly
179	impact the mean surface and tropospheric climate in historical simulations. However,
180	CESM2(WACCM6) simulations have a more realistic representation of polar climate as
181	compared to CESM2(CAM6) as shown in Gettleman et al. (2019).
182	CESM2(CAM6) and CESM2(WACCM6) use identical ocean, land, sea-ice, land-ice,
183	river-transport, and wave models. The ocean model is based on the Parallel Ocean Program
184	version 2 (POP2; Smith et al., 2010; Danabasoglu et al., 2012), but contains many advances
185	since its version in CESM1. As described in Danabasoglu et al. (2020), these include a new
186	parameterization for mixing effects in estuaries, increased mesoscale eddy (isopycnal)
187	diffusivities at depth, use of prognostic chlorophyll for shortwave absorption, use of salinity-
188	dependent freezing-point together with the sea-ice model, and a new Langmuir mixing
189	parameterization in conjunction with the new wave model component. Several numerical
190	improvements were also implemented as described in Danabasoglu et al. (2020). The horizontal

191	resolution of POP2 is uniform in the zonal direction (1.125°), and varies from 0.64° (occurring in
192	the Northern Hemisphere) to 0.27° at the Equator. In the vertical, there are 60 levels with a
193	uniform resolution of 10 m in the upper 160m. The ocean biogeochemistry is represented using
194	the Marine Biogeochemistry Library (MARBL), essentially an updated implementation of what
195	has been known as the Biochemistry Elemental Cycle (Moore et al., 2002; 2004; 2013). CESM2
196	includes version 3.14 of the NOAA WaveWatch-III ocean surface wave prediction model
197	(Tolman, 2009). CICE version 5.1.2 (CICE5; Hunke et al., 2015) is used to represent sea-ice in
198	CESM2 and uses the same horizontal grid as POP2. The vertical resolution of sea-ice has been
199	enhanced to eight layers, from four in CESM1; the snow model resolves three layers, and the
200	melt pond parameterization has been updated (Hunke et al., 2013).
201	Both CESM2 configurations use the recently developed Community Land Model version
202	5 (CLM5) described in detail in Lawrence et al., (2019). As compared to CLM4, CLM5 includes
203	improvements to soil hydrology, spatially explicit soil depth, dry surface layer control on soil
204	evaporation, updated ground-water scheme, as well as several snow model updates. CLM5
205	includes a global crop model that treats planting, harvest, grain fill, and grain yields for six crop
206	types (Levis et al., 2018), a new fire model (Li et al., 2013; Li & Lawrence, 2017), multiple
207	urban classes and updated urban energy model (Oleson & Feddema, 2019), and improved
208	representation of plant dynamics. The river transport model is the Model for Scale Adaptive
209	River Transport (MOSART; H. Y. Li et al., 2013). The Community Ice Sheet Model Version
210	2.1 (CISM2.1; Lipscomb et al., 2019) is used to represent the ice sheets, although in the
211	configuration of this model ice sheets are assumed to be fixed.
212	

213 **2.2 Initialization**

S2S reforecasts with CESM2(CAM6) and CESM2(WACCM6) use the same land initial conditions, but differ in atmosphere, ocean, and sea-ice initialization. These differences are due to the different location of the two atmospheric models' lids and also due the inclusion of CESM2(WACCM) forecasts in NOAA's experimental Week 3-4 outlooks since September 2020, necessitating real-time forecasting ability with that model and completion of reforecasts with the same model set-up at that time. Initialization procedures for each model component are described below and summarized in Table 1.

221 Land initial conditions for CESM2(CAM6) and CESM2(WACCM6) reforecasts were 222 produced using the stand-alone CLM5. The stand-alone CLM5 simulation employed a setup 223 consisting of biogeochemistry-driven crops and glacial observations. A 700-year spin-up was 224 performed using 6-hourly atmospheric variables (precipitation, temperature, wind speed, 225 shortwave and longwave radiation, etc.) from the NCEP CFSv2 reanalysis (Saha et al. 2014). 226 Near present-day (year 2000) greenhouse gas forcings were used continuously throughout the 227 spin-up, while atmospheric forcings from NCEP CFSv2 were cycled between 1979-1985 until a 228 steady state was achieved (~100 cycles). After soil moisture and temperatures stabilized with 229 respect to the 1979-1985 climate state, the CLM5 continued to be forced with NCEP CFSv2 up 230 through present day (no longer cyclically), and initial condition files were output for use in 231 reforecasts each Monday.

CESM2(CAM6) atmosphere was initialized using the NCEP CFSv2 reanalysis
interpolated to the CAM6 grid. Initialized fields include the zonal and meridional wind,
temperature, specific humidity, surface pressure and surface geopotential. An ensemble is
generated using the random field perturbation method at initial time which was shown to be as

effective as other more sophisticated methods to generate model spread by Magnusson et al.
(2009) and was utilized successfully in S2S reforecasts with CESM1(CAM5) (Richter et al.
2020).

239 Ocean and sea-ice initial conditions for CESM2(CAM6) come from a reforecast ocean-240 sea-ice coupled configuration of CESM2(CAM6) forced with the adjusted Japanese 55-year 241 reanalysis project state fields and fluxes (JRA55-do forcing; Tsujino et al., 2018). We call this 242 JRA55-do forced ocean simulation (JRA55-do FO). This simulation was integrated through five 243 cycles of the 1958 - 2009 forcing, with the last cycle extended through 2019. This procedure 244 follows the protocol for the CMIP6-endorsed Ocean Model Intercomparison Project phase 2 245 (OMIP2; Griffies et al., 2016; Tusjino et al., 2020), and is the same as was done for S2S 246 reforecasts with CESM1(CAM5) (Richter et al., 2020). 247 The initialization of the atmosphere, ocean, and sea-ice in CESM2(WACCM6) is not as 248 straightforward as for CESM2(CAM6) as the model's lid located near \sim 140 km extends above 249 the currently available atmospheric reanalyses and the JRA55-do was only available through 250 2019 with a yearly update frequency in early 2020 (time of model set-up and running of 251 reforecasts), which prohibited its use in near real-time forecasts. To generate realistic initial

conditions for the entire atmospheric domain, first a specified dynamics (SD) simulation with

253 fully coupled CESM2(WACCM6) was carried out (WACCM6-SD) in which the atmospheric

254 dynamics were nudged to the NASA Modern-Era Retrospective Analysis for Research and

Applications (MERRA-2) (Gelaro et al. 2017) with a 1-hourly nudging timescale from 1999 to

256 2020. 1-hourly nudging ensured that the dynamics in the lower atmosphere are very close to the

257 MERRA-2 reanalysis, which is important for tropospheric subseasonal prediction. The ocean in

this WACCM6-SD simulation is initialized from the JRA55-do FO simulation (as done for

259	CESM2) in year 1998, and then it is left to evolve with atmospheric fluxes from the MERRA-2
260	reanalysis for 5 years. In this set-up, the ocean state drifts from the observed state and the
261	JRA55-do simulation, hence every 5 years the ocean in the SD simulation is reinitialized with the
262	ocean state from the JRA55-do forced ocean simulation. Hence ocean reinitialization occurred
263	on January 1 of 1998, 2003, 2008, 2013, and 2018. We have developed the ability to update the
264	JRA55-do in August of 2020, hence a final ocean reinitialization occurred on August 31 of 2020
265	in order to prime the real-time application which began at that time. Daily atmospheric, ocean
266	and sea-ice, initial conditions were output from the WACCM6-SD simulation for use in
267	reforecasts. The random field perturbation method was applied to the atmospheric conditions to
268	generate ensemble spread in the same way as was done in CESM2(CAM6).
269	Figure 1 shows correlation and root-mean-square error (RMSE) maps between the sea
270	surface temperature (SST) in JRA55-do FO (used to initialize CESM2(CAM6) reforecasts) and
271	HadSST observations (Figs. 1a and 1c) and between SSTs in WACCM6-SD (used to initialize
272	CESM2(WACCM6) reforecasts) and HadSST (Figs. 1b and 1d). Over the 1999 - 2019 period,
273	the correlation between JRA55-do FO and WACCM6-SD and observations is close to 1 over the
274	majority of ocean areas, with the exception of reduced values of the correlation coefficient in the
275	Tropics and south of 50°S. The correlation coefficients are lower in those regions in the
276	WACCM6-SD as compared to the JRA55-do FO simulation. The RMSE distribution (Figure
277	1c,d) is also very similar between JRA55-do FO and WACCM6-SD, with the largest RMSE
278	differences between the two simulations in the Tropics. The larger RMSE in WACCM6-SD as
279	compared to the JRA55-do FO could be related to differences in variability in MERRA-2 as
280	compared to JRA55-do. This greater Tropical drift away from the observed SSTs is illustrated
281	clearly in Figure 1e which shows the El Nino Southern Oscillation (ENSO) index in the JRA55-

282	do FO, WA CCM6-SD, and HadISST. JRA55-do follows the observed ENSO index closely,
283	however there are a few instances when the ENSO index in WACCM-SD departs significantly
284	from observations. This includes the period from ~ 2015 to 2016 and 2019 to 2020.
285	For real-time forecasts with CESM2(WACCM6), the same initialization procedure was
286	used as for reforecasts except that the CESM2(WACCM6) run was nudged to the NASA
287	Forward Processing for Instrument Teams (FP-IT) reanalysis instead of MERRA-2, as the FP-IT
288	reanalysis is available in near real-time.
289	
290	2.3 Protocol and output
291	The S2S reforecasts were carried out following the SubX protocol (Pegion et al. 2019)
292	with weekly initializations every Monday from 1999 to 2020 for CESM2, and for every Monday
293	between September and March for CESM2(WACCM6). An 11-member ensemble was carried
294	out for the CESM2(CAM6) and a 5-member ensemble was carried out for the
295	CESM2(WACCM6) reforecasts. The computational cost of CESM2(WACCM6) is nearly eight
296	times the cost of CESM2(CAM6), hence carrying out more ensemble members and all start dates
297	was computationally prohibitive with CESM2(WACCM6). Near real-time forecasts began with
298	CESM2(WACCM6) in September of 2020, and in April 2021 with CESM2(CAM6), both with a
299	21-member ensemble.
300	The S2S reforecast set with CESM2(CAM6) and CESM2(WACCM6) have extremely
301	comprehensive output for the atmosphere, land, ocean, and sea-ice components of the model to
302	enable studies of predictability of the broader Earth system, including the MLT region. Output is
303	available from the NCAR Climate Data Gateway (see links in Acknowledgements). The
304	complete list of output variables is shown in Tables S1- S7. Because the reforecasts follow the

305	SubX protocol, a portion of the output also follows that protocol, and a number of model native
306	fields are renamed and reformatted to match the SubX priority 1, 2, and 3 (p1, p2, and p3,
307	respectively) variables. In addition to these variables which are all two-dimensional (on a lat/lon
308	grid), more daily averaged variables are saved for every model component. A handful of
309	atmosphere-relevant variables are saved at 6-hourly intervals for applications such as tropical
310	cyclone tracking. In addition, a limited number of 3-dimensional fields is stored at 14 pressure
311	levels for CESM2(CAM6) and at 22 levels for CESM2(WACCM6) (see Table S4 for exact
312	levels). Finally, for CESM2(WACCM6), diurnal and semidiurnal tide coefficients are stored at 8
313	levels at and above 10 hPa, permitting the evaluation of migrating and nonmigrating tides in the
314	MLT. Because CESM2 includes an interactive crop model, the output list for the land model
315	includes variables such as gross and primary production which are very unique to this dataset.
316	
317 318	3 Results
319	The subseasonal prediction skill of CESM2(CAM6) and CESM2(WACCM6) in the S2S
320	reforecasts is evaluated for key surface variables (temperature, precipitation), dominant
321	subseasonal modes (MJO and NAO) as well as stratosphere-troposphere coupling. Subsequently
322	we briefly examine MLT predictability during SSWs in CESM2(WACCM6). We compare the
323	tropospheric prediction skill to that from reforecasts carried out with the default version of
324	CESM1(CAM5) utilizing the 30-level version of CAM5 (Richter et al. 2020) for the common
325	period of 1999 to 2015. As the reforecasts with the default (30-level) version of CESM1(CAM5)
326	used a 10-member ensemble, we use here a 10-member average of CESM2(CAM6) as well,
327	because ensemble size does affect skill (e.g., Sun et al., 2020). Therefore, in selected figures, we

329	that is what the CESM2(WACCM6) skill assessment is based on. Richter et al. (2020) showed
330	that the 2-meter temperature and precipitation skill of CESM1(CAM5) was very similar to the
331	NOAA operational CFSv2 model and higher than those of most other models participating in
332	SubX. Surface temperature and precipitation prediction skill is similar between the CFSv2 model
333	and the European Centre for Medium-Range Weather Forecasts (ECMWF)Variable Resolution
334	Ensemble Prediction System monthly forecast system (Wang & Robertson 2019), hence broadly
335	speaking skill similar to CESM1(CAM5) implies prediction skill comparable to other operational
336	models.
337 338	3.1 2-meter temperature and precipitation prediction skill
339	Figures 2a-c show the anomaly correlation coefficients (ACC) for 2-meter (2m)
340	temperature for December, January, and February (DJF) for weeks 1-2, 3-4, and 5-6 for CESM2.
341	The NOAA Climate Prediction Center (CPC) Global Daily Temperature dataset at the 0.5°x0.5°
342	resolution is used as a verification dataset. Both for observations and simulations, the average
343	daily temperature is calculated as the average of the daily maximum and minimum temperature.
344	Similarly to what was done for CESM1 in Richter et al. (2020), ACC values are shown in colors
345	only when they are significantly different from zero at the 95% confidence level or for ACC $>$
346	0.2. The significance level is calculated using a total sample size of 221, based on 13 start dates
347	per year over 17 years (1995 to 2015) considered here. Subsequently, we assume a 2-week
348	decorrelation time, and resulting in 110.5 independent samples. There are hence 108 degrees of
349	freedom (number of independent samples minus 2), leading to a correlation equal or greater than
350	0.2 being significant at the 95% level using a two-tailed Student's t-test (Wilks, 2011). Because
351	Richter et al. (2020) showed that nearly all the values over this threshold exceed the persistence
352	forecast, a persistence forecast is not repeated here. Figures 2a-c show declining ACC values

353	with forecast lead time reflecting a loss of deterministic skill with increasing forecast lead time.
354	The globally averaged DJF ACC for 2m temperature over all land areas is ~ 0.3 for weeks 3-4
355	and 0.2 for weeks 5-6 with higher values over the northern part of South America (ACC of ~ 0.5
356	to 0.6 through weeks 5-6) and the lowest values over north and north-eastern Asia. The
357	differences of DJF 2m temperature ACC between CESM2(CAM6) and CESM1(CAM5) and
358	between CESM2(CAM6) and CESM2(WACCM) are given in Figs. 2d-f and Figs. 2g-i,
359	respectively. Only values that exceed the 95% confidence level using the Fisher z transform
360	(e.g., Zar, 2014) are shown. Figures 2d-2f show that DJF ACC for 2m temperature in
361	CESM2(CAM6) is overall very similar to that of CESM1(CAM5) for the majority of the world's
362	land regions, with the only exceptions being regions of decreased skill over parts of north-east
363	and southernmost Asia, and southernmost part of India for weeks 3-4 and 5-6. Figures 2g-2i
364	reveal that the DJF 2m temperature ACC for CESM2(WACCM6) is also very similar to that of
365	CESM2, demonstrating that the whole atmosphere version of CESM2 does not fundamentally
366	change the surface prediction skill of the model. There are a few land regions for which the DJF
367	2m temperature ACC is statistically significantly different for CESM2(WACCM6) as compared
368	to CESM2, most evident in weeks 5-6. These include parts of North America for which
369	CESM2(CAM6) is showing higher skill than CESM2(WACCM6), and eastern Asia where
370	higher skill is seen in CESM2(WACCM6) as compared to CESM2(CAM6). A detailed
371	investigation (beyond the scope of this paper) is needed to elucidate whether these differences
372	can be attributed to differences either in the representation of the stratosphere or in ocean and
373	atmosphere initialization procedures between the two configurations.
374	Figure 3 shows ACC of 2m temperature over land for June, July, August (JJA) average.
375	Comparison to CESM2(WACCM6) is not possible for this season due to the limited range of

376	reforecast start dates for that model version. The overall ACC of JJA 2m temperature is a little
377	smaller as compared to that for DJF. The ACC values are the largest in northern South America
378	and tropical Africa for weeks 3-4 and weeks 5-6 (Figs. 3b,c). The differences between ACC in
379	CESM2(CAM6) and CESM1(CAM5) are very small as shown in Figs 3d-3f. Figures S1 and S2
380	show the 2m temperature ACC for March, April, May (MAM) and September, October, and
381	November (SON) averages respectively. In MAM, CESM2(CAM6) shows a statistically
382	significant degradation of 2m temperature prediction skill over Eurasia and Alaska by ~ 0.2 for
383	weeks 3-4 and weeks 5-6 over CESM1(CAM5). In SON, there is very little difference between
384	the 2m temperature ACC for CESM2(CAM6) and CESM1(CAM5), as well as between
385	CESM2(WACCM6).
386	Figure 4 compares the DJF and JJA 2m temperature ACC averaged over all land areas and
387	over North America. DJF ACC of 2m temperature is ~ 0.6 for weeks 1-2, ~ 0.3 for weeks 3-4,
388	and < 0.2 for weeks 5-6 for global land for all the CESM versions considered here (Figure 4a).
389	DJF ACC of 2m temperature over North America is ~0.7 for weeks 1-2, ~0.3 for weeks 3-4, and
390	~0.15 for weeks 5-6. JJA ACCs of 2m temperature for both global and North America land are
391	\sim 0.1 lower for weeks 1-2 and 3-4 as compared to DJF, while they are comparable to those of
392	DJF for weeks 5-6. There are overall small differences in 2m temperature ACCs between the
393	various model versions considered, as well as between ACCs calculated for an ensemble size of
394	5 vs 10 for CESM1(CAM5) and CESM2(CAM6) for both DJF and JJA. Although there are
395	small differences between CESM1(CAM5) and CESM2(CAM6) in DJF and JJA ACCs over
396	North America and global land, the application of the Fisher z transform to these values showed
397	that none of the differences between ACC values depicted by individual bars in Figure 4 are
398	statistically significant.

399	Figures 5a-c and 6a-c show the ACC for precipitation for DJF and JJA for
400	CESM2(CAM6). Precipitation prediction skill at subseasonal timescales (Figs. 5b,c) is quite low
401	as compared to the 2m temperature, with ACC values on average of ~ 0.1 for weeks 3-4 and $<$
402	0.05 for weeks 5-6 consistent with previous findings (Pegion et al., 2019, Richter et al., 2020).
403	Similarly to 2m temperature skill, precipitation skill is slightly higher in northern South America
404	and parts of Africa in weeks 3-4 in CESM2(CAM6) as compared to other land areas, reaching
405	ACC values of 0.3-0.4 over small regions (Figs. 5b,6b). There is little difference in DJF ACC of
406	precipitation between CESM2(CAM6) and CESM1(CAM5), and between CESM2(CAM6) and
407	CESM2(WACCM6). In JJA (Figure 6), the overall precipitation skill over land is even lower
408	than in DJF with the exception of Australia. In CESM2, for both weeks 3-4 and weeks 5-6 the
409	ACC of precipitation is ~ $0.3 - 0.5$ over most of Australia, showing that CESM2(CAM6) is
410	skillful in that region. CESM1(CAM5) already had significant ACC over Australia in JJA
411	(Richter et al., 2020), so this skill has increased in CESM2(CAM6) especially for weeks 5-6
412	(Figure 6f). Figure 7 summarizes the precipitation prediction skill for DJF and JJA for all the
413	models considered in this study. Averaged over global land and North America the ACC of
414	precipitation is greater than zero but smaller than 0.1 for weeks 3-4 and weeks 4-5. ACC values
415	less than 0.1 imply that precipitation is generally not predictable on the subseasonal timescales,
416	except for very few selected regions discussed above.

- 417
- 418 419

3.2 Spread and error characteristics for 2m temperature

To shed some light on the ensemble characteristics of our S2S forecasts, we compute the
RMSE of the ensemble mean and the ensemble spread (Figure 8). Similarly to the ACC, the
RMSE over North American land is markedly higher in winter than in summer and decreases

slightly if the ensemble size is increased from 5 to 10 members. Unlike Figure 4, we do not
detect the same rapid decrease in skill between week 1-2 and 3-4 forecasts. This points to the fact
that week 1-2 reforecasts have a high pattern correlation with the verifying analysis but might
have problems capturing the anomaly magnitudes.

The ensemble spread is computed as lead-time dependent standard deviation of all members around the ensemble mean and is shown as hatched bars in Figure 8. For a reliable ensemble system, the ensemble spread should inform the state-dependent predictability of the system and the spread and error of the ensemble mean should have the same magnitude (e.g. Leutbecher and Palmer, 2008). However, most ensemble systems are overconfident (e.g., Berner et al. 2015, Leutbecher et al. 2017) and the spread predicting the uncertainty of the forecast is smaller than the RMSE.

434 Such underdispersion is also evident in our reforecasts. In weeks 1-2, regardless of the 435 season, or land area average, the spread is under-dispersive by at least 40% (Fig 8.). The 436 underdispersion improves for longer lead times but forecasts remain markedly overconfident for 437 all experiments. The differences between the different CESM configurations are small for JJA, 438 but for DJF, CESM1(CAM5) creates consistently more spread than CESM2(CAM6) or 439 CESM2(WACCM) over North American land. Increasing the ensemble size has a more 440 pronounced effect on the spread than the RMSE error. This indicates that the value of the 441 ensemble might lie in the improved representation of uncertainty rather than improved 442 deterministic skill.

443 444

- 445 **3.3 MJO and NAO prediction skill**
- 446

447	The MJO and the NAO are key drivers of extreme weather on subseasonal timescales and
448	believed to be key sources of subseasonal predictability. To evaluate the MJO prediction skill,
449	the Real-time Multivariate MJO (RMM; Wheeler & Hendon, 2004) index is calculated with the
450	200 hPa and 850 hPa daily zonal wind from ECMWF Reanalysis v5 (ERA5; Hersbach et al.,
451	2020) and the Outgoing Longwave Radiation (OLR) from NOAA Advanced Very High-
452	Resolution Radiometer (Liebmann & Smith 1996). Predicted RMM indices are calculated by
453	projecting the forecast anomalies for those fields onto the associated observed EOF eigenvectors
454	(Kim et al., 2018). Then, the RMM index bivariate ACCs are computed between the predicted
455	and observed RMM1 and RMM2 indices as a function of forecast lead days. The MJO prediction
456	skill is assessed during boreal winter with the reforecasts initialized during November-March
457	(NDJFM). Due to the limited sample size, all days are selected as MJO events without any
458	discrimination of the initial MJO amplitude. Figure 9 shows ACC as a function of forecast lead
459	days where ACC of 0.5 is explicitly denoted as it is often used as a skill threshold (e.g., Rashid et
460	al., 2011). The figure clearly demonstrates that the MJO in CESM2(CAM6) and
461	CESM2(WACCM6) is predictable out to 25 days, which is longer than the predictability of the
462	MJO for most of the SubX models (not shown), but less than than the MJO predictability of out
463	to 33 days in the ECMWF-CY43R system (Kim et al., 2019b). The ACC of the MJO in
464	CESM1(CAM5) is slightly higher compared to CESM2(CAM6) and CESM2(WACCM6),
465	however, none of the skill differences are statistically significant based on the Fisher z transform.
466	There is also very little difference in the overall MJO skill between CESM2(CAM6) and
467	CESM2(WACCM6) (when the same ensemble size is considered) indicating that neither the
468	extension of the model top into the middle atmosphere nor the different ocean initialization in
469	CESM2(WACCM6) as compared to CESM2(CAM6) affect MJO prediction skill.

470	The NAO is a key driver of winter extreme weather over Europe and North America
471	(Hurrell, 1995; Scaife et al., 2008). It is predictable on weather (< 2 weeks) timescales and
472	seasonal timescales (e.g., Riddle et al., 2013, Scaife et al. 2014a), however its predictability on
473	subseasonal timescales is less certain and has not been explored extensively. Zuo et al. (2016)
474	found the NAO to be predictable only out to \sim 9 days using the Beijing Climate Center
475	Atmospheric General Circulation Model version 2.2 (BCC AGCM2.2). Pegion et al. (2019)
476	showed that NAO skill was high (ACC > 0.5) through week 2 in all the SubX models. Richter et
477	al. (2020) found that the ACC of NAO in CESM1(CAM5) was 0.5 at week 3 and 0.4 at week 4
478	(10-member ensemble). Sun et al. (2020) found that an increase in ensemble size to 20 enhances
479	the NAO prediction skill, with an NAO ACC of 0.51 for weeks 3 to 6 in boreal winter in
480	CESM1(CAM5). The prediction skill of the NAO in the various CESM configurations is shown
481	in Figure 10. The NAO index was obtained by first calculating EOF analysis of ERA-Interim
482	monthly (NDJFM) sea level pressure (SLP) anomalies over the Atlantic sector (20°N- 80°N,
483	90°W–40°E) and treating the leading EOF pattern as the NAO. The NAO index was then
484	calculated by projecting the SLP anomaly in the reanalysis and reforecasts that were initialized
485	during NDJFM onto the leading EOF. The week 3-4 NAO ACC is above or close to 0.5 for all
486	the CESM versions considered here, similar to the skill in ECMWF and NCEP reforecasts
487	(Wang & Robertson, 2018). ACC of CESM1(CAM5) based on a 10-member ensemble and
488	CESM2(WACCM6) based on a 5-member ensemble have the highest skill at week 3-4, however,
489	with the current reforecast sample size, these skill values are not significantly different than the
490	ACC for CESM2(CAM6) or CESM1(CAM5) based on a 5-member ensemble. The NAO skill
491	for CESM2(WACCM6) is very close to the NAO skill for CESM1(CAM5) at weeks 5-6, and
492	substantially higher than that for CESM2(CAM6) with a 5-member ensemble. This could

493 possibly be attributed to a better resolved stratosphere in CESM2(WACCM6), but as with other
494 comparisons shown throughout this manuscript, due to the limited sample size, these differences
495 are not statistically significant.

- 496
- 497 498

3.4 Stratosphere-troposphere coupling

499 The stratosphere, and in particular, stratosphere-troposphere coupling during SSWs may 500 be an important source of subseasonal predictability. SSWs are associated with enhanced surface 501 pressure over the polar cap, and they tend to be followed by warm temperatures over 502 Northeastern Canada and Greenland, cold temperatures over Eurasia, and enhanced precipitation 503 over Western Europe (Butler et al., 2017, Domeisen & Butler 2020, Baldwin et al., 2020). This 504 coupling between tropospheric weather and sudden warmings is often summarized by the time 505 evolution of the annular modes (Baldwin and Dunkerton 2001), or nearly equivalently, the 506 standardized polar cap geopotential anomalies (Figure 11). During the onset of an SSW, 507 anomalously positive geopotential anomalies descend from the middle to the lower stratosphere, 508 where they can linger for over one month. Their descent to the surface manifests itself as 509 changes to the Arctic Oscillation (AO) or the NAO over the Atlantic sector. 510 Here, the standardized polar cap geopotential anomalies in MERRA-2 (Figure 11a) and 511 in CESM2(WACCM6) and CESM2(CAM6) reforecasts that predicted a major SSW within 7 512 days of the SSW central date in MERRA-2 reanalysis (Figs. 11b,c) are composited with respect 513 to the central date of the observed or reforecasted SSW. We emphasize that only reforecasts that 514 predicted an SSW were selected to assess the models' ability to capture surface impacts. The 515 central date of an SSW is the first day when the zonal-mean zonal wind at 60°N and 10 hPa 516 becomes negative, with 14 SSW events in the reforecast period. The central dates of the

517	observed events are: (1) Feb 26, 1999; (2) Feb 11, 2001; (3) Dec 30, 2001; (4) Feb 17, 2002; (5)
518	Jan 18, 2003; (6) Jan 5, 2004; (7) Jan 21, 2006; (8) Feb 24, 2007; (9) Feb 22, 2008; (10) Jan 24,
519	2009; (11) Feb 9, 2010; (12) Jan 6, 2013; (13) Feb 12, 2018; and (14) Jan 2, 2019. Figure 12
520	shows that while the magnitude of the positive geopotential anomalies during the SSW events is
521	comparable between MERRA-2 and the CESM2(WACCM6) and CESM2(CAM6) reforecasts,
522	the positive anomalies in the lower stratosphere do not linger as long in the reforecasts, only out
523	to day 35 and 39, respectively. However, the positive surface geopotential anomalies linger for 4
524	weeks after the central date of a SSW in the reforecasts and in MERRA-2, indicating that the
525	coupling of the events with the troposphere is comparable (Baldwin et al., 2021). The squared
526	pattern correlations of the composited geopotential anomalies between the CESM2(WACCM6)
527	and CESM2(CAM6) reforecasts and MERRA-2 are similarly high at 0.80 and 0.77 respectively.
528	In contrast, the averages of the individual reforecast pattern correlations with their respective
529	SSW event in MERRA-2 are substantially lower with 0.39 for CESM2(WACCM) and 0.25 for
530	CESM2(CAM6). In summary, CESM2(WACCM6) reforecasts of the polar cap geopotential
531	anomalies following an SSW are somewhat more consistent with those of MERRA-2 than in
532	CESM2(CAM6) reforecasts.

534 535

3.5 Mesosphere and lower thermosphere prediction

536 Initial investigations by Wang et al. (2014) and Pedatella et al. (2018b) demonstrated the 537 potential to predict the MLT variability during the 2009 SSW event, though these studies were 538 limited to a single event. The CESM2(WACCM6) reforecasts provide the opportunity to perform 539 more detailed investigations into the MLT predictability during SSWs. Davis et al. (2021) 540 showed that SSW predictability at lead times of one to two weeks is enhanced in reforecasts 541 initialized with weaker stratospheric jets. Figure 12 presents an analysis of SSW predictability 542 using a composite of the zonal-mean temperature between 70° - 90° N from 14 major SSW events 543 that are captured in the time periods of CESM2(WACCM6) reforecasts and SSWs from 544 WACCM Specified Dynamics simulations with thermosphere-ionosphere eXtension 545 (WACCMX-SD; Liu et al., 2018) are used for verification (Figure 12a). Figures 12b-e show the 546 composites for reforecasts initialized 15, 10, 5, and 0 days prior to the SSW central date. Note 547 that the results in Figure 12 are based on compositing the reforecasts regardless of whether they 548 successfully forecast a SSW, and we consider reforecasts initialized within +/- 3 days of the 549 specified lag for the composites (i.e., a lag of -10 includes reforecasts initialized 7-13 days prior

to the SSW).

Several distinct features of the middle atmosphere (stratosphere ~ 100 to 0.5 hPa or ~ 10 551 to 50 km; mesosphere: 0.5 hPa to 10^{-3} hPa ~ 50 to 90 km, lower thermosphere: above 10^{-3} hPa) 552 553 response to SSWs can be seen in Figure 12a. This includes a mesosphere cooling that begins 554 right after the central date of the SSW between $\sim 10^{-1}$ and 10^{-3} hPa that accompanies the warming 555 in the stratosphere, as well as the reformation of the stratopause at high altitudes following the 556 SSW. We note that formation of an elevated stratopause following an SSW does not always 557 occur (Chandran et al., 2013), though it is present in the vast majority of the events considered 558 here, thus appearing in the composite analysis. The CESM2(WACCM6) reforecasts indicate that 559 the formation of an elevated stratopause and the mesosphere cooling can be predicted ~10-15 560 days in advance of the SSW, though the altitude of the elevated stratopause is too low in these 561 early predictions. The reforecasts initialized closer to the SSW (Figure 12d) and near the SSW 562 onset (Figure 12e) capture the mesosphere cooling and elevated stratopause with higher fidelity 563 when comparing to WACCMX-SD. These results provide an initial demonstration that the MLT

564	variability can be predicted ~5-15 days in advance of SSWs. The MLT variations during SSW
565	generate subsequent variations in the ionosphere and thermosphere, and the results in Figure 12
566	thus suggest that it may be possible to also forecast the upper atmosphere variability ~ 10 days in
567	advance of an SSW.
568	
569	
570	3.6 Limitations of current framework for chemistry prediction
572	As CESM2(WACCM6) includes a comprehensive tropospheric and middle atmospheric
573	chemistry module, we were hopeful that the current model framework could also be used to
574	explore the predictability of stratospheric chemistry such as water vapor and ozone. However,
575	we have discovered that nudging CESM2(WACCM6) to MERRA-2 with a 1-hourly timescale
576	introduces significant deviations between modeled and observed water vapor. This is illustrated
577	in Figure 13 which shows the time evolution of the stratospheric tropical water vapor, also
578	known as the "tape recorder" (Mote et al. 1996), for WACCM6-SD simulation (used to initialize
579	CESM2(WACCM6) reforecasts) and Microwave Limb Sounder (MLS) observations (Lambert et
580	al., 2015). Figure 13a reveals that stratospheric water vapor concentrations in WACCM6-SD are
581	approximately double the observed concentration. Additionally, the water vapor tape recorder
582	indicates faster ascent in WACCM6-SD, such that the simulated water vapor leads the
583	observations as seen in the 100 hPa and 70 hPa time series (Figure 13b).
584	We have performed several sensitivity experiments with WACCM6-SD, including an
585	experiment in which we lowered the nudging top from 60 km to 50 km and another experiment
586	in which we increased the nudging timescale from 1 to 2 hours. We found that the first
587	experiment had no effect on the simulation of water vapor, whereas the second experiment

588	decreased the value of tropical lower stratospheric water vapor by about 15%, making the time
589	evolution of water vapor closer to observations. It is possible that the 2-hour nudging results in a
590	colder and higher tropopause or weaker recirculation of water vapor-rich air from the
591	midlatitudes, both of which would reduce water vapor within the tape recorder. It is also possible
592	that temperature nudging acts as diabatic heating and artificially changes the strength of the
593	meridional circulation (Miyazaki et al., 2005). This could decrease the transit time of water
594	vapor-rich tropospheric air through the tropical tropopause layer, thereby decreasing the amount
595	of dehydration that can occur. An even longer nudging timescale in the stratosphere may
596	improve the representation of stratospheric chemistry in the S2S reforecasts/forecasts with
597	CESM2(WACCM6) and we will explore this in the future further.
598	
599	4 Summary and Conclusions
600	We have described here a fully coupled Earth system subseasonal prediction framework
601	with CESM2(CAM6) and CESM2(WACCM6) developed for research purposes.
602	CESM2(CAM6) and CESM2(WACCM6) are the newest versions of the NCAR Earth system
603	model used in CMIP6, and the two configurations differ in the atmospheric model components.
604	CESM2(CAM6) has a top near 40 km, whereas CESM2(WACCM6) extends up to \sim 140 km and
605	includes fully interactive tropospheric and stratospheric chemistry. Both configurations include
606	prognostic aerosols. Subseasonal reforecasts were carried out following the SubX protocol for
607	years 1999 - 2020 with weekly start dates for each year for CESM2, and with weekly start dates
608	only between September and March for CESM2(WACCM6). Near real-time forecasts with the
(00	
609	model have been running since September 2020 for CESM2(WACCM6) and since April 2021

611	We demonstrated that the prediction skill of 2m temperature and precipitation as well as
612	of the MJO and NAO are comparable to the prediction skill for these variables in CESM1 and
613	similar to the skill seen in some operational models (NOAA's CFSv2 and ECMWF). The high
614	subseasonal prediction skill of this research framework, along with extensive output obtained for
615	all model components, makes it an excellent tool for studies of subseasonal predictability. We
616	demonstrated that stratospheric-tropospheric coupling during SSW events is well represented in
617	CESM2(CAM6) and CESM2(WACCM6), which implies that both configurations will likely
618	capture well surface impacts of these events. This will be investigated in future studies.
619	CESM2(WACCM6) can also be used for predictability research of the dynamics of the
620	stratosphere and the mesosphere and lower-thermosphere region. We further demonstrated that
621	variability in the MLT region is predictable ~ 10 days in advance of SSWs.
622	In general, the subseasonal prediction skill of tropospheric atmospheric variables is very
623	similar between CESM2(CAM6) and CESM2(WACCM6). Therefore, the differences either in
624	ocean and atmosphere initialization procedures or differences in model lids and representation of
625	the stratosphere have not translated into many significant differences in prediction skills of the
626	variables examined here. Nevertheless, the noted differences in skill include higher DJF 2m
627	temperature skill in eastern Asia in CESM2(WACCM6) as compared to CESM2(CAM6), and
628	higher 2m temperature skill in parts of North America in CESM2(CAM6), both for weeks 5-6.
629	Stratospheric-tropospheric coupling is well-represented in both models, however, the polar cap
630	geopotential anomalies following an SSW are more consistent with observations in
631	CESM2(WACCM6) as compared to CESM2. The impact of this difference on predictability of
632	surface extreme weather associated with SSWs will be investigated in future work.
633	CESM2(CAM6) and CESM2(WACCM6) are freely available for use by the community.

634	The reforecast sets described here are publicly available and are designed to serve as a basis for
635	future experiments elucidating sources of subseasonal predictability. The near real-time
636	forecasts are contributing to the NOAA week 3-4 outlook. The extensive output from the
637	atmospheric, land, ocean and sea-ice components of the model may open new avenues of
638	research.
639 640 641	Acknowledgements and Data
642 643	This work was supported by the National Oceanic and Atmospheric Administration's Weather
644	Program Office/Climate Test Bed Program, and by the National Center for Atmospheric
645	Research (NCAR), which is a major facility sponsored by the National Science Foundation
646	(NSF) under Cooperative Agreement 1852977. Portions of this study were supported by the
647	Regional and Global Model Analysis (RGMA) component of the Earth and Environmental
648	System Modeling Program of the U.S. Department of Energy's Office of Biological &
649	Environmental Research (BER) via NSF Interagency Agreement 1844590. Portions of this study
650	were supported by the NOAA Office of Weather and Air Quality Research Programs (OWAQ)
651	(Subseasonal to Seasonal) under grant NA19OAR4590156.Computing and data storage
652	resources, including the Cheyenne supercomputer (doi:10.5065/D6RX99HX), were provided by
653	the Computational and Information Systems Laboratory (CISL) at NCAR. We thank the
654	National Aeronautics and Space Administration (NASA) for making the FP-IT data available to
655	us for this project. MERRA-2 is available from NASA's Global Modeling and Assimilation
656	office at https://gmao.gsfc.nasa.gov/ reanalysis/MERRA-2/. CPC Global Temperature data
657	provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their Web site at
658	https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html. CESM2(CAM6) and

- 659 CESM2(WACCM6) reforecast outputs are available for download from the NCAR Climate Data
- 660 Gateway and can be accessed via the following DOI's: <u>https://doi.org/10.5065/0s63-m767</u> and
- 661 <u>https://doi.org/10.5065/ekns-e430</u> respectively.
- 662

663 **References**

- 664
- 665 Beljaars, A. C. M., Brown, A. R., & Wood, N. (2004). A new parameterization of turbulent
- 666 orographic form drag. *Quarterly Journal of the Royal Meteorological Society*, 130, 1327–
- 667 1347. <u>https://doi.org/10.1256/qj.03.73</u>
- 668 Baldwin, Mark P., & T. J. Dunkerton (2001). Stratospheric harbingers of anomalous weather
- regimes. *Science*, 294.5542, 581-584, 10.1126/science.1063315.
- 670 Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A. H., Charlton-Perez, A. J., et
- al. (2021). Sudden stratospheric warmings. *Reviews of Geophysics*, 59, e2020RG000708.
- 672 <u>https://doi.org/10.1029/2020RG000708</u>
- 673 Berner, J., Fossell K. R., Ha S.-Y., Hacker J. P. & Snyder C. (2015). Increasing the skill of
- 674 probabilistic forecasts: Understanding performance improvements from model-error
- 675 representations. *Monthly Weather Review*, 143.4, 1295-1320. <u>https://doi.org/10.1175/MWR-</u>
- 676 <u>D-14-00091.1</u>
- Boer, G. J., & Hamilton, K. QBO influence on extratropical predictive skill, *Clim. Dyn.*, 31,
 987–1000 (2008).
- 679 Butler, A. H., Sjoberg, J. P., Seidel, D. J., & Rosenlof, K. H. (2017). A sudden stratospheric
- 680 warming compendium. *Earth System Science Data*, 9, 63–76, https://doi.org/10.5194/essd-9-
- 681 63**-**2017.

- 682 Chandran, A., Collins, R. L., Garcia, R. R., Marsh, D. R., Harvey, V. L., Yue, J., & de la Torre, L. (2013). A
- 683 climatology of elevated stratopause events in the whole atmosphere community climate model, J.

684 *Geophys. Res. Atmos.*, 118, 1234-1246, doi:10.1002/jgrd.50123.

- Danabasoglu, G., Bates, S. C., Briegleb, B. P., Jayne, S. R., Jochum, M., Large, W. G., et al.
- 686 (2012). The CCSM4 ocean component. *Journal of Climate*, 25, 1361–1389.
- 687 https://doi.org/10.1175/JCLI-D-11-00091.1
- 688 Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., et
- al. (2020). The Community Earth System Model Version 2 (CESM2). Journal of Advances in
- 690 *Modeling Earth Systems*, 12, e2019MS001916. https://doi.org/ 10.1029/2019MS001916
- 691 Davis, A. N., J. H. Richter, J. Edwards, & A. A. Glanville (2021): A positive zonal wind
- 692 feedback on sudden stratospheric warming development revealed by CESM2 (WACCM6)
- 693 reforecasts, *Geophysical Research Letters*, 48,
- 694 e2020GL090863. <u>https://doi.org/10.1029/2020GL090863</u>
- de Andrade, F. M., Coelho, C. A. S., & Cavalcanti, I. F. A. (2019). Global precipitation hindcast
- quality assessment of the subseasonal to seasonal (S2S) prediction project models. *Climate*
- 697 *Dynamics*, *52*(9-10), 5451–5475. <u>https://doi.org/10.1007/s00382-018-4457-z</u>
- Diro, G. T., & Lin, H. (2020). Subseasonal Forecast Skill of Snow Water Equivalent and Its Link
- 699 with Temperature in Selected SubX Models, *Weather and Forecasting*, 35(1), 273-284.
- 700 Domeisen, D.I.V. & Butler, A.H. (2020). Stratospheric drivers of extreme events at the Earth's
- surface. Communications Earth and Environment, 1, 59, <u>https://doi.org/10.1038/s43247-020-</u>
- 702 <u>00060-z</u>
- Ford, T.W., Dirmeyer, P.A. & Benson, D.O. Evaluation of heat wave forecasts seamlessly across
- subseasonal timescales. *npj Climate and Atmospheric Science* 1, 20 (2018).
- 705 <u>https://doi.org/10.1038/s41612-018-0027-7</u>

- Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs L., et al. (2017). The
- 707 Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2).

708 *Journal of Climate*, **30**, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1.

- 709 Gettelman, A., & Morrison, H. (2015). Advanced two-moment bulk microphysics for global
- 710 models. Part I: Off-line tests and comparison with other schemes. *Journal of Climate*, 28,
- 711 1268–1287. <u>https://doi.org/10.1175/JCLI-D-14-00102.1</u>
- 712 Gettelman, A., Mills, M. J., Kinnison, D. E., Garcia, R. R., Smith, A. K., Marsh, D. R., et al.
- 713 (2019). The Whole Atmosphere Community Climate Model version 6 (WACCM6). Journal
- 714 of Geophysical Research: Atmospheres, 124(23), 12,380–12,403. https://doi.org/10.1029/
- 715 2019JD030943
- 716 Golaz, J.-C., Larson, V. E., & Cotton, W. R. (2002). A PDF-based model for boundary layer
- clouds. Part I: Method and model description. *Journal of the Atmospheric Sciences*, 59,
- 718 3540–3551.
- 719 Griffies, S. M., Danabasoglu G., Durack P. J., Adcroft A. J., Balaji V., Böning C. W., et al.
- 720 (2016). OMIP contribution to CMIP6: Experimental and diagnostic protocol for the physical
- component of the ocean model intercomparison project. *Geoscience Model Development*, 9,
- 722 3231–3296, <u>https://doi.org/10.5194/gmd-9-3231-2016</u>.
- 723 Zhu H., H. Chen, Y. Zhou & X. Dong (2019). Evaluation of the subseasonal forecast skill of
- surface soil moisture in the S2S database, *Atmospheric and Oceanic Science Letters*, 12:6,
- 725 467-474, DOI: <u>10.1080/16742834.2019.1663123</u>
- Hersbach, H., Bell, B., Berrisford, P., Hirahara S., Horányi A., Muñoz-Sabater J., et al. (2020).
- 727 The ERA5 global reanalysis. *Quarterly Journal of Royal Meteorological Society*, 146, 1999–
- 728 2049, <u>https://doi.org/10.1002/qj.3803</u>

- Hunke, E. C., Hebert, D. A., & Lecomte, O. (2013). Level-ice melt ponds in the Los Alamos sea
- rice model, CICE. *Ocean Modelling*, 71, 26–42.

731 https://doi.org/10.1016/j.ocemod.2012.11.008

- Hunke, E. C, Lipscomb, W. H., Turner, A. K., Jeffery, N., & Elliott, S. (2015). CICE: The Los
- Alamos Sea Ice Model. Documentation and Software User's Manual. Version 5.1. T-3 Fluid
- 734 Dynamics Group, Los Alamos National Laboratory, Tech. Rep. LA-CC-06-012.
- Hurrell, J. W., (1995). Decadal trends in the North Atlantic Oscillation: Regional temperatures
- and precipitation. *Science*, 269, 676–679, <u>https://doi.org/10.1126/science.269.5224.676</u>.
- 737 Jackson, D. R., Fuller-Rowell, T. J., Griffin, D. J., Griffith, M. J., Kelly, C. W., Marsh, D. R., & Walach, M.-
- T. (2019). Future directions for whole atmosphere modeling: Developments in the context of space
- 739 weather. Space Weather, 17, 1342–1350. https://doi.org/10.1029/2019SW002267
- 740 Kim, H., Vitart, F., & Waliser, D. E. (2018). Prediction of the Madden–Julian Oscillation: A
- 741 Review. Journal of Climate, 31(23), 9425–9443. <u>https://doi.org/10.1175/JCLI-D-18-0210.1</u>
- 742 Kim, H., Richter, J. H., & Martin, Z. (2019a). Insignificant QBO-MJO prediction skill
- relationship in the SubX and S2S subseasonal reforecasts. *Journal of Geophysical Research:*
- 744 *Atmospheres*, *124*, 12,655–12,666. <u>https://doi.org/10.1029/2019JD031416</u>
- 745 Kim, H., Janiga, M. A., & Pegion, K. (2019b). MJO propagation processes and mean biases in
- the SubX and S2S reforecasts. Journal of Geophysical Research: Atmospheres, 124, 9314–
- 747 9331. <u>https://doi.org/10.1029/2019JD031139</u>
- 748 Lambert, A., Read, W. & Livesey, N. (2015). MLS/Aura Level 2 Water Vapor (H2O) Mixing
- Ratio V004, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services
- 750 Center (GES DISC), 10.5067/Aura/MLS/DATA2009
- 751 Larson, V. E., (2017). CLUBB-SILHS: A parameterization of subgrid variability in the
- atmosphere. arXiv:1711.03675v2 [physics.ao-ph].

- 753 Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., et al.
- 754 (2019). The Community Land Model Version 5: Description of new features, benchmarking,
- and impact of forcing uncertainty. *Journal of Advances in Modeling Earth Systems*, 11,
- 756 4245–4287. <u>https://doi.org/10.1029/2018MS001583</u>
- Leutbecher, M., & Tim N. Palmer (2008). Ensemble forecasting. *Journal of computational physics*, 3515-3539.
- 759 Leutbecher, M., Lock S.-J., Ollinaho P., Lang, S. T.K., Balsamo, G., Bechtold P., et al. (2017).
- 760 Stochastic representations of model uncertainties at ECMWF: State of the art and future
- vision. *Quarterly Journal of the Royal Meteorological Society* 143.707 (2017): 2315-2339.
- 762 <u>https://doi.org/10.1002/qj.3094</u>
- 763 Levis, S., Badger, A., Drewniak, B., Nevison, C., & Ren, X. L. (2018). CLMcrop yields and
- water requirements: Avoided impacts by choosing RCP 4.5 over 8.5. *Climatic Change*, 146,
- 765 501–515. <u>https://doi.org/10.1007/s10584-016-1654-9</u>
- Li, F., Levis, S., & Ward, D. S. (2013). Quantifying the role of fire in the Earth system—Part 1:
- 767 Improved global fire modeling in the Community Earth System Model (CESM1).
- 768 *Biogeosciences*, 10, 2293–2314. <u>https://doi.org/10.5194/bg-10-2293-2013</u>
- Li, F., & Lawrence, D. M. (2017). Role of fire in the global land water budget during the
- twentieth century due to changing ecosystems. *Journal of Climate*, 30, 1893–1908.
- 771 <u>https://doi.org/10.1175/JCLI-D-16-0460.1</u>
- Lim, Y., Son, S., & Kim, D. (2018). MJO Prediction Skill of the Subseasonal-to-Seasonal
- Prediction Models, *Journal of Climate*, *31*(10), 4075-4094. Retrieved Feb 14, 2021, from
- 774 <u>https://journals.ametsoc.org/view/journals/clim/31/10/jcli-d-17-0545.1.xml</u>

- Lim, Y., Son, S.-W., Marshall, A. G., Hendon, H. H., & Seo, K.-H. (2019). Influence of the
- QBO on MJO prediction skill in the subseasonal- to-seasonal prediction models. *Climate Dynamics*, 1–15.
- 1778 Lipscomb, W. H., Price, S. F., Hoffman, M. J., Leguy, G. R., Bennett, A. R., Bradley, S. L., et al.
- (2019). Description and evaluation of the Community Ice Sheet Model (CISM) v. 2.1.
- 780 *Geoscientific Model Development*, 12, 387–424. <u>https://doi.org/10.5194/gmd-12-387-2019</u>
- 781 Liu, X., Ma, P. L., Wang, H., Tilmes, S., Singh, B., Easter, R. C., et al. (2016). Description and
- evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within
- 783 Version 5.3 of the Community Atmosphere Model. *Geoscientific Model Development*, 9,
- 784 505–522. <u>https://doi.org/10.5194/gmd-9-505-2016</u>
- Liu, H.-L., Bardeen, C. G., Foster, B. T., Lauritzen, P., Liu, J., Lu, G., Wang, W. et al., (2018). Development
- and validation of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere
- 787 extension (WACCM-X 2.0). Journal of Advances in Modeling Earth Systems, 10, 381–402.
- 788 https://doi.org/10.1002/2017MS001232
- 789 Marshall, A. G., & Scaife, A. A. (2010): Improved predictability of stratospheric sudden
- 790 warming events in an atmospheric general circulation model with enhanced stratospheric
- resolution, Journal of Geophysical Research, 115, D16114, doi:10.1029/2009JD012643
- 792 Miyazaki, K., Iwasaki, T., Shibata, K., Deushi, M., & Sekiyama, T. T. (2005). The impact of
- changing meteorological variables to be assimilated into GCM on ozone simulation with
- 794 MRI CTM, Journal of the Meteorological Society of Japan. Ser. II, 83, 909-918,
- 795 https://doi.org/10.2151/jmsj.83.909.
- 796 Moore, J. K., Doney, S. C., Kleypas, J. A., Glover, D. M., & Fung, I. Y. (2002). An intermediate
- complexity marine ecosystem model for the global domain. *Deep Sea Research*, 49, 403–
- 798 462. <u>https://doi.org/10.1016/S0967-0645(01)00108-4</u>

- 799 Moore, J. K., Doney, S. C., & Lindsay, K. (2004). Upper ocean ecosystem dynamics and iron
- 800 cycling in a global three-dimensional model. *Global Biogeochemical Cycles*, 18, GB4028.

801 https://doi.org/10.1029/2004GB002220

- 802 Moore, J. K., Lindsay, K., Doney, S. C., Long, M. C., & Misumi, K. (2013). Marine Ecosystem
- 803 Dynamics and Biogeochemical Cycling in the Community Earth System Model
- 804 [CESM1(BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5
- 805 scenarios. Journal of Climate, 26, 9291–9312. <u>https://doi.org/10.1175/JCLI-D-12-00566.1</u>
- 806 Mote, P. W., Rosenlof, K. H., McIntyre, M. E., Carr, E. S., Gille, J. C., Holton, J. R., et al. (1996). An
- 807 atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor,
- 808 *Journal of Geophysical Research*, 101(D2), 3989–4006, doi:10.1029/95JD03422.
- 809 NAS, 2016: Next Generation Earth System Prediction: Strategies for Subseasonal to Seasonal
- 810 Forecasts. The National Academies Press, 350 pp., <u>https://doi.org/10.17226/21873</u>.
- 811 Oleson, K. W., & Feddema, J. (2019). Parameterization and surface data improvements and new
- 812 capabilities for the Community Land Model Urban (CLMU). Journal of Advances in
- 813 Modeling Earth Systems. <u>https://doi.org/10.1029/2018MS001586</u>
- 814 Pedatella, N. M., Liu, H.-L., Marsh, D. R., Raeder, K., Anderson, J. L., Chau, J. L., et al.
- 815 (2018a). Analysis and hindcast experiments of the 2009 sudden stratospheric warming in
- 816 WACCMX+DART. Journal of Geophysical Research: Space Physics, 123, 3131–3153.
- 817 https://doi.org/10.1002/2017JA025107
- 818 Pedatella, N. M., J. L. Chau, H. Schmidt, L. P. Goncharenko, C. Stolle, K. Hocke, V. L. Harvey,
- B. Funke, and T. A. Siddiqui (2018). *EOS*. <u>https://eos.org/features/how-sudden-stratospheric-</u>
 warming-affects-the-whole-atmosphere
- 821 Pegion, K., Kirtman, B. P., Becker, E., Collins, D. C., LaJoie E., Burgman, R., Bell, R. et al.
- 822 (2019). The Subseasonal Experiment (SubX): A multimodel subseasonal prediction

- 823 experiment. Bulletin of the American Meteorological Society, 100, 2043–2060,
- 824 https://doi.org/ 10.1175/BAMS-D-18-0270.1.
- 825 Rashid, H. A., Hendon, H. H., Wheeler, M. C., & Alves, O. (2011). *Climate Dynamics*, 36(3-4),
- 826 649–661. https://doi.org/10.1007/s00382-010- 0754-x
- 827 Richter, J. H., Sassi, F., & Garcia, R. R. (2010). Toward a Physically Based Gravity Wave
- 828 Source Parameterization in a General Circulation Model. *Journal of the Atmospheric*
- 829 Sciences, 67(1), 136–156. <u>https://doi.org/10.1175/2009JAS3112.1</u>
- 830 Richter, J. H., Pegion K., Sun L, Kim H., Caron J. M., Glanville A., et al. (2020). Subseasonal
- 831 prediction with and without a well-represented stratosphere in CESM1. *Weather and*
- 832 *Forecasting*, doi: https://doi.org/10.1175/WAF-D-20-0029.1.
- 833 Riddle, E. E., Butler, A. H., Furtado, J. C., Cohen, J. L., & Kumar, A. (2013). CFSv2 ensemble
- prediction of the wintertime Arctic Oscillation, *Climate Dynamics*, 41, 1099–1116.
- 835 Saha, S., Moorthi S., Wu X., Wang J., Nadiga S., Tripp P., et al. (2014). The NCEP Climate
- Forecast System Version 2. *Journal of Climate*, **27**, 2185–2208,
- 837 https://doi.org/10.1175/JCLI-D-12-00823.1.
- 838 Scaife, A. A., C. K. Folland, L. V. Alexander, A. Moberg, & J. D. Knight (2008). European
- climate extremes and the North Atlantic Oscillation. *Journal of Climate*, 21, 72–83,
- 840 https://doi.org/ 10.1175/2007JCLI1631.1.
- 841 Scaife, A., Arribas, A., Blockley, E., Brookshaw, A., Clark, R., Dunstone, N., et al. (2014).
- 842 Skillful long-range prediction of European and North American winters, *Geophysical*
- 843 *Research Letters*, 41, 2514–2519.
- 844 Scaife, A.A., Athanassiadou M., Andrews M., Arribas A., Baldwin M., Dunstone N., et al.
- 845 (2014b). Predictability of the quasi-biennial oscillation and its northern winter teleconnection

- on seasonal to decadal timescales, *Geophysical Research Letters*, 41, 1752-1758,
- 847 10.1002/2013GL059160 (2014b)
- 848 Scinocca, J., & N. Mcfarlane (2000). The parametrization of drag induced by stratified flow over
- 849 anisotropic orography. Quarterly Journal of the Royal Meteorological Society, 126, 2353–
- 850 2394. <u>https://doi.org/10.1256/smsqj.56801</u>
- 851 Smith, R., Jones P., Briegleb B., Bryan F., Danabasoglu G., Dennis J., et al. (2010). The Parallel
- 852 Ocean Program (POP) reference manual, Ocean component of the Community Climate
- 853 System Model (CCSM), *LANL Technical Report*, LAUR-10-01853, 141 pp.
- Sun, L., Perlwitz, J., Richter, J. H., Hoerling, M. P., & Hurrell, J. W. (2020). Attribution of NAO
- predictive skill beyond 2 weeks in boreal winter. *Geophysical Research Letters*, 47,
- e2020GL090451. https://doi.org/ 10.1029/2020GL090451
- 857 Stan C., Straus, D. M., Frederiksen, J. S., Lin, H., Maloney, E. D., & Schumacher, C., et al.
- 858 (2017). Review of Tropical-Extratropical Teleconnections on Intraseasonal Time Scales.
- 859 *Review of Geophysics*, 55, 902-937.
- 860 Tolman, H. L. (2009). User manual and system documentation of WAVEWATCH III TM
- 861 version 3.14. *Technical note, MMAB Contribution,* 276, p.220.
- 862 Tripathi, O. P., Baldwin, M., Charlton-Perez, A., Charron, M., Eckermann, S.D., Gerber, E., et
- al. (2015). The predictability of the extratropical stratosphere on monthly time-scales and its
- 864 impact on the skill of tropospheric forecasts. *Quarterly Journal of the Royal Meteorological*
- 865 Society, 141: 987-1003. https://doi.org/10.1002/qj.2432
- 866 Tsujino, H., Urakawa S., Nakano H., Small R. J., Kim W. M., Yeager S. G., et al. (2018). JRA-
- 55 based surface dataset for driving ocean–sea-ice models (JRA55-do). *Ocean Modelling*,
- 868 130, 79–139, <u>https://doi.org/10.1016/j.ocemod.2018.07.002</u>.

- 869 Tsujino, H., Urakawa L. S., Griffies S. M., Danabasoglu G., Adcroft A. J., Amaral A. E., et al.
- 870 (2020). Evaluation of global ocean–sea-ice model simulations based on the experimental
- 871 protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). *Geoscience Model*
- 872 *Development*, 13, 3643–3708, https://doi.org/10.5194/ gmd-13-3643-2020.
- 873 Vitart, F., C. Ardilouze, A. Bounet, A. Brookshaw, M. Chen, C. Codorean, et al. (2017). The
- 874 Subseasonal to Seasonal (S2S) Prediction Project Database. *Bulletin of the American*
- 875 *Meteorological Society*, 98, 163–173. doi:10.1175/ BAMS-D-16-0017.1.
- 876 Vitart, F. (2017). Madden–Julian Oscillation prediction and teleconnections in the S2S database.
- 877 *Quarterly Journal of the Royal Meteorological Society*, *143*, 2210–2220.
- 878 <u>https://doi.org/10.1002/qj.3079</u>
- Vitart, F., & A. W. Robertson (2018). The sub-seasonal to seasonal prediction project (S2S) and
 the prediction of extreme events. npj *Climate Atmospheric Science*, 1, 3,
- 881 https://doi.org/10.1038/S41612-018-0013-0.
- Wang H., Akmaev, R. A., Fang, T.-W., Fuller-Rowell, T. J., Wu, F., Maruyama, N., & Iredell,
- 883 M. D. (2014). First forecast of a sudden stratospheric warming with a coupled whole-
- atmosphere/ionosphere model IDEA, *Journal of Geophysical Research: Space Physics*, 119,
- 885 2079–2089, doi:10.1002/2013JA019481.
- Wang, L., & Robertson, A. W. (2019). Week 3–4 predictability over the United States assessed
- from two operational ensemble prediction systems. *Climate Dynamics*, 52(9-10), 5861–5875.
- 888 https://doi.org/10.1007/s00382-018-4484-9.
- 889 Wayand, N. E., Bitz, C. M., & Blanchard-Wrigglesworth, E. (2019). A year-round subseasonal-
- to-seasonal sea ice prediction portal. *Geophysical Research Letters*, *46*, 3298–3307.
- 891 <u>https://doi.org/10.1029/2018GL081565</u>

- 892 White, C. J., and Carlsen H., Robertson A. W., Klein R. J. T., Lazo J. K., Kumar A., et al.
- 893 (2017). Potential applications of Subseasonal-to-Seasonal (S2S) predictions. *Meteorological*
- 894 *Applications*, 24, 315–325, <u>https://doi.org/10.1002/met.1654</u>.
- 895 Wilks, D. S. (2011). Statistical Methods in the Atmospheric Sciences. 3rd ed. International
- Geophysics Series, Vol. 100, Academic Press, 704 pp.
- Xiang, B., Sun, Y. Q., Chen, J.-H., Johnson, N. C., & Jiang, X. (2020). Subseasonal prediction of
- 898 land cold extremes in boreal wintertime. *Journal of Geophysical Research: Atmospheres*,
- 899 *124*, e2020JD032670. https://doi.org/ 10.1029/2020JD032670
- 900 Yamagami, A., & Matsueda, M. (2020). Subseasonal forecast skill for weekly mean atmospheric
- 901 variability over the Northern Hemisphere in winter and its relationship to midlatitude
- 902 teleconnections. *Geophysical Research Letters*, 47, e2020GL088508. https://doi.
- 903 org/10.1029/2020GL088508
- 204 Zampieri, L., Goessling, H. F., & Jung, T. (2018). Bright prospects for Arctic Sea ice prediction
- 905 on subseasonal time scales. *Geophysical Research Letters*, 45, 9731–9738.
- 906 https://doi.org/10.1029/2018GL079394
- 2ar, J.H., (2014). Spearman Rank Correlation: Overview. Wiley StatsRef: Statistics Reference
 Online. doi:10.1002/9781118445112.stat05964
- 209 Zhang, G. J., & McFarlane, N. A. (1995). Sensitivity of climate simulations to the
- 910 parameterization of cumulus convection in the Canadian Climate Center general circulation
- 911 model. *Atmosphere-Ocean*, *33*, 407–446.
- 912 Zuo J., H-L. Ren, J. Wu, Y. Nie, Q. Li (2016). Subseasonal variability and predictability of the
- 913 Arctic Oscillation/North Atlantic Oscillation in BCC_AGCM2.2, Dynamics of Atmospheres
- 914 and Oceans, 75, pp 33-45, https://doi.org/10.1016/j.dynatmoce.2016.05.002

manuscript submitted to Journal of Advances in Modeling Earth Systems

921 **Figure 1:** Correlation coefficients for SST from (a) JRA55-do FO (b) WACCM6-SD in

922 comparison with HadISST observations. RMSE for (c) JRA55-do FO and (d) WACCM6-SD

923 when compared with the same observations. (e) The ENSO Nino3.4 Index (e) for all the datasets.

All calculations use monthly data from 1999-2019.

DJF 2m Temperature

926 927

928

929 Figure 2: The DJF 2m temperature ACC for CESM2(CAM6) over land for (a) weeks 1-2 (day

930 1-14 averaged), (b) weeks 3-4 (day 15-28 averaged), and (c) weeks 5-6 (day 29-42 averaged).

931 Using the same biweekly separation, panels (d)-(f) show the difference in ACC for

932 CESM2(CAM6) minus CESM1(CAM5) and panels (g)-(i) show the difference in ACC for

933 CESM2(CAM6) minus CESM2(WACCM6). Data in the difference plots that fall below the 95%

934 confidence level using a Fisher z transformation are omitted. Note the different colorbar ranges.

All calculations use daily data from 1999-2015. The number of ensemble members used in the

analysis is given in the column titles in the square brackets.

JJA 2m Temperature

940 Figure 3: Same as Figure 2 but for JJA. Note, there is no CESM2(WACCM6) data for April -941 August.

- 919

Figure 4: DJF 2m temperature ACC averaged over (a) the global land and (b) North American

land. Panels (c) and (d) are the same as panels (a) and (b) but for JJA. Note, there is no CESM2(WACCM6) data for April - August. All calculations use daily data from 1999-2015. In the legend, the number of ensemble members used in the calculations is shown in square brackets.

JJA Precipitation

Figure 6: Same as Figure 3 but for precipitation.

Figure 7: Same as Figure 4 but for precipitation.

Figure 8. RMSE (solid bars) and spread (hatched bars) for 2m temperature for DJF (top) and JJA (bottom). Metrics are shown for global land (left) and North American land (right).

Figure 9: ACC for MJO for NDJFM from CESM1(CAM5), CESM2(CAM6), and

993 CESM2(WACCM6). Solid (dashed) lines indicate the average of 10 (5) ensemble members.

997 Figure 10: Biweekly NAO ACC in NDJFM from CESM1(CAM5), CESM2(CAM6), and

CESM2(WACCM6). The number of ensemble members used in the analysis is given in the square brackets.

Figure 11: Standardized polar cap geopotential anomalies composited around the central SSW date for (a) MERRA-2, (b) CESM2(WACCM6) reforecasts, and (c) CESM2 reforecasts, shaded every 0.2 standard deviations. The squared pattern correlation between the ensemble average of the reforecasts and MERRA-2, as well as the average of all squared correlations between each

1012 individual ensemble member and MERRA-2 for every event, are displayed in the upper right of

- 1013 each panel.
- 1014
- 1015

Figure 12: Composite of zonal-mean temperature (T) between 70°-90°N for 14 major SSW
events in (a) WACCMX-SD, and CESM2(WACCM6) reforecasts initialized at a lag of (b) -15,
(c) -10, (d) -5, and (e) 0 days prior to the SSW central date. The SSW onset date is defined as the
zonal-mean zonal wind reversal at 60N and 10 hPa. The horizontal dashed lines in panel (a)
mark the stratopause (~ 0.5 hPa), and mesopause (~10⁻³ hPa respectively).

 $\begin{array}{c} 1025\\ 1026 \end{array}$

Fig 14: The 10°S-10°N tape recorder of water vapor (a) for MLS observations (filled color contours) and WACCM6-SD (back contour lines). The time series of the tape recorder at

- ~100hPa (dashed lines) and ~70hPa (solid lines) for MLS (black) and WACCM6-SD (red).

	Atmosphere	Land	Ocean & Sea-ice	Reforecast Period	Initialization Frequency	# Ens Members Reforecasts	# Ens Members Forecasts
CESM2 (CAM6)	CFSv2	CLM5 spun up with CFSv2	JRA55-do forced ocn/sea-ice	All months, 1999 - 2020	Every Monday*	11	21**
CESM2 (WACCM6)	WACCM6-SD run nudged to MERRA-2	CLM5 spun up with CFSv2	Hybrid: JRA55-do every 5 yrs / MERRA- 2 forced ocn	Sep-Mar 1999 - 2020	Every Monday*	5	21***

1037

1038 Table 1: Summary of initialization methods for S2S reforecasts with CESM2(CAM6) and

1039 CESM2(WACCM6). *Reforecasts are started every Monday, except for leap years, in which

1040 case the reforecast was carried out on a Sunday; **Real-time forecasts with CESM2(CAM6)

1041 stared April 2021; *** Real-time forecasts with CESM2(WACCM6) started in September 2020.

1042

1043

Journal of Advances in Modeling Earth Systems

Supporting Information for

A subseasonal Earth system prediction framework with CESM2

Jadwiga H. Richter¹, Anne A. Glanville¹, James Edwards¹, Brian Kauffman¹, Nicholas Davis²,

Abigail Jaye³, Hyemi Kim⁴, Nicholas Pedatella⁵, Lantao Sun⁶, Judith Berner^{3,1}, Who M. Kim¹,

Stephen G. Yeager¹, Gokhan Danabasoglu¹, Julie M. Caron¹, and Keith W. Oleson¹

¹ Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado

² Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado

³ Mesoscale and Microscale Meteorology Laboratory, National Center for Atmospheric Research, Boulder, Colorado

⁴ School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York
 ⁵ High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado
 ⁶ Colorado State University, Fort Collins, Colorado

Contents of this file

Figures S1 to S4 Tables S1 to S7

Corresponding Author: Jadwiga H. Richter, jrichter@ucar.edu

MAM 2m Temperature

Figure S1: Same as Figure 3, but for MAM. Note, there is no CESM2(WACCM6) data for April - August.

Figure S2: Same as Figure 2 but for SON.

MAM Precipitation

Figure S3: Same as Figure 5, but for MAM. Note, there is no CESM2(WACCM6) data for April - August.

Figure S4: Same as Figure 5 but for SON.

SubX formatted variables (atmosphere, land, sea-ice)						
SubX Priority	Original CESM variable name	SubX Formatted Filename	Description	CESM2 (CAM6)	CESM2 (WACCM6)	
p1	FLUT	rlut	Upwelling longwave flux at top of model	Y	Y	
p1	PRECC+PRE CL	pr_sfc	Total (convective and large- scale) precipitation rate (liq + ice)	Y	Y	
р1	TREFHT	tas_2m	Reference height temperature	Y	Y	
p1	TS	ts	Surface temperature	Y	Y	
p1	U200	ua_200	Zonal wind at 200 hPa	Y	Y	
p1	U850	ua_850	Zonal wind at 850 hPa	Y	Y	
р1	U850	ua_850	Zonal wind at 850 hPa	Y	Y	
р1	V850	va_850	Meridional wind at 850 hPa	Y	Y	
p1	Z200	zg_200	Geopotential height at 200 hPa	Y	Y	
р1	Z500	zg_500	Geopotential height at 500 hPa	Y	Y	
p2	CAPE	cape	Convective available potential energy	Y	Y	
p2	LHFLX	hfls_sfc	Surface latent heat flux	Y	Y	
p2	SHFLX	hfss_sfc	Surface sensible heat flux	Y	Y	
p2	Q850	huss_850	Specific humidity at 850 hPa	Y	Y	
p2	QRUNOFF	mrro	Total liquid runoff	Y	Y	
p2	SOILLIQ	mrso	Soil liquid water	Y	Y	
p2	PSL	psl	Sea-level pressure	Y	Y	
p2	FLNS-FSNS	rad_sfc	Net surface radiation	Y	Y	
p2	H2OSOI	rzsm	Volumetric soil water	Y	Y	
p2	ICEFRAC	sic	Sea-ice fraction in %	Y	Y	
p2	FSNO	snc	Snow fraction in %	Y	Y	

p2	TAUX	stx_sfc	Zonal surface stress	Y	Y
p2	TAUY	sty_sfc	Meridional surface stress	Y	Y
p2	TREFHTMX	tasmax_2 m	Maximum daily reference height temperature	Y	Y
p2	TREFHTMN	tasmin_2 m	Minimum daily reference height temperature	Y	Y
p2	U100	ua_100	Zonal wind at 100 hPa	Y	Y
p2	U10	uvas	10-meter wind speed	Y	Y
p2	V100	va_100	Meridional wind at 100 hPa	Y	Y
p2	OMEGA500	wap_500	Vertical velocity at 500 hPa	Y	Y
р3	T010	ta_10	Temperature at 10 hPa	Y	Y
р3	T100	ta_100	Temperature at 100 hPa	Y	Y
р3	T030	ta_30	Temperature at 30 hPa	Y	Y
р3	T050	ta_50	Temperature at 50 hPa	Y	Y
р3	T010	ua_10	Zonal wind at 10 hPa	Y	Y
р3	U030	ua_30	Zonal wind at 30 hPa	Y	Y
р3	U050	ua_50	Zonal wind at 50 hPa	Y	Y
р3	V010	va_10	Meridional wind at 10 hPa	Y	Y
р3	V030	va_30	Meridional wind at 30 hPa	Y	Y
р3	V050	va_50	Meridional wind at 50 hPa	Y	Y
р3	Z010	zg_10	Geopotential height at 10 hPa	Y	Y
р3	Z030	zg_30	Geopotential height at 30 hPa	Y	Y
р3	Z050	zg_50	Geopotential height at 50 hPa	Y	Y
р3	Z850	zg_850	Geopotential height at 850 hPa	Y	Y

Table S1: CESM2(CAM6) and CESM2(WACCM6) output from the atmosphere, land, and seaice models that follows the SubX naming convention. 'Y' and 'N' specify whether that particular variable is outputted for that model configuration.

Atmosphere model daily mean output			
Original CESM variable name	Description	CESM2 (CAM6)	CESM2 (WACCM6)
CLDTOT	Vertically-integrated total cloud	Y	Y
FLDS	Downwelling longwave flux at surface	Y	Y
FLNT	Net longwave flux at top of model	Y	Y
FSDS	Downwelling solar flux at surface	Y	Y
FSNT	Net solar flux at top of model	Y	Y
PHIS	Surface geopotential	Y	Y
PRECC	Convective precipitation rate	Y	Y
PRECL	Large-scale precipitation rate	Y	Y
PS	Surface pressure	Y	Y
PSL	Sea-level pressure	Y	Y
QFLX	Surface water flux	Y	Ν
QREFHT	Reference height humidity	Y	Y
RH600	Relative humidity at 600 hPa	Y	Y
RHREFHT	Reference height relative humidity	Y	Y
SNOWHICE	Snow depth over ice	Y	Y
SNOWHLND	Water equivalent snow depth	Y	Y
SST	Sea-surface temperature	Y	Y
TGCLDIWP	Total grid-box cloud ice water path	Y	Ν
TGCLDLWP	Total grid-box cloud liquid water path	Y	Ν
THzm	Zonal-mean potential temp	Y	Y
TMQ	Total precipitable water	Y	Y
TROP_P	Tropopause pressure	Y	Y
TROP_T	Tropopause temperature	Y	Y

U10	10m wind speed	Y	Ν
UVzm	Meridional flux of zonal momentum, zonal mean	Y	Y
UWzm	Vertical flux of zonal momentum, zonal mean	Y	Y
Uzm	Zonal mean zonal wind	Y	Y
VTHzm	Meridional heat flux, zonal mean	Y	Y
Vzm	Zonal-mean meridional wind	Y	Y
WSPDSRFAV	Horizontal total wind speed average at the surface	Y	Ν
WSPDSRFMX	Horizontal total wind speed maximum at the surface	Y	Ν
WThzm	Vertical Heat Flux, zonal mean	Y	Y
Wzm	Zonal mean vertical wind	Y	Y

Table S2: Additional daily-mean output from the atmosphere model.

Atmosphere model 6-hourly instantaneous output			
Original CESM variable name	Description	CESM2 (CAM6)	CESM2 (WACCM6)
PS	Surface pressure	Y	Y
PSL	Sea-level pressure	Y	Y
U10	10m wind speed	Y	Y
UBOT	Lowest model level zonal wind	Y	Y
VBOT	Lowest model level meridional wind	Y	Y
Z200	Geopotential height at 200 hPa	Y	Y
Z500	Geopotential height at 200 hPa	Y	Y

 Table S3: 6-hourly instantaneous atmosphere model output.

Original CESM variable name	Description	CESM2 (CAM6)	CESM2 (WACCM6)
OMEGA	Vertical velocity	Y ¹	Y ²
O3	Ozone	Ν	Y ²
Q	Specific humidity	Y ¹	Y ²
RELHUM	Relative humidity	Y ¹	Y ^{2*}
Т	Temperature	Y ¹	Y ²
U	Zonal wind	Y ¹	Y ²
UQ	Zonal water transport	Y ¹	Y ²
V	Meridional wind	Y ¹	Y ²
VQ	Meridional water transport	Y ¹	Y ²
Z3	Geopotential height	Y ¹	Y ²
T_12_COS	Temperature 12hr cos coeff	Ν	Y ³
T_12_SIN	Temperature 12hr sin coeff	Ν	Y ³
T_24_COS	Temperature 24hr cos coeff	Ν	Y ³
T_24_SIN	Temperature 24hr sin coeff	Ν	Y ³
U_12_COS	Zonal wind 12hr cos coeff	Ν	Y ³
U_12_SIN	Zonal wind 12hr sin coeff	Ν	Y ³
U_24_COS	Zonal wind 24hr cos coeff	Ν	Y ³
U_24_SIN	Zonal wind 24hr sin coeff	Ν	Y ³
V_12_COS	Meridional wind 12hr cos coeff	Ν	Y ³
V_12_SIN	Meridional wind 12hr sin coeff	Ν	Y ³
V_24_COS	Meridional wind 24hr cos coeff	Ν	Y ³
V_24_SIN	Meridional wind 24hr sin coeff	Ν	Y ³

Table S4: Three-dimensional atmosphere mode output. *indicates that the RELHUM is only

consistently available for CESM2(WACCM6) starting with year 2020. Variable is available at 14 pressure levels (1000, 925, 850, 700, 500, 300, 200, 100, 70, 50, 30, 20, 10, 5 hPa). Variable is available at 22 pressure levels (1000, 925, 850, 700, 500, 200, 300, 100, 70, 50, 30, 20, 10, 5, 3, 2, 1, 0.5, 0.1, 0.01, 0.001, and 1e-5 hPa).³Variable is available at 8 pressure levels (10, 5, 1, 0.5, 0.1, 0.01, 0.001, 1e-5 hPa). X_24_COS, X_24_SIN, and X_12_COS and X_12_SIN are the coefficients of the diurnal (24 h) and semidiurnal (12 h) tide in field X (temperature, zonal or meridional wind).

Land Model Output			
Original CESM variable name	Description	CESM2 (CAM6)	CESM2 (WACCM6)
AR	Autotrophic respiration	Y	Y
BTRAN2	Root zone soil wetness factor	Y	Ν
COL_FIRE_CLOSS	Total column-level fire C loss for non-peat fires outside land-type converted region	Y	Ν
CPHASE	Crop phenology phase	Y	Y
CWDC	Coarse woody debris carbon	Y	Ν
ER	Ecosystem respiration	Y	Y
FAREA_BURNED	Fractional area burned by fire	Y	Ν
FIRE	Emitted infrared (longwave) radiation	Y	Ν
FSNO*	Snow fraction	Y	Y
FUELC	Fuel load	Y	Ν
GPP	Gross primary production	Y	Y
H2OCAN	Intercepted water	Y	Υ
H2OSOI*	volumetric soil water	Y	Y
H2OSNO	Snow depth (liquid water)	Y	Y
HR	heterotrophic respiration	Y	Ν
NBP	Net biome production	Y	Y

NEE	Net ecosystem exchange	Y	Ν
NPP	net primary production	Y	Y
QDRAI	Sub-surface drainage	Y	Ν
QOVER	Surface runoff	Y	Y
QRGWL	Surface runoff at glaciers (liquid only), wetlands, lakes	Y	Ν
QRUNOFF*	total liquid runoff - leave in units of kg/m2/s	Y	Y
QSOIL	Ground evaporation	Y	Ν
QVEGE	Canopy evaporation	Y	Ν
QVEGT	Canopy transpiration	Y	Y
RAIN	atmospheric rain, after rain/snow repartitioning based on temperature	Y	Ν
SOILWATER_10CM *	soil liquid water + ice in top 10cm of soil (veg landunits only)	Y	Y
SNOW	atmospheric snow, after rain/snow repartitioning based on temperature	Y	Ν
SNOWDP	Snow height	Y	Y
TLAI	total projected leaf area index	Y	Y
TOTECOSYSC	Total ecosystem carbon, incl veg but excl cpool and product pools	Y	Ν
TOTVEGC	Total vegetation carbon, excluding cpool	Y	Ν
TWS	Total water storage	Y	Y

Table S5: Land model output (All daily averages). Variables marked with a '*' also appear in theSubX priority 2 (p2) files.

Sea-ice Model Output			
Original CESM variable name	Description	CESM2 (CAM6)	CESM2 (WACCM6)
aice	Ice concentration	Y	Y
aicen	sub-gridscale ice concentration category	Y	Y
appeff_ai	Effective pond fraction	Y	Ν
apond	melt pond fraction of sea ice	Y	Y
apond_ai	melt pond fraction of grid cell	Ν	Y
congel	congelation/basal ice growth	Y	Y
daidtd	ice area tendency due to dynamics	Y	Y
daidtt	ice area tendency due to thermodynamics	Y	Y
dvidtd	ice volume tendency due to dynamics	Y	Y
dvidtt	ice volume tendency due to thermodynamics	Y	Y
fhocn_ai	Net ice/ocean heat flux	Y	Ν
frazil	frazil/open-water ice growth	Y	Y
fsthru	Penetrating shortwave	Y	Ν
fsurf_ai	Net surface heat flux	Y	Ν
fswabs	snow/ice/ocean absorbed solar flux	Ν	Y
fswabs_ai	snow/ice/ocean absorbed solar flux	Y	Ν
fswdn	Incoming shortwave	Y	Y
hi	Ice thickness	Y	Y
hs	Snow thickness	Y	Y
meltb	basal ice melt	Y	Y
meltl	Lateral melt	Y	Y

melts	Snow melt	Y	Y
meltt	Surface ice melt	Y	Y
snoice	snow-to-ice conversion growth	Y	Ν
snowfrac	Snow fraction	Y	Y
Tsfc	Temperature of the snow/sea ice surface	Y	Ν
uvel	Ice velocity	Y	Y
vvel	Ice velocity	Y	Y

Table S6: Sea-ice model output (all daily averages).

Ocean model output			
Original CESM variable name	Description	CESM2 (CAM6)	CESM2 (WACCM6)
HMXL	Mixed-layer depth	Y	Y
SSH	Sea-surface height	Y	Ν
SST	Sea-surface temperature	Y	Ν

 Table S7: Ocean model output (all daily averages).