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Abstract

We show that explainable neural networks can identify regions of oceanic variability that contribute predictability on decadal

timescales in a fully coupled Earth system model. The neural networks learn to use sea-surface temperature anomalies to

predict future continental surface temperature anomalies. We then use a neural network explainability method called layerwise

relevance propagation to infer which oceanic patterns lead to accurate predictions made by the neural networks. In particular,

regions within the North Atlantic Ocean and North Pacific Ocean lend the most predictability for surface temperature across

continental North America. We apply the proposed methodology to decadal variability, although the concept is generalizable

to other timescales of predictability. Furthermore, while our approach focuses on predictable patterns of internal variability

within climate models, it should be generalizable to observational data as well. Our study contributes to the growing evidence

that interpretable neural networks are important tools for advancing geoscientific knowledge.
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Key Points:5

• Explainable neural networks can serve as a new tool for identifying patterns of Earth6

system predictability7

• Oceanic patterns that lend predictability in CESM2 occur in similar locations to8

known oceanic modes9

• The proposed method can be used to separate the timing and location of predictable10

patterns11
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Abstract12

We show that explainable neural networks can identify regions of oceanic variability that13

contribute predictability on decadal timescales in a fully coupled Earth system model.14

The neural networks learn to use sea-surface temperature anomalies to predict future15

continental surface temperature anomalies. We then use a neural network explainabil-16

ity method called layerwise relevance propagation to infer which oceanic patterns lead17

to accurate predictions made by the neural networks. In particular, regions within the18

North Atlantic Ocean and North Pacific Ocean lend the most predictability for surface19

temperature across continental North America.20

We apply the proposed methodology to decadal variability, although the concept21

is generalizable to other timescales of predictability. Furthermore, while our approach22

focuses on predictable patterns of internal variability within climate models, it should23

be generalizable to observational data as well. Our study contributes to the growing ev-24

idence that interpretable neural networks are important tools for advancing geoscientific25

knowledge.26

Plain Language Summary27

We use a form of artificial intelligence and machine learning called neural networks28

to identify patterns within the ocean that can help predict temperature over land. We29

focus in particular on surface temperatures averaged over multiple years, since a grow-30

ing body of scientific evidence has suggested that such timescales can be predicted us-31

ing information about the ocean. We find that several oceanic patterns are associated32

with surface temperatures across North America in a fully coupled Earth system model.33

From a broader perspective, this study contributes to the growing body of scientific ev-34

idence that artificial intelligence and neural networks can be used to advance geoscien-35

tific knowledge.36

1 Introduction37

Explainable neural networks have opened new doorways in Earth science research38

(Toms, Barnes, & Ebert-Uphoff, 2020), with applications ranging from the identification39

of climate change indicators (Barnes et al., 2020), hail detection within severe thunder-40

storms (Gagne II et al., 2019), and the improvement of numerical model parameteriza-41

tions (Brenowitz et al., 2020), among other applications (Toms, Kashinath, et al., 2020).42

The specific usage of neural network interpretation techniques ranges substantially across43

such studies, however, as the interpretations can be used as either direct or indirect tools44

for scientific discovery. For example, interpretation efforts can be either a secondary ob-45

jective by ensuring a network’s reasoning is consistent with existing physical theory (e.g. Brenowitz46

et al., 2020; Ebert-Uphoff and Hilburn, 2020; Toms et al., 2020), or the primary objec-47

tive, with their usage focused on discovering new patterns of Earth system variability48

(e.g. Toms, Barnes, and Ebert-Uphoff (2020); Barnes et al. (2020)). Here, we focus on49

the latter application, whereby we use neural networks to identify predictable modes of50

Earth system variability on decadal timescales in a fully coupled Earth system model.51

An extensive body of literature exists on theoretical and observed sources of decadal52

predictability, and, more recently, on the development of operational decadal prediction53

systems (Yeager et al., 2018). Modes of regional and global-scale decadal variability within54

the ocean are well documented (e.g. Barnett et al., 1999; Kirtman and Schopf, 1998; Xie55

and Tanimoto, 1998), and these patterns have been found to contribute to atmospheric56

anomalies on decadal timescales via ocean-atmosphere feedbacks (e.g. Newman et al.,57

2016; Schneider et al., 2002; Wen et al., 2016). The discovery of this coupling has led58

to the usage of oceanic variability to make decadal predictions of atmospheric anoma-59

lies relevant to society. Recently, oceanic observations have been assimilated into Earth60
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system models to generate large ensembles of global decadal predictions (Meehl et al.,61

2009; van Oldenborgh et al., 2012; Yeager et al., 2018), which have a reasonable amount62

of prediction skill for variables such as continental temperature and precipitation (Smith63

et al., 2019) and ocean acidification (Brady et al., 2020). Additional efforts have created64

statistical decadal prediction models based on knowledge of specific modes of oceanic decadal65

variability (e.g. Simpson et al., 2019).66

There are, however, limitations to decadal predictions that use dynamical Earth67

system models, including how to initialize the observational fields (He et al., 2017; Kröger68

et al., 2018) and long-standing model biases in simulating known ocean-atmosphere and69

land-atmosphere interactions (Black et al., 1999; Chang et al., 1997; Simpson et al., 2019).70

It is therefore not clear whether regions that lack predictability in decadal prediction en-71

sembles have limited predictability in the observed world, or whether model limitations72

preclude accurate predictions. This uncertainty also exists for other timescales of Earth73

system prediction, such as subseasonal-to-seasonal timescales (Jin et al., 2008; Kim et74

al., 2018, 2019; Koster et al., 2011; Toms, Barnes, Maloney, & van den Heever, 2020).75

For statistical models, a complete knowledge of which patterns of oceanic variability of-76

fer predictability is important for the correct selection of model inputs and thereby a max-77

imization of statistical prediction skill (e.g. DelSole and Banerjee, 2017; Simpson et al.,78

2019; Wilks, 2008).79

Because of these uncertainties, it is useful to identify predictable patterns of Earth80

system variability within both models and observations. Knowledge of such patterns may,81

for example, help guide efforts to improve the robustness of observational assimilation82

within dynamical decadal prediction systems, or inform which variables and regions to83

include within statistical models. To this end, we use a new method, namely explain-84

able neural networks, to identify sources of decadal predictability within a fully coupled85

Earth system model. We take a purely methodological approach and test whether the86

proposed method is viable for identifying such patterns of predictability, which opens87

opportunities for its application to a broader range of predictability problems in future88

studies.89

2 Data and Methods90

Our neural network architecture is designed to receive inputs of oceanic fields from91

an Earth system model and output the predicted sign of a continental temperature anomaly92

at a given location. Figure 1 describes this neural network design, and the appendix con-93

tains additional information about the training procedure. It is important to note that94

we have opted to keep the neural network as simple as possible to both maximize inter-95

pretability and to ensure our approach is valid before venturing into more complex net-96

works in future studies. The neural network has one hidden layer of 32 nodes which is97

connected to two output nodes, both of which represent a different outcome associated98

with the input oceanic information. We use the rectified linear unit (ReLu; max(0, x))99

activation function and apply a softmax operator to the output layer. The softmax op-100

erator transforms the neural network outputs into relative likelihoods of the two output101

climate states.102

For our particular application, we input vectorized maps of global sea-surface tem-103

perature (SST) and the neural network is trained to output the associated likelihood that104

future continental surface temperatures across locations of North America will be anoma-105

lously warm or cold. The SST and continental surface temperature data are gathered106

from the Community Earth System Model Version 2 (CESM2; Danabasoglu et al., 2020)107

pre-industrial control simulation of the Coupled Model Intercomparison Project, Phase108

6 (CMIP6; Eyring et al., 2016). We remove the seasonal cycle from both fields and re-109

grid the SST field onto a 4◦ by 4◦ grid to reduce the number of inputs into the neural110

network. This grid spacing still permits the resolution of dominant patterns of oceanic111
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variability, as we will show in Section 3. We also linearly detrend both fields by sepa-112

rately subtracting the linear trend from each grid point to reduce impacts of model drift113

during the control simulations. The input to the neural networks is a sequence of lagged114

sea-surface temperature maps that are vectorized and concatenated into a single vector,115

and includes the most recent SST map along with the 3-month, 6-month, and 9-month116

time-lagged SST maps. We include the lagged SST information because we find that the117

neural networks converge on an accurate solution more accurately when we do so.118

We also apply a 24-month running average to the SST anomalies and a 60-month119

running average to the continental surface temperature anomalies, such that for any time120

the corresponding SST field represents the precedent 24-month mean and the continen-121

tal surface temperature represents the future 60-month mean. We use these input and122

output smoothing durations to demonstrate the utility of the proposed methodology, and123

they can be changed for particular timescales or seasons of interest. The CMIP6 CESM2124

pre-industrial control simulation offers 1,200 years of monthly data, the first 900 of which125

we use to train the neural networks and the last 300 of which we use for validation. We126

omit the beginning and end of the time-series which are contaminated by the temporal127

smoothing. We note that because we train the neural networks using a pre-industrial con-128

trol simulation, all estimates of predictability provided by the neural networks are for129

internal variability only and do not include information about any predictable response130

due to anthropogenic forcing.131

After training the neural network, we use an interpretation method called layer-132

wise relevance propagation (LRP; Montavon et al., 2018) to assess what the network has133

learned. In brief, LRP traces the decision-making process of a neural network for each134

individual input sample. For each input sample, the network pathways through which135

information flows to arrive at the associated output is traced backwards and projected136

back onto the dimensions of the input. Computationally, LRP identifies which patterns137

within the input lead to increases in value for a particular output node. This projection138

enables an interpretation of which inputs are most important for making predictions on139

a case-by-case basis. Our usage of LRP therefore offers insights into which patterns of140

SST variability lend predictability of decadal surface temperature anomalies over con-141

tinental North America within CESM2. A more detailed discussion of LRP and its ap-142

plicability to Earth system research is discussed in Toms, Barnes, and Ebert-Uphoff (2020),143

and additional applications are available in Barnes et al. (2020), Ebert-Uphoff and Hilburn144

(2020), and Toms et al. (2020).145

3 Assessment of Decadal Predictability146

We train a separate neural network for each location on a 5◦ by 5◦ grid across the147

globe, and assess the accuracy using the validation data (the last 300 years of the CESM2148

pre-industrial control simulation). We choose this resolution due to the computational149

expense of training a neural network for every location across the globe. Each neural net-150

work can then identify patterns of SST that lend predictability unique to each location,151

which is helpful for understanding if the predictability across different regions of the globe152

is sourced from different oceanic patterns. Figure 2 shows the resultant accuracy for each153

of these neural networks in predicting the 1-to-60 month average surface temperature154

using a global map of the prior 24-month mean SST within the CESM2 pre-industrial155

control simulation. The accuracy varies across the globe, with southern Africa, south-156

ern Australia, the Maritime Continent, and parts of northeastern North America exhibit-157

ing the highest accuracy. It is important to note that we choose the neural network pa-158

rameters to ensure the accuracy on the training and validation datasets are similar, the159

details of which are provided in the appendix.160

We then use LRP to assess which modes of oceanic variability contribute to the161

predictability within the CESM2 pre-industrial control simulation. The following anal-162
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ysis is applicable to any region of the globe, although we choose North America as an163

example. We only assess the LRP interpretations for cases when the neural networks make164

accurate predictions within both the training and validation datasets, although for fu-165

ture use-cases it is likely that assessing the LRP interpretations for inaccurate predic-166

tions will also be useful. We further separate the interpretations into accurate predic-167

tions of positive and negative temperature anomalies and only show the results for the168

positive anomalies, although the analysis for the negative anomalies is similar (see sup-169

plementary information). Also, while we input a sequence of lagged SST anomalies into170

the neural networks (as shown in Figure 1), the interpretations for each lag are nearly171

identical in spatial structure, but with the magnitude of LRP relevance decreasing with172

increasing lag (see supplementary information).173

The composite LRP patterns for four regions across North America suggest that174

predictability is sourced from different oceanic patterns for different regions (Figure 3).175

Perhaps surprisingly, continental temperature anomalies within Central America are most176

associated with SST anomalies off the east coast of Japan (Figure 3a), likely within the177

Kuroshio Extension (Qiu & Chen, 2005). SST anomalies within the North-Central Pa-178

cific Ocean are associated with continental temperature anomalies along the west coast179

(Figure 3b), while those within the tropical Pacific Ocean contribute to predictability180

across central North America (Figure 3c). The North Atlantic Ocean contributes pre-181

dictability to the four locations, although its impacts are particularly prominent across182

the northeast portions of the continent (Figure 3d). These patterns of predictability oc-183

cur in similar regions to known modes of oceanic variability, such as the El Niño-Southern184

Oscillation (Kirtman & Schopf, 1998; Kleeman et al., 1999; Newman et al., 2003), the185

Pacific Decadal Oscillation (Mantua & Hare, 2002; Newman et al., 2016), and the At-186

lantic Meridional Overturning Circulation (Knight et al., 2005; Medhaug et al., 2012).187

A mechanistic study is needed before it can be said whether the identified patterns within188

CESM2 are associated with any of these three observed modes of oceanic variability, al-189

though the regional similarities lend confidence that this may be the case.190

A unique aspect of our approach is that LRP highlights which input patterns con-191

tribute to predictability on a case-by-case basis. So, we further analyze which patterns192

of oceanic variability lend continental temperature predictability by using k-means clus-193

tering. The composite interpretation in Figure 3 risks averaging together temporally dis-194

tinct patterns of predictability, and so the clustering approach allows us to analyze these195

potentially distinct patterns separately. We focus in particular on the west coast of North196

America in a region that exhibits high continental surface temperature predictability (ac-197

cording to Figure 2). We determine the optimal number of clusters by plotting the num-198

ber of clusters against the mean Euclidian distance between each cluster, and selecting199

the number of clusters which falls in the inflection point of this curve (not shown). The200

inflection point denotes the number of clusters after which the addition of new clusters201

offers substantially less new information than the previous clusters. This technique is202

colloquially called the “elbow” technique (e.g. Dimitriadou et al. (2002)).203

Using this approach, we find three dominant patterns of oceanic variability within204

CESM2 that lend predictability at the chosen location along the west coast of North Amer-205

ica (Figure 4). These patterns are located in regions also impacted by known modes of206

oceanic decadal variability. The first mode occurs in a region commonly associated with207

the Kuroshio Extension (Qiu & Chen, 2005), while the second and third clusters occur208

in similar regions to the Atlantic Meridional Overturning Circulation (Knight et al., 2005,209

2006) and Pacific Decadal Oscillation (Newman et al., 2016), respectively (Figure 4a, b,210

c). A mechanistic study is needed to tie the patterns identified within CESM2 to the afore-211

mentioned known modes of variability, although our analysis at least suggests that decadal212

predictability within CESM2 can be sourced independently from spatially distinct pat-213

terns of oceanic variability. The clustering analysis identifies the most spatially distinct214
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patterns of variability, so it is likely that there are also situations where the identified215

patterns of variability lend predictability in tandem.216

It is worth a quick note that the one-point correlation map of the 24-month smoothed217

SSTs and the surface temperature at the red dot in Figure 4 highlights most of the globe218

as correlated with the surface temperature at the west coast location (Supp. Figure 4).219

The neural network, however, identifies very localized regions as the best predictors, al-220

though some of these locations align with hot spots also seen in the one-point correla-221

tion map, e.g. the eastern Pacific and the North Atlantic.222

Along with the predictions, the neural networks output likelihoods that the input223

SST field will lead to positive or negative continental temperature anomalies. We there-224

fore use these likelihoods to assess the oceanic state for highly confident (i.e. high like-225

lihood) accurate predictions, and compare those cases to accurate predictions with lower226

confidence. In doing so, we find that higher confidence predictions for the west coast of227

North America are made when non-lagged SST anomalies are of greater magnitude within228

the northern Atlantic and Pacific oceans (Figure 5). Anomalies within the North Pacific229

Ocean and North Atlantic Ocean are most magnified in the high confidence predictions.230

According to LRP, the non-lagged SST anomalies within the North Pacific Ocean are231

particularly relevant for the high confidence scenarios. The interpretations are spatially232

similar for the lagged SST fields, but with decreased amplitude of differences in SST and233

LRP values between the high and low confidence predictions (not shown).234

4 Discussion235

We demonstrate that neural networks can identify patterns of oceanic variability236

that lend predictability on decadal timescales within Earth system models. In partic-237

ular, the neural networks identify known patterns of decadal oceanic variability as sources238

of predictability for continental surface temperature anomalies across North America within239

the CMIP6 CESM2 pre-industrial control simulation. The identified patterns of oceanic240

variability each offer distinct sources of predictability, at least across the west coast of241

North America where the useful oceanic regimes occur in regions also impacted by known242

modes of decadal oceanic variability such as the Atlantic Meridional Overturning Cir-243

culation, Pacific Decadal Oscillation, and Kuroshio Extension. A mechanistic study is244

needed to assess whether the patterns identified within CESM2 are truly associated with245

these known modes, or if they simply occur in a similar location.246

We propose the methodology in this paper through its application to a single Earth247

system model (CESM2), although the method can be applied to a collection of climate248

models to assess the similarities of predictable climate modes across different models.249

Additionally, while we applied the proposed methods to decadal prediction, the meth-250

ods are also likely viable for other timescales. Subseasonal-to-seasonal prediction may251

particularly benefit from such an approach, as these timescales lie at the intersection of252

predictable processes in the atmosphere, land, and ocean (Koster et al., 2011; Kumar253

& Hoerling, 1998; Woolnough et al., 2007). Explainable neural networks may therefore254

be useful in determining coincident patterns of predictability within each domain.255

The complexity of the proposed method can be varied as necessary, although we256

introduce it here with intentional simplicity. For example, the neural networks can be257

made more nonlinear through the addition of more nodes and hidden layers, temporal258

information can be included within the inputs and outputs, and numerous Earth-system259

variables can be input rather than sea-surface temperature alone. The method may also260

be applicable to observational data, particularly cases for which an extensive observa-261

tional record exists (e.g. subseasonal-to-seasonal prediction). Our formulation also only262

tasks the neural network with predicting positive or negative temperature anomalies with-263

out regard to magnitude, so the addition of more categories of output temperature anoma-264
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lies can help separate anomalies of different magnitudes. From a broader perspective,265

this study contributes to the growing body of evidence that interpretable neural networks266

can be used to advance geoscientific knowledge.267
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!y2

!y1
likelihood that surface temperature

anomaly < 0

likelihood that surface temperature
anomaly > 0

Input Layer
(16,200 nodes)

Hidden Layer
(32 nodes)

Output Layer
(2 nodes)

Time-Lagged SST maps

t0 (non-lagged)

t0 – 3 months

t0 – 6 months

t0 – 9 months

Figure 1. Schematic of the neural network design. The neural network receives a concate-

nated sequence of vectorized sea-surface temperature fields as input, passes the input forward

to a single hidden layer of 32 nodes, and finally outputs a likelihood that the input is associated

with surface temperature anomalies of a particular sign for a specified location. Note that the

input samples include four sea-surface temperature maps that are vectorized and concatenated

before being input into the neural network. The input includes the most recent SST map and the

time-lagged 3-month, 6-month, and 9-month SST maps.
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Figure 2. Accuracy for the neural network approach using only the validation data (the last

300 years of the CESM2 pre-industrial control simulation). The accuracy is defined in a Boolean

sense, and the output node with the highest likelihood is taken as the networks’ prediction. The

accuracy values therefore represent the fraction of predictions for which the neural networks

predict the correct sign of continental surface temperature anomalies. The values shown are

the average of five different neural network trained for each location, as discussed within the

appendix.
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Figure 3. Composite (i.e. simple average) of layerwise relevance propagation interpretations

for the non-lagged SST field for accurate predictions of positive surface temperature anomalies

at four locations across North America. The continental locations associated with the composites

are denoted by the red dots in each panel. The LRP interpretation for each sample is normalized

between a value of 0 and 1 before compositing to ensure each prediction carries the same weight

in the composite. The number of samples used in each composite (N) is shown within each

sub-figure. Relevance values below the 95th percentile confidence bounds (0.08) are not shown.

Confidence bounds were determined using a null hypothesis of no predictability by randomly

shuffling the order of the input sea-surface temperature maps, and calculating the 95th percentile

values of the associated LRP composites. An example of LRP heatmaps for the lagged SST fields

is provided in the supplementary information.
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Figure 4. K-means clusters of the layerwise relevance propagation interpretations for the

non-lagged SST field for accurate predictions of positive surface temperature anomalies at the

red dot. The percentage of cases corresponding to each cluster is listed in the bottom left of each

sub-panel and sum to 100%. The LRP values for each sample are normalized between a value of

0 and 1 before compositing to ensure each prediction carries the same weight in the composite.

The number of samples used in each composite (N) is also shown. Relevance values below the

95th percentile confidence bounds (0.08) are not shown. Confidence bounds were determined us-

ing a null hypothesis of no predictability by randomly shuffling the order of the input sea-surface

temperature maps, and calculating the 95th percentile values of the associated LRP composites.
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Figure 5. Differences in sea-surface temperature anomalies and LRP relevance for the 10%

highest and 10% lowest confidence correct predictions for (a, c, e) positive surface temperature

anomalies and (b, d, f) negative surface temperature anomalies at the red dot. The non-lagged

sea-surface temperature anomalies are shown in fill, and LRP is shown in open contours. For sub-

panels a, b, c, and d, the black (white) contour denotes an LRP value of 0.3 (0.6). For subpanels

e and f, the black (white) contour denotes an LRP difference of +0.1 (+0.2). Negative LRP rel-

evance differences are also allowed to be shown, although none exist with magnitudes of -0.1 or

greater.
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Appendix A Neural Network Details268

This section includes details of how the neural networks were trained. Each neu-269

ral network was trained using the Adam optimizer, with an initial learning rate of 1E-270

4. We do not change the learning rate throughout training. The single hidden layer of271

neurons is regularized with an L2 (ridge) regularization coefficient of 10, which ensures272

the neural network uses information from broader spatial regions and can not overfit to273

individual locations. This regularization parameter also ensures the accuracy for the train-274

ing and validation datasets are similar. The networks were allowed to train for 100 epochs,275

which was sufficient for convergence in all cases. The model iteration that resulted in276

the highest accuracy on the validation data was selected and used for analysis. We train277

five neural networks for each location because it is possible that each network will find278

a different optimal solution, and so training numerous networks increases the likelihood279

that we capture the full range of optimal solutions. The accuracy values presented in Fig-280

ure 2 represent the mean accuracy from the five networks. The interpretations presented281

in Figures 3, 4, and 5 are similar across each of the five network iterations, and so we282

randomly select one of the five neural networks and use this network for these analyses.283

We find that the networks converge on similar optimal solutions based on the LRP in-284

terpretations, and so training five models is sufficient for our purposes.285
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Dimitriadou, E., Dolničar, S., & Weingessel, A. (2002). An examination of indexes320

for determining the number of clusters in binary data sets. Psychometrika,321

67 (1), 137–159.322

Ebert-Uphoff, I., & Hilburn, K. A. (2020). Evaluation, tuning and interpre-323

tation of neural networks for meteorological applications. arXiv preprint324

arXiv:2005.03126 .325

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., &326

Taylor, K. E. (2016). Overview of the coupled model intercomparison project327

phase 6 (cmip6) experimental design and organization. Geoscientific Model328

Development , 9 (5), 1937–1958.329

Gagne II, D. J., Haupt, S. E., Nychka, D. W., & Thompson, G. (2019). Inter-330

pretable deep learning for spatial analysis of severe hailstorms. Monthly331

Weather Review , 147 (8), 2827–2845.332

He, Y., Wang, B., Liu, M., Liu, L., Yu, Y., Liu, J., . . . others (2017). Reduction333

of initial shock in decadal predictions using a new initialization strategy. Geo-334

physical Research Letters, 44 (16), 8538–8547.335

Jin, E. K., Kinter, J. L., Wang, B., Park, C.-K., Kang, I.-S., Kirtman, B., . . . others336

(2008). Current status of enso prediction skill in coupled ocean–atmosphere337

models. Climate Dynamics, 31 (6), 647–664.338

Kim, H., Janiga, M. A., & Pegion, K. (2019). Mjo propagation processes and mean339

biases in the subx and s2s reforecasts. Journal of Geophysical Research: Atmo-340

spheres, 124 (16), 9314–9331.341

Kim, H., Vitart, F., & Waliser, D. E. (2018). Prediction of the madden–julian oscil-342

lation: A review. Journal of Climate, 31 (23), 9425–9443.343

Kirtman, B. P., & Schopf, P. S. (1998). Decadal variability in enso predictability344

and prediction. Journal of Climate, 11 (11), 2804–2822.345

Kleeman, R., McCreary Jr, J. P., & Klinger, B. A. (1999). A mechanism for generat-346

ing enso decadal variability. Geophysical Research Letters, 26 (12), 1743–1746.347

Knight, J. R., Allan, R. J., Folland, C. K., Vellinga, M., & Mann, M. E. (2005).348

A signature of persistent natural thermohaline circulation cycles in observed349

climate. Geophysical Research Letters, 32 (20).350

Knight, J. R., Folland, C. K., & Scaife, A. A. (2006). Climate impacts of the at-351

lantic multidecadal oscillation. Geophysical Research Letters, 33 (17).352

Koster, R., Mahanama, S., Yamada, T., Balsamo, G., Berg, A., Boisserie, M., . . .353

others (2011). The second phase of the global land–atmosphere coupling ex-354

periment: soil moisture contributions to subseasonal forecast skill. Journal of355

Hydrometeorology , 12 (5), 805–822.356
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