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Abstract

We study the structure of the Llevant ranges in Mallorca with special emphasis in the Cenozoic extensional evolution of the

island, which we integrate in a new geodynamic model for the Westernmost Mediterranean. Mallorca underwent two rifting

phases in the Oligocene and Serravallian, before and after the development of its Foreland Thrust Belt (FTB). The first

extensional phase produced Oligocene semigrabens (?29-23 Ma) that were inverted during the Early-Middle Miocene (23-14

Ma) WNW-directed FTB development. The second rifting phase produced the extensional collapse of the Mallorca FTB during

the Serravallian (?14-11 Ma). This later rifting was polyphasic, with NE-SW and NW-SE directed transport, resulting in an

overall sequential, radial extension. The Oligocene extension affected great part of the Western Mediterranean, opening the

Liguro-Provenzal and proto-Algerian basins after the collapse of the Palaeogene AlKaPeCa orogen, and Mallorca, its former

hinterland. Continued plate convergence nucleated a new subduction system in the Early Miocene that initiated along the Ibiza

transform, producing the Mallorca WNW-directed FTB and the subduction of the South-East Iberian passive margin. A process

that individualized the Betic-Rif slab and initiated its westwards retreat. Serravallian extension occurred at the northern edge

of the subduction system coeval to the Algero-Balearic basin opening. Extension initiated towards the SW direction of slab

tearing and later rotated to a NW-SE direction, probably related to flexural and isostatic rebound. These processes drove the

Alboran domain archipelago southwestwards until the Late Miocene, contributing to the present isolation of the Mallorca FTB

from its Betic hinterland.
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Key Points: 10 

• Two Cenozoic extensional phases thinned Mallorca before and after its Early Miocene 11 
shortening phase, in the Oligocene and Serravallian 12 

• The Serravallian extension was radial with low-angle faults that cut through the previous 13 
thrust pile 14 

• The Mallorca thrust belt formed part of the Betics in the Early Miocene and later was 15 
isolated from its hinterland by the Algero-Balearic basin formation  16 

 17 
  18 
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Abstract 19 

We study the structure of the Llevant ranges in Mallorca with special emphasis in the Cenozoic 20 
extensional evolution of the island, which we integrate in a new geodynamic model for the 21 
Westernmost Mediterranean. Mallorca underwent two rifting phases in the Oligocene and 22 
Serravallian, before and after the development of its Foreland Thrust Belt (FTB). The first 23 
extensional phase produced Oligocene semigrabens (»29-23 Ma) that were inverted during the 24 
Early-Middle Miocene (23-14 Ma) WNW-directed FTB development.  The second rifting phase 25 
produced the extensional collapse of the Mallorca FTB during the Serravallian (»14-11 Ma). 26 
This later rifting was polyphasic, with NE-SW and NW-SE directed transport, resulting in an 27 
overall sequential, radial extension. The Oligocene extension affected great part of the Western 28 
Mediterranean, opening the Liguro-Provenzal and proto-Algerian basins after the collapse of the 29 
Palaeogene AlKaPeCa orogen, and Mallorca, its former hinterland. Continued plate convergence 30 
nucleated a new subduction system in the Early Miocene that initiated along the Ibiza transform, 31 
producing the Mallorca WNW-directed FTB and the subduction of the South-East Iberian 32 
passive margin. A process that individualized the Betic-Rif slab and initiated its westwards 33 
retreat. Serravallian extension occurred at the northern edge of the subduction system coeval to 34 
the Algero-Balearic basin opening. Extension initiated towards the SW direction of slab tearing 35 
and later rotated to a NW-SE direction, probably related to flexural and isostatic rebound. These 36 
processes drove the Alboran domain archipelago southwestwards until the Late Miocene, 37 
contributing to the present isolation of the Mallorca FTB from its Betic hinterland. 38 

Plain Language Summary 39 

We integrate the geological evolution of the Mallorca island in its larger setting of the Western 40 
Mediterranean. For this we study the geological structure of Mallorca, finding that it underwent 41 
two thinning phases that occurred before and after a period of crustal thickening and shortening 42 
in the region between 19 and 14 Ma. These thinning phases coincided with the development of 43 
the western Mediterranean basins. The later crustal thinning occurred at the northern edge of the 44 
Betic-Rif subduction system, in relation to retreat of a portion of lithospheric root that detached 45 
under Mallorca at around 14 Ma. This tectonic mechanism occurring at the southern (along the 46 
present western Algerian margin) and northern edges of the subduction system favoured the 47 
westward retreat of the subducting mantle body presently imaged by seismic tomography under 48 
the westernmost Mediterranean. The geology of the Mallorca island supports that it formed part 49 
of the Betic orogen and was later isolated from its Betic hinterland by the opening of the Algero-50 
Balearic basin. The Betic hinterland drifted westwards hundreds of km away from Mallorca, as 51 
an archipelago, until its final docking between Northern Africa and Southeastern Iberia 52 
approximately 9 Ma ago. 53 

1 Introduction 54 

The Balearic Promontory (BP) is set at the core of the Western Mediterranean orogenic system, 55 
forming part of the Betic Foreland Thrust Belt (Betic FTB), developed by NW- to WNW-56 
directed thrust tectonics during the Late Oligocene to Early Miocene (Alvaro, 1987; Gelabert et 57 
al., 1992; Sabat et al., 1988,  2011)(Figure 1). However, the BP is missing a corresponding thick-58 
skinned internal domain and is surrounded by deep basins developed mostly during Tertiary 59 
back-arc rifting phases (e.g. Aïdi et al., 2018; Burrus, 1984; Cherchi and Montadert, 1982; 60 
Etheve et al., 2016; Ferrandini et al., 2003; Gelabert et al., 2002; Jolivet et al., 2006; Schettino 61 
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and Turco, 2006; Figure 1). The relative timing between crustal thickening and extension in the 62 
region has been the subject of great debate with most work suggesting that extension during the 63 
Oligocene to Early Miocene (26-19 Ma; Etheve et al., 2016; Schettino and Turco, 2006) was 64 
actually prior to crustal shortening that lasted until the Langhian (»14-16 Ma; e.g. Sabat et al., 65 
2011). Whilst there is some consensus on the age of crustal shortening —with deformation in 66 
Mallorca migrating from SE to NW between the late Oligocene and the Langhian (e.g. Sabat et 67 
al., 2011)—the age and significance of crustal extension in Mallorca and adjacent marine basins 68 
are not so well constrained.  69 

 70 
Figure 1. Tectonic map of the Western Mediterranean including main orogenic domains and basins (A). Inset, 71 
shows the Geology of the Mallorca Island and location of the study area (B). 72 

Most work suggests that rifting in the region occurred between 30 and 16 Ma in the three basins 73 
surrounding the Balearic promontory: the Valencia Trough to the Northwest, the Liguro-74 
Provencal Basin to the Northeast, and the Algero-Balearic basin to the South (Figure 1) (e.g. 75 
Arab et al., 2016; Etheve et al., 2016; Lepêtre et al., 2013; Maillard & Mauffret, 1999; Schettino 76 
& Turco, 2006; Speranza et al., 2002; Watts and Torne, 1992). Some authors proposed the rifting 77 
phase lasted longer, between 34 and 13 Ma, encompassing the development of the Mallorca FTB 78 
(Gelabert et al., 2002; Roca & Guimera, 1992; Roca 2001). Other work, however, has 79 
demonstrated the importance of Mesozoic rifting in the Valencia Trough, where a several km 80 
thick sequence of Jurassic sediments is found above a thin continental crust (Ayala et al., 2015; 81 
Etheve et al., 2018). This domain of Mesozoic rifting was further extended during the Cenozoic 82 
in its transition towards the Liguro-Provencal Basin, forming the differentiated Menorca basin in 83 
between (Pellen et al., 2016). Differential Tertiary extension between these domains was 84 
accommodated along NW-SE directed transfer fault zones like the North Balearic and Central 85 
fracture zones, among others, in a process accompanied by important Early to Middle Miocene 86 
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magmatism (Maillard et al., 2020; Pellen et al., 2016, Figure 1). The role of Oligocene to Early 87 
Miocene extension in the formation of the present Algero-Balearic basin to the South has also 88 
been questioned, a region where several authors have highlighted the importance of oceanic crust 89 
development during the Middle to Late Miocene (Booth-Rea et al., 2007; 2018a; de la Peña et 90 
al., 2020a; 2020b; Jolivet et al., 2006; Mauffret et al., 2004). A process that followed the 91 
westward retreat of the Gibraltar arc subduction system (Lonergan & White, 1997) and 92 
concomitant slab detachment or STEP tearing along its Betic and Rif-Tell orogenic limbs, 93 
respectively (e.g. Duggen et al., 2003; García-Castellanos & Villaseñor, 2011; Hidas et al., 2016; 94 
2019;Mancilla et al., 2015). This Middle to Late Miocene extension has also been described 95 
onshore along its continental margins, in Northern Tunisia, the BP and the South Eastern Betics 96 
(Booth-Rea et al., 2004; 2018b; Giaconia et al., 2014; Moragues et al., 2018).  A two-phase 97 
opening model for the Algero-Balearic basin has also been proposed, with a first Oligocene-98 
Early Miocene NW-SE phase followed by a Middle to Late Miocene E-W phase (Aïdi et al., 99 
2018; Driussi et al., 2015a). 100 

Cenozoic extension onshore Mallorca has not been extensively studied. Most work describes 101 
SW-NE trending high-angle normal faults that extended the southeastern margin of the 102 
Tramuntana ranges developing Middle to Late Neogene depocentres like the Inca, Palma and Sa 103 
Pobla basins (Benedicto et al., 1993; Gelabert, 1998; Ramos-Guerrero et al., 2000; Sabat et al., 104 
2011)(Figure 1b). Also, a couple of NW-SE trending normal faults were differentiated in the 105 
Central Ranges of Mallorca (Anglada-Guajarro & Serra-Kiel, 1986; Sabat et al., 2011). 106 
Paleostress analysis from small-scale faults suggested the existence of radial extension during the 107 
late Neogene (Cespedes et al., 2001). Moreover, preliminary field work and structural analysis 108 
showed that many of the supposed thrust contacts between nappes in the Tramuntana and Levant 109 
ranges were actually reworked by two sets of orthogonal low- and high-angle normal faults 110 
producing NW-SE and NE-SW directed extension during the Middle Miocene (Booth-Rea et al., 111 
2016; Moragues et al., 2018). 112 

Here we study the Cenozoic extensional phases in Mallorca, analyzing the relationships between 113 
extensional faults and their related synrift deposits and identifying the main grabens with the 114 
help of the residual gravity map of the Island. We map the southern and central Llevant ranges, 115 
with a structural geology emphasis to determine the geometry and kinematics of brittle faults and 116 
their relations with the overlying Tertiary sedimentary sequence. We differentiate between 117 
extensional and shortening structures and analyze their relative timing. Furthermore, we 118 
determine the age of extensional deformation analyzing syn-sedimentary features in the alluvial 119 
sequences related to normal faulting, like progressive unconformities due to fault-bend related 120 
folding, clastic dikes developed by hydro-plastic deformation before the sediment consolidation 121 
and thickness and facies changes across faults. We describe two rifting phases in Mallorca that 122 
occurred, respectively, before and after the main shortening period that formed the Mallorca FTB 123 
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in the Early Miocene. Finally, we integrate these data with previously published results in a new 124 
geodynamic model for the evolution of the Western Mediterranean during the Cenozoic.  125 

2 Geodynamic and Geological Settings 126 

2.1 Geodynamic Setting 127 

Mallorca forms the largest island of the BP that represents an emerged archipelago over a 128 
relatively thin 22–26 km continental crust (e.g. Díaz & Gallart, 2009)(Figure 1). This crustal 129 
domain shows a thin lithospheric thickness, below 70 km (Jiménez Munt et al., 2003) and 130 
overlies an anomalously slow upper mantle with a strong NE-SW oriented Pn anisotropy, similar 131 
to the rest of the Betics (Díaz et al., 2013). Towards the Northwest it transitions to extremely thin 132 
continental crust of the Valencia Trough (Etheve et al., 2018; Maillard & Mauffret, 1999; Torné 133 
et al., 1992). To the Northeast, the BP is bounded by the Late Oligocene to Middle Miocene 134 
Liguro-provencal oceanic basin, across the dextral North-Balearic Fracture Zone (NBFZ) (e.g. 135 
Maillard et al., 2020). Oceanic crust is also found to the Southeast of the BP, forming the 136 
Algero-Balearic basin (Aïdi et al., 2018; Booth-Rea et al., 2007; 2018a; Grevemeyer et al., 2011; 137 
Leprêtre et al., 2013; Mauffret et al., 2004). The transition between the BP and Algero-Balearic 138 
basin domains occurs across both narrow transform domains like the Emile Baudot and 139 
Mazarron escarpments, and through wider extended continental crust domains, for example, to 140 
the South of Menorca (Driussi et al., 2015a).  Both the Liguro-Provencal and Algero-Balearic 141 
basin are interpreted as back arc basins formed in the context of slab roll-back in relation to 142 
retreating Tethyan lithospheric mantle bodies, presently underlying the Calabrian, Gibraltar and 143 
Algero-Tunisian orogenic arcs (e.g. Booth-Rea et al., 2018b; El-Sharkawy et al., 2020; Faccenna 144 
et al., 2004; Fichtner & Villaseñor, 2015; Lonergan & White, 1997; Piromallo & Morelli, 2003; 145 
Wortel & Spakman, 2000). The present slab segmentation of the Western Mediterranean was 146 
probably determined by the location of transform faults inherited from the Mesozoic Tethys 147 
rifting stage (e.g. Angrand et al., 2020; Verges & Fernández, 2012). 148 

Whilst the Liguro-Provencal basin is related to an Oligocene to Early Miocene volcanic arc 149 
cropping out in Corsica and Sardinia, the western Algero-Balearic basin formed behind the 150 
Alboran volcanic arc in the Eastern Alboran basin during the Middle to Late Miocene (Booth-151 
Rea et al., 2007; 2018a; de la Peña et al., 2020b; Duggen et al., 2004; 2008). Slab retreat was 152 
facilitated by slab tearing or detachment at the edges of the western Mediterranean subduction 153 
arcs, along Subduction Transfer Edge Propagators (STEP) (Badji et al., 2015; Booth-Rea et al., 154 
2018b; Gallais et al., 2013; Govers and Wortel, 2005; Hidas et al., 2019; Mancilla et al., 2015; 155 
van Hinsbergen et al., 2014). Mantle flow driven by the above slab tectonic mechanisms 156 
produces dynamic topography around the western Mediterranean with both areas of subdued 157 
topography above the subducting slabs and others undergoing uplift in backarc regions with 158 
mantle upwelling (Faccenna et al., 2014). This is the case of the BP that is located over a region 159 
with large positive dynamic topography (Faccenna & Becker et al., 2020).   160 

2.2 Geological Setting 161 

The Balearic Promontory rifted away from the East Iberian margin during the Jurassic when the 162 
Valencia Trough basin initially developed (Etheve et al., 2018). The Balearic region showed a 163 
similar evolution to the SE Iberian margin during the Mesozoic, with Germanic type facies 164 
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during the Triassic that evolved towards shallow platform facies in the Early Jurassic, 165 
represented by shallow marine carbonates, including dolostone and limestones (Alvaro et al., 166 
1989; Bourrouilh, 1983; Colom, 1973) (Figure 2). Further rifting is marked by the rupture of the 167 
platform and the deposition of lower Pleisbachian outer platform marls and marly limestones, 168 
followed by quartz-rich sandstones and microconglomerates (e.g. Alvaro et al., 1989; Sevillano 169 
et al., 2018). Since the Toarcian it formed a deep marine environment with typical turbiditic talus 170 
facies with resedimented olistholiths (Kettle, 2016). This pelagic environment continued with the 171 
Maiolica white nannofossil limestone during the Early Cretaceous and was later followed by the 172 
deposition of Barremian to Aptian grey-greenish marls with planktonic microfauna (Bourrouilh, 173 
1983; Martin-Chivilet et al., 2019). Mesozoic rifting was segmented by NW-SE-oriented 174 
transform faults that determined the individualization of different blocks in the Tethys realm, for 175 
example, the Ebro block (Angrand et al., 2020). 176 

 177 
Figure 2. Stratigraphic sequence of the Mallorca Island (Mesozoic from Sabat et al., 2011; Palaeogene-Early 178 
Miocene (Colom; 1980; Martin-Closas & Ramos-Guerrero, 2005); Early Miocene to Tortonian (Ramos-Guerrero et 179 
al., 1989; 2000; Rodríguez-Perea, 1984); Tortonian to Quaternary, Ramos-Gerrero et al., 2000). Abbreviations of 180 
sedimentary unit names: C, Calvari Unit; CB, Cala Blanca Unit; MS, Manacor shales Unit; P/E, Peguera limestones 181 



manuscript submitted to Tectonics 

 

and S´Envestida grainstones; PM, Pina marls Unit; RU, Randa calcarenites Unit; SV, Sa verdera Unit. Tectonic 182 
events through time (blue numbers) of Western Mediterranean domains based on: 1, Faccenna et al. (2004), Burrus 183 
(1984); 2, Schettino & Turco (2006); 3, Vergés & Sabat (1999); 4, Aïdi et al. (2018); 5, Faccenna et al. (2004); 6, 184 
Vergés & Fernandez (2012); 7, Sabat et al. (2011); 8, present work; 9, Platt et al. (2005); 10, Hidas et al. (2013), 185 
Balanyá et al. (1997); 11, García-Dueñas et al. (1992), Lonergan & Platt (1995); 12, Platt et al. (2006); 13, Balanyá 186 
et al. (2007), Irribarren et al. (2007). 187 

The Early Cretaceous deep basinal setting was interrupted by a hiatus from the Late Cretaceous 188 
to the Early Eocene.  An event probably related to crustal thickening during the development of 189 
the Pyrenees (Verges et al., 2002), the Iberian Range (Guimerà et al., 2004), and the AlKaPeCa 190 
orogenic domain in the Western Mediterranean (Azañón et al., 1997; Balanyá et al., 1997; 191 
Boullin et al., 1986; Ramos-Guerrero et al., 1989; van Hinsbergen et al., 2014)(Figure 2). This 192 
continental thickening event has been dated as Eocene in HP/LT rocks of the Alpujarride 193 
complex in the Internal Betics (Platt et al., 2005), the Calabrian-Peloritani ranges (Heymes et al., 194 
2010; Rossetti et al., 2002), the Kabylies (Bruguier et al., 2017) and Corsica (Martin et al., 2011; 195 
Vitale Brovarone & Herwetz, 2013). Following this hypothesis, the Balearic promontory formed 196 
part of the hinterland of the AlKaPeCa orogenic domain that was located along its southern 197 
margin, before the later opening of the Liguro-Provencal, Thyrrenian and Algerian basins (e.g. 198 
Booth-Rea et al., 2005; 2007; Boullin et al., 1986 ; van Hinsbergen et al., 2014). Most authors 199 
propose that this orogenic domain had southward tectonic vergence, developed in relation to 200 
northwestwards subduction of the Tethys lithosphere (e.g. Booth-Rea et al., 2005; Chertova et 201 
al., 2014; Jolivet et al., 2008; van Hinsbergen et al., 2014; Wortel & Spakman, 2000). This 202 
vergence is observed at the top of the AlKaPeCa orogenic domain, in the Malaguide thrust stack 203 
in the Betics, after undoing paleomagnetic rotations (Lonergan, 1993). 204 

The Late Cretaceous to Early Eocene hiatus was followed by Eocene continental paralic facies 205 
that evolve towards a shallow marine transgression in the Middle Eocene (late Lutetian-206 
Bartonian, »45–37 Ma) represented by the Peguera limestones and S´Envestida grainstones, 207 
respectively (Martín-Closas & Ramos-Guerrero, 2005; Ramos-Guerrero et al., 1989)(Figure 2). 208 
Continental deposition continued with some sedimentary gaps during the Late Eocene to Early 209 
Miocene with the deposition of conglomeratic wedges, sandstones and lacustrine carbonates that 210 
transition to shallow marine facies towards the SE, between the Priabonian and the Aquitanian 211 
(»37–20.4 Ma, Martín-Closas and Guerrero, 2005; Ramos-Guerrero et al., 1989). The top of this 212 
mostly continental sequence is represented by Aquitanian marine marls (Colom and Sacares, 213 
1968; Colom, 1980) (Figure 2). Equivalent conglomeratic wedges, dated as latemost Priabonian 214 
to Early Rupelian have also been described filling up semigrabens in Menorca (»35–28 Ma, 215 
Bourrouilh, 1983; Martín-Closas & Guerrero, 2005; Sabat et al., 2018).  216 

Coeval Oligocene to Early Miocene extension in a back-arc setting, exhuming the subcontinental 217 
mantle to plagioclase facies conditions, affected the Alboran orogenic domain, which was 218 
probably located to the South of the Balearic promontory at the time (e.g. Balanyá et al., 1997; 219 
Booth-Rea et al., 2005; 2007; Garrido et al., 2011; Marchesi et al., 2012). Oligocene extensional 220 
depocenters are also described at the top of the Alboran domain, in the Malaguide complex (Geel 221 
& Roep, 1998). The Palaeogene Malaguide-Alpujarride thrust stack was extended by low-angle 222 
normal faults and detachments at this time (Booth-Rea et al., 2004; Lonergan & Platt, 1995), 223 
concomitant to late Oligocene to Early Miocene tholeiitic dikes in the Malaguide domain 224 
(Duggen et al., 2004; Torres-Roldán et al., 1986), and calc-alkaline high-MgO andesite 225 
cumulates (Marchesi et al., 2012), arc-tholeiite gabbros (Hidas et al., 2015) and chromitites 226 
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(González-Jiménez et al., 2017) in the Ronda peridotites. This extension was coeval to opening 227 
of the Liguro-Provencal basin to the NE (Cherchi & Montadert, 1982; Ferrandini et al., 2003; 228 
Schettino & Turco, 2006; Speranza et al., 2002)(Figure 2). 229 

Marine sedimentation initiated again in the Early Burdigalian, first with unconformable shallow 230 
calciruditic and calcarenitic platform facies of the Sant Elm formation in the Burdigalian (»20.4-231 
19 Ma, Donoso et al., 1982; Fornos et al., 1991; Rodríguez-Perea, 1984) and later followed by 232 
deep marine flysch deposits in the Burdigalian to Langhian (19-14 Ma, Alvaro et al., 1984; 233 
Ramos-Guerrero et al., 1989; Rodríguez-Perea, 1984)(Figure 2). The turbiditic marls of the 234 
Banyalbufar formation deposited in an unstable foredeep context related to the development of 235 
the Mallorca FTB and later evolved in a piggy back type setting as the basin was incorporated 236 
into the Betic imbricated thrust stack up to the Langhian (»16-14 Ma, Alvaro, 1987; Gelabert, 237 
1998; Ramos-Guerrero et al., 1989; Sabat et al., 2011). The turbidites include abundant 238 
resedimented blocks and olistoliths of Mesozoic and Paleozoic rocks, provenant from the 239 
Mallorca FTB hinterland to the S (González-Donoso et al., 1982; Moragues et al., 2018; Pomar 240 
& Rodríguez-Perea, 1983). Thus, Mallorca passed from being the hinterland of the Alboran and 241 
Kabilian orogenic domains in the Palaeogene to being part of the foreland of the Betic orogen 242 
after the Oligocene to Early Miocene extensional collapse of the region and its subsequent 243 
contractive inversion. Shallow platform calcirudites and grainstones in the Randa massif, 244 
attributed to the late Burdigalian to Langhian, show locally a spaced stylolitic cleavage that 245 
attests to active shortening in the Levant ranges at the time (Gelabert, 1998; Sabat et al., 2011). 246 

Postorogenic sedimentation initiated with continental deposits in the Serravallian (13.8-11.6 247 
Ma), represented by alluvial and lacustrine environments where silts, gravels, limestones and 248 
marls deposited (Figure 2). Three members are differentiated, the Manacor silts and 249 
conglomerates, the Pina marls and the Son Verdera limestones (Pomar et al., 1983; Ramos-250 
Guerrero et al., 2000). These sediments show large lateral thickness variations that are related to 251 
their deposition during the activity of SW-NE striking normal faults along the SE border of the 252 
Tramuntana ranges (Benedicto et al. 1993). Middle-Miocene extensional structures strongly 253 
thinned the Early Miocene nappe stack, in two orthogonal directions, especially in the Llevant 254 
ranges (Moragues et al., 2018). During the Middle Miocene the BP must have formed an 255 
archipelago with other nearby islands in the Western Mediterranean that shared similar insular 256 
fauna. For example, Serravallian continental sediments in the Central Betics have similar glirid 257 
fauna to the one found in Mallorca (Bover et al., 2008; Suarez et al., 1993). 258 

Marine flat lying limestones seal most of the deformation in Mallorca although they seem locally 259 
affected by SW-NE trending normal faults along the southeastern foothills of the Tramuntana 260 
and Llevant ranges (Gelabert, 1998; Sabat et al., 2011). Tortonian reefal and Messinian littoral 261 
carbonates occur along the coast and pass landwards to continental detrital deposits (Pomar et al., 262 
1983). Offshore Mallorca, SW-NE trending normal faults cut the late Miocene sedimentary 263 
sequence including the Messinian (Driussi et al., 2015b). 264 

3 Methods 265 

We mapped the southern and central part of the Llevant ranges in SE Mallorca with a special 266 
emphasis in analysing the effects of extensional overprinting upon the Early Miocene FTB 267 
structure of the island (Figure 3). This extension is evidenced in three geological cross sections 268 
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of the Llevant ranges (Figure 4). We have contrasted previous maps and geological cross 269 
sections of the region, mostly published in the IGME 1:50.000 geological maps (Alvaro-López, 270 
1983; Barnolas et al. 1983) and also by Casas and Sabat (1987), Freeman et al. (1989), Pares et 271 
al. (1986),  and Sabat et al. (1988). We compare the main faults and basins we observed with the 272 
previously published residual gravimetric map for Mallorca (Ayala et al., 1994; IGME, 2003). 273 
The residual gravimetric map was obtained from 3843 gravimetric data (Ayala et al., 1994). A 274 
density of 2.6 g/cm3 was used for the Bouguer reduction (IGME, 2003). The regional anomaly 275 
was calculated using a 3-order polynomic adjustment. Finally, the residual anomaly we show 276 
was obtained by subtraction of the regional anomaly from the Bouguer anomaly (Ayala et al., 277 
1994; IGME, 2003). 278 

Fault orientation and kinematics were measured in 45 sites with a total of 638 fault 279 
measurements (Figure 5). In sites with enough fault-slip data, a stress inversion analysis was 280 
carried out to obtain the paleo-stress state using a Search Grid method (Galindo-Zaldívar & 281 
Gonzalez-Lodeiro, 1988) and a Gauss paleostress method (T-Tecto 3.0 software; Zalohar & 282 
Vrabec, 2007). The first method is based in Bott’s equation (Boot, 1959) were the best-fitting 283 
tensor, with the minimum sum of angular misfits between the predicted theoretical striae and the 284 
real striae, is searched. The remaining non-fitting faults are used to search for other possible 285 
tensors. In case of a multi-phase determination, the number of the phase is related to the number 286 
of assigned faults in each phase without any chronological meaning. The stress state is given by 287 
the orientation of the main axis of the stress tensors (maximum (σ1), intermediate (σ2), and 288 
minimum (σ3) stress) and their axial ratio (R, (σ2- σ3)/(σ1- σ3)). In the second method, the results 289 
agree with the Amonton’s Law by searching for the global and highest local maxima of the sum 290 
of compatibility functions (angular misfit and shear-normal stress ratio) for all fault-slip data. 291 
The results obtained with both methods are consistent and test their reliability. 292 

The geodynamic reconstruction was carried out by integrating field observations presented in 293 
this study into previously published Eocene-Middle Miocene geodynamic evolution models of 294 
the Western Mediterranean after Booth-Rea et al. (2007), Etheve et al. (2016), Lepretre et al. 295 
(2018), van Hinsbergen et al. (2020) and references therein. The framework in our model is 296 
constrained by the paleogeographic positions and motions of Africa, Iberia and Adria relative to 297 
the Eurasian plate, based on Handy et al. (2010) and Rosenbaum et al. (2002). The Atlantic and 298 
Tethys ocean floor structure is reconstructed after Sallarès et al. (2011), and the Cenozoic 299 
seafloor evolution is after Poort et al. (2020). Ages of volcanism are compiled from Lustrino et 300 
al. (2011), Marti et al. (1992) and Maury et al. (2000) , and the position of coastlines is 301 
reconsidered after Jolivet et al. (2006) including stratigraphic data and continental vertebrate 302 
distribution from Azzaroli (1990), Bover et al. (2008), Boukhalfa et al. (2020), Costamagna and 303 
Schäfer (2013), de la Peña et al. (2020b), Martín-Closas and Ramos-Guerrero (2005), Mennecart 304 
et al. (2017) and Suarez et al. (1993). 305 

 306 



manuscript submitted to Tectonics 

 

4 Results, structure of the Llevant ranges 307 

We show a new geological and structural map for the southern and central parts of the Llevant 308 
ranges that reinterprets many of the supposed thrust surfaces as low-angle normal faults (Fig. 3).  309 

 310 
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Figure 3. Geological map of the Serres de Llevant. Red lines and arrows, fault azimuths and kinematic vectors. Red 311 
numbers, dip angles in tens of degrees. Bedding, our data in black, IGME data in grey. White dots, Location of 312 
figures 6, 9, 11.White lines, location of cross-sections in Figure 4. 313 

We observe that the contractive structures related to the Mallorca FTB development and the 314 
nappen they bound are pervasively overprinted by extensional brittle shear planes, especially in 315 
the most pelitic lithologies like the Cretaceous and late Jurassic pelagic marls (Fig. 6a, b, c). 316 
Slicken lines along these planes mark variable directions of transport, although mostly NE-SW 317 
and NW-SE directed (Figs. 3, 4 and 5). Meanwhile, more competent lithologies like Triassic 318 
dolostones are strongly faulted and brecciated (Fig. 6c, d). The geometrical and kinematic 319 
analysis of these structures and of the main brittle fault contacts between lithological units in the 320 
Serres de Llevant suggest that the Mallorca FTB was strongly thinned and extended in two 321 
orthogonal directions after the Early Miocene thrusting phase, however, preserving the 322 
previously established nappe superposition (Moragues et al., 2018 and in a wider region in Fig. 323 
5). Low-angle normal faults with flat and ramp geometry developed thanks to the heterogeneous 324 
rheology of the crustal stack formed by the Mallorca FTB, where weak pelagic marls alternate 325 
with stronger dolostone and limestone lithologies (Fig. 6d). These faults are characterized by 326 
producing stratigraphic omissions along their contacts towards the direction of transport. In 327 
many cases, the different rock bodies in the Llevant ranges are bounded entirely by LANFs, 328 
forming extensional horses at different scales. 329 

 330 
Figure 4. Cross sections through the Serres de Llevant. Legend and location in Figure 3.  331 
 332 
 333 
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Figure 5. Fault measurement stations with paleostress results obtained through the Search Grid (SGM; Galindo-335 
Zaldívar and Gonzalez-Lodeiro, 1988) and Gauss paleostress methods (GM; Zalohar and Vrabec, 2007). Stereoplots 336 
of equal area, lower hemisphere projections show faults with arrows indicating slip vectors and stress tensor results, 337 
main axes (square) an axial ratios (R, (σ2- σ3)/(σ1- σ3)) for different stress phases (P1-P3). Also, the main horizontal 338 
compression and tension orientations are shown with black (GM) and grey (SGM) arrows. A table with paleostress 339 
analysis and location of stations is available as supplementary material. 340 

 341 
 342 
Figure 6. Brittle extensional shear zone with NE-directed transport developed in Jurassic marls (a). Extensional 343 
shear zone between Jurassic marls and Triassic dolostone cut by later SW-directed normal faults (b). Low-angle 344 
normal fault system cutting through folded Middle Jurassic limestones and marls, later cut by high-angle normal 345 
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faults with ENE-directed transport (c). Extensional structures cutting through Triassic dolostones in a quarry nearby 346 
Manacor. Photo locations in Figure 3. 347 

4.1 Oligocene rifting phase 348 

Stratigraphic studies in Mallorca suggest that Oligocene to Aquitanian (»29-23 Ma) continental 349 
deposits of the Cala Blanca Formation formed syntectonically to extensional faulting (Martín-350 
Closas & Ramos-Guerrero, 2005; Ramos-Guerrero et al., 1989; 2000). However, Tertiary 351 
extensional structures formed before nappe tectonics in Mallorca have not been identified up to 352 
date. Here we describe a well-preserved outcrop that demonstrates the syn-extensional nature of 353 
these deposits.  354 

 355 

Figure 7. Structural map of the Capdepera Oligocene semigraben. Stereoplots of equal area, lower hemisphere 356 
projections show faults with arrows indicating slip vectors. Streoplot of paleostress results sorted by fault 357 
kinematics, axis (square) an axial ratio of each phase (R, (σ2- σ3)/(σ1- σ3)) of stress tensors. Also, main horizontal 358 
compression and tension orientation are shown with black (GM) and grey (SGM) arrows. 359 

The Capdepera semigraben is preserved at the North-East of Mallorca (Figure 1b, 7). The 360 
semigraben structure is filled by a continental carbonate breccia body with a wedge geometry 361 
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that shows an internal fan-shape progressive unconformity, where the breccias dip between 55 362 
and 15º towards the SE (N150ºE)(Figs. 7, 8 a, b).  363 

 364 
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Figure 8. Panoramic view of the Capdepera Oligocene semigraben. Notice progressive unconformity developed in 365 
the Oligocene breccia wedge (a). Interpretation of the structure of the Capdepera semigraben (b). Small-scale 366 
normal fault cutting through the Capdepera Oligocene breccia, marked by the development of a clastic dike (c). 367 
Detachment at the base of the Capdepera graben, between Oligocene breccia in the hanging-wall and Triassic 368 
dolostone in the footwall. Notice small riedel faults rooting into the detachment. High-angle normal fault that cuts 369 
through the Capdepera detachment, permeated by a black tar matrix (d). Main high-angle fault bounding the 370 
Capdepera semigraben, inverted as a reverse and later dextral strike-slip fault. Notice strongly sheared Jurassic 371 
pelagic marls with abundant shear criteria and calcite veins. 372 

The breccia is formed by angular fragments of mostly Jurassic limestones and Triassic dolostone 373 
(Bourrouilh, 1983). The breccia is affected by high-angle normal faults with meter-scale spacing. 374 
In some cases, these faults are defined by clastic dikes, formed by hydroplastic behavior during 375 
faulting (Figure 8c) and in many cases the breccia is cemented by a tar matrix. At the base of the 376 
wedge, the breccia is bounded from underlying Jurassic limestones by a low-angle normal fault 377 
with NW-directed transport, namely, the Capdepera LANF (Figure 8d). This LANF presently 378 
dips approximately 10º towards the SE, having been tilted by later high-angle listric faults (Figs. 379 
7, 8e). The transport sense is defined by several structural criteria like the offset of the 380 
sedimentary bedding, rotation of the older bedding layers, orientation of riedel faults and the 381 
asymmetry of porphyroclast tails in the fault rock. Some of the normal faults cutting the breccia 382 
detach along this low-angle fault surface (Figure 8d). The Capdepera LANF is cut and displaced 383 
by other high-angle normal faults that cut through the breccia wedge, across which, the breccia 384 
shows changes in facies and thickness, with finer grained clastics and thicker deposits over the 385 
hanging-wall (Figure 8, 9e). These faults are also permeated by black hydrocarbons. All the 386 
above described extensional structures show NW-directed tectonic transport (Figs. 7, 8b, c, d, e).  387 

The southern boundary of the breccia wedge is a subvertical fault that separates Triassic 388 
dolostones to the South, from Jurassic limestones and the overlying Oligocene breccia to the 389 
North (8f). This fault shows complex kinematics with three different sets of striae (Figure 7). 390 
The older set shows down-dip normal displacement marked by striations and grooves. 391 
Meanwhile, the footwall of the fault is affected by pervasive steeply- SE-dipping faults with 392 
NW-directed reverse kinematics marked by stepped calcite fibers. Finally, the fault surface 393 
shows late horizontal slicken sides indicating dextral strike-slip kinematics. In the proximity of 394 
the main bounding fault, the breccia is affected by a subvertical, SE-dipping spaced and 395 
anastomosed stylolithic cleavage (Figure 9a) and is also cut by low-angle SE-dipping meter-scale 396 
reverse faults. This small outcrop is preserved between, and cut by three strike-slip faults, a 397 
sinistral NW-SE striking one and two younger dextral NE-SW ones that also offset the sinistral 398 
fault (Figure 7, 9b). 399 

Figure 9. Oligocene Capdepera breccia affected by spaced stylolithic cleavage related to the Early Miocene 400 
Mallorca FTB development (a). Strike-slip fault cutting the Capdepera semigraben. Notice sinistral fault with 401 
cataclastic fault gouge and vertical-axis folds, cut by later dextral SW-NE oriented fault (b). Late Burdigalian to 402 
Langhian calcirudites cut and tilted by the activity of Serravallian normal faults with NE-directed transport (c). 403 
Serravallian syn-rift sediments in the same road cut as c, also tilted and cut by normal faults (d). NE-directed 404 
Normal fault between Triassic dolostone and Serravallian conglomerates and silts at the southern border of the 405 
Manacor depocenter (e). 406 
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 407 

4.2 Middle Miocene rifting 408 

The Early Miocene nappe stack structure in the Serres de Llevant is affected by a pervasive 409 
extensional fabric, marked by brittle shear faults at cm-scale in the most incompetent materials 410 
like Cretaceous or Late Jurassic marls (Figure 6a, b, c). Furthermore, many of the supposed 411 
thrust contacts between nappes are defined by fault rocks with slickenlines marking transport 412 
strongly oblique or orthogonal to their NW theoretical hanging-wall transport sense (Figs. 3, 5). 413 
A careful analysis of these low-angle brittle fault surfaces shows that they cut down into the 414 
structural pile in the direction of transport, indicating their extensional nature (Moragues et al., 415 
2018)(Figs. 5, 6d). Also, several contacts previously interpreted as stratigraphical are reworked 416 
by LANFs (Figs. 3, 4). Since, this preliminary work, we have made further observations and 417 
mapped a larger area of the Serres de Llevant to include some nearby Middle Miocene 418 
sedimentary depocenters in the area of Manacor (Figure 3). This work shows that the general 419 



manuscript submitted to Tectonics 

 

structure of the area is defined by several horsts and grabens, the later, filled by Early Miocene to 420 
Serravallian sediments (see geological map and cross sections, Figure 3 and 4).  421 

At the scale of the Mallorca Island, the larger grabens are evident in the regional gravity anomaly 422 
map, producing negative anomalies that coincide with Serravallian and Early Miocene 423 
sedimentary outcrops in the Inca, Sa Pobla, Marineta, Manacor, Campos and Palma basins 424 
(Figure 10). The larger grabens show either NW-SE or NE-SW elongation and are offset 425 
laterally by NE-SW oriented lineaments that coincide in most cases with NE-SW dextral and 426 
sinistral strike-slip faults like the Orient, Sant Joan, Sencelles or Felanitx-Manacor faults (Figure 427 
10). In other cases, these lineaments may correspond to NE-SW oriented normal faults along the 428 
SE margin of the Serres de LLevant (Sabat et al., 2011), which partially may affect the Tortonian 429 
sediments, although, these mostly seal all extensional structures (Figure 3). 430 

 431 
Figure 10. Residual gravity anomaly map of Mallorca (modified from Ayala et al., 1994; IGME, 2003) with main 432 
faults and Middle Miocene basins coincident with negative gravity anomalies. 433 

The grabens that coincided with topographic lows in the region show both NW-SE and SW-NE 434 
orientation, bounded by normal faults with these orientations. In a general pattern, the normal 435 
faults bounding the grabens produce radial extension (Figs. 3 and 5). Many outcrops of the 436 
Langhian grainstones appear tilted and cut by decameter spaced normal faults, mostly with NW-437 
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SE orientation (Figure 9c). This is especially clear to the West of Manacor, where the normal 438 
faults also cut Serravallian continental sediments, defining km-scale grabens (Figure 9d, e).  439 

The Serravallian alluvial and lacustrine sequence around Manacor is frequently flat-lying, 440 
although locally it is also strongly tilted, reaching dips of 40º. In some outcrops, we observed a 441 
progressive unconformity within the Serravallian sequence, suggesting progressive tilting during 442 
normal fault activity. The Serravallian sediments are also locally faulted within the series but less 443 
frequently and more spaced than in the underlying Langhian calcirudites (Figure 9d, e). 444 
Tortonian limestones seal most of the normal faults along the southeastern foothills of the Serres 445 
de Llevant following a NE-SW strike, parallel to the most recent high-angle normal faults. This 446 
lineament also coincides with an elongated negative gravity anomaly parallel to the coast (Figure 447 
10), which probably marks an important sedimentary depocenter determined by these faults that 448 
were active up to the Late Miocene, as observed offshore (Driussi et al., 2015b). 449 

Extension was polyphasic, with the main faults bounding the grabens cutting older low-angle 450 
extensional structures that are partly sealed by Serravallian syn-tectonic sediments. Sequential 451 
extension accompanied by fault rotation has made older LANFs appear as if they were thrusts, 452 
with upwards hanging-wall displacement (for example, the Capdepera LANF, Figure 8d). 453 
Although, when their geometry is analyzed they cut down into the structural pile, producing 454 
omission in the direction of transport (Figure 4, B-B´). The main extensional system in the 455 
Manacor basin shows NE directed extension, observed both in the LANFs and the later high-456 
angle normal faults. Meanwhile, further south, we observe mostly SW-directed hanging-wall 457 
transport, which leaves a horst-type structure in between, where the deepest thrust sheets in the 458 
region crop out, to the South of Manacor  (Figures. 3, 4 B-B´, 5).  459 

 460 
Figure 11. Outcrop of dolomitic cataclastic breccia affected by SW-directed LANFs. This small outcrop is located 461 
between Middle Jurassic limestones at the top and Cretaceous marls below, in a position like A, in Figure 11b (a). 462 
Panoramic view of a low-angle normal fault cutting through Jurassic limestones that detaches over Cretaceous marls 463 
of an underlying, extended, thrust sheet. A represents the approximate structural position of the cataclastic breccias 464 
shown in a (b). 465 

The main horsts in the region are cored by the remains of at least four nappes of the Early 466 
Miocene thrust stack (Figure 3). Each nappe is represented from top to bottom by an incomplete 467 
sequence of materials from Triassic dolostones to Early Miocene calcarenites of the Sant Elm 468 
formation. Meanwhile, the topmost nappe includes Burdigalian turbidites of the Banyalbufar 469 
formation and Late Burdigalian to Langhian platform grainstones and calcirudites. The Early 470 
Miocene sediments of the topmost nappe are also locally overthrusted by Mesozoic sediments 471 
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(Figs. 3, 4). The deepest nappe crops out to the S-SE of Manacor and it is characterized by not 472 
being too affected by the extensional fabrics, except near the contacts with the Manacor 473 
sedimentary depocenter. This nappe shows several folds with NW-SE oriented axes, with the 474 
anticline at the core of the structure cut by a retro-NE-vergent reverse fault (Figure 4B-B´). This 475 
nappe that includes a continuous stratigraphic section from Triassic dolostones to Cretaceous 476 
marls is overlain by a LANF with SW-directed transport. Small Triassic dolomitic extensional 477 
horses occur over the LANF surface (Figure 11a). These are strongly comminuted and cut by 478 
low-angle faults with SW-directed transport (Figs. 4B-B´, 11a)). The hanging wall of the above 479 
LANF that forms the largest Triassic outcrops to the W of Felanitx, shows a ramp geometry with 480 
Triassic dolostones and overlying Jurassic limestones tilted over the Cretaceous marls of the 481 
underlying nappe (Figure 11b). Listric normal faults cutting through the Jurassic root in the 482 
LANF (Figs. 3, 4B-B´, 11b). 483 

5 Discussion 484 

Most authors have interpreted that the structure of the Llevant ranges is mostly determined by 485 
the Early Miocene WNW-NW directed thrusting that formed the Mallorca FTB, where all 486 
tectonic contacts are interpreted as thrusts or lateral ramps of the thrust system. The shortening 487 
related to this period resulted in the imbrication of up to seven nappes formed by Triassic to 488 
Early Miocene sediments (Casas and Sabat, 1987; Parés et al., 1986; Sabat et al., 1988). Related 489 
to this shortening, the rocks in the Llevant and Tramuntana ranges show locally the development 490 
of brittle shear-planes with calcite fiber slicken lines, marking reverse WNW-directed 491 
displacement, and also a spaced anastomosed stylolitic cleavage, especially evident in the 492 
proximity of folds with mostly NNE-SSW oriented axes (Casas and Sabat, 1987; Gelabert et al, 493 
1992), or reverse faults (Figs. 7, 8f, 9a). However, this work shows that Mallorca underwent two 494 
Tertiary extensional phases before and after the development of its fold and thrust belt structure 495 
during the Early Miocene. The first phase of extension occurred in the Oligocene (29—23 Ma) 496 
during the deposition of the Cala Blanca alluvial conglomerates and a second one during the 497 
Middle Miocene (14—11 Ma). This later extension preserved the lithological repetitions 498 
established during the Mallorca FTB development, but very rarely are the original thrust surfaces 499 
preserved, having been cut or reworked by the later extensional fault system (Figure 3 and cross-500 
sections in Figure 4). Here we integrate these newly observed extensional phases with the 501 
previously established Early Miocene FTB development in Mallorca and we include them in a 502 
new geodynamic evolution for the Western Mediterranean for the period comprised between the 503 
Eocene and the Middle Miocene (Figure 12). 504 

5.1 Oligocene extensional detachments and grabens 505 

The Cala Blanca breccias in the Capdepera outcrop have not been dated directly, however, the 506 
fact that these breccias are affected by a spaced stylolitic cleavage and cut by meter-scale reverse 507 
faults related to the well dated Early Miocene thrusting makes them necessarily older than the 508 
development of the Mallorca FTB. The extensional system observed in Capdepera indicates a 509 
process of sequential extension with the development of a low-angle normal fault with NW-510 
directed hanging wall transport that is cut by later high-angle normal faults detaching at a deeper 511 
crustal level (Figs. 7, 8). This extensional geometry is typical of highly extended terrains (Booth-512 
Rea et al., 2004; Martínez-Martínez et al., 2002; Serck et al., 2020). Other outcrops along the 513 
coast in Mallorca also offer Northward-directed low-angle normal faults affecting the Mesozoic 514 
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sequence, which are cut by later thrusts. This northwards extension in Mallorca is probably 515 
younger than normal faulting observed in Menorca (⁓35-28 Ma) that produced Oligocene half-516 
grabens and low-angle detachments (Sabat et al., 2018), and Ibiza (Etheve et al., 2016), and 517 
overlaps the opening of the Liguro-Provencal basin (Cherchi & Montadert, 1982; Ferrandini et 518 
al., 2003; Rehault et al., 1984; Speranza et al., 2002; Schettino & Turco, 2006).  Extension at this 519 
time has also been described at different lithospheric depths in the Alboran domain now 520 
outcropping in the Internal Betics, for example in the Ronda subcontinental peridotite sequence 521 
(Garrido et al., 2011) or at shallower crustal depths, with low-angle normal faults and 522 
detachments denudating the Paleogene Alpujarride-Malaguide thrust stack in the northeastern 523 
Betics (Booth-Rea et al., 2004; 2005). This extension affected the AlKaPeCa orogenic domain 524 
formed during the Late Cretaceous to Palaeogene, of which, the Balearic promontory represented 525 
its hinterland (Figure 12a). Late Oligocene extension, around 25 Ma, is also described in the 526 
Kabylies (Saadallah and Caby, 1996). Furthermore, Eocene to Aquitanian (40—23 Ma) depleted 527 
gabbros are described in the Kabylies, having formed either backarc or forearc oceanic crust of a 528 
proto-Algerian basin (Abbassene et al., 2016; Chazot et al., 2017; Fernandez et al., 2020). This 529 
Oligocene extension in a back-arc type setting is described in the whole Mediterranean realm and 530 
attributed to a decrease in absolute northward motion of Africa triggered by the Africa/Arabia-531 
Eurasia collision that slowed down Africa (Jolivet & Faccenna, 2000).  532 

Thus, our work supports a generalized extensional suprasubduction setting for the late Oligocene 533 
in the Western Mediterranean (Figure 12b). A feature that would explain contradictory 534 
hypotheses for the development, for example, of the Valencia through, where both Mesozoic and 535 
Tertiary extensional phases have been proposed (Etheve et al., 2018; Roca & Guimera, 1992). 536 
However, this basin in particular would occupy a foredeep context during the development of the 537 
Early Miocene to Langhian Mallorca FTB.  538 
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Figure 12. Geodynamic reconstruction of the Western Mediterranean for late Eocene (a, 34 Ma), late Oligocene (b, 542 
25-23 Ma), early Miocene (c, 18-16 Ma) and middle Miocene (d, 14-12 Ma) time frames. Abbreviations in the map: 543 
Al – Alborán domain; Ka – Kabylia; Pe – Peloritan domain; Ca – Calabria; NF – Nevado-Filábrides; GK – Grande 544 
Kabylie and PK – Petite Kabylie. Abbreviations in the legend: OCT – ocean-continent transition; C/E – 545 
compressive/extensional active tectonics; Eu/Af – European/African origin of the lithosphere; Cz/Mz – 546 
Cenozoic/Mesozoic age of the seafloor and ocean floor, respectively. The Africa plate motion and the paleo-position 547 
of the city of Tunis are shown after Handy et al. (2010) in each stage. See Methods chapter for further details on the 548 
reconstruction.  549 

5.2 Early Miocene FTB development 550 

Shortening and tectonic inversion followed in the Early Miocene, for example, the main high-551 
angle normal faults bounding the Capdepera graben were inverted as attested by a second family 552 
of slicken-sides indicating reverse kinematics, a related spaced cleavage and small-scale reverse 553 
faults. The Mallorca FTB is interpreted to have formed between the Late Oligocene and the 554 
Langhian (e.g. Gelabert, 1998; Sabat et al., 2011), however, we find that most nappes in the 555 
Llevant ranges include the Sant Elm formation at the top, dated as Burdigalian (Rodríguez-Perea, 556 
1984). Early Miocene rhyolites of the Puig de l´Ofre, dated by K-Ar at 19 Ma, and Langhian 557 
sediments are imbricated in the thrust stack at the Tramuntana ranges (Marti et al., 1992; 558 
Mitjavila et al., 1990). Thus, the main FTB building phase was probably shorter in time, between 559 
the Burdigalian and the Langhian (19 to 14 Ma)(Figure 12 c). This timing and its WNW- to NW-560 
directed kinematics coincide with the main deformation phase in the External Betics and the 561 
Flysch through accretionary wedge that include Burdigalian sediments in the nappe stack (e.g. de 562 
Capoa, 2007; Guerrera et al., 2005; Luján et al., 2006), although, FTB development in the Betics 563 
and the Gulf of Cadiz continued at least until the Late Miocene (Iribarren et al., 2007; Jiménez-564 
Bonilla et al., 2016; Martín-Martín et al., 2018), accompanied by important strike-slip faulting 565 
(e.g. de Galdeano and Vera, 1992; Geel and Roep, 1998; Jimenez-Bonilla et al., 2020; Martín-566 
Martín et al., 2018; Pérez-Valera et al., 2013). The Mallorca FTB development was coeval to the 567 
ESE-directed continental subduction of the South Iberian passive margin that underwent HP/LT 568 
metamorphism during the Early to Middle Miocene to the South-West of Mallorca (e.g. Booth-569 
Rea et al., 2015; Kirchner et al., 2016; López Sánchez-Vizcaino et al., 2001; Platt et al., 570 
2006)(Figure 12c). Furthermore, at an early stage of this renewed contractive reorganization, the 571 
Alpujarride complex underwent its final northward-directed thrusting phase that involved the 572 
previously thinned Alpujarride section (Azañón et al., 1997; Balanyá et al., 1997; 1998; Booth-573 
Rea et al., 2005; Simancas, 2018). A process that was followed shortly, between the Early and 574 
Middle Miocene, by the final exhumation of the Alboran domain, formed by the Malaguide and 575 
Alpujarride complexes at the top of the orogenic wedge (e.g. Booth-Rea et al., 2004; García-576 
Dueñas et al., 1992; Lonergan & Johnson, 1998; Lonergan & Platt, 1995; Platt et al., 2003;  577 
2005)(Figure 12c). Extension coeval to FTB development at the front of the orogenic wedge has 578 
been a paradigmatic feature of the Betics that lasted in time at least until the Late Miocene and 579 
has been related to westwards roll-back of the Tethys lithosphere (Faccenna et al., 2004; 580 
Lonergan & White, 1997), which presently forms a 700 km long slab underlying the Betics and 581 
Rif (e.g. Bezada et al., 2013; Wortel and Spakman, 2000).  582 

This Early Miocene to Langhian shortening phase also affected the Oligocene proto-Algerian 583 
basin that was inverted and incorporated into the newly developed orogenic wedge, its vestiges 584 
now present as amphibolites in the Kabylies or as extremely thinned sub-continental mantle 585 
emplaced in the crust as the Ronda peridotite of the Western Betics (Booth-Rea et al., 2005; 586 
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Fernandez et al., 2020; Garrido et al., 2011; Hidas et al., 2013; Marchesi et al., 2012) and the 587 
Collo peridotites in the Kabylies (Boullin & Kornprobst, 1974; Laouar et al., 2017; Leblanc & 588 
Temagoult, 1989). Part of the proto-Algerian basin is presently represented by the Western 589 
Alboran basin that drifted westwards hundreds of km in a forearc position behind the retreating 590 
Betic-Rif slab (Booth-Rea et al., 2007, Figure 12c). 591 

The Early Miocene contractive reorganization of the region and the initial individualization of 592 
the Betic-Rif Tethys slab we propose was triggered by the collapse of a former transform that 593 
separated the AlKaPeCa orogenic domain from the rest of the western Tethys during the 594 
Palaeogene (Figure 12a, b). This transform fault and the North Balearic one, were probably 595 
inherited from the Mesozoic rifting stage and must have determined the present slab 596 
segmentation pattern of the Western Mediterranean. A similar transform was proposed by Cohen 597 
(1980) and Verges and Fernández (2012) in their model of flipped vergence between the Betic-598 
Rif and Algerian Tell orogens. However, we give this structure a different role during the 599 
Western Mediterranean evolution. During the Palaeogene it transferred shortening form the 600 
AlKaPeCa orogenic domain towards the Atlas to the SW, permitting the preservation of an 601 
undeformed Tethys domain and the Nevado-Filabride Ocean Continent Transitional (OCT) 602 
Iberian domain to the W (Figure 12a). Meanwhile, later it bounded the domain of Oligocene 603 
orogenic collapse and development of the proto-Algerian basin (Figure 12b). Finally, during the 604 
Early Miocene, around 20 Ma, it probably played a key role after collapsing (e.g. Zhou et al., 605 
2018) and initiating a new westward migrating subduction system under the load of the 606 
developing Alboran thrust stack (Figure 12c). This 3-D configuration is necessary to explain the 607 
puzzling structure of the Betics, where you have Oligocene back-arc lithosphere—represented by 608 
the Ronda subcontinental peridotite and its overlying crustal sequence intruded by 609 
suprasubduction dikes (Hidas et al., 2015; Marchesi et al., 2012) —directly overlying the Flysch 610 
Trough sedimentary cover, off scraped from the Tethys oceanic lithosphere (e.g. Lujan et al., 611 
2006). Thus, this domain passed from being in a back-arc position related to NW-directed 612 
subduction in the Palaeogene, to be in a forearc position relative to a newly formed Eastward-613 
directed subduction during the Early to Late Miocene (Figure 12d). Moreover, our proposal 614 
reconciles other data concerning the provenance of the Alboran domain, including Paleozoic 615 
rocks form the Malaguide and Alpujarride complexes, for which their age patterns of detrital 616 
zircon populations coincide with those from the Variscan European margin. This is especially 617 
clear for the Malaguide complex that is equivalent to the Paleozoic rocks presently outcropping 618 
in Menorca, the Northeastern Iberian massif and the South of France (Jabaloy et al., 2021). 619 

5.3 Middle Miocene extension and isolation of the Mallorca FTB 620 

This work shows that the Mallorca Island also underwent important extensional tectonics during 621 
the Middle Miocene coeval to the later oceanic opening of the Algero-Balearic basin (Figure 622 
12d). This extension was polyphasic, first with the activity of multiple low-angle normal faults 623 
thinning the previous nappe stack at different structural levels and later followed by horst and 624 
graben development controlled by high-angle bounding normal faults. The grabens are mostly 625 
filled by Serravallian (14-11 Ma) alluvial sediments that show syn-rift internal progressive 626 
unconformities. Meanwhile, the pre-rift Late Burdigalian to Langhian Randa calcarenites are cut 627 
and strongly tilted by the extensional system, especially at the margins of the Manacor basin 628 
(Figure 9c).  629 
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The kinematics of extension where determined using slicken-sides, riedel faults, offset layers and 630 
rotated porphyroclast tails and show variable directions of transport with two main orthogonal 631 
sets indicating SW-NE and NW-SE extension (Figure 5). Although, this variability could reflect 632 
radial extension (Cespedes et al., 2001) we find that in general, the NE-SW-directed extensional 633 
system is older and more penetrative than the NW-SE-directed system.  634 

Recognizing the presence of middle Miocene LANFs in the Serres the Llevant changes strongly 635 
the previously established structure of the region, which was interpreted entirely as contractive 636 
(e.g. Sabat et al., 1988). We have identified LANFs cutting contacts that were interpreted as 637 
inverted stratigraphic, for example between Jurassic limestones overlying Cretaceous marls. 638 
However, we find that the interpreted stratigraphic contact forming the reversed limb of a large 639 
NE-vergent recumbent syncline is actually a westward transport LANF that locally has small 640 
extensional horses formed by Triassic dolostones in between, and thus, the syncline is inexistent 641 
(Figs. 11a, b). We find the deepest nappe in the region we mapped is located to the SW of 642 
Manacor, although, presently it forms a horst structure hosting a series of NW-SE oriented folds 643 
in its core, bounded towards the East by a high-angle normal fault that cuts through Serravallian 644 
sediments in its hanging-wall (cross section B-B´, Figure 4). 645 

The Serravallian grabens are segmented and offset laterally by SW-NE oriented strike-slip faults 646 
that we interpret as transfer faults developed during rifting (Figure 10). These faults show both 647 
dextral and sinistral kinematics and also bound the main Middle Miocene sedimentary 648 
depocenters in the island, like the Inca, Sa Pobla, Manacor, Felanitx and Santa Margalida basins 649 
(Figure 10). Dextral-oblique kinematics are observed in the Orient and Sant Joan faults (Booth-650 
Rea et al., 2016), whilst sinistral kinematics are found in the Sencelles and Felanitx faults (Figure 651 
10, Mas et al., 2014). These faults are also parallel to the Emile Baudot scarpment that roughly 652 
separates the Mallorca continental crust from the Algero-Balearic basin oceanic domain, and has 653 
been interpreted as a transform fault (Acosta et al., 2001; Etheve et al., 2016). In previous 654 
studies, the transfer faults described are mostly NW-SE directed, for example the North Balearic, 655 
Central, Catalan and Ibiza fault zones that accommodate the NW-SE opening of the Ligurian and 656 
Minorca basins (Maillard et al., 2020; Pellen et al., 2016). Strike-slip faults with this orientation 657 
also occur in the Mallorca island, some of which had been interpreted as transfer faults related to 658 
the Early Miocene FTB development (Gelabert, 1998; Sabat et al., 1988). We also find NW-SE 659 
trending faults with both sinistral and dextral strike-slip kinematics in the Llevant ranges. These 660 
faults are in general shorter than the NE-SW trending ones, which cut through most of the island. 661 
In other cases, we observe these faults with two sets of striae, indicating both normal and strike-662 
slip displacements. The fact that you find parallel strike-slip faults with opposite kinematics in 663 
the same region is a characteristic of extensional transfer faults (e.g. Giaconia et al., 2014; 664 
Martínez-Martínez, 2006) and as such we interpret them, related to the NW-SE directed 665 
extensional system. Although, others, may be related to the older FTB development, for 666 
example, the thick sinistral fault zone cutting the Capdepera semigraben, which is itself cut by 667 
later dextral NE-SW trending faults (Figs. 7, 9b). 668 

5.4. Middle Miocene extension in the Balearic promontory and the geodynamics of 669 
the Western Mediterranean 670 

Serravallian extension in Mallorca coincided with a period of deep paleogeographic changes in 671 
Mallorca that evolved from a mostly marine realm to continental. A process that changed the 672 
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sediment provenance in Mallorca. During the Burdigalian and Langhian, the turbidity systems in 673 
Mallorca, which were feed from the South (Rodríguez-Perea, 1984), include clasts of “exotic” 674 
Paleozoic grauwackes similar to the Carboniferous sequence cropping out in Menorca and to the 675 
Malaguide complex at the top of the Betic internal zones (Bourrouihl, 1983; Cohen, 1980; 676 
Hollister, 1942), for which a common origin has been recently proposed (Jabaloy et al., 2021). 677 
This implies the existence of a Paleozoic emerged hinterland of the Mallorca FTB located to the 678 
South during the Early Miocene, compatible with the Alboran domain (Figure 12c). During the 679 
Serravallian, no exotic clasts are found and the sediment provenance is from the local horsts that 680 
formed during extension, mainly coincident with the present ranges.  Thus, extension actually 681 
coincided with a topographic build up in Mallorca, which could be related to flexural rebound 682 
after unloading it by extensional collapse of its orogenic hinterland and excision of its 683 
lithospheric mantle root, maybe driven by tectonic mechanism like slab detachment or edge-684 
delamination. This later tectonic mechanism has been proposed by several authors to have 685 
occurred under the Betics during the Late Miocene until the Pliocene or Present, driving 686 
concomitant topographic uplift and thinning of the South Iberian lithosphere (Capella et al., 687 
2020; Chertova et al., 2014; Duggen et al., 2003; García-Castellanos & Villaseñor, 2011; 688 
Mancilla et al., 2015; Negredo-Moreno et al., 2020; Sun & Bezada, 2020). Slab detachment may 689 
have initiated in the Serravallian further to the NE, under part of the Balearic promontory and 690 
later propagated towards the SW. This hypothesis is supported by similar deformational 691 
behaviors followed by topographic rebound in the Eastern Betics and Mallorca, including the 692 
close association between extension and strike-slip transfer-fault development as proposed for 693 
the southern margin of Mallorca (Acosta et al., 2001; Driussi et al., 2015a) and the Eastern 694 
Betics (Giaconia et al., 2014; Mancilla et al., 2015; Pérez-Valera et al., 2013). In both regions 695 
extensional tectonics propagated into the external FTB with two orthogonal directions of 696 
extension, both parallel and transverse to the orogen trend resulting in an overall radial extension 697 
(Booth-Rea et al., 2004; Rodríguez-Fernández et al., 2011). Furthermore, extension and related 698 
strike-slip deformation was accompanied in both regions by Neogene clockwise paleomagnetic 699 
rotation in the order of 35-40º (e.g. Freeman et al., 1989; Lonergan & White, 1997; Mattei et al., 700 
2006). In the Eastern Betics the subducted South-Iberian domain (Nevado-Filabride complex) 701 
was exhumed by SW-directed brittle-ductile extensional detachments in great part during the 702 
Middle to Late Miocene (Martínez-Martínez & Azañón, 1997; Martínez-Martínez et al., 2002), 703 
followed by important thinning after, in the Late Tortonian, producing SE-directed extension 704 
along the Almenara detachment (Booth-Rea et al., 2012). In general, this extension has been 705 
related to the opening of the western part of the Algerian basin between the Middle and Late 706 
Miocene in a back-arc setting (Booth-Rea et al., 2007; 2018b; Mauffret et al., 2004).  707 

The different ages of back-arc rifting in the Western Mediterranean basins correlate with 708 
contrasting heat flow values in the region, with a clear increase from East to West in the Algero-709 
Balearic basin, suggesting a Middle Miocene or younger age for opening to the West, and an 710 
older Oligocene to Early Miocene age for the Ligurian and central areas of the Algero-Balearic 711 
basins (Poort et al., 2020). Although, heat flow values increase also towards the Southeastern end 712 
of the Algerian basin, south of Sardinia. Meanwhile, the Valencia Trough shows relatively low 713 
heat flow, compatible with an older Mesozoic or Cenozoic rifting phase. Whilst the Mallorca 714 
domain extended in the Middle Miocene, the Betics extension propagated from the Internal 715 
Zones towards the Betic FTB in the Late Miocene, producing sedimentary depocentres that seal 716 
the contact between the two domains like the Fortuna, Lorca, Guadix-Baza and Granada basins 717 
(Booth-Rea et al., 2004; de la Peña et al., 2020b; Rodríguez-Fernández et al., 2011). Meanwhile, 718 
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the Easternmost Algerian basin followed a parallel evolution to its westernmost segment, but 719 
with an opposite eastward’s direction of extension (Figure 12d). This extension propagated into 720 
Northern Tunisia in the Late Miocene producing the collapse of the Tunisian Tell (Booth-Rea et 721 
al., 2018b). 722 

Presently, the Balearic promontory is bounded to the south by the oceanic Algero-Balearic basin 723 
along the steep Emile Baudot and Mazarron scarpments, interpreted as transform boundaries 724 
(Acosta et al., 2001; Driussi et al., 2015a; Etheve et al., 2016). These faults, together with other 725 
parallel dextral ones cropping out onshore, like the Crevillente, Alpujarras, Torcal or the Orient 726 
fault in Mallorca probably contributed to the west-south westward stretching and displacement of 727 
the Alboran domain during the Middle to Late Miocene (e.g. Giaconia et al., 2014; Mancilla et 728 
al., 2015; Pérez-Valera et al., 2013). During the Serravallian the Balearic promontory and the 729 
Betic internal zones shared very similar insular vertebrate glirid fauna (Bover et al., 2008; Suarez 730 
et al., 1993). From where we can determine that either the Alboran domain formed a large 731 
archipelago together with the Balearic Promontory at the time, or it traveled southwestwards a 732 
long distance since the Middle Miocene separating from Mallorca, following the roll-back of the 733 
Alboran slab (e.g. Booth-Rea et al., 2007; Chertova et al., 2014; Driussi et al., 2015a; Faccenna 734 
et al., 2004; Lonergan & White, 1997)(Figure 12d). Considering that a Paleozoic hinterland 735 
existed to the south of Mallorca during the Early Miocene, the second option or a combination of 736 
the two seems more realistic. Towards the SW, the Betic hinterland, represented by the Alboran 737 
domain, was separated at the time from Iberia by a deep foredeep basin in the external Betics (de 738 
Galdeano and Vera, 1992; Geel et al., 1992; Martín-Martín et al., 2018). The Valencia Trough 739 
was the NE continuation of the External Betic Serravallian foredeep, although the thrust front 740 
there had resumed its activity after the Langhian (Etheve et al., 2016; Leprêtre et al., 2018). This 741 
domain and the Great and Petit Kabilies domains were also separated from the African emerged 742 
land to the South by an Early to Middle Miocene foredeep along Northern Algeria and Tunisia 743 
(Guerrera et al., 2005; Jolivet et al. 2006; Roure et al., 2012, Figure 12d). Thus, we propose the 744 
Alboran domain archipelago was driven southwestwards in a forearc, and its corresponding 745 
volcanic arc, setting until the Late Miocene, producing the present isolation of the Mallorca FTB 746 
from its corresponding Betic hinterland. This model implies very large displacements, in the 747 
order of 600 km between Mallorca and its corresponding Paleozoic hinterland since the Early 748 
Miocene, comparable to the length of the subducted Tethyan lithospheric mantle slab presently 749 
underlying the Betics (e.g. Bezada et al., 2013; Faccenna et al., 2004). This hypothesis contrasts 750 
with models suggesting very minor displacements, below 200, or even 100 km, for the Betic 751 
hinterland, respect to Iberia (e.g. Frasca et al., 2015, Pedrera et al., 2020; Verges & Fernández, 752 
2012). However, we believe it is the only one that explains the great diversity of available 753 
geological and geophysical data presented above, including sediment provenance, detrital zircon 754 
population ages, subducted slab bodies, tectonic evolution, Western Mediterranean basins 755 
development, fossil faunal dispersal and the extensional collapse of the Mallorca and Betic 756 
FTB´s.  757 

Finally, this work offers clues to the distribution of emerged forearc and volcanic arc land 758 
masses in the Western Mediterranean, isolated by marine gateways from Africa and Iberia 759 
between the Early Miocene and the Tortonian, when terrestrial vertebrates from Iberia mainland 760 
are found in sediments overlying the Alboran domain (Martín-Suarez et al., 2012). A process 761 
that contributed to the present biodiversity hotspot of the Southwestern Mediterranean (Hewit, 762 
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2011), in addition to the Messinian land bridge, which connected the Eastern Rif and SE Iberia 763 
(Booth-Rea et al., 2018a).  764 

6 Conclusions 765 

Structural analysis of the Llevant ranges in Mallorca show that two Cenozoic rifting phases 766 
predate and postdate the main Early Miocene shortening and FTB development in Mallorca. The 767 
earlier extensional phase produced NW-directed extensional detachments and semigrabens filled 768 
by Oligocene breccias, coeval to the opening of the Liguro-Provencal basin and extensional 769 
collapse of AlKaPeCa (Figure 12b). Oligocene extension in Mallorca is not precisely dated and 770 
may have continued up to the Aquitanian, although, dated sediments of this age are scarce in the 771 
island. This extension produced the first alpine structures observed in Mallorca after its 772 
hinterland position respect to the AlKaPeCa orogenic domain during the Paleocene-Eocene 773 
(Figure 12a). 774 

The Mallorca promontory underwent Burdigalian to Langhian WNW-directed shortening and the 775 
development of its FTB structure coeval to the subduction of the Southeast Iberian passive 776 
margin and the birth of the Betic-Rif eastward dipping subduction system (Figure 12c). The 777 
second rifting phase produced the extensional collapse of the Mallorca FTB during the Middle 778 
Miocene, coinciding with the opening of central parts of the Algero-Balearic back-arc basin and 779 
the westwards drift of the Alboran domain and the proto-Algerian basin, presently represented by 780 
the western Alboran basin (Figure 12c).  781 

The Serravallian extension was radial, initiating mostly with NE-SW directed extension and later 782 
evolving towards NW-SE directed transport. This rifting was accommodated along LANFs that 783 
cut through the previous FTB thrust pile, which were later cut by high-angle normal faults 784 
bounding the main Middle-Miocene sedimentary depocenters. The basins in Mallorca are 785 
strongly segmented by SW-NE oriented strike-slip faults, both sinistral and dextral, like the 786 
Orient, Sencelles, Sant Joan and Felanitx that acted as transfer faults of the Serravallian 787 
extensional system, which are parallel to the present transform continent-ocean transition along 788 
the Emile-Baudot scarpment. 789 

Middle Miocene extension coincided with topographic build up in Mallorca, manifested by 790 
continentalization of the region and a change in the sediment provenance that became sourced 791 
from nearby horst highs. We relate this topographic development and coeval extension to 792 
flexural and isostatic rebound after initial detachment or tearing of the Betic-Rif mantle slab to 793 
the South of the BP. 794 

The Mallorca FTB developed coeval and with the same kinematics as the Betic FTB, however, 795 
shortening in the Betics continued through the Middle and Late Miocene, coeval to the 796 
extensional collapse of Mallorca and the opening of the western domain of the Algero-Balearic 797 
basin, following the retreating Betic-Rif slab (Figure 12c).  798 

Our data, thus supports that the Mallorca FTB formed part of the Betic orogen during the Early 799 
Miocene and later became stranded and isolated from its hinterland domain by the development 800 
of the Central and Western segments of the Algero-Balearic basin in the Middle to Late 801 
Miocene. A process that entailed important W to SW-directed displacements of the Betic 802 
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hinterland in a forearc domain, as an archipelago, through the Western Mediterranean until its 803 
docking to SE Iberia in the Tortonian.  804 
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