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Abstract

Midstream oil and gas infrastructure comprises vast networks of gathering and transmission pipelines that connect upstream

extraction to downstream consumption. In the United States (US), public policies and corporate decisions have prompted a

wave of proposals for new gathering and transmission pipelines in recent years, raising the question: Who bears the burdens

associated with existing pipeline infrastructure in the US? With this in mind, we examined the density of natural gas gathering

and transmission pipelines in the US together with county-level data on social vulnerability. For the 2,261 US counties containing

natural gas pipelines, we found a positive correlation between county-level pipeline density and an index of social vulnerability.

In general, counties with more socially vulnerable populations have significantly higher pipeline densities than with less socially

vulnerable populations. In particular, counties in the top quartile of social vulnerability tend to have pipeline densities that

are much higher than pipeline densities for counties in the bottom quartile of social vulnerability. The difference grows larger

for counties at the upper extremes of pipeline density within each group. We discuss some of the implications for Indigenous

communities and others affected by recent expansions of oil and gas infrastructure. We offer recommendations aimed at

improving ways in which decision-makers identify and address the societal impacts and environmental justice implications of

midstream pipeline infrastructure.

1



Natural Gas Gathering and Transmission Pipelines and Social Vulnerability in the United

States

Authors: Ryan E. Emanuel1,2*, Martina Angela Caretta3, Louie Rivers, III1, Pavithra Vasudevan4

Affiliations:
1Department of Forestry and Environmental Resources, North Carolina State University.
2Center for Geospatial Analytics, North Carolina State University.
3Department of Human Geography, Lund University, Sweden.
4Department of African and African Diaspora Studies and Center for Women’s and Gender 
Studies, University of Texas at Austin.

*Correspondence to: ryan_emanuel@ncsu.edu

Abstract

Midstream oil and gas infrastructure comprises vast networks of gathering and transmission 

pipelines that connect upstream extraction to downstream consumption.  In the United States 

(US), public policies and corporate decisions have prompted a wave of proposals for new 

gathering and transmission pipelines in recent years, raising the question: Who bears the burdens

associated with existing pipeline infrastructure in the US?  With this in mind, we examined the 

density of natural gas gathering and transmission pipelines in the US together with county-level 

data on social vulnerability. For the 2,261 US counties containing natural gas pipelines, we 

found a positive correlation between county-level pipeline density and an index of social 

vulnerability.  In general, counties with more socially vulnerable populations have significantly 

higher pipeline densities than with less socially vulnerable populations.  In particular, counties in

the top quartile of social vulnerability tend to have pipeline densities that are much higher than 

pipeline densities for counties in the bottom quartile of social vulnerability. The difference grows

larger for counties at the upper extremes of pipeline density within each group.  We discuss some

of the implications for Indigenous communities and others affected by recent expansions of oil 

and gas infrastructure.  We offer recommendations aimed at improving ways in which decision-
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makers identify and address the societal impacts and environmental justice implications of 

midstream pipeline infrastructure.

Keywords: Environmental Justice, Energy, Infrastructure, Indigenous Peoples, Complex Systems
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Plain Language Summary 

Recent years have seen a wave of oil and gas development in the United States (US) and 

elsewhere.  Research on human health and other societal impacts of oil and gas focuses mainly 

on upstream activities, including hydraulic fracturing, and on downstream activities, including 

refining and electricity production.  Gathering and transmission pipelines, which connect 

upstream and downstream parts of the supply chain, also have negative impacts but receive less 

attention than other areas.  No prior research has determined whether negative impacts of 

gathering and transmission pipelines fall equitably across society.  We analyzed publicly-

available datasets and found that the existing network of natural gas pipelines in the US is 

concentrated more heavily in counties where people experience high levels of social 

vulnerability than in counties where social vulnerability is low. These results have implications 

for environmental justice, which is concerned, in part, with how environmental burdens are 

distributed throughout society.  We highlight some of the burdens faced by Indigenous peoples 

and others who are impacted by ongoing pipeline development.  Our work reiterates a need for 

researchers and decision-makers to look closely at these impacts, especially in light of 

environmental justice policy, to understand the broader societal costs of oil and gas 

infrastructure.
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Introduction

Energy policy in the United States (US) shifted in recent years from a focus on energy 

independence toward so-called energy dominance (The White House, 2019). The policy shift 

coincided with major investments in pipelines and other infrastructure to support ongoing 

extraction and consumption of oil and gas (US Energy Information Administration, 2019).  Even 

as US policy begins to shift away from fossil fuels, analysts within the federal government 

project that oil and gas will continue to supply most of the energy consumed in the US for 

decades to come (US Energy Information Administration, 2021).   The expansion of oil and gas 

infrastructure to support high levels of consumption will increase greenhouse gas emissions 

(Kalen & Hsu, 2020; Pascaris & Pearce, 2020), and climate change associated with these 

emissions will have long-term implications for the health of people and ecosystems worldwide 

(IPCC, 2018).  

Besides the indirect impacts associated with climate change, oil and gas infrastructure poses 

direct risks to nearby communities.  At both upstream and downstream ends of oil and gas 

supply chains, communities experience environmental degradation and incur a wide range of 

health and safety risks associated with phenomena such as hydraulic fracturing, directional 

drilling, worker encampments (i.e., “man camps”), refining, electricity production, and more 

(Bullard, 2018; Colborn et al., 2014; Davies, 2019; Kroepsch et al., 2019; Olmstead et al., 2013; 

O’Rourke & Connolly, 2003; Rahm et al., 2015; Whyte, 2017).  

In comparison to upstream and downstream regions of oil and gas supply chains, the middle 

sections have received less attention from researchers who study environmental and societal 

impacts of oil and gas. So-called midstream infrastructure includes vast networks of gathering 

and transmission pipelines, pumps, compressors, and storage facilities that link production areas 

upstream to downstream oil and gas processing and consumption sites. In the case of 
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unconventional natural gas, which includes shale gas and coal bed methane, a review by Buse et 

al. (2019) highlights the research gap, especially as it pertains to socioeconomic and health 

impacts associated with midstream infrastructure.  Strube et al. (2021) summarize a few of these 

impacts, including spills, explosions, and landslides, but the authors emphasize the difficulty in 

assessing risks due to confidentiality and security concerns that limit the public availability of 

data about pipelines.

The recent boom in unconventional oil and gas extraction from shale plays in the US (US Energy

Information Administration, 2019; Vengosh et al., 2014) has been accompanied by a wave of 

proposals for major gathering and transmission pipelines to transport oil and gas to downstream 

consumers (Strube et al., 2021; Wang & Krupnick, 2015; Waxman et al., 2020).  Some of these 

pipelines have already been built and put into service (e.g., Dakota Access Pipeline).  Others are 

still in planning or construction phases (e.g., Mountain Valley and Keystone XL Pipelines).  A 

small number have been cancelled altogether (e.g., Atlantic Coast and Northern Gateway 

Pipelines).  

The pace of US pipeline development signals an urgent need for research about health, 

socioeconomic, and other impacts associated with pipelines and other midstream infrastructure.  

In particular, there is a pressing need to understand the extent to which large-scale (e.g., regional 

or national) distribution of midstream pipelines may create or exacerbate societal inequities in 

environmental degradation, exposure to health risks, and other harms.  Although individual 

pipeline projects can place disproportionately high and adverse burdens on racially marginalized 

and low-wealth communities relative to reference populations in the regions surrounding these 

projects (e.g., Emanuel, 2017; Emanuel & Wilkins, 2020; Whyte, 2017; Wraight et al., 2018), 
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there is no research on social inequities associated with the geographic distribution of networks 

comprising many different pipeline projects.

Inequities in the siting of harmful or polluting infrastructure spurred the modern environmental 

justice (EJ) movement and led to the development of EJ policies in the US. The US 

Environmental Protection Agency defines EJ as the fair treatment and meaningful involvement 

of all people in the environmental decision-making process (US Environmental Protection 

Agency, 2014).  Environmental justice policies in the US aspire to identify disparities in the 

distribution of environmental burdens and amenities, to address the disparate impacts in various 

ways, and to remove barriers to participation in environmental decision-making by marginalized 

peoples (Bullard, 1993, 2018; Emanuel, 2017; Holifield et al., 2017; Johnson, 2019; Mohai et al.,

2009; National Environmental Justice Advisory Council, 2000; Schlosberg & Collins, 2014; 

Whyte, 2011).  Agencies within the US government are required by federal executive order to 

evaluate potential disparities and EJ implications of their regulatory actions, including the 

authorization of new pipeline projects. However, there has never been an effort to examine EJ 

implications of the larger networks to which individual pipeline projects typically belong.  The 

practice of evaluating EJ on a pipeline-by-pipeline basis makes it difficult to determine whether a

new pipeline could exacerbate or alleviate network-wide disparities in the distribution of 

environmental and public health impacts.  By considering the EJ implications of an entire 

pipeline network, decision-makers, researchers, and others can gain a fuller understanding of the 

societal impacts of oil and gas flowing through the network.
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To this end, we examined the US natural gas gathering and transmission pipeline network to 

determine whether the network as a whole raises system-wide concerns about EJ.  Specifically, 

we compared the density of natural gas gathering and transmission pipelines to social 

vulnerability on a county-by-county basis for all pipeline-containing counties in the US.  Social 

vulnerability is an integrated measure of a community’s capacity to prepare for, deal with, and 

recover from pollution, natural disasters, and other hazards (Chakraborty et al., 2020; Flanagan 

et al., 2018).  It takes into account demographic details about a community (e.g., racial 

composition, age distribution) and other socioeconomic information (Flanagan et al., 2018). 

Thus, it is a relevant index for evaluating societal disparities in the siting of hazardous or 

polluting infrastructure.

Geospatial indices of social vulnerability are already used to study societal disparities related to 

healthcare, flood risk, and other areas (e.g., Flanagan et al., 2018; Saia et al., 2020).  For EJ 

evaluations of pipeline networks, such indices can shed light on a community’s ability to cope 

with risks and threats associated with spills and leaks, explosions, structural failures, 

construction impacts, and other factors. Finley-Brook et al. (2018) discuss some of these factors 

in greater detail, but here we note that between 2001 and 2020, federal safety regulators 

documented a total of 36 fatalities, 164 injuries, and approximately $2.5 billion in costs 

associated with industry-reported incidents from natural gas gathering and transmission pipelines

in the US (US Department of Transportation, 2021).  These costs include property damage as 

well as the value of natural gas lost to the atmosphere during incidents. Notably, the costs do not 

account for the climate implications of methane emissions during incidents, which contribute 

disproportionately to the greenhouse gas footprint of natural gas supply chains (Brandt et al., 
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2014; Pandey et al., 2019).  Risks of leaks and other incidents increase as these pipelines age 

(Alzbutas et al., 2014; Hendrick et al., 2016).  

Pipelines concentrated in areas of high social vulnerability raise EJ concerns associated with the 

inequitable distribution of hazards resulting from energy infrastructure.  Specifically, the 

concentration of pipelines in these areas suggests that environmental, health, and other burdens 

are shouldered, disproportionately, by communities that have an already limited capacity to carry

such loads.  After examining the US natural gas gathering and transmission pipeline network, we

discuss the implications for marginalized communities targeted by major pipelines in recent 

years.  We then discuss the relevance of these findings for EJ policy and offer recommendations 

to scientists and decision-makers.

Methods

We acquired geospatial data from two different sources.  First, we downloaded the social 

vulnerability index (SVI) for 3,142 US counties and county-level equivalents (hereafter counties)

in shapefile format from the US Centers for Disease Control and Prevention (CDC) website 

(http://svi.cdc.gov).  The CDC describes SVI as an index to estimate the potential for external 

factors to impact a community’s ability to deal with human suffering and financial loss.  The 

index ranges from 0 (least vulnerable) to 1 (most vulnerable), and it has a uniform distribution 

among US counties.  The uniform distribution is an important property that allowed us to create 

similarly-sized bins of SVI at a later stage in the analysis. We used SVI for 2018, the most recent

year of data availability when we conducted the analysis.  
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Next, we acquired geospatial data for the US natural gas gathering and transmission pipeline 

network.  We downloaded these data as a polyline shapefile from the US Energy Information 

Administration (EIA), using a version last updated in January 2020 

(https://www.eia.gov/maps/layer_info-m.php).  The shapefile contains information on 

approximately 370,000 km of interstate and intra-state pipelines, and, according to the embedded

metadata, is compiled from data submitted to federal regulators and information gleaned from 

industry websites and press. The US has approximately 515,000 km of natural gas gathering and 

transmission pipelines overall (U.S. Department of Transportation, 2020), which means that 

more than 25% of the network is absent from the EIA shapefile. Nevertheless, this file represents

the most comprehensive US natural gas pipeline dataset currently available to the public.

We processed social vulnerability and pipeline datasets using ArcGIS (Redlands, CA).  First, we 

overlaid the pipeline shapefile on an equal-area projected map of US counties.  We then used the 

“Intersect” function to divide the pipeline shapefile into segments within individual counties.  

Next, we computed pipeline segment lengths (km) by applying the “Calculate Geometry” 

function to the resulting attribute table.  After computing segment lengths, we used the “Spatial 

Join” function to combine the pipeline and county layers into a data table, modifying the 

function’s merge rules to compute the sum of pipeline segment lengths for each county.  

Counties that contained no pipeline segments (881 of 3,142, or 28% of US counties) are visible 

on the map in Figure 1 but excluded from further analysis.  Similarly, pipeline segments located 

in open water (e.g., the Gulf of Mexico) are visible in Figure 1 but excluded from further 

analysis.  We computed the density of natural gas gathering and transmission pipelines, NG, as 
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pipeline km per 100 km2 of land area. The unit conversion places most density values in the 

whole number range, thus improving readability. The conversion has no effect on statistical 

analyses or conclusions.

The preceding ArcGIS operations yielded an attribute table that contained the following 

information for each of the 2,261 US counties with natural gas pipelines: total length of pipeline 

segments (km), total land area (km2), SVI, NG, and the Federal Information Processing Standard 

(FIPS) code.  The FIPS code uniquely identifies each county and the state in which it is located. 

We exported the attribute table as a tab-delimited text file for statistical analysis using Matlab 

(Natick, MA).  

We used Matlab’s statistics toolbox to test differences in means, medians, and cumulative 

distributions, and we report p-values from the 2-sample T-test, Wilcoxon Rank-Sum test, and 2-

sample Kolmogorov-Smirnov test, respectively.  We also used the toolbox to compute Pearson’s 

correlation coefficient and accompanying p-value.  Finally, we used Matlab to bin counties by 

SVI decile in order to select an envelope of counties for further scrutiny if they exceed thresholds

of NG within their respective bins. For exceedance thresholds, we used the 75th, 90th, 95th, and 

97.5th percentile of counties within each SVI-decile bin. Bins were similarly-sized, each 

containing between 200 and 245 counties, and the number of counties in each bin varied 

independently of SVI values.

A few caveats apply to the datasets.  No counties in Hawaii and only one county in Alaska 

contained any gathering or transmission pipelines in the EIA shapefile. Thus, the results apply 
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mainly to the 48 contiguous states.  Also, the CDC did not compute 2018 SVI for one county 

(Rio Arriba, NM) due to a US Census data collection error (https://www.census.gov/programs-

surveys/acs/technical-documentation/errata/125.html). The county, which contained 56 km of 

pipelines, was excluded from analyses involving SVI.  Finally, we analyzed the existing natural 

gas pipeline network in 2020. We caution against direct comparison of our results and 

conclusions with recent work by Strube et al. (2021), which analyzes a sample of proposed new 

gas transmission pipelines.

Results

The US natural gas gathering and transmission network comprises approximately 515,000 km of 

gathering and transmission pipelines, and approximately 370,000 km of that network is shown 

here (Figure 1).  Approximately 280,000 km of pipelines are located on land, traversing 2,261 

US counties (72% of all counties).  Only one county is located outside of the contiguous 48 

states (Kenai Peninsula, AK).  Each county contains, on average, 125 km of pipeline, and half of 

the counties contain at least 64 km of pipelines.  Twenty-six counties have at least 1,000 km of 

pipelines, and 36 counties contain some amount of pipeline but less than 1 km total.  The mean 

density of natural gas gathering and transmission pipelines, NG, is 6.1 km of pipeline / 100 km2 

of land area for the 2,261 counties. Half of the counties have NG of at least 3.7 km / 100 km2.  

The distribution of NG for all pipeline-containing counties skews positive (right).

Gathering and transmission pipelines are located in counties throughout the full range of SVI 

(Figure 1).  Even so, pipeline density is not distributed uniformly among US counties with 

respect to SVI.  In particular, NG is significantly greater for counties in the highest quartile of 

SVI (i.e., counties with the most vulnerable populations) than for counties in the lowest SVI 

quartile (i.e., counties with the least vulnerable populations).  Specifically, counties in the highest
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quartile of social vulnerability have a mean NG value of 7.5 km / 100 km2, which is significantly 

greater than the mean NG value of 4.5 km / 100 km2 for counties in the lowest quartile of social 

vulnerability (p<0.001).  The median NG values also differs significantly between the highest 

and lowest quartiles of social vulnerability (p<0.001).  The group of 881 counties without any 

gathering or transmission pipelines did not differ significantly from the group of pipeline-

containing counties in terms of mean NG , median NG , or the shape of the SVI cumulative 

distribution.

For pipeline-containing counties in the top quartile of social vulnerability, the distribution of NG 

is shifted to the right of the NG distribution for counties in the bottom quartile of social 

vulnerability (Figure 2).  Because of the positive skew in NG, the difference in NG between the 

two groups grows larger at higher quantiles of NG.  For example, the difference in NG is less 

than 1 km / 100 km2 for counties that have relatively low densities of pipelines within their 

vulnerability quartiles, but the difference grows to more than 20 km / 100 km2 for counties that 

have relatively high densities of pipelines within their vulnerability quartiles.  At the upper 

extreme, pipeline densities are greater than 50 km / 100 km2 for 1% of counties in the top 

vulnerability quartile, whereas the top 1% of pipeline densities for counties in the bottom 

vulnerability quartile range from approximately 27 km / 100 km2 to 40 km / 100 km2 (Figure 2). 

Table 1 summarizes the differences in key descriptive statistics for the two groups, and it 

provides upper and lower bounds for each group’s 95% confidence interval.  The upper bound of

the confidence interval highlights the large differences in NG experienced by counties at the 

high-density end of each group’s distribution.

For all pipeline-containing counties in the US, NG and SVI are correlated (Pearson’s r = 0.14, p<

0.001).  The relationship between NG and SVI is driven mainly by counties that have relatively 

high NG for their SVI (Figure 3).  For example, counties in the top 25% envelope ofNG (defined
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as counties in the top 25th percentile of density for a given range of SVI) have a correlation 

between NG and SVI that is much higher (r = 0.33, p < 0.001) than the correlation for all 

pipeline-containing counties (r = 0.14, p < 0.001).  The correlation coefficients grow larger as the

envelopes become more extreme; Table 2 summarizes correlations for envelopes ranging from 

the top 25th percentile of pipeline density to the top 97.5th percentile of pipeline density. 

Discussion

Significance of Findings

The correlation between pipeline density and social vulnerability is a previously undocumented 

characteristic of the US natural gas gathering and transmission pipeline network.  Relationships 

between NG and SVI suggest that nationally, negative impacts associated with natural gas 

pipelines, including air and water pollution, public health and safety concerns, and other burdens,

fall disproportionately on communities with already limited capacities to deal with challenges 

created by these impacts.  

Relationships between pipeline density and social vulnerability neither imply that vulnerable 

communities were targeted by pipeline developers nor that vulnerable communities sprang up 

near pipelines. The relationships do, however, confirm that gathering and transmission pipeline 

densities are not randomly distributed with respect to county-level social vulnerability in the US. 

in general, counties with more socially vulnerable populations experience higher densities of 

gathering and transmission pipelines than counties with less socially vulnerable populations.

Because the pipeline network was constructed over the course of several decades by many 

different companies operating under various regulatory and policy conditions (US Energy 
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Information Administration, 2020), one possible explanation is that the observed inequitable 

distribution of pipeline density is an emergent property of an inherently complex system of 

governance.  Governance systems for energy, natural resources, and the environment exhibit 

structural complexity (e.g., Craig, 2012; Jacquet et al., 2018; Newig et al., 2010), and complex 

systems are often characterized by emergent behaviors or properties that cannot be traced to any 

specific system component (Manson, 2001).  Perhaps the observed disparity in the distribution of

gathering and transmission pipelines is an example of such emergent behavior.  If so, complex 

systems theory may prove useful for understanding how governance systems and other structures

interact to produce racial and socioeconomic disparities in the distribution of pollution and other 

burdens associated with fossil fuel infrastructure.

Suggesting that the association between pipeline density and social vulnerability is an emergent 

property of a complex system does not imply that no one bears responsibility for the inequitable 

distribution of environmental and public health burdens.  On the contrary, multiple parties – local

and state officials, federal regulators, corporations – share responsibility through decisions that 

often prioritize economic interests over the equitable distribution of burdens (Foreman, 2011; 

Steel & Whyte, 2012; Sze et al., 2009). At minimum, our results re-emphasize a major theme in 

EJ research: overt discrimination and malicious intent are not prerequisites for discriminatory 

outcomes (e.g., Bullard, 1993; Pulido, 2000; Ranganathan, 2016; Vasudevan & Smith, 2020).

Regardless of responsibility or intent, the disproportionately high density of natural gas pipelines

in areas of high social vulnerability warrants further attention.  Although the concentration of 

infrastructure in areas of high social vulnerability is consistent with patterns observed at 

upstream and downstream ends of the oil and gas supply chain (Colborn et al., 2014; Davies, 
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2019), midstream pipelines and related infrastructure have unique burdens.  We discuss some of 

these burdens in the following section.  We focus specifically on Indigenous communities and 

others located in rural parts of the US given that many new oil and gas pipelines are routed 

through rural landscapes (Strube et al., 2021).

Implications

 Decision-makers responsible for permitting midstream pipelines have justified rural routes by 

implying that societal risk is connected to population size density, asserting, in some cases, that 

societal risks are greater in urban areas than to rural areas.  For example, federal regulators 

eliminated an early route for the Dakota Access Pipeline partly because of its proximity to the 

city of Bismarck, ND and its urban water supply.  Regulators instead chose a rural route 

adjoining the present-day Standing Rock Sioux reservation (Whyte, 2017). 

Although population density may predict the severity of certain impacts (e.g., a gas pipeline 

explosion may harm more people in an urban area than an equivalent explosion in a rural area), 

we contend that rural pipeline impacts, in general, are not simply diffuse or less intense versions 

of urban impacts.  Instead, recent research suggests that gathering and transmission pipelines 

pose fundamentally distinct cultural, economic, and other challenges for rural areas (Caretta & 

McHenry, 2020; Donnelly, 2018; Emanuel & Wilkins, 2020; Whyte, 2017).  The recent wave of 

oil and gas pipeline development in the US and elsewhere highlights the need for more nuanced 

thinking about the implications of expanding pipeline infrastructure into rural areas.  We 

highlight some of these below.

Several oil and gas transmission pipelines proposed or built in recent years have unique 

implications for Indigenous communities in rural areas due to impacts – actual and potential – on

their contemporary and ancestral territories.  Although Indigenous peoples in the US 

overwhelmingly reside in urban areas (Weaver, 2012), Indigenous knowledge systems, cultures, 
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and identities are inextricably tied to certain landscapes, waterways, and other spaces that are 

predominantly rural in nature (e.g., Emanuel, 2019; Whyte, 2017).  The Dakota Access, 

Keystone XL, Trans Mountain Expansion, Enbridge Line 3 pipelines, and the now-cancelled 

Atlantic Coast and Northern Gateway Pipelines all traverse or proposed to traverse territories of 

Indigenous peoples in the US and Canada (Emanuel, 2017; Estes, 2019; Hunsberger & Awâsis, 

2019; Jonasson et al., 2019; McCreary & Milligan, 2014; Whyte, 2017).  Some Tribes and First 

Nations oppose these projects not only because of concerns over pollution or risks to human 

health, but also because of the pipelines’ potential to cause irreparable cultural harm by 

damaging or destroying present-day or ancestral territories with religious, historical, or cultural 

significance (e.g., Chen, 2020; Emanuel & Wilkins, 2020; Estes, 2019; Vypovska et al., 2018).  

Despite the high stakes for Indigenous peoples, few culturally-oriented pipeline assessments 

exist.  Those that do are commissioned mainly by affected Tribes or First Nations in response to 

regulatory processes that fail to address concerns they deem important (e.g., Honor the Earth, 

2020; Tsleil-Waututh Nation, 2015).  These assessments describe how pipeline construction and 

operation may disrupt, for example, the ability of Indigenous peoples to maintain place-based 

food traditions or cultural practices.  They also highlight ways in which regulatory proceedings 

renew or exacerbate longstanding ethical and legal issues surrounding the participation of 

Indigenous peoples in decision-making about their own lands and communities (Emanuel & 

Wilkins, 2020; Honor the Earth, 2020; Tsleil-Waututh Nation, 2015; Whyte, 2017).  

Occasionally, these assessments lead to agreements to provide redress for impacts to Indigenous 

communities, or they serve to outline co-management strategies (e.g., Vypovska et al., 2018).  

Often, however, they serve to document various ways in which planning and permitting exclude 

Indigenous perspectives, weaken sovereignty, or otherwise undermine Indigenous self-

determination (Emanuel & Wilkins, 2020; Estes, 2019; Whyte, 2017).  In the US, issues raised 

by Indigenous peoples in culturally-oriented pipeline assessments and other venues are often 

perceived as less important than the priorities of project proponents (e.g., Brown, 2017).
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Pipeline construction and operation have implications for rural landscapes more generally, 

including implications associated with easements on privately-owned lands.  Easements are 

property rights obtained through landowner negotiation or eminent domain, a legal process that 

requires landowners to relinquish certain property rights to pipeline builders and operators. The 

societal implications of pipeline easements, however, extend far beyond delineated and 

compensated boundaries. Easements for gathering and transmission pipelines place practical 

restrictions on adjacent land uses, affect nearby property values, and increase the risks of fire or 

catastrophic explosions in areas further away from easement boundaries (e.g., Caretta & 

McHenry, 2020; Hansen et al., 2006; Holdsworth et al., 2021).  Landowners bear these risks and 

are still obligated to pay taxes on properties crossed by easements (Caretta & McHenry, 2020).  

Rural communities often do not have the same capacity as urban areas to respond to emergencies

and disasters and are often limited in their response capabilities (Brennan & Flint, 2007; Furbee 

et al., 2006). These limitations extend to explosions, leaks, or other incidents related to 

midstream pipeline infrastructure. Some natural gas transmission pipelines proposed in recent 

years exceed 1 m in diameter and have internal gas pressures approaching 1 MPa, elevating 

general concerns about safety and emergency response capabilities (Finley-Brook et al., 2018).  

Safety and other concerns about pipelines may erode the sense of belonging felt by rural 

residents, leading some people to move away (Caretta & McHenry, 2020). Moreover, changes 

associated with midstream infrastructure potentially create rifts between neighbors who disagree 

about the relative benefits and burdens of hosting pipelines in their communities (Caretta & 

McHenry, 2020).  Overall, research from rural Appalachia confirms that easements, safety 

concerns, and other factors facilitate drastic alteration of communities, transforming rural 
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landscapes into sprawling, industrial settings within a few years (Caretta & McHenry, 2020; 

Donnelly, 2018).  Implications of these changes for rural public health and other societal 

concerns are still coming into focus, but one emerging theme is that oil and gas infrastructure 

often exacerbates existing social vulnerability (Blinn et al., 2020; Hemmerling et al., 2021). 

Together, these examples call into question the idea that midstream pipelines have negligible 

societal impacts in rural areas simply because populations are less dense than in urban areas.  

Recommendations 

In the US, federal EJ policy requires inclusion of socioeconomic analyses in pipeline regulatory 

reviews to help identify and address adverse environmental and other impacts that could fall 

disproportionately on vulnerable populations as a result of permitted activities (e.g., Emanuel & 

Wilkins, 2020).  For natural gas pipelines, federal regulators are also charged with determining 

whether projects are in the public interest (Kalen & Hsu, 2020).  This work motivates us to 

combine these two policy priorities into a new question: Is it in the public interest to preserve or 

exacerbate existing patterns that disproportionately burden vulnerable populations with negative 

impacts from natural gas pipelines?  This question guides our recommendations to decision-

makers and others.

Federal policy guidance includes recommendations for conducting EJ analyses, which are 

sections of environmental review documents that allow regulators to identify disparities in 

environmental impacts by race or income status (US Council on Environmental Quality, 1997). 

Regulators and proponents rely on these analyses to draw conclusions and make decisions about 

pipelines and other infrastructure projects (Emanuel, 2017).  Federal courts in the US have 

granted agencies wide latitude to choose or develop their own EJ analyses (Sierra Club v. 

Federal Energy Regulatory Commission, 2017), and although decades of research have 

improved the ability to identify disparities using demographic data, federal EJ analyses are 
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frequently criticized as methodologically unsound, procedurally rote, or ineffective at preventing

or minimizing negative impacts disproportionately imposed on socially vulnerable populations 

(e.g., Bullard, 2018; Davies, 2019; Emanuel & Wilkins, 2020).  In some pipeline cases, federal 

EJ analyses involve only cursory demographic screenings, which can mask racial disparities or 

other social inequities in pipeline routing (Emanuel, 2017; Estes, 2019).  Alone, such screenings 

are unlikely to capture the complexity of concerns about impacts and potential disparities faced 

by vulnerable populations, and federal policy guidance cautions against this use (e.g., US EPA, 

2014).  Decision-makers must re-envision the roles of demographic tools and analyses as they 

work toward more holistic assessments of the societal burdens of pipelines and related 

infrastructure. Culturally-oriented assessments and community-based research have the potential 

to complement demographic analyses, and we reiterate many prior calls to better incorporate 

these types of approaches into environmental reviews (e.g., Arquette et al., 2002; Blue et al., 

2020; Halseth, 2016; Stevenson, 1996; Wilson et al., 2019).

 

Regulators and corporations must commit to early, good-faith efforts to incorporate community 

perspectives into decision-making.  At present,  however, power asymmetries between 

corporations and regulators on one hand and socially vulnerable communities on the other 

sometimes prevent timely and meaningful efforts to incorporate these perspectives into decision-

making about pipelines (e.g., Emanuel & Wilkins, 2020).  Structural changes to the regulatory 

system may be required to overcome this particular barrier.  Natural gas regulators in the US 

have recently signaled that they intend to review policies on identifying and addressing impacts 

of pipeline authorizations on low wealth and racially marginalized communities (US Federal 

Energy Regulatory Commission, 2021). Periodic reviews such as this one could help regulators 

adopt structural changes to improve the effectiveness of their EJ policies, including 

accountability mechanisms to ensure that impacted communities are engaged meaningfully in 

environmental decision-making processes.
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Scientists, for their part, can partner with communities to describe and quantify impacts related 

to environmental degradation, health and safety, and other issues.  This work may include 

quantifying the value of property or assets lost through eminent domain for the construction of 

pipelines and related infrastructure, or identifying the extent to which midstream infrastructure 

increases societal tensions or desires to relocate from rural communities.  Scientists also have the

ability to provide technical critiques of regulatory claims about EJ and to hold regulators to 

rigorous standards for the design and implementation of EJ analyses.  For example, regulators 

who draw conclusions based on demographic analyses should understand the sensitivities and 

limits of detection for these analyses.

Scientists and decision-makers should pay closer attention to the cumulative impacts of co-

located pipelines, compressors, and other types of mid-stream infrastructure.  Regulatory 

analyses focus on the implications of newly-proposed infrastructure and – with few exceptions – 

disregard impacts associated with the gradual accumulation of infrastructure in a community.  

Yet people nearby do not experience newly-proposed facilities in isolation; they are exposed to 

the cumulative effects of all nearby infrastructure on air quality, noise, explosion risks, and more.

Calls to consider cumulative impacts – and to reconsider how cumulative impacts are evaluated 

in decision-making – are not new (Parkes et al., 2016), and thorough reviews of cumulative 

impacts should consider how past decisions affect conditions in the present (Halseth et al., 2016).

With that in mind, it is important to remember that much oil and gas infrastructure in the US pre-

dates not only EJ policies but also anti-discrimination laws, including the US Civil Rights Act.  

The siting of such infrastructure may reflect overt and institutionalized racism that shaped 

infrastructure planning and decision-making during most of US history (Bullard, 2002).  It is 

therefore possible that existing pipeline routes may reflect historical practices that deliberately 

sought to concentrate polluting infrastructure in marginalized communities. With this in mind, 

decision-makers who review cumulative impacts of proposed pipelines should acknowledge that 
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new infrastructure concentrated along existing easements or corridors could reinforce historic 

practices of oppression. The relationships between social vulnerability and pipeline density 

revealed in this study reiterate an urgent need for researchers and decision-makers to pay close 

attention to the cumulative environmental, public health, and other burdens experienced by 

vulnerable populations – especially as the buildout of midstream pipelines continues in the US 

and elsewhere.  

Conclusions

We analyzed multiple, publicly-available datasets and found that the existing network of natural 

gas pipelines in the US is concentrated more heavily in counties where people experience high 

levels of social vulnerability than in counties where social vulnerability is lower. The study, 

however, does more than simply document another way in which vulnerable populations are 

disproportionately impacted by hazardous or polluting infrastructure.  It reiterates a need to 

identify and address disparate societal impacts of infrastructure at the level of an entire system, 

whether the system is part of the oil and gas supply chain or some other sector.

Assuming natural gas gathering and transmission pipelines continue to be built, decision-makers 

and the general public should keep in mind that the network is already distributed inequitably 

with respect to social vulnerability, and that future projects can either maintain the inequitable 

status quo or shift the distribution in ways that will potentially exacerbate or ameliorate current 

disparities.   A more complete view of the oil and gas supply chain can inform decision-makers 

and the general public about the larger societal costs of US energy dominance, including the 

extent to which vulnerable rural communities subsidize this policy through inequitable exposure 

to environmental, health, and other risks.
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Tables

Table 1: Pipeline Density Characteristics of US Counties
Category Mean Median 95% CI

County SVI > 0.75 7.5 4.1 0.2 - 38.2
County SVI < 0.25 4.5 3.2 0.2 - 15.4

All Counties 6.1 3.7 0.2 - 29.4

Table 2: Correlations between NG and SVI for groups shown in Figure 3

Percentile Group r p N
>97.5 0.65 <0.001 58
90-95 0.59 <0.001 113
75-90 0.47 <0.001 225
<75 0.33 <0.001 562
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Figures

Figure 1: Natural gas gathering and transmission pipelines in the conterminous US, with social 
vulnerability index shown for each US county. One Alaska county is included in the statistical 
overview of the results but is not shown here.
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Figure 2: Cumulative frequency distributions of natural gas gathering and transmission pipeline 
density for counties in the lowest quartile of social vulnerability (blue), counties in the highest 
quartile of social vulnerability (red), and all counties (dashed).  Distributions of densities for the 
highest and lowest quartiles differ significantly from one another (KS statistic = 0.17, p < 0.001).
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Figure 3: Pipeline density versus social vulnerability for US counties. Colors indicate envelopes 
for pipeline density percentiles based on bins of SVI (e.g., gray points indicate counties in the 
lower 75th percentile of density for their SVI bins, blue points indicate counties in the 75th to 90th 
percentile of density for their SVI bins, etc.).
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