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Abstract

El Niño-Southern Oscillation (ENSO) shows a large diversity of events that is modulated by climate variability and change.

The representation of this diversity in climate models limits our ability to predict their impact on ecosystems and human

livelihood. Here, we use multiple observational datasets to provide a probabilistic description of historical variations in event

location and intensity, and to benchmark models, before examining future system trajectories. We find robust decadal variations

in event intensities and locations in century-long observational datasets, which are associated with perturbations in equatorial

wind-stress and thermocline depth, as well as extra-tropical anomalies in the North and South Pacific. Some climate models are

capable of simulating such decadal variability in ENSO diversity, and the associated large-scale patterns. Projections of ENSO

diversity in future climate change scenarios strongly depend on the magnitude of decadal variations, and the ability of climate

models to reproduce them realistically over the 21st century.
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Abstract 26 

El Niño-Southern Oscillation (ENSO) shows a large diversity of events, whose modulation by 27 

climate variability and change, and their representation in climate models, limit our ability to 28 

predict their impact on ecosystems and human livelihood. Here, we introduce a new framework 29 

to analyze probabilistic changes in event-location and -intensity, which overcomes existing 30 

limitations in studying ENSO diversity. We find robust decadal variations in event intensities 31 

and locations in century-long observational datasets, which are associated with perturbations 32 

in equatorial wind-stress and thermocline depth, as well as extra-tropical anomalies in the 33 

North and South Pacific. A large fraction of CMIP5 and CMIP6 models appear capable of 34 

simulating such decadal variability in ENSO diversity, and the associated large-scale patterns. 35 

Projections of ENSO diversity in future climate change scenarios strongly depend on the 36 

magnitude of decadal variations, and the ability of climate models to reproduce them 37 

realistically over the 21st century. 38 

 39 

Introduction 40 

El Niño-Southern Oscillation (ENSO) is the leading mode of tropical climate variability, with 41 

impacts on ecosystems, agriculture, freshwater supplies and hydropower production spanning 42 

much of the globe1–3. The majority of impact studies, including seasonal to multi-year 43 

predictions, have developed from a “canonical” representation of ENSO, as characterised by 44 

sea-surface temperature anomalies (SSTa) in the central-eastern Pacific4–6. However, ENSO 45 

shows large differences from one event to another in terms of its intensity, spatial patterns and 46 

temporal evolutions7–9. For instance, while the 1997/98 El Niño displayed extreme SSTa in the 47 

eastern equatorial Pacific (EP-ENSO), the largest SSTa in the winter of 2002/03 were weaker 48 

and primarily confined to the central equatorial Pacific (CP-ENSO). Differences in the 49 

longitudinal location and intensity of ENSO events are sensitively associated with different 50 



impacts on regional climate throughout the world10,11. Such differences in ENSO patterns, 51 

referred to as “ENSO diversity”7, and their representation in climate models thus strongly 52 

influence the skill of impact prediction systems12, and underscore the need for an appropriate 53 

characterization and further mechanistic understanding of ENSO diversity. 54 

 55 

The post-1990s increases in the frequency of CP El-Niño events13–15 has led some researchers 56 

to associate such changes in ENSO patterns to the influence of global warming16. However, 57 

the role of natural low-frequency climate variations may also be important for altering ENSO 58 

characteristics17–19. Indeed, observations and climate models show the presence of decadal 59 

modulations in both intensity17,19,20 and pattern diversity21. In particular, different phases of the 60 

Pacific Decadal Oscillation (PDO)18,22 and the Atlantic Multidecadal Oscillation (AMO)23 were 61 

considered more conducive to either CP- or EP-ENSO. However, to date, no robust decadal 62 

variation in event locations has been detected in long-term observational records24,25. Similarly, 63 

we know very little about the ability of climate models to realistically reproduce ENSO 64 

diversity and its low-frequency variability7,8. CMIP3 and CMIP5 models showed large biases 65 

in the background mean state of equatorial Pacific SST, leading to an excessive westward 66 

extension of the ENSO patterns26–28, and limiting the models’ ability to simulate realistic ranges 67 

of ENSO diversity9,29. Further research is thus needed to determine how these decadal 68 

variations may affect the reported historical and future strengthening of ENSO30–32, as well as 69 

the increasing occurrence of CP- versus EP-events13–16.  70 

 71 

Studying ENSO diversity has however been largely limited by various technical shortcomings. 72 

Such studies are traditionally based on several indices of tropical Pacific SSTa, designed to 73 

monitor the variability of either a “canonical” ENSO or two extreme ENSO flavours33–37. Yet, 74 

these indices emphasize El Niño events, while La Niña events, which are associated with 75 



weaker anomalies than El Niño events38, are typically located further West7 and tend to show 76 

a more limited range of pattern diversity39, have received less attention. Hence, traditional 77 

indices tend to neglect the existing asymmetry between warm- and cold-phases, and between 78 

CP- and EP-events. Besides, most of these indices are significantly inter-correlated (Fig.1a), 79 

suggesting that they provide redundant information on ENSO. More importantly, the 80 

probability distribution of the peak location of SSTa over the tropical Pacific (when each index 81 

is exceeding ±0.5°C standard deviation; Fig.1b), indicates that most of these indices are neither 82 

representing solely CP- and EP-events, but rather different combinations of both ENSO 83 

flavours.  84 

#Figure 1# 85 

It is therefore essential to develop a new framework allowing for a more precise assessment of 86 

changes in the location and intensity of warm- and cold ENSO events. In this regard, the 87 

“Center of Heat Index” (CHI) provided the basis for a more flexible framework, allowing the 88 

longitudinal centre of SSTa to vary as a function of time instead of being geographically 89 

fixed24,25. Yet, the CHI approach defines El Niño (La Niña) events based on anomalously warm 90 

(cold) areas over very large longitudinal extents (> ~5550km), hereby yielding a very smooth 91 

representation of ENSO diversity, and limiting the detectable ranges of spatial patterns. Here, 92 

we introduce a novel “non-parametric” framework to allow for a more precise assessment of 93 

probabilistic changes in ENSO diversity, notably in event locations and intensity (cf. Methods). 94 

This new framework is first applied to a suite of observational datasets, including century-long 95 

reconstructions, reanalysis and high-resolution satellite-derived estimates (cf. Supplementary 96 

Table 1), to identify potential long-term changes in the likelihood of El Niño and La Niña 97 

location and intensity, and discuss their associations with decadal climate variability. The same 98 

framework is then applied to the two latest multi-model ensembles, i.e. CMIP540 and CMIP641 99 

(cf. Supplementary Table 1), to examine how model fidelity in simulating ENSO diversity is 100 



influenced by using an approach that allows for a continuum of patterns, rather than relying on 101 

a more rigid bimodal view of the ENSO phenomenon. Historical and multi-centennial pre-102 

industrial control simulations (piControl: 400–1200 years, radiative forcing fixed at the 1850 103 

conditions) are used to examine whether robust decadal variations can be found in the absence 104 

of anthropogenic influences (piControl) or under historical radiative forcing (historical). The 105 

large-scale climate patterns associated with decadal variations in ENSO diversity are examined 106 

in both observations and in the climate models that most realistically simulate ENSO diversity 107 

and its low-frequency variability in pre-industrial and historical periods. The same models are 108 

then used to assess how ENSO diversity is projected to change in the future. In particular, we 109 

address two questions: i) do ENSO events really strengthen and shift westward in the 21st 110 

century? ii) if so, is that true for both El Niño and La Niña events? 111 

 112 

Results 113 

Observed changes in the likelihood of ENSO location and intensity 114 

The average distribution of ENSO location and intensity in 20-year overlapping periods 115 

between 1850 and 2017, is examined using five observational datasets (Fig. 2).  116 

#Figure 2# 117 

On average, El Niño events tend to be located over three preferential regions (Fig. 2a): i) in the 118 

central Pacific (~166°W; CP-Niño); ii) in a region corresponding to a “canonical” pattern 119 

(~118°W; Canonical-Niño); iii) off the coast of southern America, in the eastern Pacific (~ 120 

85°W; EP-Niño). EP-Niño, or coastal-Niño42, are much less likely in all datasets, especially in 121 

the satellite-derived data (OISST.v2; Fig. 2a, top-left). Accounting for temporal changes in the 122 

probability distribution of all datasets, we identify a coherent and progressive shift to 123 

predominant CP-Niño event over the course of the 20th century (Fig. 2a, bottom-left). La Niña 124 

also appears characterized by three preferential locations, with no significant differences in the 125 



probability distribution from one dataset to another (Fig. 2b, top-left). CP-Niña events seem 126 

systematically more likely than Canonical-Niñas, which are in turn more likely than EP-Niñas 127 

(Fig. 2b, top-left). Looking at temporal changes in the statistical distribution across all datasets, 128 

coherent low-frequency variations emerge in the most likely locations of La Niña (Fig. 2b, 129 

bottom-left). CP-Niña events are more frequent in the 1930s-40s and from the 1970s than 130 

during the 1950s-60s (Fig. 2b, bottom-left). 131 

 132 

All observational datasets show quasi-normal distributions for event intensity, converging 133 

toward SSTa of +0.86°C and -0.9°C for El Niño and La Niña events, respectively (Fig. 2a-b, 134 

top-right). In all observational datasets, the probability distribution of La Niña intensity shows 135 

relatively small variations over time (Fig. 2b, bottom-right), while decadal variations prevail 136 

for El Niño intensity (Fig. 2a, bottom-right). Weaker El Niño are more likely in the late 19th 137 

century, the 1920s-50s and 1980s-90s, as compared to the early 20th century, the 1960s-70s 138 

and post-2000s (Fig. 2a, bottom-right). Both El Niño and La Niña events show increasing 139 

intensities over recent decades, and this is associated with more extreme events, as illustrated 140 

by the increasing frequency of extreme warm and cold events (Fig. 2a-b, histograms, bottom-141 

left). This result is consistent with coral oxygen isotopic reconstructions32 and simulated long-142 

term future changes30,31. However, unlike the recent increase in the frequency of extreme La 143 

Niña, the intensification of El Niño events does not seem to exceed a natural range of variability 144 

(Fig. 2a-b, bottom-right). These results, based on multiple and longer observational records, 145 

partly corroborate those of a recent study, highlighting more extreme El Niño and La Niña in 146 

the 1980s-90s than in the post-2000 period using OISSTv.243. 147 

 148 

Hence, observed ENSO diversity is much broader than previously suggested, and exceeds a 149 

bimodal view, consistently with results from neural-network based clustering of equatorial 150 



Pacific SSTa44. This is particularly true for La Niñas, whose diversity was strongly questioned 151 

in previous studies39. More importantly, ENSO-event locations do not follow a normal 152 

distribution describing a randomly distributed continuum of events24, converging toward a 153 

“canonical” location. Instead, ENSO diversity is clearly linked to low-frequency variations, 154 

with multiple preferential locations, which may modulate potential trends in ENSO behaviour.  155 

 156 

Evaluation of ENSO diversity in climate models within our new framework 157 

We compare the simulated probability distributions of ENSO location and intensity from 26 158 

CMIP5 and 28 CMIP6 models to our five observational datasets in Fig. 3. 159 

#Figure 3# 160 

Most models are capable of simulating a broad range of preferred locations for both El Niño 161 

and La Niña (Fig. 3a-b, top), and around 39–60% of simulations do not show significant biases 162 

in the mean location of El Niño and La Niña in historical and piControl runs (Supplementary 163 

Fig. 1). In particular, two CMIP6 models (IPSL-CM6A-LR and UKESM1-0-LL, one of the 164 

MOHC group of models) show a range of locations for both warm- and cold-events that is in 165 

good agreement with observations (Fig. 3, top). Similar results are found for CNRM-CM5 166 

(leftmost columns of the CNRM group of models), but only for El Niño events (Fig. 3, top). 167 

Other models show highly asymmetrical probability distributions, with clear tendencies to 168 

favour either EP/Canonical- or CP-events (Fig. 3a-b, top), including some extreme cases (e.g. 169 

CSIRO-Mk3-6-0) with events always centred further west than the observational range. The 170 

excessive westward extensions of the equatorial SSTa26–28 could explain the westward shifted 171 

mean location of ENSO in CMIP models. Here only 16–30% of model simulations are 172 

concerned by this bias (Supplementary Fig. 1). Nevertheless, there are other models that do not 173 

simulate erroneous westward extensions of the equatorial SSTa, but hardly depart from a 174 



canonical location (Fig. 3a-b, top; Supplementary Fig. 1), thus showing too limited ENSO 175 

diversity.  176 

 177 

Simulated intensity distributions of ENSO are mostly consistent with observations, and tend to 178 

follow a quasi-normal distribution in most CMIP5 and CMIP6 models, but clear discrepancies 179 

emerge in the mean intensity and the probability of extreme events (Fig. 3a-b, bottom). In 53 180 

–66% of the simulations, biases in the mean intensity of ENSO events are non-significant for 181 

warm- and cold-events, using both historical and piControl simulations (Supplementary Fig. 182 

1). Large and significant overestimations and underestimations nevertheless persist in a little 183 

less than half of the models (Supplementary Fig. 1).  184 

 185 

In summary, most models simulate some range of pattern diversity for El Niño and La Niña 186 

events. In particular, few models present a range of event locations in relatively good 187 

agreement with observations, and minimal biases in their intensity. The most common biases 188 

concern either the tendency of models to favour one type of events or the events’ intensity. 189 

Notably, larger biases are found for the models that produce erroneous westward extensions of 190 

SSTa (cf. MIROC6, Supplementary Figs. 2-5). 191 

 192 

Robust decadal variations in ENSO preferred location and intensity  193 

Here, we use spectral analysis to examine whether robust and significant low-frequency 194 

variations are found in the most likely location and intensity of ENSO, in both the four long-195 

term observational datasets, as well as CMIP5 and CMIP6 models. We first examine the 196 

timescales on which ENSO behaviour varies using maximum power spectrum (See methods, 197 

Fig. 4), a method that accounts for non-stationarity of ENSO spectral characteristics, before 198 



comparing the observed and simulated magnitude of decadal variations in location and 199 

intensity (Fig. 5). 200 

#Figure 4# 201 

Despite some discrepancies, all observational datasets show significant variations on 202 

interdecadal timescale (14–32-yr) based on the 10-yr running mean of most likely location of 203 

El Niño and La Niña (Fig. 4a-b, top-right). Using both historical and piControl runs, almost all 204 

models also show significant variability on interdecadal timescales in their 10-yr most likely 205 

location of ENSO (Fig. 4a-b, top-middle and -left). In addition, 71 and 72 (83 and 87) % of 206 

historical (piControl) runs significantly simulate statistically equal decadal variance, as 207 

compared to observations, in the locations of El Niño and La Niña, respectively (Fig. 5). Few 208 

models show significant biases in the magnitude of decadal variations in event locations (Fig. 209 

5): i) 9–25% of models underestimate it, and favour either EP/Canonical- (e.g., CCCma 210 

models, CNRM-CM6-1) or CP-ENSO (e.g., CESM2); or ii) 2–11% of models overestimate it, 211 

and tend to simulate two extremely distinct modes in the central and eastern Pacific (e.g., 212 

MIROC6, NorCPM1; Fig. 3a-b, top).  213 

#Figure 5# 214 

According to previous observational studies45, as well as fossil coral oxygen isotope records32, 215 

the observed intensity of ENSO presents significant variability on interdecadal timescales at 216 

16-yr and, especially, 32-yr periods (Fig. 5a-b, bottom-right). CMIP5 and CMIP6 also simulate 217 

significant interdecadal variability at these timescales (Fig. 5, bottom-middle and -left), in 218 

agreement with previous studies using climate models17,20,21. Most models (63–85% in 219 

historical and piControl runs) display statistically equal decadal variance in the intensity of 220 

both El Niño and La Niña (Fig. 5), in agreement with observations. A small fraction of 221 

simulations (12–24% in historical and piControl runs) significantly overestimate the decadal 222 

variance in ENSO intensity (Fig. 5), as already reported for CCSM446 and CESM247. 223 



 224 

Thus, our results confirm the existence of a significant interdecadal modulation in ENSO 225 

intensity in accordance with several studies based on observations, proxy records and climate 226 

models17,20,21,24,32,45. While previous studies reported an underestimation of decadal variability 227 

by climate models at both global48 and Pacific Ocean49,50 scales, this statement does not appear 228 

to be true for ENSO diversity in most CMIP5 and CMIP6 models, when considering their non-229 

stationary behaviour (cf. Methods). Our results also reveal, for the first time, significant 230 

interdecadal modulations in the maximum likelihood of ENSO locations, which are robust and 231 

consistent in both observations and climate models. In addition, although few models show 232 

recurrent biases, the majority of models appear capable of simulating realistic magnitudes of 233 

decadal variance in ENSO diversity.  234 

 235 

Large-scale patterns linked decadal variability in ENSO location and intensity 236 

To identify large-scale patterns of variability associated with spatio-temporal variations in 237 

ENSO, separately for El Niño years and La Niña years, we compute linear regressions of pan-238 

Pacific SSTa, wind-stress and equatorial 20°C isotherm depth (Z20) on the location and 239 

intensity of events, using four long-term observational datasets and 32 historical runs from the 240 

IPSL-CM6A-LR large ensemble (Fig. 6). We focus on the Pacific region, as regressed SSTa 241 

are much lower, and often non-significant, in the other ocean basins (not shown). Similarly, we 242 

choose to focus on the IPSL-CM6A-LR model because it provides a realistic range of locations 243 

and intensities for both El Niño and La Niña events, with relatively weak model biases (Figs. 244 

3-4). Results obtained using other CMIP5 and CMIP6 models are highly similar, especially for 245 

patterns associated with ENSO intensity, and approximate the skill of the SODA.si3 reanalysis 246 

(Supplementary Figs. 2-3). 247 

#Figure 6# 248 



In observations, SST regressions on El Niño longitude yield an EP-type event, with largest 249 

anomalies extending westward along the Equator from the coast of South America (Fig. 6a, 250 

top-left). The associated strong westerly wind anomalies extend to the eastern Pacific, where 251 

the thermocline is significantly deeper, whilst slight, but significant, easterly wind anomalies 252 

and shallower thermocline are found in the western Pacific (Fig. 6a, top- and bottom-left). 253 

These patterns indicate that El Niño events tend to be located further east when trade-winds 254 

weaken (strengthen), and the thermocline is significantly deeper (shallower), over the eastern 255 

(western) Pacific; meanwhile, the opposite patterns would be associated with El Niño events 256 

located further West. This is consistent with previous studies stressing the importance of the 257 

initial zonal thermocline slope as a discriminating factor for the selection of EP and CP 258 

events51. Compared to regression patterns associated with El Niño longitude, regressions on La 259 

Niña longitude show much stronger (weaker) signals in the western-central (eastern) Pacific 260 

(Fig. 6a-b, top-left). However, such differences could originate from differences in the 261 

probability distributions of El Niño and La Niña locations (Fig. 2a-b, top-left). Regressions on 262 

La Niña longitude result in a pattern that is reminiscent of a CP-Niño pattern37, with cold 263 

anomalies in the far eastern Pacific and warm anomalies in the central Pacific (Fig. 6b, top-264 

left). In this case, strong westerly wind anomalies and deeper thermocline are found in the 265 

central Pacific, where they may contribute to the zonal advective feedback52, while weaker 266 

easterly anomalies and deeper thermocline are present in the western Pacific (Fig. 6b, top- and 267 

bottom-left). Such patterns indicate that La Niña events tend to be located further east when 268 

trade-winds strengthen (weaken), and the thermocline is significantly shallower (deeper), over 269 

the eastern (western) Pacific; the opposite patterns would thus favour more western La Niña 270 

events. In addition, these tropical signals are statistically significantly related to extra-tropical 271 

SSTa (Fig. 6a-b): colder (warmer) North Pacific SSTa are found, when El Niño events are 272 

located further east (west), and La Niña events are located further west (east). While these 273 



results corroborate previous study on changes in the frequency of CP and EP events during 274 

different phases of the PDO22,53, such North Pacific SSTa are also consistent with changes in 275 

the intensity and location of the Aleutian Low and North Pacific High in response to EP- and 276 

CP-Niño54. Similar regression patterns are found in IPSL-CM6A-LR, and other models 277 

(Supplementary Figs. 2-3), which can produce realistic changes in zonal wind-stress and 278 

thermocline depth, associated with shifts in ENSO locations (Fig. 6c). Patterns associated with 279 

changes in El Niño and El Niña locations are however much more symmetrical in models than 280 

in observation (Fig. 6c; Supplementary Figs. 2-3). Like other models, IPSL-CM6A-LR shows 281 

large internal variability in thermocline depth anomalies, with a clear tendency to 282 

underestimate thermocline depth anomalies during El Niño events (Supplementary Fig. 4), and 283 

this could explain larger ensemble spread in equatorial Pacific SSTa associated with shifting 284 

ENSO locations (Fig. 6c). The North Pacific anomalies associated with ENSO locations are 285 

also significant in IPSL-CM6A-LR (Fig. 6c), like in many other models (Supplementary Fig. 286 

3). These relationships between ENSO and Pacific extra-tropical variability however show 287 

large ensemble spread in IPSL-CM6A-LR (Fig. 6c), highlighting that these relationships are 288 

highly sensitive to internal variability, as suggested in previous studies22,55. 289 

 290 

Looking at regressed patterns associated with event intensity, patterns of SST anomalies are 291 

more in line with canonical events, extending in the central-eastern Pacific, for both El Niño 292 

and La Niña (Fig. 6a-b, top-right). In addition, we found that observed El Niño (La Niña) is 293 

more intense when the mean thermocline is deeper (shallower) and the trade-winds are 294 

consistently weaker (stronger) over the equatorial Pacific (Fig. 6a-b, top- and bottom-right). 295 

Compared to the large-scale patterns associated with ENSO locations, changes in ENSO 296 

intensity are associated with larger wind-stress and thermocline depth anomalies over the 297 

central-eastern equatorial Pacific (Fig. 6a-b). ENSO intensity also appears associated with 298 



extra-tropical SST and wind anomalies that are more symmetric about the Equator compared 299 

to those associated with the location (Fig. 6a-b), and are somewhat reminiscent of the extra-300 

tropical signature of the Interdecadal Pacific Oscillation56 (IPO). Other studies discussed the 301 

separate importance of North and South Pacific climate variability on ENSO intensity at 302 

interannual to decadal timescales55,57. Although it systematically underestimates both zonal 303 

wind-stress and Z20 anomalies compared to observations (Supplementary Fig. 5), IPSL-304 

CM6A-LR exhibits large-scale anomalies associated with event intensity that are similar to 305 

observations (Fig. 6c). Other models also show similar results (Supplementary Figs. 2-3). Most 306 

of them simulate coherent changes in wind-stress anomalies and thermocline depth anomalies 307 

over the equatorial Pacific, as well as extra-tropical anomalies comparable to observations, 308 

during El Niño and La Niña events. Interestingly, IPSL-CM6A-LR shows very little ensemble 309 

spread in equatorial Pacific SSTa, while the strength of extra-tropical anomalies and equatorial 310 

thermocline responses strongly differ from one simulation to another (Fig 6c). 311 

 312 

Impact of decadal variations on future scenarios for ENSO diversity  313 

We next examine ENSO location and intensity in climate change projections, using a set of 314 

models that produce variability in ENSO diversity closer to observations during the historical 315 

period (namely, IPSL-CM6-LR, UKESM-1-0-LL and CNRM-CM5; Fig. 7). A comparison of 316 

future scenarios of ENSO diversity in other models, favouring either EP- and CP-ENSO during 317 

historical and pre-industrial periods, is given in Supplementary Fig. 6. 318 

 319 

According to IPSL-CM6-LR and UKESM-0-LL, most ensemble members converge to more 320 

CP-ENSO over the second half of the 21st century (Fig. 7). This shift to more westward events 321 

appears quite early in IPSL-CM6-LR, while it only emerges in the second half of the 21st 322 

century in UKESM1-0-LL, as the first half of the 21st century is dominated by decadal 323 



variations (Fig. 7). Such decadal variations remain stronger than potential trends throughout 324 

the 21st century in CNRM-CM5 (Fig. 7). By contrast, the last generation of the same model 325 

(i.e. CNRM-CM6-1), which underestimates decadal variability (Fig. 5), shows a clear shift 326 

toward more CP-ENSO in the second half of the 21st century (Supplementary Fig. 6). Future 327 

pathways for both El Niño and La Niña locations are strongly dependent on the magnitude of 328 

decadal variations, and on the ability of state-of-the-art models to reproduce them. Hence, 329 

projections of ENSO diversity show significant discrepancies among models, partly due to 330 

models’ limitations in accurately representing ENSO diversity, and its variability (as illustrated 331 

with MIROC6 and CESM2; Supplementary Fig. 6). Nevertheless, our results overall strongly 332 

suggest a shift toward more CP-ENSO as a response to increased radiative forcing over the 21st 333 

century (Fig. 7; Supplementary Fig. 6). This corroborates previous hypotheses on the recent 334 

increase in the frequency of CP-ENSO13–16.  335 

 336 

While previous studies suggested an intensification of both El Niño and La Niña events over 337 

the 21st century30,31, such trends are hardly distinguishable in models producing realistic ENSO 338 

diversity, according to our framework (Fig. 7). In most models, event-intensity and the 339 

frequency of extreme events appear, at least, as variable in the 21st century as during the 340 

historical period (Fig. 7). However, some models, such as IPSL-CM6-LR (in the second half 341 

of the 21st century; Fig. 7, left) and MIROC6 (from the early- to mid-20th century; 342 

Supplementary Fig. 6, middle), do show an intensification of ENSO events. In addition, as 343 

highlighted in previous studies 30,31, those models show an increase in the frequency of extreme 344 

events (Fig. 7; Supplementary Fig 6). Although the reliability of MIROC6 simulations is 345 

questionable, considering their generally weaker performances in simulating event-location, 346 

their results suggest a potential role of anthropogenic climate change in altering ENSO intensity 347 

over the 21st century. Thus, our results highlight that future changes in ENSO characteristics 348 



are not necessarily monotonic, as usually assumed, but may undergo large-amplitude decadal 349 

variations, leading to the suppression or enhancement of the impact of anthropogenic climate 350 

change on ENSO diversity from one decade to another. 351 

 352 

 353 

Discussion 354 

To overcome existing limitations in analysing ENSO diversity, this study introduces a new 355 

“non-parametric” framework that enables analysis of probabilistic changes in the location and 356 

intensity of warm and cold ENSO events. Using multiple century-long observational datasets 357 

and state-of-the-art climate models (namely, CMIP5 and CMIP6 ensembles), we first identified 358 

robust long-term changes and variability in the likelihood of El Niño and La Niña location and 359 

intensity. Although the majority of models favour either EP/Canonical- or CP-ENSO, we found 360 

that ENSO diversity is closely linked to significant decadal variations in both observations and 361 

climate models. These decadal variations do not only modulate event-intensity, as already 362 

highlighted in many studies17,20,21,45, but also affect event-location, converging toward multiple 363 

preferential locations in the central and eastern Pacific.  364 

 365 

Despite large underestimations in equatorial zonal wind-stress and thermocline response, we 366 

identified robust large-scale patterns associated with long-term changes in ENSO location and 367 

intensity using observations and climate models. On the one hand, long-term changes in event-368 

location are associated with zonal perturbation in equatorial wind-stress, which, according to 369 

previous studies22,53,55, may be related to the North Pacific climate variability, and with 370 

modulations of the thermocline response. On the other hand, long-term changes in event-371 

intensity are associated with strong equatorial wind-stress and thermocline response, whose 372 

variability appears associated with the North and South Pacific climate variability.  373 



 374 

The analysis of a realistic set of climate models in terms of ENSO diversity and its variability 375 

indicates that magnitude of such decadal variations in the likelihood of ENSO locations and 376 

intensity appears even more pronounced than any trend induced by anthropogenic climate 377 

change, at least over the first half of the 21st century. Nevertheless, our results strongly suggest 378 

a tendency toward more CP-ENSO in response to anthropogenic climate change, which appears 379 

more likely over the second half of the 21st century. Similarly, while previous studies suggested 380 

an intensification of both El Niño and La Niña events over the 21st century30,31, such trends are 381 

only detected in few models using our framework. In most CMIP5 and CMIP6 models, any 382 

potential trends in ENSO intensity, which might be attributed to anthropogenic climate change, 383 

appear strongly modulated by decadal variations. Our results thus highlight that future 384 

scenarios for ENSO diversity, concerning either event-location or event-intensity, strongly 385 

depend on the magnitude of decadal variations, as well as the ability of climate models to 386 

reproduce them realistically over the 21st century. Although the nature of such decadal 387 

variations is not completely understood17,19, and could involve non-linear interactions between 388 

natural variability and anthropogenic climate change58, our study provides a new perspective 389 

for assessing changes in ENSO behaviour on multiple timescales in a changing climate. 390 

 391 

Methods 392 

Observational reference datasets 393 

We use five observational datasets, covering all the different ways to reconstruct long-term 394 

variability for SST, as well as different resolutions (Supplementary Table 1). This includes 395 

three observational reconstructions based on empirical orthogonal functions/teleconnections 396 

(EOF/EOTs), spanning the period 1870-2018: i) the extended reconstructed SST version 559 397 

(ERSST.v5); ii) the Centennial in-situ Observation-Based Estimates60 (COBESST.v2); iii) the 398 



Hadley Centre SST data set61 (HadSST1). As the use of EOF/EOTs might lead to underestimate 399 

ENSO diversity in the 19th and early 20th centuries24, observational reconstructions are 400 

compared to the eight-member ensemble of ocean reanalysis generated using the Simple Ocean 401 

Data Assimilation system with sparse observational input version 362 (SODA.si3) between 402 

1870 and 2015. Since the use of satellite observations at the end of 20th century is known to 403 

result in a cold bias in HadSST1 and COBESST.v2 63, the optimum interpolation SST version  404 

264 (OISST.v2) is used for comparison between 1981 and 2018.  405 

 406 

To examine the potential large-scale patterns associated with changes in the ENSO spatio-407 

temporal variability, surface wind-stress was derived from surface zonal and meridional winds 408 

for the period 1870-2015, using the NOAA-CIRES-DOE Twentieth Century Reanalysis 409 

version 365 (NOAA-20CR.v3). The NOAA-20CR.v3 uses SODA.si3 and HadSST1 as 410 

boundary forcing, and therefore provides consistent atmospheric circulations for that SST 411 

datasets. Because subsurface potential temperature data are not currently available in 412 

SODA.si3, we use SODA.v2.2.4, with NOAA-20CR.v2 as boundary forcing, to provide the 413 

most consistent estimate of thermocline depth, using the 20°C isotherm depth (Z20) as a proxy. 414 

 415 

CMIP5/6 simulations 416 

We use 95 ensemble members of historical simulations from 26 CMIP5 models40, and 250 417 

members from 28 CMIP641 models, together with longer piControl runs (Supplementary Table 418 

1), to evaluate how climate models perform in simulating ENSO diversity. Each individual 419 

member of historical simulations allows inferring climate variability from the mid-19th to the 420 

early-21st century, due to changes in anthropogenic and natural forcings, while accounting for 421 

uncertainties associated with internal variability66. Similarly, piControl simulations enable 422 

assessing the uncertainties associated with the limited length of reliable historical records. In 423 



addition, to discuss the implications of our results for future scenarios of ENSO diversity, we 424 

use the highest emission scenario or forcing level (8.5W.m-2), i.e. the Representative 425 

Concentration Pathway RCP8.5 in CMIP5 models, and the Shared Socio-economical Pathway 426 

5 that updates the highest forcing level, i.e. 8.5W.m-2 (SSP5–85) in CMIP6 models. The 427 

number of available realisations is substantially lower in future scenarios than historical runs 428 

(Supplementary Table 1). Monthly fields of SST, zonal and meridional wind-stress and 429 

potential temperature (from which we estimated the thermocline depth from Z20) are used. To 430 

ensure consistency with the observational datasets, and to optimise the detection of changing 431 

locations and intensity in ENSO, model simulations were all interpolated onto a regular 432 

1.25×1.25° grid in the ocean and the atmosphere. 433 

 434 

Examining long-term variability and changes in ENSO location and intensity 435 

To better account for multi-dimensionally varying properties of ENSO, building on the CHI 436 

concept24,25 and recent recommendations67, we introduce a new framework estimating the 437 

location and intensity of El Niño and La Niña events at higher-resolution. The location of El 438 

Niño (La Niña) events has been defined as the longitudinal location of the maximum 439 

(minimum) of SSTa, greater (lower) than 0°C, within a strip that spans the tropical Pacific from 440 

150°E to 60°W (excluding the warm-pool region), and averaged between 5°S and 5°N over the 441 

boreal winter-months (December to February). Meanwhile, the intensity of events is given by 442 

the value of the maximum of SSTa at that location and during the same season. SSTa are 443 

calculated by removing the mean and trend of each month. Detrending is performed using a 444 

locally estimated scatter-plot smoothing. In addition, to harmonize the results over variable 445 

grid-resolutions, and reduce the noise in the signal, the location of the maximum and minimum 446 

of SSTa has been estimated using a 2° longitudinal smoothing.  447 

 448 



Using this new framework, we first examine the likelihood of event location and intensity using 449 

the probability density functions (PDF). Temporal changes in the likelihood of event location 450 

and intensity are first examined by estimating the PDF over every 20-year segments of each 451 

observational datasets, and calculating the most likely values (i.e. the mode in statistical terms), 452 

as well as multi-dataset agreements of high probability (i.e. probability exceeding 0.01 and 0.4 453 

for event location and intensity, respectively). For each 20-year segment, we also quantify the 454 

percentage of disagreement in the probability distribution across observational datasets using 455 

a Kolmogorov-Smirnov (KS) test at p = 0.05. In addition, we examine whether temporal 456 

changes in probability distributions of event intensity are associated with changes in the 457 

frequency of extreme El Niño (La Niña) events, by quantifying the 20-year average number of 458 

events exceeding (lower than) the 90th (10th) percentile across all datasets. 459 

 460 

Secondly, we further explore the long-term variability using the 10-year most likely location 461 

and intensity of El Niño and La Niña events. Continuous wavelet analyses are used to estimate 462 

the maximum power spectrum over the full length of observational and simulated records, 463 

while accounting for temporal changes68. Using continuous wavelet analysis enables to account 464 

for non-stationary significant patches of variability, which might not be significant over the 465 

full-length of the records, and would not be identified using Fast Fourier Transform. 466 

Significance of variability patches are tested at p=0.05, based on 1000 Monte-Carlo simulations 467 

of the red noise background spectrum. 468 

 469 

Testing robustness in climate models, identifying large-scale patterns and implications 470 

for future scenarios 471 

We first examine whether historical and piControl runs, from CMIP5 and CMIP6 models, are 472 

able to reproduce a realistic range of locations and intensities for both El Niño and La Niña 473 



events, by comparing the simulated PDF to multiple observational datasets. This visual 474 

comparison is combined with two statistical tests: i) test for multimodality, i.e. the presence of 475 

multiple peaks on the PDF, based on kernel density estimators and the quantification of excess  476 

mass69; ii) test for difference in the mean using a two-sided student t-test (cf. Supplementary 477 

Fig. 1). Statistical significance of these tests is calculated using 1000 permutations.   478 

 479 

Secondly, we investigate whether significant decadal variability is detectable in climate 480 

models, by comparing the simulated maximum power spectra with observations. We then 481 

compare the simulated magnitude of decadal variability to the observed one using the centred 482 

ratio of standard deviation (rSD = 1 −
𝑠𝑑(𝐸𝑁𝑆𝑂

𝑖𝑛𝑡

𝑙𝑜𝑐
[𝑜𝑏𝑠] 10𝑦𝑟)

𝑠𝑑(𝐸𝑁𝑆𝑂
𝑖𝑛𝑡

𝑙𝑜𝑐
[𝑠𝑖𝑚] 10𝑦𝑟)

 × 100 ). Statistical significance is 483 

then assessed by performing a two-sided Fisher’s F-test at p=0.05 between every 100-yr 484 

segments through the course of climate simulations and every 100-yr segments in the four 485 

longer-term observational SST datasets, from which the rate of success is quantified. 486 

 487 

Thirdly, we compare the observed large-scale patterns associated with long-term variability in 488 

the location and intensity of El Niño and La Niña events to historical simulations from a set of 489 

climate models. This consists in examining the differences in the patterns of pan-Pacific SST, 490 

wind-stress and thermocline depth at the Equator (5°S – 5°N), which are computed using linear 491 

regression during composite El Niño and La Niña years, separately. Statistical significance of 492 

the regression patterns is calculated using 1000 permutations. We particularly focus on the 493 

IPSL-CM6A-LR large ensemble model, which displayed closer similarities to observations in 494 

terms of ENSO diversity, but more information about the overall model performances are 495 

provided in Supplementary Figs. 2–5 . 496 

 497 



Finally, using RCP8.5 and SSP5–8.5 scenarios from a selected set of climate models, we 498 

examine future trajectories for ENSO diversity (i.e. location and intensity), and analyse how 499 

results differ depending on the skill of those models for simulating ENSO diversity and its 500 

variability.  501 

 502 

Data availability 503 

CMIP5 and CMIP6 data are publicly available at https://esgf-index1.ceda.ac.uk. Long-term 504 

observational SST datasets, i.e. ERSST.v5, COBESST.v2, HadSST1, OISST.v2, are available 505 

at https://climexp.knmi.nl. SODA.si3 and SODA.v2.2.4 are respectively available from 506 

https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html and 507 

https://iridl.ldeo.columbia.edu/SOURCES/.CARTON-GIESE/.SODA/.v2p2p4. 508 

 509 

Code availability 510 

The code used in this study to produce the data analysed were developed in R programming, 511 

and can be provided upon reasonable request to BD. 512 
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Captions 682 

 683 

Fig 1. | Relationships between ENSO indices, and their ability to disentangle CP and EP. 684 

(a) Pearson’s correlations between 13 ENSO indices (Niño boxes33; PC-based EP- and CP-685 

ENSO; TNI36; EMI and iEMI37; EP and CP34; E and C35. Black dots indicate significant 686 

correlations at p=0.05, using 1000 phase-randomizations to account for serial correlations. (b) 687 

Probability Density Function (PDF) of the locations of SSTa peaks over the equatorial Pacific 688 

(5°S–5°N; -210–-60°W), when each ENSO index exceeds ±0.5°C standard deviation. For each 689 

index, each row/column corresponds to a different observational, reanalysis or satellite-derived 690 

dataset (A-E: ERSST.v5, COBESST.v2, HadSST1, SODA.si3, OISST.v2). Correlations are 691 

calculated over their respective common periods (1870-2017 when using observations only, 692 

1870-2015 when using SODA.si3, or 1981-2017 when using OISST.v2). Locations of Niño 693 

boxes, as well as of the date line, are indicative. 694 

 695 
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 698 

 699 



 700 

Fig 2. | Observed likelihood of ENSO’s location and intensity: average distribution and 701 

temporal changes. (a) top panels, average probability density function (PDF) of El Niño 702 

location (left) and intensity (right). Bottom panels, 20-year running the most likely location 703 

and intensity of El Niño (black bold lines), the percentage of agreement of high-probability 704 

(i.e. PDF exceeding 0.01 and 0.45; colour shades), and average number of extreme Niño events 705 

(i.e. intensity exceeding the 90th percentile; red histogram) across all observational datasets. 706 

(b) same as (a) but for La Niña, and extreme La Niña events (i.e. intensity lower than the 10th 707 

percentile; blue histogram). On top panels, dark grey shading from the top axis indicates the 708 

average PDF over all five reference SST datasets, and each individual dataset is displayed in 709 

coloured lines (El Niño/La Niña: ERSST.v5 [1850-2017; coral/light blue], COBESST.v2 710 

[1850-2017; dark red/dark blue], HadSST1 [1850-2017; red/blue], SODA.si3 [1850-2015; 711 

purple solid lines], OISST.v2 [1981-2017; magenta dashed lines]). On bottom panels, grey 712 

shading indicates the percentage of observational datasets showing significantly equal 713 

distribution at p=0.05 according to a Kolmogorov-Smirnov test. Locations of Nino boxes, as 714 

well as of the date line, are indicative. Dashed lines delineate the period for which OISST.v2 715 

is used (1991-2007, which covers 20-yr periods between 1981-2001 and 1997-21017). 716 

 717 



 718 

Fig 3. | Likelihood of ENSO’s location and intensity in CMIP5 and CMIP6 models. (a) top 719 

panels, normalized PDF of El Niño location (top) and intensity (bottom) in all reference 720 

datasets (left), as compared to 95/250 CMIP5/6 historical runs (middle), as well as in 26/28 721 

CMIP5/6 piControl runs (right). (b) same as (a) but for La Niña. On top of each panel and 722 

column, grey dots indicate significant multimodality at p=0.05 according to the ACR test69, 723 

based on 1000 bootstrap resamples. The normalized PDF is estimated using the full length of 724 

each time series, ranging from 37 years in OISST.v2 to 1200 years in some piControl 725 

simulations. Bold (thin) solid lines separate simulations from different institutions 726 

(generations, i.e.: CMIP5 [grey] and CMIP6 [orange]), while dashed lines separate simulations 727 

from different models.  728 

 729 



730 

Fig 4. | Variability in ENSO’s, observed and simulated, most likely location and intensity. 731 

(a) Maximum power spectrums of the running 10-year El Niño most likely location and 732 

intensity (i.e. the mode), as determined using continuous wavelet analysis, and using four long-733 

term observational reference datasets (left: ERSST.v5, COBESST.v2, HadSST1, SODA.si3), 734 

95/250 CMIP5/6 historical runs (middle), as well as 26/28 CMIP5/6 piControl runs (right). (b) 735 

same as (a) but for La Niña. Significance of variability patches are tested at p=0.05 based on 736 

1000 Monte-Carlo simulations of the red noise background spectrum. Dashed red lines and 737 

grey shading indicate the area where variability can be underestimated because of edge effects, 738 

wraparound effects and zero-padding. As the continuous wavelet analysis allows to account 739 

for temporal changes the maximum power spectrums are estimated using the full length of each 740 

time series. The maximum power spectrums are weighted by the significance, and only 741 

significant variability is shown. 742 
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 744 

 745 



 746 

Fig 5. | CMIP5/6 bias in decadal variability of ENSO’s most likely location and intensity. 747 

(a) Average ratio of standard deviation (rSD) between historical runs and observed decadal 748 

variance (>10 year) in the running 10-year most likely location and intensity of El Niño and La 749 

Niña events. (b) same as (a) but using pi-Control runs. Statistical significance is assessed by 750 

performing a two-sided Fisher’s F-test at p=0.05 between every 100-yr segments through the 751 

course of climate simulations and every 100-yr segments in the four longer-term observational 752 

SST datasets (i.e. 27,740 ≤ n ≤ 209,000 replicates), to quantify a rate of success (i.e. the number 753 

of times observations and simulations showed equal variance). Black dots highlight simulations 754 

for which the rate of success is lower than 10%, showing significantly different variance at 755 

p=0.1. 756 



 757 

Fig 6. | Large-scale patterns driving long-term variability in ENSO location and intensity. 758 

(a) Observed regressed SST (blue to red shades), wind-stress (vectors) and Z20 anomalies 759 

(lines) associated with changes in El Niño location (right) and intensity (left) and using multiple 760 

observational data sets (SST: ERSST.v5, COBESST.v2, HadSST1 and SODA.si3; wind-stress: 761 

NOAA-20CR.v3; Z20: SODA.v2.2.4). (b)  Same as (a) but for La Niña events. (c) same as (a-762 

b) but using the IPSL-CM6A-LR large ensemble (32 members). While SST and wind-stress 763 

anomalies are displayed at the pan-Pacific scale based on the median changes in observations, 764 

simulated regressed anomalies are assessed through the ensemble median (top) and ensemble 765 

spread (standard deviation [SD]; middle]). Z20 anomalies are estimated through the median 766 

changes between 5°S and 5°N (bottom). Red and Blue shades on the Z20 anomalies indicate 767 

the spread between the four SST observational data sets and within the IPSL-CM6A-LR large 768 

ensemble (light to dark: maximum/minimum, 10/90th, 30/70th and 45/55th percentiles), for El 769 

Niño and La Niña, respectively. Group 1 (black lines) and Group 2 (grey lines) illustrate how 770 

two opposed types of equatorial Z20 anomalies influence the ensemble spread. Statistical 771 

significance is assessed at p=0.05 using 1000 permutations, and displayed as black contour for 772 

SSTa, and blue/red crosses for Z20 anomalies. Only significant wind-stress anomalies at 773 

p=0.05 are displayed. 774 



 775 

Fig 7. | Future scenarios for ENSO diversity in the most realistic models. (a) 20-year most 776 

likely location (top) and intensity (bottom) of El Niño events (black bold lines), as well as the 777 

percentage of agreement of high-probability (PDF exceeding 0.01 and 0.45; colour shades) in 778 

the IPSL-CM6-LR (left), UKESM1-0-LL (middle) and CNRM-CM5 (right) ensembles. (b) 779 

same as (a) but for La Niña events. Grey histograms on the bottom axis of the intensity panels 780 

indicate the average number of extreme events (as defined in Fig. 2) within the model 781 

ensemble. SSTa are estimated by removing the 1850–2014 monthly climatology and trend, to 782 

allow comparison with observations. The same baseline period was used to estimate the 90th 783 

and 10th percentiles. 784 
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Abstract 26 

El Niño-Southern Oscillation (ENSO) shows a large diversity of events, whose modulation by 27 

climate variability and change, and their representation in climate models, limit our ability to 28 

predict their impact on ecosystems and human livelihood. Here, we introduce a new framework 29 

to analyze probabilistic changes in event-location and -intensity, which overcomes existing 30 

limitations in studying ENSO diversity. We find robust decadal variations in event intensities 31 

and locations in century-long observational datasets, which are associated with perturbations 32 

in equatorial wind-stress and thermocline depth, as well as extra-tropical anomalies in the 33 

North and South Pacific. A large fraction of CMIP5 and CMIP6 models appear capable of 34 

simulating such decadal variability in ENSO diversity, and the associated large-scale patterns. 35 

Projections of ENSO diversity in future climate change scenarios strongly depend on the 36 

magnitude of decadal variations, and the ability of climate models to reproduce them 37 

realistically over the 21st century. 38 

 39 

Introduction 40 

El Niño-Southern Oscillation (ENSO) is the leading mode of tropical climate variability, with 41 

impacts on ecosystems, agriculture, freshwater supplies and hydropower production spanning 42 

much of the globe1–3. The majority of impact studies, including seasonal to multi-year 43 

predictions, have developed from a “canonical” representation of ENSO, as characterised by 44 

sea-surface temperature anomalies (SSTa) in the central-eastern Pacific4–6. However, ENSO 45 

shows large differences from one event to another in terms of its intensity, spatial patterns and 46 

temporal evolutions7–9. For instance, while the 1997/98 El Niño displayed extreme SSTa in the 47 

eastern equatorial Pacific (EP-ENSO), the largest SSTa in the winter of 2002/03 were weaker 48 

and primarily confined to the central equatorial Pacific (CP-ENSO). Differences in the 49 

longitudinal location and intensity of ENSO events are sensitively associated with different 50 



impacts on regional climate throughout the world10,11. Such differences in ENSO patterns, 51 

referred to as “ENSO diversity”7, and their representation in climate models thus strongly 52 

influence the skill of impact prediction systems12, and underscore the need for an appropriate 53 

characterization and further mechanistic understanding of ENSO diversity. 54 

 55 

The post-1990s increases in the frequency of CP El-Niño events13–15 has led some researchers 56 

to associate such changes in ENSO patterns to the influence of global warming16. However, 57 

the role of natural low-frequency climate variations may also be important for altering ENSO 58 

characteristics17–19. Indeed, observations and climate models show the presence of decadal 59 

modulations in both intensity17,19,20 and pattern diversity21. In particular, different phases of the 60 

Pacific Decadal Oscillation (PDO)18,22 and the Atlantic Multidecadal Oscillation (AMO)23 were 61 

considered more conducive to either CP- or EP-ENSO. However, to date, no robust decadal 62 

variation in event locations has been detected in long-term observational records24,25. Similarly, 63 

we know very little about the ability of climate models to realistically reproduce ENSO 64 

diversity and its low-frequency variability7,8. CMIP3 and CMIP5 models showed large biases 65 

in the background mean state of equatorial Pacific SST, leading to an excessive westward 66 

extension of the ENSO patterns26–28, and limiting the models’ ability to simulate realistic ranges 67 

of ENSO diversity9,29. Further research is thus needed to determine how these decadal 68 

variations may affect the reported historical and future strengthening of ENSO30–32, as well as 69 

the increasing occurrence of CP- versus EP-events13–16.  70 

 71 

Studying ENSO diversity has however been largely limited by various technical shortcomings. 72 

Such studies are traditionally based on several indices of tropical Pacific SSTa, designed to 73 

monitor the variability of either a “canonical” ENSO or two extreme ENSO flavours33–37. Yet, 74 

these indices emphasize El Niño events, while La Niña events, which are associated with 75 



weaker anomalies than El Niño events38, are typically located further West7 and tend to show 76 

a more limited range of pattern diversity39, have received less attention. Hence, traditional 77 

indices tend to neglect the existing asymmetry between warm- and cold-phases, and between 78 

CP- and EP-events. Besides, most of these indices are significantly inter-correlated (Fig.1a), 79 

suggesting that they provide redundant information on ENSO. More importantly, the 80 

probability distribution of the peak location of SSTa over the tropical Pacific (when each index 81 

is exceeding ±0.5°C standard deviation; Fig.1b), indicates that most of these indices are neither 82 

representing solely CP- and EP-events, but rather different combinations of both ENSO 83 

flavours.  84 

#Figure 1# 85 

It is therefore essential to develop a new framework allowing for a more precise assessment of 86 

changes in the location and intensity of warm- and cold ENSO events. In this regard, the 87 

“Center of Heat Index” (CHI) provided the basis for a more flexible framework, allowing the 88 

longitudinal centre of SSTa to vary as a function of time instead of being geographically 89 

fixed24,25. Yet, the CHI approach defines El Niño (La Niña) events based on anomalously warm 90 

(cold) areas over very large longitudinal extents (> ~5550km), hereby yielding a very smooth 91 

representation of ENSO diversity, and limiting the detectable ranges of spatial patterns. Here, 92 

we introduce a novel “non-parametric” framework to allow for a more precise assessment of 93 

probabilistic changes in ENSO diversity, notably in event locations and intensity (cf. Methods). 94 

This new framework is first applied to a suite of observational datasets, including century-long 95 

reconstructions, reanalysis and high-resolution satellite-derived estimates (cf. Supplementary 96 

Table 1), to identify potential long-term changes in the likelihood of El Niño and La Niña 97 

location and intensity, and discuss their associations with decadal climate variability. The same 98 

framework is then applied to the two latest multi-model ensembles, i.e. CMIP540 and CMIP641 99 

(cf. Supplementary Table 1), to examine how model fidelity in simulating ENSO diversity is 100 



influenced by using an approach that allows for a continuum of patterns, rather than relying on 101 

a more rigid bimodal view of the ENSO phenomenon. Historical and multi-centennial pre-102 

industrial control simulations (piControl: 400–1200 years, radiative forcing fixed at the 1850 103 

conditions) are used to examine whether robust decadal variations can be found in the absence 104 

of anthropogenic influences (piControl) or under historical radiative forcing (historical). The 105 

large-scale climate patterns associated with decadal variations in ENSO diversity are examined 106 

in both observations and in the climate models that most realistically simulate ENSO diversity 107 

and its low-frequency variability in pre-industrial and historical periods. The same models are 108 

then used to assess how ENSO diversity is projected to change in the future. In particular, we 109 

address two questions: i) do ENSO events really strengthen and shift westward in the 21st 110 

century? ii) if so, is that true for both El Niño and La Niña events? 111 

 112 

Results 113 

Observed changes in the likelihood of ENSO location and intensity 114 

The average distribution of ENSO location and intensity in 20-year overlapping periods 115 

between 1850 and 2017, is examined using five observational datasets (Fig. 2).  116 

#Figure 2# 117 

On average, El Niño events tend to be located over three preferential regions (Fig. 2a): i) in the 118 

central Pacific (~166°W; CP-Niño); ii) in a region corresponding to a “canonical” pattern 119 

(~118°W; Canonical-Niño); iii) off the coast of southern America, in the eastern Pacific (~ 120 

85°W; EP-Niño). EP-Niño, or coastal-Niño42, are much less likely in all datasets, especially in 121 

the satellite-derived data (OISST.v2; Fig. 2a, top-left). Accounting for temporal changes in the 122 

probability distribution of all datasets, we identify a coherent and progressive shift to 123 

predominant CP-Niño event over the course of the 20th century (Fig. 2a, bottom-left). La Niña 124 

also appears characterized by three preferential locations, with no significant differences in the 125 



probability distribution from one dataset to another (Fig. 2b, top-left). CP-Niña events seem 126 

systematically more likely than Canonical-Niñas, which are in turn more likely than EP-Niñas 127 

(Fig. 2b, top-left). Looking at temporal changes in the statistical distribution across all datasets, 128 

coherent low-frequency variations emerge in the most likely locations of La Niña (Fig. 2b, 129 

bottom-left). CP-Niña events are more frequent in the 1930s-40s and from the 1970s than 130 

during the 1950s-60s (Fig. 2b, bottom-left). 131 

 132 

All observational datasets show quasi-normal distributions for event intensity, converging 133 

toward SSTa of +0.86°C and -0.9°C for El Niño and La Niña events, respectively (Fig. 2a-b, 134 

top-right). In all observational datasets, the probability distribution of La Niña intensity shows 135 

relatively small variations over time (Fig. 2b, bottom-right), while decadal variations prevail 136 

for El Niño intensity (Fig. 2a, bottom-right). Weaker El Niño are more likely in the late 19th 137 

century, the 1920s-50s and 1980s-90s, as compared to the early 20th century, the 1960s-70s 138 

and post-2000s (Fig. 2a, bottom-right). Both El Niño and La Niña events show increasing 139 

intensities over recent decades, and this is associated with more extreme events, as illustrated 140 

by the increasing frequency of extreme warm and cold events (Fig. 2a-b, histograms, bottom-141 

left). This result is consistent with coral oxygen isotopic reconstructions32 and simulated long-142 

term future changes30,31. However, unlike the recent increase in the frequency of extreme La 143 

Niña, the intensification of El Niño events does not seem to exceed a natural range of variability 144 

(Fig. 2a-b, bottom-right). These results, based on multiple and longer observational records, 145 

partly corroborate those of a recent study, highlighting more extreme El Niño and La Niña in 146 

the 1980s-90s than in the post-2000 period using OISSTv.243. 147 

 148 

Hence, observed ENSO diversity is much broader than previously suggested, and exceeds a 149 

bimodal view, consistently with results from neural-network based clustering of equatorial 150 



Pacific SSTa44. This is particularly true for La Niñas, whose diversity was strongly questioned 151 

in previous studies39. More importantly, ENSO-event locations do not follow a normal 152 

distribution describing a randomly distributed continuum of events24, converging toward a 153 

“canonical” location. Instead, ENSO diversity is clearly linked to low-frequency variations, 154 

with multiple preferential locations, which may modulate potential trends in ENSO behaviour.  155 

 156 

Evaluation of ENSO diversity in climate models within our new framework 157 

We compare the simulated probability distributions of ENSO location and intensity from 26 158 

CMIP5 and 28 CMIP6 models to our five observational datasets in Fig. 3. 159 

#Figure 3# 160 

Most models are capable of simulating a broad range of preferred locations for both El Niño 161 

and La Niña (Fig. 3a-b, top), and around 39–60% of simulations do not show significant biases 162 

in the mean location of El Niño and La Niña in historical and piControl runs (Supplementary 163 

Fig. 1). In particular, two CMIP6 models (IPSL-CM6A-LR and UKESM1-0-LL, one of the 164 

MOHC group of models) show a range of locations for both warm- and cold-events that is in 165 

good agreement with observations (Fig. 3, top). Similar results are found for CNRM-CM5 166 

(leftmost columns of the CNRM group of models), but only for El Niño events (Fig. 3, top). 167 

Other models show highly asymmetrical probability distributions, with clear tendencies to 168 

favour either EP/Canonical- or CP-events (Fig. 3a-b, top), including some extreme cases (e.g. 169 

CSIRO-Mk3-6-0) with events always centred further west than the observational range. The 170 

excessive westward extensions of the equatorial SSTa26–28 could explain the westward shifted 171 

mean location of ENSO in CMIP models. Here only 16–30% of model simulations are 172 

concerned by this bias (Supplementary Fig. 1). Nevertheless, there are other models that do not 173 

simulate erroneous westward extensions of the equatorial SSTa, but hardly depart from a 174 



canonical location (Fig. 3a-b, top; Supplementary Fig. 1), thus showing too limited ENSO 175 

diversity.  176 

 177 

Simulated intensity distributions of ENSO are mostly consistent with observations, and tend to 178 

follow a quasi-normal distribution in most CMIP5 and CMIP6 models, but clear discrepancies 179 

emerge in the mean intensity and the probability of extreme events (Fig. 3a-b, bottom). In 53 180 

–66% of the simulations, biases in the mean intensity of ENSO events are non-significant for 181 

warm- and cold-events, using both historical and piControl simulations (Supplementary Fig. 182 

1). Large and significant overestimations and underestimations nevertheless persist in a little 183 

less than half of the models (Supplementary Fig. 1).  184 

 185 

In summary, most models simulate some range of pattern diversity for El Niño and La Niña 186 

events. In particular, few models present a range of event locations in relatively good 187 

agreement with observations, and minimal biases in their intensity. The most common biases 188 

concern either the tendency of models to favour one type of events or the events’ intensity. 189 

Notably, larger biases are found for the models that produce erroneous westward extensions of 190 

SSTa (cf. MIROC6, Supplementary Figs. 2-5). 191 

 192 

Robust decadal variations in ENSO preferred location and intensity  193 

Here, we use spectral analysis to examine whether robust and significant low-frequency 194 

variations are found in the most likely location and intensity of ENSO, in both the four long-195 

term observational datasets, as well as CMIP5 and CMIP6 models. We first examine the 196 

timescales on which ENSO behaviour varies using maximum power spectrum (See methods, 197 

Fig. 4), a method that accounts for non-stationarity of ENSO spectral characteristics, before 198 



comparing the observed and simulated magnitude of decadal variations in location and 199 

intensity (Fig. 5). 200 

#Figure 4# 201 

Despite some discrepancies, all observational datasets show significant variations on 202 

interdecadal timescale (14–32-yr) based on the 10-yr running mean of most likely location of 203 

El Niño and La Niña (Fig. 4a-b, top-right). Using both historical and piControl runs, almost all 204 

models also show significant variability on interdecadal timescales in their 10-yr most likely 205 

location of ENSO (Fig. 4a-b, top-middle and -left). In addition, 71 and 72 (83 and 87) % of 206 

historical (piControl) runs significantly simulate statistically equal decadal variance, as 207 

compared to observations, in the locations of El Niño and La Niña, respectively (Fig. 5). Few 208 

models show significant biases in the magnitude of decadal variations in event locations (Fig. 209 

5): i) 9–25% of models underestimate it, and favour either EP/Canonical- (e.g., CCCma 210 

models, CNRM-CM6-1) or CP-ENSO (e.g., CESM2); or ii) 2–11% of models overestimate it, 211 

and tend to simulate two extremely distinct modes in the central and eastern Pacific (e.g., 212 

MIROC6, NorCPM1; Fig. 3a-b, top).  213 

#Figure 5# 214 

According to previous observational studies45, as well as fossil coral oxygen isotope records32, 215 

the observed intensity of ENSO presents significant variability on interdecadal timescales at 216 

16-yr and, especially, 32-yr periods (Fig. 5a-b, bottom-right). CMIP5 and CMIP6 also simulate 217 

significant interdecadal variability at these timescales (Fig. 5, bottom-middle and -left), in 218 

agreement with previous studies using climate models17,20,21. Most models (63–85% in 219 

historical and piControl runs) display statistically equal decadal variance in the intensity of 220 

both El Niño and La Niña (Fig. 5), in agreement with observations. A small fraction of 221 

simulations (12–24% in historical and piControl runs) significantly overestimate the decadal 222 

variance in ENSO intensity (Fig. 5), as already reported for CCSM446 and CESM247. 223 



 224 

Thus, our results confirm the existence of a significant interdecadal modulation in ENSO 225 

intensity in accordance with several studies based on observations, proxy records and climate 226 

models17,20,21,24,32,45. While previous studies reported an underestimation of decadal variability 227 

by climate models at both global48 and Pacific Ocean49,50 scales, this statement does not appear 228 

to be true for ENSO diversity in most CMIP5 and CMIP6 models, when considering their non-229 

stationary behaviour (cf. Methods). Our results also reveal, for the first time, significant 230 

interdecadal modulations in the maximum likelihood of ENSO locations, which are robust and 231 

consistent in both observations and climate models. In addition, although few models show 232 

recurrent biases, the majority of models appear capable of simulating realistic magnitudes of 233 

decadal variance in ENSO diversity.  234 

 235 

Large-scale patterns linked decadal variability in ENSO location and intensity 236 

To identify large-scale patterns of variability associated with spatio-temporal variations in 237 

ENSO, separately for El Niño years and La Niña years, we compute linear regressions of pan-238 

Pacific SSTa, wind-stress and equatorial 20°C isotherm depth (Z20) on the location and 239 

intensity of events, using four long-term observational datasets and 32 historical runs from the 240 

IPSL-CM6A-LR large ensemble (Fig. 6). We focus on the Pacific region, as regressed SSTa 241 

are much lower, and often non-significant, in the other ocean basins (not shown). Similarly, we 242 

choose to focus on the IPSL-CM6A-LR model because it provides a realistic range of locations 243 

and intensities for both El Niño and La Niña events, with relatively weak model biases (Figs. 244 

3-4). Results obtained using other CMIP5 and CMIP6 models are highly similar, especially for 245 

patterns associated with ENSO intensity, and approximate the skill of the SODA.si3 reanalysis 246 

(Supplementary Figs. 2-3). 247 

#Figure 6# 248 



In observations, SST regressions on El Niño longitude yield an EP-type event, with largest 249 

anomalies extending westward along the Equator from the coast of South America (Fig. 6a, 250 

top-left). The associated strong westerly wind anomalies extend to the eastern Pacific, where 251 

the thermocline is significantly deeper, whilst slight, but significant, easterly wind anomalies 252 

and shallower thermocline are found in the western Pacific (Fig. 6a, top- and bottom-left). 253 

These patterns indicate that El Niño events tend to be located further east when trade-winds 254 

weaken (strengthen), and the thermocline is significantly deeper (shallower), over the eastern 255 

(western) Pacific; meanwhile, the opposite patterns would be associated with El Niño events 256 

located further West. This is consistent with previous studies stressing the importance of the 257 

initial zonal thermocline slope as a discriminating factor for the selection of EP and CP 258 

events51. Compared to regression patterns associated with El Niño longitude, regressions on La 259 

Niña longitude show much stronger (weaker) signals in the western-central (eastern) Pacific 260 

(Fig. 6a-b, top-left). However, such differences could originate from differences in the 261 

probability distributions of El Niño and La Niña locations (Fig. 2a-b, top-left). Regressions on 262 

La Niña longitude result in a pattern that is reminiscent of a CP-Niño pattern37, with cold 263 

anomalies in the far eastern Pacific and warm anomalies in the central Pacific (Fig. 6b, top-264 

left). In this case, strong westerly wind anomalies and deeper thermocline are found in the 265 

central Pacific, where they may contribute to the zonal advective feedback52, while weaker 266 

easterly anomalies and deeper thermocline are present in the western Pacific (Fig. 6b, top- and 267 

bottom-left). Such patterns indicate that La Niña events tend to be located further east when 268 

trade-winds strengthen (weaken), and the thermocline is significantly shallower (deeper), over 269 

the eastern (western) Pacific; the opposite patterns would thus favour more western La Niña 270 

events. In addition, these tropical signals are statistically significantly related to extra-tropical 271 

SSTa (Fig. 6a-b): colder (warmer) North Pacific SSTa are found, when El Niño events are 272 

located further east (west), and La Niña events are located further west (east). While these 273 



results corroborate previous study on changes in the frequency of CP and EP events during 274 

different phases of the PDO22,53, such North Pacific SSTa are also consistent with changes in 275 

the intensity and location of the Aleutian Low and North Pacific High in response to EP- and 276 

CP-Niño54. Similar regression patterns are found in IPSL-CM6A-LR, and other models 277 

(Supplementary Figs. 2-3), which can produce realistic changes in zonal wind-stress and 278 

thermocline depth, associated with shifts in ENSO locations (Fig. 6c). Patterns associated with 279 

changes in El Niño and El Niña locations are however much more symmetrical in models than 280 

in observation (Fig. 6c; Supplementary Figs. 2-3). Like other models, IPSL-CM6A-LR shows 281 

large internal variability in thermocline depth anomalies, with a clear tendency to 282 

underestimate thermocline depth anomalies during El Niño events (Supplementary Fig. 4), and 283 

this could explain larger ensemble spread in equatorial Pacific SSTa associated with shifting 284 

ENSO locations (Fig. 6c). The North Pacific anomalies associated with ENSO locations are 285 

also significant in IPSL-CM6A-LR (Fig. 6c), like in many other models (Supplementary Fig. 286 

3). These relationships between ENSO and Pacific extra-tropical variability however show 287 

large ensemble spread in IPSL-CM6A-LR (Fig. 6c), highlighting that these relationships are 288 

highly sensitive to internal variability, as suggested in previous studies22,55. 289 

 290 

Looking at regressed patterns associated with event intensity, patterns of SST anomalies are 291 

more in line with canonical events, extending in the central-eastern Pacific, for both El Niño 292 

and La Niña (Fig. 6a-b, top-right). In addition, we found that observed El Niño (La Niña) is 293 

more intense when the mean thermocline is deeper (shallower) and the trade-winds are 294 

consistently weaker (stronger) over the equatorial Pacific (Fig. 6a-b, top- and bottom-right). 295 

Compared to the large-scale patterns associated with ENSO locations, changes in ENSO 296 

intensity are associated with larger wind-stress and thermocline depth anomalies over the 297 

central-eastern equatorial Pacific (Fig. 6a-b). ENSO intensity also appears associated with 298 



extra-tropical SST and wind anomalies that are more symmetric about the Equator compared 299 

to those associated with the location (Fig. 6a-b), and are somewhat reminiscent of the extra-300 

tropical signature of the Interdecadal Pacific Oscillation56 (IPO). Other studies discussed the 301 

separate importance of North and South Pacific climate variability on ENSO intensity at 302 

interannual to decadal timescales55,57. Although it systematically underestimates both zonal 303 

wind-stress and Z20 anomalies compared to observations (Supplementary Fig. 5), IPSL-304 

CM6A-LR exhibits large-scale anomalies associated with event intensity that are similar to 305 

observations (Fig. 6c). Other models also show similar results (Supplementary Figs. 2-3). Most 306 

of them simulate coherent changes in wind-stress anomalies and thermocline depth anomalies 307 

over the equatorial Pacific, as well as extra-tropical anomalies comparable to observations, 308 

during El Niño and La Niña events. Interestingly, IPSL-CM6A-LR shows very little ensemble 309 

spread in equatorial Pacific SSTa, while the strength of extra-tropical anomalies and equatorial 310 

thermocline responses strongly differ from one simulation to another (Fig 6c). 311 

 312 

Impact of decadal variations on future scenarios for ENSO diversity  313 

We next examine ENSO location and intensity in climate change projections, using a set of 314 

models that produce variability in ENSO diversity closer to observations during the historical 315 

period (namely, IPSL-CM6-LR, UKESM-1-0-LL and CNRM-CM5; Fig. 7). A comparison of 316 

future scenarios of ENSO diversity in other models, favouring either EP- and CP-ENSO during 317 

historical and pre-industrial periods, is given in Supplementary Fig. 6. 318 

 319 

According to IPSL-CM6-LR and UKESM-0-LL, most ensemble members converge to more 320 

CP-ENSO over the second half of the 21st century (Fig. 7). This shift to more westward events 321 

appears quite early in IPSL-CM6-LR, while it only emerges in the second half of the 21st 322 

century in UKESM1-0-LL, as the first half of the 21st century is dominated by decadal 323 



variations (Fig. 7). Such decadal variations remain stronger than potential trends throughout 324 

the 21st century in CNRM-CM5 (Fig. 7). By contrast, the last generation of the same model 325 

(i.e. CNRM-CM6-1), which underestimates decadal variability (Fig. 5), shows a clear shift 326 

toward more CP-ENSO in the second half of the 21st century (Supplementary Fig. 6). Future 327 

pathways for both El Niño and La Niña locations are strongly dependent on the magnitude of 328 

decadal variations, and on the ability of state-of-the-art models to reproduce them. Hence, 329 

projections of ENSO diversity show significant discrepancies among models, partly due to 330 

models’ limitations in accurately representing ENSO diversity, and its variability (as illustrated 331 

with MIROC6 and CESM2; Supplementary Fig. 6). Nevertheless, our results overall strongly 332 

suggest a shift toward more CP-ENSO as a response to increased radiative forcing over the 21st 333 

century (Fig. 7; Supplementary Fig. 6). This corroborates previous hypotheses on the recent 334 

increase in the frequency of CP-ENSO13–16.  335 

 336 

While previous studies suggested an intensification of both El Niño and La Niña events over 337 

the 21st century30,31, such trends are hardly distinguishable in models producing realistic ENSO 338 

diversity, according to our framework (Fig. 7). In most models, event-intensity and the 339 

frequency of extreme events appear, at least, as variable in the 21st century as during the 340 

historical period (Fig. 7). However, some models, such as IPSL-CM6-LR (in the second half 341 

of the 21st century; Fig. 7, left) and MIROC6 (from the early- to mid-20th century; 342 

Supplementary Fig. 6, middle), do show an intensification of ENSO events. In addition, as 343 

highlighted in previous studies 30,31, those models show an increase in the frequency of extreme 344 

events (Fig. 7; Supplementary Fig 6). Although the reliability of MIROC6 simulations is 345 

questionable, considering their generally weaker performances in simulating event-location, 346 

their results suggest a potential role of anthropogenic climate change in altering ENSO intensity 347 

over the 21st century. Thus, our results highlight that future changes in ENSO characteristics 348 



are not necessarily monotonic, as usually assumed, but may undergo large-amplitude decadal 349 

variations, leading to the suppression or enhancement of the impact of anthropogenic climate 350 

change on ENSO diversity from one decade to another. 351 

 352 

 353 

Discussion 354 

To overcome existing limitations in analysing ENSO diversity, this study introduces a new 355 

“non-parametric” framework that enables analysis of probabilistic changes in the location and 356 

intensity of warm and cold ENSO events. Using multiple century-long observational datasets 357 

and state-of-the-art climate models (namely, CMIP5 and CMIP6 ensembles), we first identified 358 

robust long-term changes and variability in the likelihood of El Niño and La Niña location and 359 

intensity. Although the majority of models favour either EP/Canonical- or CP-ENSO, we found 360 

that ENSO diversity is closely linked to significant decadal variations in both observations and 361 

climate models. These decadal variations do not only modulate event-intensity, as already 362 

highlighted in many studies17,20,21,45, but also affect event-location, converging toward multiple 363 

preferential locations in the central and eastern Pacific.  364 

 365 

Despite large underestimations in equatorial zonal wind-stress and thermocline response, we 366 

identified robust large-scale patterns associated with long-term changes in ENSO location and 367 

intensity using observations and climate models. On the one hand, long-term changes in event-368 

location are associated with zonal perturbation in equatorial wind-stress, which, according to 369 

previous studies22,53,55, may be related to the North Pacific climate variability, and with 370 

modulations of the thermocline response. On the other hand, long-term changes in event-371 

intensity are associated with strong equatorial wind-stress and thermocline response, whose 372 

variability appears associated with the North and South Pacific climate variability.  373 



 374 

The analysis of a realistic set of climate models in terms of ENSO diversity and its variability 375 

indicates that magnitude of such decadal variations in the likelihood of ENSO locations and 376 

intensity appears even more pronounced than any trend induced by anthropogenic climate 377 

change, at least over the first half of the 21st century. Nevertheless, our results strongly suggest 378 

a tendency toward more CP-ENSO in response to anthropogenic climate change, which appears 379 

more likely over the second half of the 21st century. Similarly, while previous studies suggested 380 

an intensification of both El Niño and La Niña events over the 21st century30,31, such trends are 381 

only detected in few models using our framework. In most CMIP5 and CMIP6 models, any 382 

potential trends in ENSO intensity, which might be attributed to anthropogenic climate change, 383 

appear strongly modulated by decadal variations. Our results thus highlight that future 384 

scenarios for ENSO diversity, concerning either event-location or event-intensity, strongly 385 

depend on the magnitude of decadal variations, as well as the ability of climate models to 386 

reproduce them realistically over the 21st century. Although the nature of such decadal 387 

variations is not completely understood17,19, and could involve non-linear interactions between 388 

natural variability and anthropogenic climate change58, our study provides a new perspective 389 

for assessing changes in ENSO behaviour on multiple timescales in a changing climate. 390 

 391 

Methods 392 

Observational reference datasets 393 

We use five observational datasets, covering all the different ways to reconstruct long-term 394 

variability for SST, as well as different resolutions (Supplementary Table 1). This includes 395 

three observational reconstructions based on empirical orthogonal functions/teleconnections 396 

(EOF/EOTs), spanning the period 1870-2018: i) the extended reconstructed SST version 559 397 

(ERSST.v5); ii) the Centennial in-situ Observation-Based Estimates60 (COBESST.v2); iii) the 398 



Hadley Centre SST data set61 (HadSST1). As the use of EOF/EOTs might lead to underestimate 399 

ENSO diversity in the 19th and early 20th centuries24, observational reconstructions are 400 

compared to the eight-member ensemble of ocean reanalysis generated using the Simple Ocean 401 

Data Assimilation system with sparse observational input version 362 (SODA.si3) between 402 

1870 and 2015. Since the use of satellite observations at the end of 20th century is known to 403 

result in a cold bias in HadSST1 and COBESST.v2 63, the optimum interpolation SST version  404 

264 (OISST.v2) is used for comparison between 1981 and 2018.  405 

 406 

To examine the potential large-scale patterns associated with changes in the ENSO spatio-407 

temporal variability, surface wind-stress was derived from surface zonal and meridional winds 408 

for the period 1870-2015, using the NOAA-CIRES-DOE Twentieth Century Reanalysis 409 

version 365 (NOAA-20CR.v3). The NOAA-20CR.v3 uses SODA.si3 and HadSST1 as 410 

boundary forcing, and therefore provides consistent atmospheric circulations for that SST 411 

datasets. Because subsurface potential temperature data are not currently available in 412 

SODA.si3, we use SODA.v2.2.4, with NOAA-20CR.v2 as boundary forcing, to provide the 413 

most consistent estimate of thermocline depth, using the 20°C isotherm depth (Z20) as a proxy. 414 

 415 

CMIP5/6 simulations 416 

We use 95 ensemble members of historical simulations from 26 CMIP5 models40, and 250 417 

members from 28 CMIP641 models, together with longer piControl runs (Supplementary Table 418 

1), to evaluate how climate models perform in simulating ENSO diversity. Each individual 419 

member of historical simulations allows inferring climate variability from the mid-19th to the 420 

early-21st century, due to changes in anthropogenic and natural forcings, while accounting for 421 

uncertainties associated with internal variability66. Similarly, piControl simulations enable 422 

assessing the uncertainties associated with the limited length of reliable historical records. In 423 



addition, to discuss the implications of our results for future scenarios of ENSO diversity, we 424 

use the highest emission scenario or forcing level (8.5W.m-2), i.e. the Representative 425 

Concentration Pathway RCP8.5 in CMIP5 models, and the Shared Socio-economical Pathway 426 

5 that updates the highest forcing level, i.e. 8.5W.m-2 (SSP5–85) in CMIP6 models. The 427 

number of available realisations is substantially lower in future scenarios than historical runs 428 

(Supplementary Table 1). Monthly fields of SST, zonal and meridional wind-stress and 429 

potential temperature (from which we estimated the thermocline depth from Z20) are used. To 430 

ensure consistency with the observational datasets, and to optimise the detection of changing 431 

locations and intensity in ENSO, model simulations were all interpolated onto a regular 432 

1.25×1.25° grid in the ocean and the atmosphere. 433 

 434 

Examining long-term variability and changes in ENSO location and intensity 435 

To better account for multi-dimensionally varying properties of ENSO, building on the CHI 436 

concept24,25 and recent recommendations67, we introduce a new framework estimating the 437 

location and intensity of El Niño and La Niña events at higher-resolution. The location of El 438 

Niño (La Niña) events has been defined as the longitudinal location of the maximum 439 

(minimum) of SSTa, greater (lower) than 0°C, within a strip that spans the tropical Pacific from 440 

150°E to 60°W (excluding the warm-pool region), and averaged between 5°S and 5°N over the 441 

boreal winter-months (December to February). Meanwhile, the intensity of events is given by 442 

the value of the maximum of SSTa at that location and during the same season. SSTa are 443 

calculated by removing the mean and trend of each month. Detrending is performed using a 444 

locally estimated scatter-plot smoothing. In addition, to harmonize the results over variable 445 

grid-resolutions, and reduce the noise in the signal, the location of the maximum and minimum 446 

of SSTa has been estimated using a 2° longitudinal smoothing.  447 

 448 



Using this new framework, we first examine the likelihood of event location and intensity using 449 

the probability density functions (PDF). Temporal changes in the likelihood of event location 450 

and intensity are first examined by estimating the PDF over every 20-year segments of each 451 

observational datasets, and calculating the most likely values (i.e. the mode in statistical terms), 452 

as well as multi-dataset agreements of high probability (i.e. probability exceeding 0.01 and 0.4 453 

for event location and intensity, respectively). For each 20-year segment, we also quantify the 454 

percentage of disagreement in the probability distribution across observational datasets using 455 

a Kolmogorov-Smirnov (KS) test at p = 0.05. In addition, we examine whether temporal 456 

changes in probability distributions of event intensity are associated with changes in the 457 

frequency of extreme El Niño (La Niña) events, by quantifying the 20-year average number of 458 

events exceeding (lower than) the 90th (10th) percentile across all datasets. 459 

 460 

Secondly, we further explore the long-term variability using the 10-year most likely location 461 

and intensity of El Niño and La Niña events. Continuous wavelet analyses are used to estimate 462 

the maximum power spectrum over the full length of observational and simulated records, 463 

while accounting for temporal changes68. Using continuous wavelet analysis enables to account 464 

for non-stationary significant patches of variability, which might not be significant over the 465 

full-length of the records, and would not be identified using Fast Fourier Transform. 466 

Significance of variability patches are tested at p=0.05, based on 1000 Monte-Carlo simulations 467 

of the red noise background spectrum. 468 

 469 

Testing robustness in climate models, identifying large-scale patterns and implications 470 

for future scenarios 471 

We first examine whether historical and piControl runs, from CMIP5 and CMIP6 models, are 472 

able to reproduce a realistic range of locations and intensities for both El Niño and La Niña 473 



events, by comparing the simulated PDF to multiple observational datasets. This visual 474 

comparison is combined with two statistical tests: i) test for multimodality, i.e. the presence of 475 

multiple peaks on the PDF, based on kernel density estimators and the quantification of excess  476 

mass69; ii) test for difference in the mean using a two-sided student t-test (cf. Supplementary 477 

Fig. 1). Statistical significance of these tests is calculated using 1000 permutations.   478 

 479 

Secondly, we investigate whether significant decadal variability is detectable in climate 480 

models, by comparing the simulated maximum power spectra with observations. We then 481 

compare the simulated magnitude of decadal variability to the observed one using the centred 482 

ratio of standard deviation (rSD = 1 −
𝑠𝑑(𝐸𝑁𝑆𝑂

𝑖𝑛𝑡

𝑙𝑜𝑐
[𝑜𝑏𝑠] 10𝑦𝑟)

𝑠𝑑(𝐸𝑁𝑆𝑂
𝑖𝑛𝑡

𝑙𝑜𝑐
[𝑠𝑖𝑚] 10𝑦𝑟)

 × 100 ). Statistical significance is 483 

then assessed by performing a two-sided Fisher’s F-test at p=0.05 between every 100-yr 484 

segments through the course of climate simulations and every 100-yr segments in the four 485 

longer-term observational SST datasets, from which the rate of success is quantified. 486 

 487 

Thirdly, we compare the observed large-scale patterns associated with long-term variability in 488 

the location and intensity of El Niño and La Niña events to historical simulations from a set of 489 

climate models. This consists in examining the differences in the patterns of pan-Pacific SST, 490 

wind-stress and thermocline depth at the Equator (5°S – 5°N), which are computed using linear 491 

regression during composite El Niño and La Niña years, separately. Statistical significance of 492 

the regression patterns is calculated using 1000 permutations. We particularly focus on the 493 

IPSL-CM6A-LR large ensemble model, which displayed closer similarities to observations in 494 

terms of ENSO diversity, but more information about the overall model performances are 495 

provided in Supplementary Figs. 2–5 . 496 

 497 



Finally, using RCP8.5 and SSP5–8.5 scenarios from a selected set of climate models, we 498 

examine future trajectories for ENSO diversity (i.e. location and intensity), and analyse how 499 

results differ depending on the skill of those models for simulating ENSO diversity and its 500 

variability.  501 

 502 

Data availability 503 

CMIP5 and CMIP6 data are publicly available at https://esgf-index1.ceda.ac.uk. Long-term 504 

observational SST datasets, i.e. ERSST.v5, COBESST.v2, HadSST1, OISST.v2, are available 505 

at https://climexp.knmi.nl. SODA.si3 and SODA.v2.2.4 are respectively available from 506 

https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html and 507 

https://iridl.ldeo.columbia.edu/SOURCES/.CARTON-GIESE/.SODA/.v2p2p4. 508 

 509 

Code availability 510 

The code used in this study to produce the data analysed were developed in R programming, 511 

and can be provided upon reasonable request to BD. 512 
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Captions 682 

 683 

Fig 1. | Relationships between ENSO indices, and their ability to disentangle CP and EP. 684 

(a) Pearson’s correlations between 13 ENSO indices (Niño boxes33; PC-based EP- and CP-685 

ENSO; TNI36; EMI and iEMI37; EP and CP34; E and C35. Black dots indicate significant 686 

correlations at p=0.05, using 1000 phase-randomizations to account for serial correlations. (b) 687 

Probability Density Function (PDF) of the locations of SSTa peaks over the equatorial Pacific 688 

(5°S–5°N; -210–-60°W), when each ENSO index exceeds ±0.5°C standard deviation. For each 689 

index, each row/column corresponds to a different observational, reanalysis or satellite-derived 690 

dataset (A-E: ERSST.v5, COBESST.v2, HadSST1, SODA.si3, OISST.v2). Correlations are 691 

calculated over their respective common periods (1870-2017 when using observations only, 692 

1870-2015 when using SODA.si3, or 1981-2017 when using OISST.v2). Locations of Niño 693 

boxes, as well as of the date line, are indicative. 694 
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 698 
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 700 

Fig 2. | Observed likelihood of ENSO’s location and intensity: average distribution and 701 

temporal changes. (a) top panels, average probability density function (PDF) of El Niño 702 

location (left) and intensity (right). Bottom panels, 20-year running the most likely location 703 

and intensity of El Niño (black bold lines), the percentage of agreement of high-probability 704 

(i.e. PDF exceeding 0.01 and 0.45; colour shades), and average number of extreme Niño events 705 

(i.e. intensity exceeding the 90th percentile; red histogram) across all observational datasets. 706 

(b) same as (a) but for La Niña, and extreme La Niña events (i.e. intensity lower than the 10th 707 

percentile; blue histogram). On top panels, dark grey shading from the top axis indicates the 708 

average PDF over all five reference SST datasets, and each individual dataset is displayed in 709 

coloured lines (El Niño/La Niña: ERSST.v5 [1850-2017; coral/light blue], COBESST.v2 710 

[1850-2017; dark red/dark blue], HadSST1 [1850-2017; red/blue], SODA.si3 [1850-2015; 711 

purple solid lines], OISST.v2 [1981-2017; magenta dashed lines]). On bottom panels, grey 712 

shading indicates the percentage of observational datasets showing significantly equal 713 

distribution at p=0.05 according to a Kolmogorov-Smirnov test. Locations of Nino boxes, as 714 

well as of the date line, are indicative. Dashed lines delineate the period for which OISST.v2 715 

is used (1991-2007, which covers 20-yr periods between 1981-2001 and 1997-21017). 716 

 717 



 718 

Fig 3. | Likelihood of ENSO’s location and intensity in CMIP5 and CMIP6 models. (a) top 719 

panels, normalized PDF of El Niño location (top) and intensity (bottom) in all reference 720 

datasets (left), as compared to 95/250 CMIP5/6 historical runs (middle), as well as in 26/28 721 

CMIP5/6 piControl runs (right). (b) same as (a) but for La Niña. On top of each panel and 722 

column, grey dots indicate significant multimodality at p=0.05 according to the ACR test69, 723 

based on 1000 bootstrap resamples. The normalized PDF is estimated using the full length of 724 

each time series, ranging from 37 years in OISST.v2 to 1200 years in some piControl 725 

simulations. Bold (thin) solid lines separate simulations from different institutions 726 

(generations, i.e.: CMIP5 [grey] and CMIP6 [orange]), while dashed lines separate simulations 727 

from different models.  728 

 729 



730 

Fig 4. | Variability in ENSO’s, observed and simulated, most likely location and intensity. 731 

(a) Maximum power spectrums of the running 10-year El Niño most likely location and 732 

intensity (i.e. the mode), as determined using continuous wavelet analysis, and using four long-733 

term observational reference datasets (left: ERSST.v5, COBESST.v2, HadSST1, SODA.si3), 734 

95/250 CMIP5/6 historical runs (middle), as well as 26/28 CMIP5/6 piControl runs (right). (b) 735 

same as (a) but for La Niña. Significance of variability patches are tested at p=0.05 based on 736 

1000 Monte-Carlo simulations of the red noise background spectrum. Dashed red lines and 737 

grey shading indicate the area where variability can be underestimated because of edge effects, 738 

wraparound effects and zero-padding. As the continuous wavelet analysis allows to account 739 

for temporal changes the maximum power spectrums are estimated using the full length of each 740 

time series. The maximum power spectrums are weighted by the significance, and only 741 

significant variability is shown. 742 
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 746 

Fig 5. | CMIP5/6 bias in decadal variability of ENSO’s most likely location and intensity. 747 

(a) Average ratio of standard deviation (rSD) between historical runs and observed decadal 748 

variance (>10 year) in the running 10-year most likely location and intensity of El Niño and La 749 

Niña events. (b) same as (a) but using pi-Control runs. Statistical significance is assessed by 750 

performing a two-sided Fisher’s F-test at p=0.05 between every 100-yr segments through the 751 

course of climate simulations and every 100-yr segments in the four longer-term observational 752 

SST datasets (i.e. 27,740 ≤ n ≤ 209,000 replicates), to quantify a rate of success (i.e. the number 753 

of times observations and simulations showed equal variance). Black dots highlight simulations 754 

for which the rate of success is lower than 10%, showing significantly different variance at 755 

p=0.1. 756 



 757 

Fig 6. | Large-scale patterns driving long-term variability in ENSO location and intensity. 758 

(a) Observed regressed SST (blue to red shades), wind-stress (vectors) and Z20 anomalies 759 

(lines) associated with changes in El Niño location (right) and intensity (left) and using multiple 760 

observational data sets (SST: ERSST.v5, COBESST.v2, HadSST1 and SODA.si3; wind-stress: 761 

NOAA-20CR.v3; Z20: SODA.v2.2.4). (b)  Same as (a) but for La Niña events. (c) same as (a-762 

b) but using the IPSL-CM6A-LR large ensemble (32 members). While SST and wind-stress 763 

anomalies are displayed at the pan-Pacific scale based on the median changes in observations, 764 

simulated regressed anomalies are assessed through the ensemble median (top) and ensemble 765 

spread (standard deviation [SD]; middle]). Z20 anomalies are estimated through the median 766 

changes between 5°S and 5°N (bottom). Red and Blue shades on the Z20 anomalies indicate 767 

the spread between the four SST observational data sets and within the IPSL-CM6A-LR large 768 

ensemble (light to dark: maximum/minimum, 10/90th, 30/70th and 45/55th percentiles), for El 769 

Niño and La Niña, respectively. Group 1 (black lines) and Group 2 (grey lines) illustrate how 770 

two opposed types of equatorial Z20 anomalies influence the ensemble spread. Statistical 771 

significance is assessed at p=0.05 using 1000 permutations, and displayed as black contour for 772 

SSTa, and blue/red crosses for Z20 anomalies. Only significant wind-stress anomalies at 773 

p=0.05 are displayed. 774 



 775 

Fig 7. | Future scenarios for ENSO diversity in the most realistic models. (a) 20-year most 776 

likely location (top) and intensity (bottom) of El Niño events (black bold lines), as well as the 777 

percentage of agreement of high-probability (PDF exceeding 0.01 and 0.45; colour shades) in 778 

the IPSL-CM6-LR (left), UKESM1-0-LL (middle) and CNRM-CM5 (right) ensembles. (b) 779 

same as (a) but for La Niña events. Grey histograms on the bottom axis of the intensity panels 780 

indicate the average number of extreme events (as defined in Fig. 2) within the model 781 

ensemble. SSTa are estimated by removing the 1850–2014 monthly climatology and trend, to 782 

allow comparison with observations. The same baseline period was used to estimate the 90th 783 

and 10th percentiles. 784 


