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Abstract

El Nino Southern Oscillation (ENSO) is one of the most important climate variabilities on an inter-annual time-scale. We

aim to find out whether ENSO frequency will change in a changing climate. We analyse two ensembles of General Circulation

Models that participated in the Coupled Model Intercomparison Project Phase 6 (CMIP6) and an initial-conditions ensemble

of the MPI-ESM-LR model. We identify the uncertainty caused by natural variability by comparing 120-year time-series of the

pre-industrial control and the 1-percent CO2 simulations for the CMIP6 ensembles. We found that the multi-member mean for

all ensembles predicts almost no change in ENSO frequency, but the uncertainties are large, and that most of the inter-member

variability can be attributed to natural variability. This means that the impact of inter-model differences might have been

overstated in previous studies. This makes it impossible to make reliable predictions of changes in ENSO frequency based on

120-year simulations.
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Abstract9

El Niño Southern Oscillation (ENSO) is one of the most important climate variabilities10

on an inter-annual time-scale. We aim to find out whether ENSO frequency will change11

in a changing climate. We analyse two ensembles of General Circulation Models that par-12

ticipated in the Coupled Model Intercomparison Project Phase 6 (CMIP6) and an initial-13

conditions ensemble of the MPI-ESM-LR model. We identify the uncertainty caused by14

natural variability by comparing 120-year time-series of the pre-industrial control and15

the 1-percent CO2 simulations for the CMIP6 ensembles. We found that the multi-member16

mean for all ensembles predicts almost no change in ENSO frequency, but the uncertain-17

ties are large, and that most of the inter-member variability can be attributed to nat-18

ural variability. This means that the impact of inter-model differences might have been19

overstated in previous studies. This makes it impossible to make reliable predictions of20

changes in ENSO frequency based on 120-year simulations.21

Plain Language Summary22

El Niño Southern Oscillation (ENSO) is a coupled atmosphere-ocean circulation23

in the Pacific and of great interest since it impacts weather worldwide. The question how24

it will change in a changing climate is important to be able to risks due to extreme weather.25

Global Circulation Models can help assess this question. This study focuses on the ques-26

tion if ENSO frequency will change in a changing climate. We use two ensembles of 4327

Global Circulation Models that participated in the Coupled Model Intercomparison Project28

Phase 6. By comparing the pre-industrial control simulation to a future scenario with29

increasing CO2 we can identify the part of the variability caused by different behaviours30

of the models and the part caused by natural variability. We also use one 68-member31

ensemble of the MPI-ESM-LR model, because a bigger ensemble might yield statistically32

more reliable results. We found that on average the models predict only a very small change33

in ENSO frequency but the uncertainty is big. Because most of this uncertainty can be34

attributed to the natural variability it can be reduced only marginally. Therefore, it is35

impossible to make reliable predictions of changes in ENSO frequency based on 120 years36

of model simulations.37

1 Introduction38

El Niño Southern Oscillation (ENSO) is one of the most important climate vari-39

abilities on an inter-annual time-scale. Due to teleconnections it impacts weather con-40

ditions worldwide and can lead to extreme weather events. To reduce the social, economic41

and environmental risk of theses events, accurate forecasting is required. Therefore, un-42

derstanding and predicting ENSO mechanisms is a central question of current research.43

In particular, the question of how ENSO will react to global warming is of great inter-44

est. Global warming could have different effects on the equatorial Pacific and therefore45

on ENSO. ENSO frequency can be affected by the strength and depth of the equatorial46

thermocline, the meridional and zonal sea surface temperature (SST) gradients as well47

as the strength of the trade winds (Yang et al., 2005; Deng et al., 2010). How these (and48

other) mechanisms work together and which one(s) will predominate, defines how ENSO49

will react in future and has yet to be investigated. If and how ENSO behaviour will change50

under a changing climate has been studied intensely in the past years.51

Some studies found an increase in ENSO frequency in the models they examined52

(Timmermann et al., 1999; Collins, 2000a). Collins (2000a) for example studied ENSO53

frequency with the second Hadley Centre coupled climate model (HadCM2). The HadCM254

is a coupled climate model which, according to Collins (2000a), represents present day55

ENSO conditions (amplitude and frequency) well. When running different climate change56

scenarios he finds that there are only small changes until a quadrupling of CO2, when57

the frequency doubles. On the other hand Yang et al. (2005) investigated ENSO in the58
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Fast Ocean-Atmosphere Model and find that a reduction of ENSO frequency is very likely59

as a result of warming climate. Yet other studies argue that ENSO frequency does not60

react to global warming at all (e.g. Timmermann, 2001; Zelle et al., 2005). Also, Collins61

(2000b) follows up on his earlier study and finds that in the third Hadley Centre cou-62

pled climate model (HadCM3) there is no change to ENSO frequency under different cli-63

mate change scenarios. Both Zelle et al. (2005) and Collins (2000b) emphasise the ef-64

fect that model specifics can have on the sensitivity of ENSO to climate change. There-65

fore, to increase the robustness multi-model ensembles have been used in many later stud-66

ies. In a study by Merryfield (2006) 12 out of 15 models (prepared for IPCC AR4) agreed67

on a decrease in ENSO period. Cai et al. (2014); Cai, Santoso, et al. (2015) and Cai, Wang,68

et al. (2015) analysed models participating in the Coupled Model Intercomparison Project,69

Phases 3 and 5. They conclude, that there is a high inter model agreement, that extreme70

El Niño/ La Niña events become more frequent in a warming climate. Wang et al. (2017)71

also use 13 models participating in Coupled Model Intercomparison Project Phase 5 (CMIP5)72

and come to the same conclusion. But, many studies that have investigated multi-model73

ensembles come to the conclusion that the predictions of ENSO frequency are strongly74

model dependent. Studies by Guilyardi (2006), Deng et al. (2010), Xu et al. (2017) and75

Chen et al. (2017) suggest that the model consensus is very small on the topic of how76

ENSO frequency will change in a changing climate.77

Chen et al. (2017) mention that the difficulty in predicting ENSO properties is not78

only the inter-model spread but also the significant natural variability and Zheng et al.79

(2018) support this hypothesis in a study about ENSO amplitude. A similar study by80

Maher et al. (2018) shows that (depending on the warming scenario) up to 90% of the81

variability of ENSO amplitude can be attributed to internal variability. In this study we82

want to quantify the aspect of natural variability of ENSO frequency. Climate forecasts83

can be improved by using multi-model ensembles (Xu et al., 2017) instead of single sim-84

ulations because parametrisation errors of individual models are expected to be averaged85

out. The uncertainty due to differences in the model realisation is reducible but it is not86

the only uncertainty in such ensembles. The chaotic nature of the climate system will87

cause an internal variability which remains irreducible. We want to identify the signal88

caused by this internal climate variability. Therefore we make use of the multi-model en-89

semble that is part of the Coupled Model Intercomparison Project Phase 6 (CMIP6).90

We compare the simulation with increased CO2 to the pre-industrial control simulation.91

By doing so we can estimate how much of the variability is caused by the different model92

responses to the forcing and how much is due to internal variability.93

Additional to the multi-model ensemble we analyse a bigger ensemble resulting from94

running the MPI-ESM-LR model with perturbed initial conditions, to increase the sta-95

tistical confidence of our results. As suggested by Maher et al. (2018), the use of large96

single-model ensembles can give important insight into changes in ENSO properties.97

2 Data98

In this work we first make use of two multi-model ensembles of CMIP6, which con-99

sist of 43 members (a list with detailed information can be found in table 1). We com-100

pare the simulations for the 1 percent CO2 (1pct CO2) experiment to the pre-industrial101

Control (piControl) simulations. In the piControl experiment 1850 is used as a reference102

year and the simulations are run for at least 500 years (Eyring et al., 2016). The 1pct103

CO2 simulation is initialised from the control run. A 150-year period is simulated dur-104

ing which the CO2 concentration is continuously increased by 1% per year. This results105

in a doubling of CO2 after 70 and a quadrupling after 140 years, respectively (Giorgetta106

et al., 2013). To make the two ensembles comparable we only use the last 150 years of107

the piControl run. For the IPSL model apparently files were added at different times.108

Because the files’ meta-data implied that the later simulations might not actually be from109

the same model version and the first simulation is already 500 years long, we decided to110
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Table 1. List of the 43 CMIP6 models used in this study.

No. Model Variant Version 1pct
pi

Institute
Resolutiona

Reference
Control ocean, latxlon

1 ACCESS-CSM2 r1i1p1f1 v20191109 x CSIRO 300x360 Dix et al. (2019)
v20191112 x

2 ACCESS-ESM1-5 r1i1p1f1 v201911115 x CSIRO 300x360 Ziehn et al. (2019)

v20191214b x
3 AWI-CM-1-1-MR r1i1p1f1 v20181218 x x AWI 83030c Semmler et al. (2018)
4 BCC-CSM2-MR r1i1p1f1 v20181015 x x BCC 232x360 Xin et al. (2018)
5 BCC-ESM1 r1i1p1f1 v20190611 x BCC 232x360 Zhang et al. (2018)

v20181218 x

6 CAMS-CSM1-0 r1i1p1f1 v20190708b x CAMS 200x360 Rong (2019)

v20190729b x

7 CESM-FV2 r1i1p1f1 v20200310b x NCAR 384x320 Danabasoglu (2019a)

v20191120b x

8 CESM-WACCM-FV2 r1i1p1f1 v20200226b x NCAR 384x320 Danabasoglu (2019c)

v20191120b x

9 CESM2-WACCM r1i1p1f1 v20190425b x NCAR 384x320 Danabasoglu (2019d)

v20190320b x

10 CESM2 r1i1p1f1 v20190425b x NCAR 384x320 Danabasoglu (2019b)

v20190320b x

11 CIESM r1i1p1f1 v20200220b x x THU 384x320 Huang (2019)

12 CNRM-CM6-1-HR r1i1p1f2 v20191021b x x CNRM-CERFACS 1050x1442 Voldoire (2019)

13 CNRM-CM6-1 r1i1p1f2 v20180626b x CNRM-CERFACS 294x362 Voldoire (2018)

v20180814b x

14 CNRM-ESM2-1 r1i1p1f2 v20181018b x CNRM-CERFACS 294x362 Seferian (2018)

v29181115b x
15 CanESM5 r1i1p1f1 v20190429 x x CCCma 291x360 Swart et al. (2019)
16 CanESM5 r1i1p2f1 v20190429 x x CCCma 291x360 Swart et al. (2019)
17 E3SM-1-0 r1i1p1f1 v20191008 x E3SM-Project 180x360 Bader et al. (2019)

v20200129b x

18 EC-Earth3 r3i1p1f1 v20200727b x
EC-Earth-

292x362 EC-Earth Consortium (2019)
Consortium

r2i1p1f1 v20200420b x
19 FIO-ESM-2-0 r1i1p1f1 v20200306 x FIO-QLNM 384x320 Song et al. (2019)

v20191012 x
20 GFDL-CM4 r1i1p1f1 v20180701 x NOAA-GFDL 1080x1440 Guo et al. (2018)

v20190201 x
21 GISS-E2-1-G r102i1p1f1 v20190815 x x NASA-GISS 90x144 NASA/GISS (2018a)
22 GISS-E2-1-G r1i1p1f1 v20190824 x x NASA-GISS 90x144 NASA/GISS (2018a)
23 GISS-E2-1-G r1i1p5f1 v20190905 x NASA-GISS 90x144 NASA/GISS (2018a)

v20190710 x

24 GISS-E2-1-H r1i1p1f1 v20190403b x NASA-GISS 90x144 NASA/GISS (2018b)

v20190410b x

25 GISS-E2-2-G r1i1p1f1 v20191120b x x NASA-GISS 90x144 NASA/GISS (2019)

26 HadGEM3-GC31-LL r1i1p1f3 v20190620b x MOHC 330x360 Ridley et al. (2018)

r1i1p1f1 v20190628b x
27 INM-CM4-8 r1i1p1f1 v20190530 x INM 180x360 Volodin et al. (2019a)

v20190605b x
28 INM-CM5-0 r1i1p1f1 v20200226 x INM 180x360 Volodin et al. (2019b)

v20190619 x
29 IPSL-CM6A-LR r1i1p1f1 v20180727 x IPSL 332x362 Boucher et al. (2018)

v20200326 x
30 MCM-UA-1-0 r1i1p1f1 v20190731 x x UA 80x192 Stouffer (2019)
31 MIROC-ES2L r1i1p1f2 v20190823 x x MIROC 256x360 Hajima et al. (2019)
32 MIROC6 r1i1p1f1 v20181212 x x MIROC 256x360 Tatebe and Watanabe (2018)

33 MPI-ESM-1-2-HAM r1i1p1f1 v20190628 x
HAMMOZ-

220x256 Neubauer et al. (2019)
Consortium

v20190627 x
34 MPI-ESM1-2-HR r1i1p1f1 v20190710 x x MPI-M 404x802 Jungclaus et al. (2019)
35 MPI-ESM1-2-LR r1i1p1f1 v20190710 x x MPI-M 220x256 Wieners et al. (2019)

36 MRI-ESM2-0 r1i1p1f1 v20190904b x x MRI 363x360 Yukimoto et al. (2019)

37 MRI-ESM2-0 r1i2p1f1 v20200303 b x MRI 363x360 Yukimoto et al. (2019)

v20200222b x
38 NESM3 r1i1p1f1 v20190703 x NUIST 292x362 Cao and Wang (2019)

v20190704 x
39 NorCPM1 r1i1p1f1 v20190914 x x NCC 384x320 Bethke et al. (2019)
40 NorESM2-LM r1i1p1f1 v20190815 x NCC 385x360 Seland et al. (2019)

v20210118b x
41 NorESM2-MM r1i1p1f1 v20191108 x x NCC 385x360 Bentsen et al. (2019)
42 SAM0-UNICON r1i1p1f1 v20190323 x SNU 384x320 Park and Shin (2019)

v20190910 x
43 UKESM1-0-LL r1i1p1f2 v20190701 x MOHC 330x360 Tang et al. (2019)

v20200828 x

a Some files have different resolution information in the meta-data .
We use the resolution that can be determined from the size of the variable-array

b For these files the creation date precedes the date according to the version number.
We nevertheless assume that the version number date is correct.

c Irregular grid, number of grid points
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use the last 150 years of this first simulation instead of the later ones. The ensembles111

will be referred to as 1pct- and Control-ensemble, respectively.112

Another ensemble used in this study is an initial-conditions ensemble. The MPI-113

ESM-LR model has been run for the 1pctCO2 experiment with slightly different initial114

conditions which results in a 68-member ensemble (Plesca et al., 2018; Giorgetta et al.,115

2013; Stevens et al., 2013). This ensemble will from now on be referred to as MPI-ensemble.116

It should be mentioned that this ensemble is older than the CMIP6 ones, since it was117

run for the CMIP5. The reason for using an older ensemble for this work was the avail-118

ability of this dataset.119

3 Methods120

There are many indices to measure ENSO activity, which all have their advantages121

and disadvantages. Depending on the available data and the question posed, different122

indices prove to be helpful. In this work we make use of an index based on the first em-123

pirical orthogonal function (EOF) of SST data from the tropical Pacific (120°E-60°W,124

30°N-30°S). The pattern of the first EOF explains most of the variability in the tropi-125

cal Pacific, particularly in the Nino3.4 region (Dommenget et al., 2013). Therefore, the126

principle component (PC) of the first EOF can be used as an ENSO-index (a very sim-127

ilar approach was used in other studies (e.g. Merryfield, 2006; Berner et al., 2020)). In128

fact, it can be shown that this index is highly correlated with the Ocean Nino Index (ONI)129

defined by NOAA Climate Prediction Center, National Weather Service (2020a) (Berner130

et al., 2020; Penland & Sardeshmukh, 1995). This means that they indeed describe the131

same ENSO variations. We calculated the correlation between these two indices for the132

43-member ensemble of the CMIP6 piControl experiment and obtained a mean value of133

0.971 (min: 0.883, max: 0.991).134

In order to calculate this index the climate trend and annual cycle have to be elim-135

inated. This is done as described by NOAA Climate Prediction Center, National Weather136

Service (2020a) for the ONI. Anomalies are calculated for each grid-point with respect137

to a centred base-period. This base-period is updated every 5 years to account for the138

warming trend in the region. The base-period corresponding to the years x to x+5 is the139

period x-15 to x+15 (NOAA Climate Prediction Center, National Weather Service, 2020b).140

Subsequently, the anomalies are smoothed by a 3-month-running mean. From these smoothed141

anomalies EOFs can be calculated, which also yields the time series of the PCs. The first142

PC is used as the ENSO-index in this study and will be referred to as the PC-index. The143

base-period-method creates artificial trends at the beginning and end of a dataset, be-144

cause for the first and last 15 years there is no centred base-period available. Therefore,145

the first base-period has to be used for the first 20 years and the last base-period for the146

last 20 years. This creates an unwanted effect, which can’t be corrected. Therefore the147

first and last 15 years of data can not be correctly evaluated and will not be taken into148

account for further analysis. We therefore effectively analyse time series with a length149

of 120 years.150

According to the NOAA Climate Prediction Center, National Weather Service (2020a)151

conditions are considered ”El Niño-like” when the ONI exceeds +0.5 K and ”La Niña-152

like” when the index goes below -0.5 K. Whenever conditions are met for 5 consecutive153

months, it is called an ”El Niño event” or a ”La Niña event”. We use the same defini-154

tion for the PC-index as well.155

Similarly to Deng et al. (2010) we count El Niño and La Niña events to estimate156

changes in ENSO frequency. In this study we use a 30-year moving window. The num-157

ber of months within a 30-year period that were ”El Niño-” or ”La Niña-like” were counted158

as well as the number of actual El Niño or La Niña events within this period. This re-159

sults in a time series of occurrences, of which a linear regression can be calculated. The160

slope of this regression line defines the linear trend in the amount of ”El Niño-” and ”La161

Niña-like” months and -events. It provides insight into how the number of El Niño/La162

Niña events will increase or decrease over the years. We have computed the linear trend163
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Table 2. Means and standard deviations σ of predicted changes in occurrences of El Niño (EN)

and La Niña (LN) events and ”EN/LN-like” conditions for all three ensemblesa.

EN LN ”EN-like” ”LN-like”

ensemble mean σ mean σ mean σ mean σ

1pct 0.038 ± 0.038 0.2506 0.108 ± 0.030 0.1987 0.094 ± 0.441 2.8919 0.622 ± 0.444 2.9101

Control -0.040 ± 0.032 0.2085 0.022 ± 0.040 0.2615 -0.290 ± 0.386 2.5319 0.179 ± 0.412 2.7047

MPI 0.070 ± 0.030 0.2514 0.020 ± 0.029 0.2364 -0.169 ± 0.374 3.0849 -0.320 ± 0.390 3.2138

aAll numbers are unitless, they represent changes in occurences during one decade.

for every member of each of the three ensembles. For convenience, the gradient in months−1
164

can be converted into a more intuitive measure for the change in ENSO frequency by165

multiplying it by 120 months, which then gives the change in the number of occurrences166

during a decade.167

4 Results168

Figures 1 and 2 show the linear trend of El Niño and La Niña -events and -like months.169

On average the 1pct-ensemble predicts an increase of 0.038 ± 0.038 El Niño events and170

an increase of 0.108 ± 0.030 La Niña events per decade (the ± values are the standard171

errors, σ/
√
N). The standard deviations (σ) are 0.2506 and 0.1987 events per decade172

for El Niño and La Niña events, respectively. Hence, the inter-model spread appears to173

be larger than the mean change itself, which makes it difficult to detect changes in ENSO174

frequency (see Tab. 2).175

An interesting question is whether this uncertainty can be reduced at all. There-176

fore we compare the 1pct-ensemble to the Control-ensemble. It can be expected that the177

1pct-ensemble contains uncertainties (σ1pct) due to the different reactions of the differ-178

ent models to the forcing (σModelDiff) as well as uncertainties due to the natural variabil-179

ity (σNaturalVariability). Under the assumption that the errors are uncorrelated this re-180

sults in181

σ2
1pct = σ2

ModelDiff + σ2
NaturalVariability (1)182

Therefore its standard deviation should be greater than the standard deviation of183

the Control-ensemble, which only contains the uncertainty due to natural variability:184

σ2
Control = σ2

NaturalVariability (2)185

Still under the assumption of uncorrelated errors, the difference in the variances186

σ2 of the two ensembles should be a measure for the uncertainty caused by model dif-187

ferences, ie.188

σ2
ModelDiff = σ2

1pct − σ2
Control (3)189

This uncertainty can be reduced, while the rest, the natural variability, will remain.190

For El Niño events the standard deviation due to model differences is therefore 0.1369191

events per decade, which is one order of magnitude less than the standard deviation due192

to natural variability. For La Niña events the difference in variances is even negative with193

-0.0281.194

This means that the biggest part of the uncertainty in the 1pct-ensemble predic-195

tion stems from the natural variability and is therefore irreducible, since the real world196

–6–
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Figure 1. Linear Trend in El Niño/La Niña events for each member of the three ensembles:

a) the 1pct-ensemble, b) the Control-ensemble, c) the MPI-ensemble. Values towards the top of

the plot indicate increasing number of La Niña (LN) events, values toward the right of the plot

indicate an increasing number of El Niño (EN) events. Numbers in panels a) and b) correspond

to models as in table 1.
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Figure 2. Same as figure 1 but for ”El Niño-” and ”La Niña-like” conditions.

will evolve like one ensemble member, not like the ensemble mean. Since the uncertainty197

is in the range of the predicted mean changes or even exceeds them, no reliable forecast198

can be made on the time-scale of 120 years. The result is qualitatively the same for the199

”El Niño-” and ”La Niña-like” conditions (see Tab. 2 and Fig. 2)200

A statistically more reliable result might be achieved by analysing a bigger ensem-201

ble. Therefore we conducted the same analysis for the MPI-ensemble, which consists of202

68 members. The MPI-ESM-LR model was run with perturbed initial conditions for the203

1pct CO2 experiment in CMIP5. Since it is an initial-conditions ensemble it only con-204

tains the uncertainty due to natural variability. For the change in El Niño events the big-205

ger ensemble predicts a change of 0.069 ± 0.030 events per decade. The uncertainty seems206

to be slightly less compared to the earlier analysis. But for the La Niña events and the207

”El Niño-” and ”La Niña-like” conditions the uncertainty is of the same order of mag-208

nitude or bigger than the expected change itself again. This supports the assumption209

that a reliable prediction of ENSO-frequency on a time-scale of 120 years cannot be made.210
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5 Discussion and Conclusions211

The multi-model mean frequency change of El Niño and La Niña events is less than212

± 0.2 events per decade in all three ensembles and in all cases the uncertainties are large.213

Our analysis of the two CMIP6 ensembles showed that the natural variability dominates214

the results. This suggests that the stronger trends found in individual models like in the215

studies by Timmermann et al. (1999) or Yang et al. (2005) may be mostly due to nat-216

ural variability. Also the results from Timmermann (2001) and Zelle et al. (2005) who217

found no trend in the respective models therefore have to be treated carefully. In con-218

trast to the studies by Merryfield (2006), Cai et al. (2014), Cai, Wang, et al. (2015), Cai,219

Santoso, et al. (2015) and Wang et al. (2017) we could not find an inter-model consen-220

sus on a significant trend in ENSO frequency in the ensembles. It should be mentioned221

though, that we did not distinguish between normal and extreme El Niño and La Niña222

events like some of the mentioned authors did.223

Zelle et al. (2005) and Collins (2000b) suggested that prediction of ENSO frequency224

is strongly model dependent and the studies by Guilyardi (2006), Deng et al. (2010), Xu225

et al. (2017) and Chen et al. (2017) indeed found a poor inter-model consensus. Our study226

implies though that it is actually not the model differences that are responsible for the227

biggest part of the inter-model spread but rather the natural variability. This does not228

mean that model differences do not play a role, only that their importance relative to229

natural variability likely has been overstated. We therefore complement the findings of230

Chen et al. (2017), who found that for changes in for example ENSO asymmetry in am-231

plitude, duration, and transition from the 20th to the 21st century the model agreement232

is poor, trends are not significant and the variations mostly lie within the range of nat-233

ural variability. Our findings also support the results from the studies by Zheng et al.234

(2018) and Maher et al. (2018) who did similar analyses but for ENSO amplitude and235

also attribute most inter-member variability to natural variability.236

Our results suggest that the uncertainties might only be marginally reducible, since237

only the uncertainties due to model differences can be minimised but not the natural vari-238

ability. This means that it is impossible to make reliable predictions of changes in ENSO239

frequency based on 120 years of model simulations. Although we used only a particu-240

lar type of model (coupled climate models as represented in CMIP) we think that this241

result is general, since the main finding is that the natural variability is so large, and this242

is unlikely to change for more sophisticated models. Therefore, even if models that rep-243

resent ENSO dynamics more faithfully may exhibit larger and/or more robust ENSO fre-244

quency trends, natural variability is still likely to dominate.245

Acronyms246

CMIP5 Coupled Model Intercomparison Project Phase 5247

CMIP6 Coupled Model Intercomparison Project Phase 6248

ENSO El Niño Southern Oscillation249

EOF empirical orthogonal function250

PC principle component251

SST sea surface temperature252
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