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Abstract

A framework to enable Earth system predictability research on the subseasonal timescale is developed with the Community

Earth System Model, version 2 (CESM2) using two model configurations that differ in their atmospheric components. One con-

figuration uses the Community Atmosphere Model, version 6 (CAM6) with its top near 40 km, referred to as CESM2(CAM6).

The other employs the Whole Atmosphere Community Climate Model, version 6 (WACCM6) whose top extends to ˜ 140 km

in the vertical and it includes fully interactive tropospheric and stratospheric chemistry (CESM2(WACCM6)). Both configura-

tions were used to carry out subseasonal reforecasts for the time period 1999 to 2020 following the Subseasonal Experiment’s

(SubX) protocol. CESM2(CAM6) and CESM2(WACCM6) show very similar subseasonal prediction skill of 2-meter temper-

ature, precipitation, the Madden-Julian Oscillation (MJO), and North Atlantic Oscillation (NAO) to the Community Earth

System Model, version 1 with the Community Atmosphere Model, version 5 (CESM1(CAM5)) and to operational models.

CESM2(CAM6) and CESM2(WACCM6) reforecast sets provide a comprehensive dataset for predictability research of multiple

Earth system components, including three-dimensional output for many variables, and output specific to the mesosphere and

lower-thermosphere (MLT) region. We show that MLT variability can be predicted ˜ 10 days in advance of sudden stratospheric

warming events. Weekly real-time forecasts with CESM2(WACCM6) contribute to the multi-model mean ensemble forecast

used to issue the NOAA weeks 3-4 outlooks. As a freely available community model, both CESM2 configurations can be used

to carry out additional experiments to elucidate sources of subseasonal predictability.
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Key points: (140 char max each) 20 

● A subseasonal research framework with CESM2(CAM6) and CESM2(WACCM6) 21 

is described 22 

● Subseasonal prediction skill of CESM2(CAM6) and CESM2(WACCM6) is similar 23 

to that of CESM1(CAM5) and operational models 24 

● The new framework facilitates predictability research for multiple aspects of the 25 

Earth system, including the mesosphere 26 
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Abstract 27 

A framework to enable Earth system predictability research on the subseasonal timescale is 28 

developed with the Community Earth System Model, version 2 (CESM2) using two model 29 

configurations that differ in their atmospheric components. One configuration uses the 30 

Community Atmosphere Model, version 6 (CAM6) with its top near 40 km, referred to as 31 

CESM2(CAM6). The other employs the Whole Atmosphere Community Climate Model, version 32 

6 (WACCM6) whose top extends to ~ 140 km in the vertical and it includes fully interactive 33 

tropospheric and stratospheric chemistry (CESM2(WACCM6)). Both configurations were used 34 

to carry out subseasonal reforecasts for the time period 1999 to 2020 following the Subseasonal 35 

Experiment’s (SubX) protocol. CESM2(CAM6) and CESM2(WACCM6) show very similar 36 

subseasonal prediction skill of 2-meter temperature, precipitation, the Madden-Julian Oscillation 37 

(MJO), and North Atlantic Oscillation (NAO) to the Community Earth System Model, version 1 38 

with the Community Atmosphere Model, version 5 (CESM1(CAM5)) and to operational models. 39 

CESM2(CAM6) and CESM2(WACCM6) reforecast sets provide a comprehensive dataset for 40 

predictability research of multiple Earth system components, including three-dimensional output 41 

for many variables, and output specific to the mesosphere and lower-thermosphere (MLT) 42 

region. We show that MLT variability can be predicted ~ 10 days in advance of sudden 43 

stratospheric warming events. Weekly real-time forecasts with CESM2(WACCM6) contribute to 44 

the multi-model mean ensemble forecast used to issue the NOAA weeks 3-4 outlooks. As a 45 

freely available community model, both CESM2 configurations can be used to carry out 46 

additional experiments to elucidate sources of subseasonal predictability. 47 

 48 

Plain Language Summary 49 
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Sources of subseasonal (i.e., timescale of three to four weeks) predictability for surface 50 

temperature, precipitation, and extreme events associated with subseasonal modes of variability 51 

are not well understood. In addition, there has been little exploration of the predictability of land, 52 

sea-ice, the stratosphere, and the mesosphere lower-thermosphere region. We describe here a 53 

subseasonal prediction research framework based on two configurations of the Community Earth 54 

System Model, version 2 (CESM2) that differ in their atmospheric components. Both 55 

configurations demonstrate subseasonal prediction skill comparable to that of operational 56 

models. Reforecasts carried out with two configurations of CESM2 provide a comprehensive 57 

dataset for predictability research of multiple aspects of the Earth system, including the 58 

mesosphere and lower thermosphere region. Real-time forecasts with these models contribute to 59 

the multi-model mean ensemble forecast used to issue the National Oceanic and Atmospheric 60 

Administration (NOAA) weeks 3-4 outlooks.  61 

 62 
 63 
1 Introduction 64 
 65 

Interest and demand for skillful subseasonal predictions (i.e., targeting three to four 66 

weeks) of the Earth system has grown in the recent decade.  Multiple economic sectors such as 67 

agriculture, energy, and water management could benefit from improved subseasonal predictions 68 

(White et al. 2017). Such a need is a strong motivator of research of sources and limits of 69 

subseasonal predictability, including identifying windows of opportunity for increased forecast 70 

skill (Mariotti et al., 2020; NAS 2016). The international subseasonal-to seasonal (S2S) project 71 

and database (Vitart et al., 2017; Vitart and Robinson 2018) and the National Oceanic and 72 

Atmospheric Administration (NOAA) SubX project (Pegion et al., 2019) have been instrumental 73 

in providing real-time forecasts and reforecasts (forecasts initialized during the historical period) 74 
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carried out with multiple operational and research models that serve as a community basis for 75 

research on predictability on S2S timescales.  76 

Subseasonal prediction research has been focused mostly on prediction of the lowermost 77 

atmosphere, in particular surface temperature and precipitation, and extreme events associated 78 

with these, such as heat waves, droughts, heavy rainfall and cold outbreaks (Ford et al., 2018; de 79 

Andrade et al., 2019; Xiang et al., 2020). Substantial effort has also been invested in assessing 80 

predictability of dominant modes of variability on the subseasonal timescale, such as the Madden 81 

Julian Oscillation (MJO) and the North Atlantic Oscillation (NAO) as these can be drivers for 82 

extreme weather (e.g., Stan et al. 2017; Vitart et al., 2017; Kim et al., 2018; Lim et al., 2018; Sun 83 

et al., 2020; Yamagami & Matsueda, 2020). A few recent studies have started examining the 84 

predictability of sea-ice and noted a wide range of sea-ice prediction skill, with a multimodel 85 

mean forecast being skillful out to 5 months (Wayand et al., 2019; Zampieri et al., 2018). There 86 

has also been some exploration of the subseasonal predictability of various land model variables, 87 

such as soil moisture and snowpack (Hanchen et al., 2019; Diro & Lin, 2020), however 88 

predictability of other characteristics of land has not been explored. Several studies have looked 89 

at the predictability of the stratosphere, mainly at the predictability of sudden stratospheric 90 

warmings (SSWs), as they can significantly impact surface extreme weather especially over 91 

Eurasia (Tripathi et al., 2015), and the predictability of the quasi-biennial oscillation (QBO) 92 

which impacts the MJO (Lim et al., 2019; Kim et al., 2019a). Furthermore, there have only been 93 

limited efforts aimed at addressing the predictability of variability at higher altitudes (i.e., 94 

mesosphere, thermosphere, and ionosphere) as models used in S2S prediction typically do not 95 

extend into that region of the atmosphere. These prior studies have been limited as they used 96 

short reforecast periods (Wang et al., 2014; Pedatella et al., 2018a; Pedatella et al., 2019). 97 
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Variability of the mesosphere and lower-thermosphere (MLT) region drives a significant portion 98 

of near-Earth space weather, which can cause adverse effects on communications and navigation 99 

systems, and understanding the predictability in the MLT is thus an important component of 100 

enhancing space weather forecasting (Jackson et al., 2019). 101 

Stratosphere-troposphere interactions provide a potential source of predictability on the 102 

S2S timescale because of their persistent and slow varying circulation anomalies (NAS, 2016). 103 

Increased predictability is believed to primarily come from SSWs which are followed by 104 

tropospheric circulation anomalies resembling the negative phase of the NAO. The QBO has 105 

been shown to lead to enhanced predictability on seasonal timescales (e.g., Boer & Hamilton, 106 

2008; Marshall & Scaife, 2009), and is predictable out to several years ahead (Scaife et al., 107 

2014b). Hence, a model that represents the QBO and SSWs well could potentially have more 108 

skill on the subseasonal timescale.   109 

Richter et al. (2020) described the utility of the Community Earth System Model, version 110 

1, with the Community Atmosphere Model version 5 as its atmospheric component 111 

(CESM1(CAM5)), a predecessor of CESM2, as a subseasonal prediction research model and 112 

demonstrated that the prediction skill of key surface variables with that model was comparable to 113 

the National Center for Environmental Prediction (NCEP) Climate Forecast System, version 2 114 

(CFSv2) operational model. Here, we describe a new community resource for research on 115 

subseasonal predictability of multiple components of the Earth system: a subseasonal prediction 116 

system based on CESM2 with two configurations that differ in their atmospheric components. 117 

One configuration uses the Community Atmosphere Model, version 6 (CAM6), referred to as 118 

CESM2(CAM6). The other employs the Whole Atmosphere Community Climate Model, version 119 

6 (WACCM6), and is referred to as CESM2(WACCM6). CESM2 is the newest version of the 120 
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NCAR coupled Earth system model used for the Coupled Model Intercomparison Project phase 121 

6 (CMIP6) simulations (Danabasoglu et al., 2020). Both configurations of CESM2 include 122 

prognostic atmospheric, land, ocean and sea-ice components and resolve the interactions 123 

between them. Both configurations of the model include prognostic aerosols and 124 

CESM2(WACCM6) also includes fully interactive tropospheric and stratospheric chemistry. 125 

CESM2(WACCM6) has a very good representation of SSWs and an internally generated QBO, 126 

hence it potentially could be more skillful, especially during SSW events, than models with 127 

smaller vertical domains. Another unique aspect of CESM2(WACCM6) is the extension of the 128 

model domain into the lower thermosphere, enabling investigations into the predictability at 129 

MLT altitudes. SSW events are now recognized to have impacts throughout the whole 130 

atmosphere (Baldwin et al., 2020; Pedatella et al., 2018b), including the mesosphere, 131 

thermosphere, and ionosphere, where they influence the day-to-day weather of the near-Earth 132 

space environment. It is, therefore, important to understand the predictability of the SSW effects 133 

in the middle and upper atmosphere.  134 

Weekly real-time forecasts are being generated since September 2020 with 135 

CESM2(WACCM6) and since April 2021 with CESM2(CAM6), and they contribute to the 136 

multi-model mean ensemble used to issue the experimental NOAA weeks 3-4 outlooks. The 137 

motivation behind the inclusion of CESM2(WACCM6) into this NOAA Climate Test Bed 138 

project is to examine how much improvement in surface prediction skill can be gained from the 139 

inclusion of a well-represented stratosphere, especially during the boreal winter, when the 140 

impacts of SSWs on the surface climate and impacts of the QBO on the MJO are the largest. 141 

We describe here the S2S prediction framework, reforecasts, and near-real time forecasts 142 

with CESM2(CAM6) and CESM2(WACCM6) including the extensive output of atmospheric, 143 
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land, ocean, and sea-ice models, with several key atmospheric variables reaching into the MLT 144 

region. CESM2 is a community model and is freely available to the broader community. The 145 

reforecast sets described here are designed to serve as a basis for future experiments with 146 

CESM2(CAM6) and CESM2(WACCM6) investigating sources of subseasonal predictability. 147 

 148 

2 Model and System Description 149 
 150 
2.1 Model Description 151 

 Subseasonal reforecasts and forecasts described here use the default released version of 152 

CESM2. CESM2 is an open-source, comprehensive Earth system model designed primarily for 153 

the studies of Earth’s past, present and future climates. CESM2 includes ocean, atmosphere, 154 

land, sea-ice, land-ice, river, and wave model components and is thoroughly documented in 155 

Danabasoglu et al. (2020). The standard CESM2 uses a nominal 1o horizontal resolution (1.25° 156 

in longitude and 0.9° in latitude in its atmospheric components). CAM6 is the default 157 

atmospheric model. It has 32 vertical levels with the model lid near 2 hPa (~ 40 km). CAM6 uses 158 

the Zhang and McFarlane (1995) convection parameterization, the Cloud Layers Unified By 159 

Binormals (CLUBB; Golaz et al., 2002; Larson, 2017) unified turbulence scheme, and the 160 

updated Morrison-Gettelman microphysics scheme (MG2; Gettelman & Morrison, 2015). A 161 

form drag parameterization of Beljaars et al. (2004) and an anisotropic gravity wave drag scheme 162 

following Scinocca and McFarlane (2000) replace the turbulent mountain stress parameterization 163 

that was used in CESM1. The aerosols in CAM6 are represented using the Modal Aerosol Model 164 

version 4 (MAM4) as described in Liu et al. (2016).  165 

 CESM2(WACCM6) uses WACCM6 or the “high-top” version of the atmospheric model, 166 

which is documented in detail in Gettleman et al. (2019). WACCM6 has the same horizontal 167 
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resolution as CAM6, however it has 70 vertical levels with a top near 4.5 × 10‐6 hPa (~ 140 km). 168 

The representation of atmospheric physics is identical to that in CAM6, with the only exception 169 

being the representation of non-orographic gravity waves, which follows Richter et al. (2010) 170 

with changes to tunable parameters described in Gettleman et al. (2019). The higher model lid 171 

and parameterization of non-orographic gravity waves in WACCM6 allow for a better 172 

representation of middle atmospheric dynamics as compared to CAM6 and the simulation of an 173 

internally-generated QBO. Another key difference between CAM6 and WACCM6 is in the 174 

representation of chemistry. The comprehensive chemistry module in WACCM6 includes 175 

interactive tropospheric, stratospheric, and lower thermospheric chemistry (TSMLT) with 228 176 

prognostic chemical species, described in detail in Gettleman et al. (2019). Differences in the 177 

representation of aerosols and chemistry between CAM6 and WACCM6 do not significantly 178 

impact the  mean surface and tropospheric climate in historical simulations. However, 179 

CESM2(WACCM6) simulations have a more realistic representation of polar climate as 180 

compared to CESM2(CAM6) as shown in Gettleman et al. (2019). 181 

CESM2(CAM6) and CESM2(WACCM6) use identical ocean, land, sea-ice, land-ice, 182 

river-transport, and wave models. The ocean model is based on the Parallel Ocean Program 183 

version 2 (POP2; Smith et al., 2010; Danabasoglu et al., 2012), but contains many advances 184 

since its version in CESM1. As described in Danabasoglu et al. (2020), these include a new 185 

parameterization for mixing effects in estuaries, increased mesoscale eddy (isopycnal) 186 

diffusivities at depth, use of prognostic chlorophyll for shortwave absorption, use of salinity‐187 

dependent freezing‐point together with the sea‐ice model, and a new Langmuir mixing 188 

parameterization in conjunction with the new wave model component. Several numerical 189 

improvements were also implemented as described in Danabasoglu et al. (2020). The horizontal 190 
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resolution of POP2 is uniform in the zonal direction (1.125o), and varies from 0.64° (occurring in 191 

the Northern Hemisphere) to 0.27° at the Equator.  In the vertical, there are 60 levels with a 192 

uniform resolution of 10 m in the upper 160m. The ocean biogeochemistry is represented using 193 

the Marine Biogeochemistry Library (MARBL), essentially an updated implementation of what 194 

has been known as the Biochemistry Elemental Cycle (Moore et al., 2002; 2004; 2013). CESM2 195 

includes version 3.14 of the NOAA WaveWatch-III ocean surface wave prediction model 196 

(Tolman, 2009). CICE version 5.1.2 (CICE5; Hunke et al., 2015) is used to represent sea-ice in 197 

CESM2 and uses the same horizontal grid as POP2. The vertical resolution of sea-ice has been 198 

enhanced to eight layers, from four in CESM1; the snow model resolves three layers, and the 199 

melt pond parameterization has been updated (Hunke et al., 2013).  200 

Both CESM2 configurations use the recently developed Community Land Model version 201 

5 (CLM5) described in detail in Lawrence et al., (2019). As compared to CLM4, CLM5 includes 202 

improvements to soil hydrology, spatially explicit soil depth, dry surface layer control on soil 203 

evaporation, updated ground-water scheme, as well as several snow model updates. CLM5 204 

includes a global crop model that treats planting, harvest, grain fill, and grain yields for six crop 205 

types (Levis et al., 2018), a new fire model (Li et al., 2013; Li & Lawrence, 2017), multiple 206 

urban classes and updated urban energy model (Oleson & Feddema, 2019), and improved 207 

representation of plant dynamics. The river transport model is the Model for Scale Adaptive 208 

River Transport (MOSART; H. Y. Li et al., 2013).  The Community Ice Sheet Model Version 209 

2.1 (CISM2.1; Lipscomb et al., 2019) is used to represent the ice sheets, although in the 210 

configuration of this model ice sheets are assumed to be fixed. 211 

 212 
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2.2 Initialization  213 

 S2S reforecasts with CESM2(CAM6) and CESM2(WACCM6) use the same land initial 214 

conditions, but differ in atmosphere, ocean, and sea-ice initialization. These differences are due 215 

to the different location of the two atmospheric models’ lids and also due the inclusion of 216 

CESM2(WACCM) forecasts in NOAA’s experimental Week 3-4 outlooks since September 217 

2020, necessitating real-time forecasting ability with that model and completion of reforecasts 218 

with the same model set-up at that time. Initialization procedures for each model component are 219 

described below and summarized in Table 1. 220 

 Land initial conditions for CESM2(CAM6) and CESM2(WACCM6) reforecasts were 221 

produced using the stand-alone CLM5. The stand-alone CLM5 simulation employed a setup 222 

consisting of biogeochemistry-driven crops and glacial observations. A 700-year spin-up was 223 

performed using 6-hourly atmospheric variables (precipitation, temperature, wind speed, 224 

shortwave and longwave radiation, etc.) from the NCEP CFSv2 reanalysis (Saha et al. 2014). 225 

Near present-day (year 2000) greenhouse gas forcings were used continuously throughout the 226 

spin-up, while atmospheric forcings from NCEP CFSv2 were cycled between 1979-1985 until a 227 

steady state was achieved (~100 cycles). After soil moisture and temperatures stabilized with 228 

respect to the 1979-1985 climate state, the CLM5 continued to be forced with NCEP CFSv2 up 229 

through present day (no longer cyclically), and initial condition files were output for use in 230 

reforecasts each Monday. 231 

 CESM2(CAM6) atmosphere was initialized using the NCEP CFSv2 reanalysis 232 

interpolated to the CAM6 grid. Initialized fields include the zonal and meridional wind, 233 

temperature, specific humidity, surface pressure and surface geopotential.  An ensemble is 234 

generated using the random field perturbation method at initial time which was shown to be as 235 
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effective as other more sophisticated methods to generate model spread by Magnusson et al. 236 

(2009) and was utilized successfully in S2S reforecasts with CESM1(CAM5) (Richter et al. 237 

2020).  238 

 Ocean and sea-ice initial conditions for CESM2(CAM6) come from a reforecast ocean-239 

sea-ice coupled configuration of CESM2(CAM6) forced with the adjusted Japanese 55-year 240 

reanalysis project state fields and fluxes (JRA55-do forcing; Tsujino et al., 2018). We call this 241 

JRA55-do forced ocean simulation (JRA55-do FO). This simulation was integrated through five 242 

cycles of the 1958 - 2009 forcing, with the last cycle extended through 2019. This procedure 243 

follows the protocol for the CMIP6-endorsed Ocean Model Intercomparison Project phase 2 244 

(OMIP2; Griffies et al., 2016; Tusjino et al., 2020), and is the same as was done for S2S 245 

reforecasts with CESM1(CAM5) (Richter et al., 2020).  246 

The initialization of the atmosphere, ocean, and sea-ice in CESM2(WACCM6) is not as 247 

straightforward as for CESM2(CAM6) as the model’s lid located near ~ 140 km extends above 248 

the currently available atmospheric reanalyses and the JRA55-do was only available through 249 

2019 with a yearly update frequency in early 2020 (time of model set-up and running of 250 

reforecasts), which prohibited its use in near real-time forecasts. To generate realistic initial 251 

conditions for the entire atmospheric domain, first a specified dynamics (SD) simulation with 252 

fully coupled CESM2(WACCM6) was carried out (WACCM6-SD) in which the atmospheric 253 

dynamics were nudged to the NASA Modern-Era Retrospective Analysis for Research and 254 

Applications (MERRA-2) (Gelaro et al. 2017) with a 1-hourly nudging timescale from 1999 to 255 

2020. 1-hourly nudging ensured that the dynamics in the lower atmosphere are very close to the 256 

MERRA-2 reanalysis, which is important for tropospheric subseasonal prediction. The ocean in 257 

this WACCM6-SD simulation is initialized from the JRA55-do FO simulation (as done for 258 
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CESM2) in year 1998, and then it is left to evolve with atmospheric fluxes from the MERRA-2 259 

reanalysis for 5 years. In this set-up, the ocean state drifts from the observed state and the 260 

JRA55-do simulation, hence every 5 years the ocean in the SD simulation is reinitialized with the 261 

ocean state from the JRA55-do forced ocean simulation. Hence ocean reinitialization occurred 262 

on January 1 of 1998, 2003, 2008, 2013, and 2018. We have developed the ability to update the 263 

JRA55-do in August of 2020, hence a final ocean reinitialization occurred on August 31 of 2020 264 

in order to prime the real-time application which began at that time. Daily atmospheric, ocean 265 

and sea-ice, initial conditions were output from the WACCM6-SD simulation for use in 266 

reforecasts. The random field perturbation method was applied to the atmospheric conditions to 267 

generate ensemble spread in the same way as was done in CESM2(CAM6). 268 

 Figure 1 shows correlation and root-mean-square error (RMSE) maps between the sea 269 

surface temperature (SST) in JRA55-do FO (used to initialize CESM2(CAM6) reforecasts) and 270 

HadSST observations (Figs. 1a and 1c) and between SSTs in WACCM6-SD (used to initialize 271 

CESM2(WACCM6) reforecasts) and HadSST (Figs. 1b and 1d). Over the 1999 - 2019 period, 272 

the correlation between JRA55-do FO and WACCM6-SD and observations is close to 1 over the 273 

majority of ocean areas, with the exception of reduced values of the correlation coefficient in the 274 

Tropics and south of 50oS. The correlation coefficients are lower in those regions in the 275 

WACCM6-SD as compared to the JRA55-do FO simulation. The RMSE distribution (Figure 276 

1c,d) is also very similar between JRA55-do FO and WACCM6-SD, with the largest RMSE 277 

differences between the two simulations in the Tropics. The larger RMSE in WACCM6-SD as 278 

compared to the JRA55-do FO could be related to differences in variability in MERRA-2 as 279 

compared to JRA55-do. This greater Tropical drift away from the observed SSTs is illustrated 280 

clearly in Figure 1e which shows the El Nino Southern Oscillation (ENSO) index in the JRA55-281 
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do FO, WA CCM6-SD, and HadISST. JRA55-do follows the observed ENSO index closely, 282 

however there are a few instances when the ENSO index in WACCM-SD departs significantly 283 

from observations. This includes the period from ~ 2015 to 2016 and 2019 to 2020. 284 

For real-time forecasts with CESM2(WACCM6), the same initialization procedure was 285 

used as for reforecasts except that the CESM2(WACCM6) run was nudged to the NASA 286 

Forward Processing for Instrument Teams (FP-IT) reanalysis instead of MERRA-2, as the FP-IT 287 

reanalysis is available in near real-time.  288 

 289 

2.3 Protocol and output 290 

 The S2S reforecasts were carried out following the SubX protocol (Pegion et al. 2019) 291 

with weekly initializations every Monday from 1999 to 2020 for CESM2, and for every Monday 292 

between September and March for CESM2(WACCM6). An 11-member ensemble was carried 293 

out for the CESM2(CAM6) and a 5-member ensemble was carried out for the 294 

CESM2(WACCM6) reforecasts.  The computational cost of CESM2(WACCM6) is nearly eight 295 

times the cost of CESM2(CAM6), hence carrying out more ensemble members and all start dates 296 

was computationally prohibitive with CESM2(WACCM6). Near real-time forecasts began with 297 

CESM2(WACCM6) in September of 2020, and in April 2021 with CESM2(CAM6), both with a 298 

21-member ensemble.  299 

 The S2S reforecast set with CESM2(CAM6) and CESM2(WACCM6) have extremely 300 

comprehensive output for the atmosphere, land, ocean, and sea-ice components of the model to 301 

enable studies of predictability of the broader Earth system, including the MLT region. Output is 302 

available from the NCAR Climate Data Gateway (see links in Acknowledgements). The 303 

complete list of output variables is shown in Tables S1- S7. Because the reforecasts follow the 304 
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SubX protocol, a portion of the output also follows that protocol, and a number of model native 305 

fields are renamed and reformatted to match the SubX priority 1, 2, and 3 (p1, p2, and p3, 306 

respectively) variables. In addition to these variables which are all two-dimensional (on a lat/lon 307 

grid), more daily averaged variables are saved for every model component. A handful of 308 

atmosphere-relevant variables are saved at 6-hourly intervals for applications such as tropical 309 

cyclone tracking. In addition, a limited number of 3-dimensional fields is stored at 14 pressure 310 

levels for CESM2(CAM6) and at 22 levels for CESM2(WACCM6) (see Table S4 for exact 311 

levels). Finally, for CESM2(WACCM6), diurnal and semidiurnal tide coefficients are stored at 8 312 

levels at and above 10 hPa, permitting the evaluation of migrating and nonmigrating tides in the 313 

MLT.  Because CESM2 includes an interactive crop model, the output list for the land model 314 

includes variables such as gross and primary production which are very unique to this dataset.  315 

 316 

3 Results 317 
 318 

 The subseasonal prediction skill of CESM2(CAM6) and CESM2(WACCM6) in the S2S 319 

reforecasts is evaluated for key surface variables (temperature, precipitation), dominant 320 

subseasonal modes (MJO and NAO) as well as stratosphere-troposphere coupling. Subsequently 321 

we briefly examine MLT predictability during SSWs in CESM2(WACCM6). We compare the 322 

tropospheric prediction skill to that from reforecasts carried out with the default version of 323 

CESM1(CAM5) utilizing the 30-level version of CAM5 (Richter et al. 2020) for the common 324 

period of 1999 to 2015. As the reforecasts with the default (30-level) version of CESM1(CAM5) 325 

used a 10-member ensemble, we use here a 10-member average of CESM2(CAM6) as well, 326 

because ensemble size does affect skill (e.g., Sun et al., 2020). Therefore, in selected figures, we 327 

also show CESM1(CAM5) and CESM2(CAM6) skill based on a 5-member ensemble, because 328 
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that is what the CESM2(WACCM6) skill assessment is based on. Richter et al. (2020) showed 329 

that the 2-meter temperature and precipitation skill of CESM1(CAM5) was very similar to the 330 

NOAA operational CFSv2 model and higher than those of most other models participating in 331 

SubX. Surface temperature and precipitation prediction skill is similar between the CFSv2 model 332 

and the European Centre for Medium-Range Weather Forecasts (ECMWF)Variable Resolution 333 

Ensemble Prediction System monthly forecast system (Wang & Robertson 2019), hence broadly 334 

speaking skill similar to CESM1(CAM5) implies prediction skill comparable to other operational 335 

models. 336 

 337 
3.1 2-meter temperature and precipitation prediction skill 338 

 Figures 2a-c show the anomaly correlation coefficients (ACC) for 2-meter (2m) 339 

temperature for December, January, and February (DJF) for weeks 1-2, 3-4, and 5-6 for CESM2. 340 

The NOAA Climate Prediction Center (CPC) Global Daily Temperature dataset at the 0.5ox0.5o 341 

resolution is used as a verification dataset. Both for observations and simulations, the average 342 

daily temperature is calculated as the average of the daily maximum and minimum temperature. 343 

Similarly to what was done for CESM1 in Richter et al. (2020), ACC values are shown in colors 344 

only when they are significantly different from zero at the 95% confidence level or for ACC > 345 

0.2. The significance level is calculated using a total sample size of 221, based on 13 start dates 346 

per year over 17 years (1995 to 2015) considered here. Subsequently, we assume a 2-week 347 

decorrelation time, and resulting in 110.5 independent samples. There are hence 108 degrees of 348 

freedom (number of independent samples minus 2), leading to a correlation equal or greater than 349 

0.2 being significant at the 95% level using a two-tailed Student’s t-test (Wilks, 2011). Because 350 

Richter et al. (2020) showed that nearly all the values over this threshold exceed the persistence 351 

forecast, a persistence forecast is not repeated here. Figures 2a-c show declining ACC values 352 
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with forecast lead time reflecting a loss of deterministic skill with increasing forecast lead time. 353 

The globally averaged DJF ACC for 2m temperature over all land areas is ~ 0.3 for weeks 3-4 354 

and 0.2 for weeks 5-6 with higher values over the northern part of South America (ACC of ~ 0.5 355 

to 0.6 through weeks 5-6) and the lowest values over north and north-eastern Asia. The 356 

differences of DJF 2m temperature ACC between CESM2(CAM6) and CESM1(CAM5) and 357 

between CESM2(CAM6) and CESM2(WACCM) are given in Figs. 2d-f and Figs. 2g-i, 358 

respectively. Only values that exceed the 95% confidence level using the Fisher z transform 359 

(e.g., Zar, 2014) are shown. Figures 2d-2f show that DJF ACC for 2m temperature in 360 

CESM2(CAM6) is overall very similar to that of CESM1(CAM5) for the majority of the world’s 361 

land regions, with the only exceptions being regions of decreased skill over parts of north-east 362 

and southernmost Asia, and southernmost part of India for weeks 3-4 and 5-6. Figures 2g-2i 363 

reveal that the DJF 2m temperature ACC for CESM2(WACCM6) is also very similar to that of 364 

CESM2, demonstrating that the whole atmosphere version of CESM2 does not fundamentally 365 

change the surface prediction skill of the model. There are a few land regions for which the DJF 366 

2m temperature ACC is statistically significantly different for CESM2(WACCM6) as compared 367 

to CESM2, most evident in weeks 5-6. These include parts of North America for which 368 

CESM2(CAM6) is showing higher skill than CESM2(WACCM6), and eastern Asia where 369 

higher skill is seen in CESM2(WACCM6) as compared to CESM2(CAM6). A detailed 370 

investigation (beyond the scope of this paper) is needed to elucidate whether these differences 371 

can be attributed to differences either in the representation of the stratosphere or in ocean and 372 

atmosphere initialization procedures between the two configurations. 373 

 Figure 3 shows ACC of 2m temperature over land for June, July, August (JJA) average. 374 

Comparison to CESM2(WACCM6) is not possible for this season due to the limited range of 375 
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reforecast start dates for that model version. The overall ACC of JJA 2m temperature is a little 376 

smaller as compared to that for DJF.  The ACC values are the largest in northern South America 377 

and tropical Africa for weeks 3-4 and weeks 5-6 (Figs. 3b,c). The differences between ACC in 378 

CESM2(CAM6) and CESM1(CAM5) are very small as shown in Figs 3d-3f. Figures S1 and S2 379 

show the 2m temperature ACC for March, April, May (MAM) and September, October, and 380 

November (SON) averages respectively. In MAM, CESM2(CAM6) shows a statistically 381 

significant degradation of 2m temperature prediction skill over Eurasia and Alaska by ~0.2 for 382 

weeks 3-4 and weeks 5-6 over CESM1(CAM5). In SON, there is very little difference between 383 

the 2m temperature ACC for CESM2(CAM6) and CESM1(CAM5), as well as between 384 

CESM2(WACCM6). 385 

Figure 4 compares the DJF and JJA  2m temperature ACC averaged over all land areas and 386 

over North America. DJF ACC of 2m temperature is ~ 0.6 for weeks 1-2, ~ 0.3 for weeks 3-4, 387 

and < 0.2 for weeks 5-6 for global land for all the CESM versions considered here (Figure 4a). 388 

DJF ACC of 2m temperature over North America is ~0.7 for weeks 1-2, ~0.3 for weeks 3-4, and 389 

~0.15 for weeks 5-6. JJA ACCs of 2m temperature for both global and North America land are 390 

~0.1 lower for weeks 1-2 and 3-4 as compared to DJF, while they are comparable to those of 391 

DJF for weeks 5-6. There are overall small differences in 2m temperature ACCs between the 392 

various model versions considered, as well as between ACCs calculated for an ensemble size of 393 

5 vs 10 for CESM1(CAM5) and CESM2(CAM6) for both DJF and JJA. Although there are 394 

small differences between CESM1(CAM5) and CESM2(CAM6) in DJF and JJA ACCs over 395 

North America and global land, the application of the Fisher z transform to these values showed 396 

that none of the differences between ACC values depicted by individual bars in Figure 4 are 397 

statistically significant.  398 
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 Figures 5a-c and 6a-c show the ACC for precipitation for DJF and JJA for 399 

CESM2(CAM6). Precipitation prediction skill at subseasonal timescales (Figs. 5b,c) is quite low 400 

as compared to the 2m temperature, with ACC values on average of ~ 0.1 for weeks 3-4 and < 401 

0.05 for weeks 5-6 consistent with previous findings (Pegion et al., 2019, Richter et al., 2020). 402 

Similarly to 2m temperature skill, precipitation skill is slightly higher in northern South America 403 

and parts of Africa in weeks 3-4 in CESM2(CAM6) as compared to other land areas, reaching 404 

ACC values of 0.3-0.4 over small regions (Figs. 5b,6b). There is little difference in DJF ACC of 405 

precipitation between CESM2(CAM6) and CESM1(CAM5), and between CESM2(CAM6) and 406 

CESM2(WACCM6). In JJA (Figure 6), the overall precipitation skill over land is even lower 407 

than in DJF with the exception of Australia. In CESM2, for both weeks 3-4 and weeks 5-6 the 408 

ACC of precipitation is ~ 0.3 - 0.5 over most of Australia, showing that CESM2(CAM6) is 409 

skillful in that region. CESM1(CAM5) already had significant ACC over Australia in JJA 410 

(Richter et al., 2020), so this skill has increased in CESM2(CAM6) especially for weeks 5-6 411 

(Figure 6f).  Figure 7 summarizes the precipitation prediction skill for DJF and JJA for all the 412 

models considered in this study. Averaged over global land and North America the ACC of 413 

precipitation is greater than zero but smaller than 0.1 for weeks 3-4 and weeks 4-5. ACC values 414 

less than 0.1 imply that precipitation is generally not predictable on the subseasonal timescales, 415 

except for very few selected regions discussed above. 416 

 417 

3.2 Spread and error characteristics for 2m temperature 418 
 419 
To shed some light on the ensemble characteristics of our S2S forecasts, we compute the 420 

RMSE of the ensemble mean and the ensemble spread (Figure 8). Similarly to the ACC, the 421 

RMSE over North American land is markedly higher in winter than in summer and decreases 422 
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slightly if the ensemble size is increased from 5 to 10 members. Unlike Figure 4, we do not 423 

detect the same rapid decrease in skill between week 1-2 and 3-4 forecasts. This points to the fact 424 

that week 1-2 reforecasts have a high pattern correlation with the verifying analysis but might 425 

have problems capturing the anomaly magnitudes.  426 

The ensemble spread is computed as lead-time dependent standard deviation of all 427 

members around the ensemble mean and is shown as hatched bars in Figure 8. For a reliable 428 

ensemble system, the ensemble spread should inform the state-dependent predictability of the 429 

system and the spread and error of the ensemble mean should have the same magnitude (e.g. 430 

Leutbecher and Palmer, 2008). However, most ensemble systems are overconfident (e.g., Berner 431 

et al. 2015, Leutbecher et al. 2017) and the spread predicting the uncertainty of the forecast is 432 

smaller than the RMSE.   433 

Such underdispersion is also evident in our reforecasts. In weeks 1-2, regardless of the 434 

season, or land area average, the spread is under-dispersive by at least 40% (Fig 8.). The 435 

underdispersion improves for longer lead times but forecasts remain markedly overconfident for 436 

all experiments. The differences between the different CESM configurations are small for JJA, 437 

but for DJF, CESM1(CAM5) creates consistently more spread than CESM2(CAM6) or 438 

CESM2(WACCM) over North American land. Increasing the ensemble size has a more 439 

pronounced effect on the spread than the RMSE error. This indicates that the value of the 440 

ensemble might lie in the improved representation of uncertainty rather than improved 441 

deterministic skill. 442 

 443 
 444 
3.3 MJO and NAO prediction skill 445 
 446 
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The MJO and the NAO are key drivers of extreme weather on subseasonal timescales and 447 

believed to be key sources of subseasonal predictability. To evaluate the MJO prediction skill, 448 

the Real-time Multivariate MJO (RMM; Wheeler & Hendon, 2004) index is calculated with the 449 

200 hPa and 850 hPa daily zonal wind from ECMWF Reanalysis v5 (ERA5; Hersbach et al., 450 

2020) and the Outgoing Longwave Radiation (OLR) from NOAA Advanced Very High-451 

Resolution Radiometer (Liebmann & Smith 1996). Predicted RMM indices are calculated by 452 

projecting the forecast anomalies for those fields onto the associated observed EOF eigenvectors 453 

(Kim et al., 2018). Then, the RMM index bivariate ACCs are computed between the predicted 454 

and observed RMM1 and RMM2 indices as a function of forecast lead days. The MJO prediction 455 

skill is assessed during boreal winter with the reforecasts initialized during November-March 456 

(NDJFM). Due to the limited sample size, all days are selected as MJO events without any 457 

discrimination of the initial MJO amplitude. Figure 9 shows ACC as a function of forecast lead 458 

days where ACC of 0.5 is explicitly denoted as it is often used as a skill threshold (e.g., Rashid et 459 

al., 2011). The figure clearly demonstrates that the MJO in CESM2(CAM6) and 460 

CESM2(WACCM6) is predictable out to 25 days, which is longer than the predictability of the 461 

MJO for most of the SubX models (not shown), but less than than the MJO predictability of out 462 

to 33 days in the ECMWF-CY43R system (Kim et al., 2019b). The ACC of the MJO in 463 

CESM1(CAM5) is slightly higher compared to CESM2(CAM6) and CESM2(WACCM6), 464 

however, none of the skill differences are statistically significant based on the Fisher z transform. 465 

There is also very little difference in the overall MJO skill between CESM2(CAM6) and 466 

CESM2(WACCM6) (when the same ensemble size is considered) indicating that neither the 467 

extension of the model top into the middle atmosphere nor the different ocean initialization in 468 

CESM2(WACCM6) as compared to CESM2(CAM6) affect MJO prediction skill.  469 
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The NAO is a key driver of winter extreme weather over Europe and North America 470 

(Hurrell, 1995; Scaife et al., 2008). It is predictable on weather (< 2 weeks) timescales and 471 

seasonal timescales (e.g., Riddle et al., 2013, Scaife et al. 2014a), however its predictability on 472 

subseasonal timescales is less certain and has not been explored extensively. Zuo et al. (2016) 473 

found the NAO to be predictable only out to ~ 9 days using the Beijing Climate Center 474 

Atmospheric General Circulation Model version 2.2 (BCC AGCM2.2). Pegion et al. (2019) 475 

showed that NAO skill was high (ACC > 0.5) through week 2 in all the SubX models. Richter et 476 

al. (2020) found that the ACC of NAO in CESM1(CAM5) was 0.5 at week 3 and 0.4 at week 4 477 

(10-member ensemble). Sun et al. (2020) found that an increase in ensemble size to 20 enhances 478 

the NAO prediction skill, with an NAO ACC of 0.51 for weeks 3 to 6 in boreal winter in 479 

CESM1(CAM5). The prediction skill of the NAO in the various CESM configurations is shown 480 

in Figure 10. The NAO index was obtained by first calculating EOF analysis of ERA-Interim 481 

monthly (NDJFM) sea level pressure (SLP) anomalies over the Atlantic sector (20oN– 80oN, 482 

90oW–40oE) and treating the leading EOF pattern as the NAO. The NAO index was then 483 

calculated by projecting the SLP anomaly in the reanalysis and reforecasts that were initialized 484 

during NDJFM onto the leading EOF. The week 3-4 NAO ACC is above or close to 0.5 for all 485 

the CESM versions considered here, similar to the skill in ECMWF and NCEP reforecasts 486 

(Wang & Robertson, 2018). ACC of CESM1(CAM5) based on a 10-member ensemble and 487 

CESM2(WACCM6) based on a 5-member ensemble have the highest skill at week 3-4, however, 488 

with the current reforecast sample size, these skill values are not significantly different than the 489 

ACC for CESM2(CAM6) or CESM1(CAM5) based on a 5-member ensemble. The NAO skill 490 

for CESM2(WACCM6) is very close to the NAO skill for CESM1(CAM5) at weeks 5-6, and 491 

substantially higher than that for CESM2(CAM6) with a 5-member ensemble. This could 492 
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possibly be attributed to a better resolved stratosphere in CESM2(WACCM6), but as with other 493 

comparisons shown throughout this manuscript, due to the limited sample size, these differences 494 

are not statistically significant. 495 

 496 

3.4 Stratosphere-troposphere coupling 497 
 498 
The stratosphere, and in particular, stratosphere-troposphere coupling during SSWs may 499 

be an important source of subseasonal predictability. SSWs are associated with enhanced surface 500 

pressure over the polar cap, and they tend to be followed by warm temperatures over 501 

Northeastern Canada and Greenland, cold temperatures over Eurasia, and enhanced precipitation 502 

over Western Europe (Butler et al., 2017, Domeisen & Butler 2020, Baldwin et al., 2020). This 503 

coupling between tropospheric weather and sudden warmings is often summarized by the time 504 

evolution of the annular modes (Baldwin and Dunkerton 2001), or nearly equivalently, the 505 

standardized polar cap geopotential anomalies (Figure 11). During the onset of an SSW, 506 

anomalously positive geopotential anomalies descend from the middle to the lower stratosphere, 507 

where they can linger for over one month. Their descent to the surface manifests itself as 508 

changes to the Arctic Oscillation (AO) or the NAO over the Atlantic sector.  509 

Here, the standardized polar cap geopotential anomalies in MERRA-2 (Figure 11a) and 510 

in CESM2(WACCM6) and CESM2(CAM6) reforecasts that predicted a major SSW within 7 511 

days of the SSW central date in MERRA-2 reanalysis (Figs. 11b,c) are composited with respect 512 

to the central date of the observed or reforecasted SSW. We emphasize that only reforecasts that 513 

predicted an SSW were selected to assess the models’ ability to capture surface impacts. The 514 

central date of an SSW is the first day when the zonal-mean zonal wind at 60oN and 10 hPa 515 

becomes negative, with 14 SSW events in the reforecast period. The central dates of the 516 
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observed events are: (1) Feb 26, 1999; (2) Feb 11, 2001; (3) Dec 30, 2001; (4) Feb 17, 2002; (5) 517 

Jan 18, 2003; (6) Jan 5, 2004; (7) Jan 21, 2006; (8) Feb 24, 2007; (9) Feb 22, 2008; (10) Jan 24, 518 

2009; (11) Feb 9, 2010; (12) Jan 6, 2013; (13) Feb 12, 2018; and (14) Jan 2, 2019. Figure 12 519 

shows that while the magnitude of the positive geopotential anomalies during the SSW events is 520 

comparable between MERRA-2 and the CESM2(WACCM6) and CESM2(CAM6) reforecasts, 521 

the positive anomalies in the lower stratosphere do not linger as long in the reforecasts, only out 522 

to day 35 and 39, respectively. However, the positive surface geopotential anomalies linger for 4 523 

weeks after the central date of a SSW in the reforecasts and in MERRA-2, indicating that the 524 

coupling of the events with the troposphere is comparable (Baldwin et al., 2021). The squared 525 

pattern correlations of the composited geopotential anomalies between the CESM2(WACCM6) 526 

and CESM2(CAM6) reforecasts and MERRA-2 are similarly high at 0.80 and 0.77 respectively. 527 

In contrast, the averages of the individual reforecast pattern correlations with their respective 528 

SSW event in MERRA-2 are substantially lower with 0.39 for CESM2(WACCM) and 0.25 for 529 

CESM2(CAM6). In summary, CESM2(WACCM6) reforecasts of the polar cap geopotential 530 

anomalies following an SSW are somewhat more consistent with those of MERRA-2 than in 531 

CESM2(CAM6) reforecasts. 532 

 533 

3.5 Mesosphere and lower thermosphere prediction 534 
 535 

Initial investigations by Wang et al. (2014) and Pedatella et al. (2018b) demonstrated the 536 

potential to predict the MLT variability during the 2009 SSW event, though these studies were 537 

limited to a single event. The CESM2(WACCM6) reforecasts provide the opportunity to perform 538 

more detailed investigations into the MLT predictability during SSWs. Davis et al. (2021) 539 

showed that SSW predictability at lead times of one to two weeks is enhanced in reforecasts 540 
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initialized with weaker stratospheric jets.  Figure 12 presents an analysis of SSW predictability 541 

using a composite of the zonal-mean temperature between 70o-90oN from 14 major SSW events 542 

that are captured in the time periods of CESM2(WACCM6) reforecasts and SSWs from 543 

WACCM Specified Dynamics simulations with thermosphere-ionosphere eXtension 544 

(WACCMX-SD; Liu et al., 2018) are used for verification (Figure 12a). Figures 12b-e show the 545 

composites for reforecasts initialized 15, 10, 5, and 0 days prior to the SSW central date. Note 546 

that the results in Figure 12 are based on compositing the reforecasts regardless of whether they 547 

successfully forecast a SSW, and we consider reforecasts initialized within +/- 3 days of the 548 

specified lag for the composites (i.e., a lag of -10 includes reforecasts initialized 7-13 days prior 549 

to the SSW).  550 

Several distinct features of the middle atmosphere (stratosphere ~ 100 to 0.5 hPa or ~10 551 

to 50 km; mesosphere: 0.5 hPa to 10-3 hPa ~ 50 to 90 km, lower thermosphere: above 10-3 hPa) 552 

response to SSWs can be seen in Figure 12a. This includes a mesosphere cooling that begins 553 

right after the central date of the SSW between ~10-1 and 10-3 hPa that accompanies the warming 554 

in the stratosphere, as well as the reformation of the stratopause at high altitudes following the 555 

SSW. We note that formation of an elevated stratopause following an SSW does not always 556 

occur (Chandran et al., 2013), though it is present in the vast majority of the events considered 557 

here, thus appearing in the composite analysis. The CESM2(WACCM6) reforecasts indicate that 558 

the formation of an elevated stratopause and the mesosphere cooling can be predicted ~10-15 559 

days in advance of the SSW, though the altitude of the elevated stratopause is too low in these 560 

early predictions. The reforecasts initialized closer to the SSW (Figure 12d) and near the SSW 561 

onset (Figure 12e) capture the mesosphere cooling and elevated stratopause with higher fidelity 562 

when comparing to WACCMX-SD. These results provide an initial demonstration that the MLT 563 
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variability can be predicted ~5-15 days in advance of SSWs. The MLT variations during SSW 564 

generate subsequent variations in the ionosphere and thermosphere, and the results in Figure 12 565 

thus suggest that it may be possible to also forecast the upper atmosphere variability ~10 days in 566 

advance of an SSW. 567 

 568 

 569 

3.6 Limitations of current framework for chemistry prediction 570 
 571 

As CESM2(WACCM6) includes a comprehensive tropospheric and middle atmospheric 572 

chemistry module, we were hopeful that the current model framework could also be used to 573 

explore the predictability of stratospheric chemistry such as water vapor and ozone. However, 574 

we have discovered that nudging CESM2(WACCM6) to MERRA-2 with a 1-hourly timescale 575 

introduces significant deviations between modeled and observed water vapor. This is illustrated 576 

in Figure 13 which shows the time evolution of the stratospheric tropical water vapor, also 577 

known as the “tape recorder” (Mote et al. 1996), for WACCM6-SD simulation (used to initialize 578 

CESM2(WACCM6) reforecasts) and Microwave Limb Sounder (MLS) observations (Lambert et 579 

al., 2015). Figure 13a reveals that stratospheric water vapor concentrations in WACCM6-SD are 580 

approximately double the observed concentration. Additionally, the water vapor tape recorder 581 

indicates faster ascent in WACCM6-SD, such that the simulated water vapor leads the 582 

observations as seen in the 100 hPa and 70 hPa time series (Figure 13b).  583 

 We have performed several sensitivity experiments with WACCM6-SD, including an 584 

experiment in which we lowered the nudging top from 60 km to 50 km and another experiment 585 

in which we increased the nudging timescale from 1 to 2 hours. We found that the first 586 

experiment had no effect on the simulation of water vapor, whereas the second experiment 587 
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decreased the value of tropical lower stratospheric water vapor by about 15%, making the time 588 

evolution of water vapor closer to observations. It is possible that the 2-hour nudging results in a 589 

colder and higher tropopause or weaker recirculation of water vapor-rich air from the 590 

midlatitudes, both of which would reduce water vapor within the tape recorder. It is also possible 591 

that temperature nudging acts as diabatic heating and artificially changes the strength of the 592 

meridional circulation (Miyazaki et al., 2005). This could decrease the transit time of water 593 

vapor-rich tropospheric air through the tropical tropopause layer, thereby decreasing the amount 594 

of dehydration that can occur. An even longer nudging timescale in the stratosphere may 595 

improve the representation of stratospheric chemistry in the S2S reforecasts/forecasts with 596 

CESM2(WACCM6) and we will explore this in the future further. 597 

 598 

4 Summary and Conclusions 599 

 We have described here a fully coupled Earth system subseasonal prediction framework 600 

with CESM2(CAM6) and CESM2(WACCM6) developed for research purposes. 601 

CESM2(CAM6) and CESM2(WACCM6) are the newest versions of the NCAR Earth system 602 

model used in CMIP6, and the two configurations differ in the atmospheric model components.  603 

CESM2(CAM6) has a top near 40 km, whereas CESM2(WACCM6) extends up to ~ 140 km and 604 

includes fully interactive tropospheric and stratospheric chemistry. Both configurations include 605 

prognostic aerosols. Subseasonal reforecasts were carried out following the SubX protocol for 606 

years 1999 - 2020 with weekly start dates for each year for CESM2, and with weekly start dates 607 

only between September and March for CESM2(WACCM6).  Near real-time forecasts with the 608 

model have been running since September 2020 for CESM2(WACCM6) and since April 2021 609 

for CESM2.  610 
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We demonstrated that the prediction skill of 2m temperature and precipitation as well as 611 

of the MJO and NAO are comparable to the prediction skill for these variables in CESM1 and 612 

similar to the skill seen in some operational models (NOAA’s CFSv2 and ECMWF). The high 613 

subseasonal prediction skill of this research framework, along with extensive output obtained for 614 

all model components, makes it an excellent tool for studies of subseasonal predictability. We 615 

demonstrated that stratospheric-tropospheric coupling during SSW events is well represented in 616 

CESM2(CAM6) and CESM2(WACCM6), which implies that both configurations will likely 617 

capture well surface impacts of these events. This will be investigated in future studies. 618 

CESM2(WACCM6) can also be used for predictability research of the dynamics of the 619 

stratosphere and the mesosphere and lower-thermosphere region. We further demonstrated that 620 

variability in the MLT region is predictable ~ 10 days in advance of SSWs. 621 

In general, the subseasonal prediction skill of tropospheric atmospheric variables is very 622 

similar between CESM2(CAM6) and CESM2(WACCM6). Therefore, the differences either in 623 

ocean and atmosphere initialization procedures or differences in model lids and representation of 624 

the stratosphere have not translated into many significant differences in prediction skills of the 625 

variables examined here. Nevertheless, the noted differences in skill include higher DJF 2m 626 

temperature skill in eastern Asia in CESM2(WACCM6) as compared to CESM2(CAM6), and 627 

higher 2m temperature skill in parts of North America in CESM2(CAM6), both for weeks 5-6. 628 

Stratospheric-tropospheric coupling is well-represented in both models, however, the polar cap 629 

geopotential anomalies following an SSW are more consistent with observations in 630 

CESM2(WACCM6) as compared to CESM2. The impact of this difference on predictability of 631 

surface extreme weather associated with SSWs will be investigated in future work. 632 

 CESM2(CAM6) and CESM2(WACCM6) are freely available for use by the community. 633 
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The reforecast sets described here are publicly available and are designed to serve as a basis for 634 

future experiments elucidating sources of subseasonal predictability.  The near real-time 635 

forecasts are contributing to the NOAA week 3-4 outlook. The extensive output from the 636 

atmospheric, land, ocean and sea-ice components of the model may open new avenues of 637 

research. 638 
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 920 
Figure 1: Correlation coefficients for SST from (a) JRA55-do FO (b) WACCM6-SD in 921 
comparison with HadISST observations. RMSE for (c) JRA55-do FO and (d) WACCM6-SD 922 
when compared with the same observations. (e) The ENSO Nino3.4 Index (e) for all the datasets. 923 
All calculations use monthly data from 1999-2019. 924 
 925 
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 926 
 927 

 928 
Figure 2: The DJF 2m temperature ACC for CESM2(CAM6) over land for (a) weeks 1-2 (day 929 
1-14 averaged), (b) weeks 3-4 (day 15-28 averaged), and (c) weeks 5-6 (day 29-42 averaged). 930 
Using the same biweekly separation, panels (d)-(f) show the difference in ACC for 931 
CESM2(CAM6) minus CESM1(CAM5) and panels (g)-(i) show the difference in ACC for 932 
CESM2(CAM6) minus CESM2(WACCM6). Data in the difference plots that fall below the 95% 933 
confidence level using a Fisher z transformation are omitted. Note the different colorbar ranges. 934 
All calculations use daily data from 1999-2015. The number of ensemble members used in the 935 
analysis is given in the column titles in the square brackets. 936 
 937 
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 938 
 939 
Figure 3: Same as Figure 2 but for JJA. Note, there is no CESM2(WACCM6) data for April - 940 
August. 941 
 942 
 943 

 944 
 945 
 946 
 947 
 948 
 949 
 950 
 951 
 952 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

44 

 953 
 954 
Figure 4: DJF 2m temperature ACC averaged over (a) the global land and (b) North American 955 
land. Panels (c) and (d) are the same as panels (a) and (b) but for JJA. Note, there is no 956 
CESM2(WACCM6) data for April - August. All calculations use daily data from 1999-2015. In 957 
the legend, the number of ensemble members used in the calculations is shown in square 958 
brackets.  959 
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 965 
 966 
Figure 5: Same as Figure 2 but for precipitation. 967 
 968 
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 970 
Figure 6: Same as Figure 3 but for precipitation. 971 
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 974 
 975 
Figure 7: Same as Figure 4 but for precipitation. 976 
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 981 
 982 
Figure 8. RMSE (solid bars) and spread (hatched bars) for 2m temperature for DJF (top) and 983 
JJA (bottom). Metrics are shown for global land (left) and North American land (right). 984 
 985 
 986 
 987 
 988 
 989 
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 990 
 991 

Figure 9: ACC for MJO for NDJFM from CESM1(CAM5), CESM2(CAM6), and 992 
CESM2(WACCM6). Solid (dashed) lines indicate the average of 10 (5) ensemble members. 993 
 994 
 995 
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 996 
Figure 10: Biweekly NAO ACC in NDJFM from CESM1(CAM5), CESM2(CAM6), and 997 
CESM2(WACCM6). The number of ensemble members used in the analysis is given in the 998 
square brackets.  999 
 1000 
 1001 
 1002 
 1003 
 1004 
 1005 
 1006 
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 1007 
Figure 11:  Standardized polar cap geopotential anomalies composited around the central SSW 1008 
date for (a) MERRA-2, (b) CESM2(WACCM6) reforecasts, and (c) CESM2 reforecasts, shaded 1009 
every 0.2 standard deviations. The squared pattern correlation between the ensemble average of 1010 
the reforecasts and MERRA-2, as well as the average of all squared correlations between each 1011 
individual ensemble member and MERRA-2 for every event, are displayed in the upper right of 1012 
each panel. 1013 

 1014 
 1015 
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 1016 
 1017 
Figure 12: Composite of zonal-mean temperature (T) between 70o-90oN for 14 major SSW 1018 
events in (a) WACCMX-SD, and CESM2(WACCM6) reforecasts initialized at a lag of (b) -15, 1019 
(c) -10, (d) -5, and (e) 0 days prior to the SSW central date. The SSW onset date is defined as the 1020 
zonal-mean zonal wind reversal at 60N and 10 hPa. The horizontal dashed lines in panel (a) 1021 
mark the stratopause (~ 0.5 hPa), and mesopause (~10-3 hPa respectively).  1022 
 1023 
 1024 
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 1025 
 1026 
Fig 14: The 10oS-10oN tape recorder of water vapor (a) for MLS observations (filled color 1027 
contours) and WACCM6-SD (back contour lines). The time series of the tape recorder at 1028 
~100hPa (dashed lines) and ~70hPa (solid lines) for MLS (black) and WACCM6-SD (red).  1029 
 1030 
 1031 
 1032 
 1033 
  1034 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

54 

 1035 
 1036 

 Atmosphere Land Ocean & 
Sea-ice  

Reforecast 
Period 

Initialization 
Frequency 

# Ens 
Members 
Reforecasts 

# Ens 
Members 
Forecasts 

CESM2 
(CAM6) 

CFSv2 CLM5 
spun up 
with 
CFSv2 

JRA55-do 
forced 
ocn/sea-ice 

All months, 
1999 - 2020 

Every 
Monday* 

11 21** 

CESM2 
(WACCM6
) 

WACCM6-SD 
run nudged to 
MERRA-2 

CLM5 
spun up 
with 
CFSv2 

Hybrid: 
JRA55-do 
every 5 yrs 
/ MERRA-
2 forced 
ocn 

Sep-Mar 
1999 - 2020 

Every 
Monday* 

5 21*** 

 1037 
Table 1: Summary of initialization methods for S2S reforecasts with CESM2(CAM6) and 1038 

CESM2(WACCM6).  *Reforecasts are started every Monday, except for leap years, in which 1039 

case the reforecast was carried out on a Sunday; **Real-time forecasts with CESM2(CAM6) 1040 

stared April 2021; *** Real-time forecasts with CESM2(WACCM6) started in September 2020. 1041 

 1042 
 1043 
 1044 
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Figure S1: Same as Figure 3, but for MAM. Note, there is no CESM2(WACCM6) data for April - 
August. 
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Figure S2: Same as Figure 2 but for SON.  
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Figure S3: Same as Figure 5, but for MAM. Note, there is no CESM2(WACCM6) data for April - 
August. 
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Figure S4: Same as Figure 5 but for SON.  
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SubX formatted variables (atmosphere, land, sea-ice) 

SubX 
Priority 

Original CESM 
variable name 

SubX 
Formatted 
Filename  

Description CESM2 
(CAM6) 

CESM2 
(WACCM6) 

p1 FLUT rlut Upwelling longwave flux at top 
of model 

Y Y 

p1 PRECC+PRE
CL 

pr_sfc Total (convective and large-
scale) precipitation rate (liq + 
ice) 

Y Y 

p1 TREFHT tas_2m Reference height temperature Y Y 

p1 TS ts Surface temperature Y Y 

p1 U200 ua_200 Zonal wind at 200 hPa Y Y 

p1 U850 ua_850 Zonal wind at 850 hPa Y Y 

p1 U850 ua_850 Zonal wind at 850 hPa Y Y 

p1 V850 va_850 Meridional wind at 850 hPa Y Y 

p1 Z200 zg_200 Geopotential height at 200 hPa  Y Y 

p1 Z500 zg_500 Geopotential height at 500 hPa Y Y 

p2 CAPE cape Convective available potential 
energy 

Y Y 

p2 LHFLX hfls_sfc Surface latent heat flux Y Y 

p2 SHFLX hfss_sfc Surface sensible heat flux Y Y 

p2 Q850 huss_850 Specific humidity at 850 hPa Y Y 

p2 QRUNOFF mrro Total liquid runoff Y Y 

p2 SOILLIQ mrso Soil liquid water Y Y 

p2 PSL psl Sea-level pressure Y Y 

p2 FLNS-FSNS rad_sfc Net surface radiation Y Y 

p2 H2OSOI rzsm Volumetric soil water Y Y 

p2 ICEFRAC sic Sea-ice fraction in % Y Y 

p2 FSNO snc Snow fraction in % Y Y 
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p2 TAUX stx_sfc Zonal surface stress Y Y 

p2 TAUY sty_sfc Meridional surface stress Y Y 

p2 TREFHTMX tasmax_2
m 

Maximum daily reference 
height temperature 

Y Y 

p2 TREFHTMN tasmin_2
m 

Minimum daily reference 
height temperature 

Y Y 

p2 U100 ua_100 Zonal wind at 100 hPa Y Y 

p2 U10 uvas 10-meter wind speed Y Y 

p2 V100 va_100 Meridional wind at 100 hPa Y Y 

p2 OMEGA500 wap_500 Vertical velocity at 500 hPa Y Y 

p3 T010 ta_10 Temperature at 10 hPa Y Y 

p3 T100 ta_100 Temperature at 100 hPa Y Y 

p3 T030 ta_30 Temperature at 30 hPa Y Y 

p3 T050 ta_50 Temperature at 50 hPa Y Y 

p3 T010 ua_10 Zonal wind at 10 hPa Y Y 

p3 U030 ua_30 Zonal wind at 30 hPa Y Y 

p3 U050 ua_50 Zonal wind at 50 hPa Y Y 

p3 V010 va_10 Meridional wind at 10 hPa Y Y 

p3 V030 va_30 Meridional wind at 30 hPa Y Y 

p3 V050 va_50 Meridional wind at 50 hPa Y Y 

p3 Z010 zg_10 Geopotential height at 10 hPa Y Y 

p3 Z030 zg_30 Geopotential height at 30 hPa Y Y 

p3 Z050 zg_50 Geopotential height at 50 hPa Y Y 

p3 Z850 zg_850 Geopotential height at 850 hPa Y Y 

Table S1: CESM2(CAM6) and CESM2(WACCM6) output from the atmosphere, land, and sea-
ice models that follows the SubX naming convention. ‘Y’ and ‘N’ specify whether that particular 
variable is outputted for that model configuration.  
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Atmosphere model daily mean output 

Original CESM 
variable name 

Description CESM2 
(CAM6) 

CESM2 
(WACCM6) 

CLDTOT Vertically-integrated total cloud Y Y 

FLDS Downwelling longwave flux at 
surface 

Y Y 

FLNT Net longwave flux at top of model Y Y 

FSDS Downwelling solar flux at surface Y Y 

FSNT Net solar flux at top of model Y Y 

PHIS Surface geopotential Y Y  

PRECC Convective precipitation rate Y Y 

PRECL Large-scale precipitation rate Y Y 

PS Surface pressure Y Y 

PSL Sea-level pressure Y Y 

QFLX Surface water flux Y N 

QREFHT Reference height humidity Y Y 

RH600 Relative humidity at 600 hPa Y Y 

RHREFHT Reference height relative humidity Y Y 

SNOWHICE Snow depth over ice Y Y 

SNOWHLND Water equivalent snow depth Y Y 

SST Sea-surface temperature Y Y 

TGCLDIWP Total grid-box cloud ice water path Y N 

TGCLDLWP Total grid-box cloud liquid water 
path 

Y N 

THzm Zonal-mean potential temp Y Y 

TMQ Total precipitable water Y Y 

TROP_P Tropopause pressure Y Y 

TROP_T Tropopause temperature Y Y 
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U10 10m wind speed Y N 

UVzm Meridional flux of zonal momentum, 
zonal mean 

Y Y 

UWzm Vertical flux of zonal momentum, 
zonal mean 

Y Y 

Uzm Zonal mean zonal wind Y Y 

VTHzm Meridional heat flux, zonal mean Y Y 

Vzm Zonal-mean meridional wind Y Y 

WSPDSRFAV Horizontal total wind speed average 
at the surface 

Y N 

WSPDSRFMX Horizontal total wind speed 
maximum at the surface 

Y N 

WThzm Vertical Heat Flux, zonal mean Y Y 

Wzm Zonal mean vertical wind Y Y 

Table S2:  Additional daily-mean output from the atmosphere model. 

 

 Atmosphere model 6-hourly instantaneous output 

Original CESM 
variable name 

Description CESM2 
(CAM6) 

CESM2 
(WACCM6) 

PS Surface pressure Y Y 

PSL Sea-level pressure Y Y 

U10 10m wind speed Y Y 

UBOT Lowest model level zonal wind Y Y 

VBOT Lowest model level meridional wind Y Y 

Z200 Geopotential height at 200 hPa Y Y 

Z500 Geopotential height at 200 hPa Y Y 

Table S3: 6-hourly instantaneous atmosphere model output. 

 



 

10 

Original CESM 
variable name 

Description CESM2 
(CAM6) 

CESM2 
(WACCM6) 

OMEGA Vertical velocity Y1 Y2 

O3 Ozone N Y2 

Q Specific humidity Y1 Y2 

RELHUM Relative humidity Y1 Y2* 

T Temperature Y1 Y2 

U Zonal wind Y1 Y2 

UQ Zonal water transport Y1 Y2 

V Meridional wind Y1 Y2 

VQ Meridional water transport Y1 Y2 

Z3 Geopotential height Y1 Y2 

T_12_COS Temperature 12hr cos coeff N Y3 

T_12_SIN Temperature 12hr sin coeff N Y3 

T_24_COS Temperature 24hr cos coeff N Y3 

T_24_SIN Temperature 24hr sin coeff N Y3 

U_12_COS Zonal wind 12hr cos coeff N Y3 

U_12_SIN Zonal wind 12hr sin coeff N Y3 

U_24_COS Zonal wind 24hr cos coeff N Y3 

U_24_SIN Zonal wind 24hr sin coeff N Y3 

V_12_COS Meridional wind 12hr cos 
coeff 

N Y3 

V_12_SIN Meridional wind 12hr sin 
coeff 

N Y3 

V_24_COS Meridional wind 24hr cos 
coeff 

N Y3 

V_24_SIN Meridional wind 24hr sin 
coeff 

N Y3 

 
Table S4: Three-dimensional atmosphere mode output. *indicates that the RELHUM is only 
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consistently available for CESM2(WACCM6) starting with year 2020. Variable is available at 14 
pressure levels (1000, 925, 850, 700, 500, 300, 200, 100, 70, 50, 30, 20, 10, 5 hPa). Variable is 
available at 22 pressure levels (1000, 925, 850, 700, 500, 200, 300, 100, 70, 50, 30, 20, 10, 5, 
3, 2, 1, 0.5, 0.1, 0.01, 0.001, and 1e-5 hPa).3Variable is available at 8 pressure levels (10, 5, 1, 
0.5, 0.1, 0.01, 0.001, 1e-5 hPa). X_24_COS, X_24_SIN, and X_12_COS and X_12_SIN are the 
coefficients of the diurnal (24 h) and semidiurnal (12 h) tide in field X (temperature, zonal or 
meridional wind).    

 

Land Model Output 

Original CESM 
variable name 

Description CESM2 
(CAM6) 

CESM2 
(WACCM6) 

AR Autotrophic respiration Y Y 

BTRAN2 Root zone soil wetness factor Y N 

COL_FIRE_CLOSS Total column-level fire C loss for 
non-peat fires outside land-type 
converted region 

Y N 

CPHASE Crop phenology phase Y Y 

CWDC Coarse woody debris carbon Y N 

ER Ecosystem respiration Y Y 

FAREA_BURNED Fractional area burned by fire Y N 

FIRE Emitted infrared (longwave) 
radiation 

Y N 

FSNO* Snow fraction Y Y 

FUELC Fuel load Y N 

GPP Gross primary production Y Y 

H2OCAN Intercepted water Y Y 

H2OSOI* volumetric soil water Y Y 

H2OSNO Snow depth (liquid water) Y Y 

HR heterotrophic respiration Y N 

NBP Net biome production Y Y 
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NEE Net ecosystem exchange Y N 

NPP net primary production Y Y 

QDRAI Sub-surface drainage Y N 

QOVER Surface runoff Y Y 

QRGWL Surface runoff at glaciers (liquid 
only), wetlands, lakes 

Y N 

QRUNOFF* total liquid runoff - leave in units of 
kg/m2/s 

Y Y 

QSOIL Ground evaporation  Y N 

QVEGE Canopy evaporation Y N 

QVEGT Canopy transpiration Y Y 

RAIN atmospheric rain, after rain/snow 
repartitioning based on temperature 

Y N 

SOILWATER_10CM
* 

soil liquid water + ice in top 10cm of 
soil (veg landunits only) 

Y Y 

SNOW atmospheric snow, after rain/snow 
repartitioning based on temperature 

Y N 

SNOWDP Snow height Y Y 

TLAI total projected leaf area index Y Y 

TOTECOSYSC Total ecosystem carbon, incl veg but 
excl cpool and product pools 

Y N 

TOTVEGC Total vegetation carbon, excluding 
cpool 

Y N 

TWS Total water storage Y Y 

Table S5: Land model output (All daily averages). Variables marked with a ‘*’ also appear in the 
SubX priority 2 (p2) files. 
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Sea-ice Model Output 

Original CESM 
variable name 

Description CESM2 
(CAM6) 

CESM2 
(WACCM6) 

aice Ice concentration Y Y 

aicen sub-gridscale ice concentration category Y Y 

appeff_ai Effective pond fraction Y N 

apond melt pond fraction of sea ice Y Y 

apond_ai melt pond fraction of grid cell N Y 

congel congelation/basal ice growth Y Y 

daidtd ice area tendency due to dynamics Y Y 

daidtt  ice area tendency due to thermodynamics Y Y 

dvidtd  ice volume tendency due to dynamics Y Y 

dvidtt  ice volume tendency due to 
thermodynamics 

Y Y 

fhocn_ai  Net ice/ocean heat flux Y N 

frazil frazil/open-water ice growth Y Y 

fsthru Penetrating shortwave Y N 

fsurf_ai Net surface heat flux Y N 

fswabs snow/ice/ocean absorbed solar flux N Y 

fswabs_ai snow/ice/ocean absorbed solar flux Y N 

fswdn Incoming shortwave Y Y 

hi Ice thickness Y Y 

hs Snow thickness Y Y 

meltb basal ice melt Y Y 

meltl Lateral melt Y Y 
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melts Snow melt Y Y 

meltt Surface ice melt Y Y 

snoice snow-to-ice conversion growth Y N 

snowfrac Snow fraction Y Y 

Tsfc Temperature of the snow/sea ice 
surface 

Y N 

uvel Ice velocity Y Y 

vvel Ice velocity Y Y 

Table S6: Sea-ice model output (all daily averages). 

 

Ocean model output 

Original CESM 
variable name 

Description CESM2 
(CAM6) 

CESM2 
(WACCM6) 

HMXL Mixed-layer depth Y Y 

SSH Sea-surface height Y N 

SST Sea-surface temperature Y N 

Table S7: Ocean model output (all daily averages). 


