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Abstract

The societal importance of geothermal energy is significantly increasing because of its low carbon-dioxide footprint. However,

geothermal exploration is also subject to high risks. For a better assessment of these risks, extensive parameter studies are

required that improve the understanding of the subsurface. This yields computationally demanding analyses. Often this

is compensated by constructing models with a small vertical extent. This paper demonstrates that this leads to entirely

boundary-dominated and hence uninformative models. It demonstrates the indispensable requirement to construct models with

a large vertical extent to obtain informative models with respect to the model parameters. For this quantitative investigation,

global sensitivity studies are essential since they also consider parameter correlations. To compensate for the computationally

demanding nature of the analyses, a physics-based machine learning approach is employed, namely the reduced basis method,

instead of reducing the physical dimensionality of the model. The reduced basis method yields a significant cost reduction

while preserving the physics and a high accuracy, thus providing a more efficient alternative to considering, for instance, a

small vertical extent. The reduction of the mathematical instead of physical space leads to less restrictive models and, hence,

maintains the model prediction capabilities. The combination of methods is used for a detailed investigation of the influence of

model boundary settings in typical regional-scale geothermal simulations and highlights potential problems.
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is employed, namely the reduced basis method, instead of reducing the physical
dimensionality of the model. The reduced basis method yields a significant cost
reduction while preserving the physics and a high accuracy, thus providing a more
efficient alternative to considering, for instance, a small vertical extent. The reduc-
tion of the mathematical instead of physical space leads to less restrictive models
and, hence, maintains the model prediction capabilities. The combination of meth-
ods is used for a detailed investigation of the influence of model boundary settings
in typical regional-scale geothermal simulations and highlights potential problems.

Keywords : boundary conditions · global sensitivity analysis · sensitivity-driven
model calibration · reduced basis method

1 Introduction1

Geothermal energy is an important part of the future energy mix on the path2

to a more sustainable use of resources. Many aspects influence the potential use3

of a geothermal resource, with one prime parameter being the temperature in4

the subsurface. In order to determine expected temperatures on a regional scale,5

geothermal simulations are often performed (Gelet et al., 2012; Kohl et al., 1995;6

O’Sullivan et al., 2001; Taron et al., 2009; Watanabe et al., 2010). A common7

procedure is to start with a geological model, representing the main geological8

sequences, grouped by similar thermal properties, and to use this information for9

the parameterization of a geothermal simulation (Cacace et al., 2010; Mottaghy10

et al., 2011; Sippel et al., 2015). However, the (effective) thermal parameters of11

subsurface geological units (e.g. thermal conductivity, heat production rate) are12

generally uncertain and the material parameters are therefore often calibrated on13

the basis of temperature observations.14

Extensive parameter studies or full uncertainty quantification studies are non-15

trivial since basin-scale models tend to be computationally demanding. To over-16

come this issue, a common approach is to generate models that have a large hori-17

zontal extension but a very small vertical extend red(often only a dew kilometers)18

that can be up to 40 times smaller than the horizontal extend (Freymark et al.,19

2019; Kastner et al., 2015; Noack et al., 2013; Pribnow and Clauser, 2000; Pujol20

et al., 2015). The boundary conditions for these models are either based on best es-21

timates or retrieved from larger models (Noack et al., 2013). This work investigates22

in detail how these typical approaches to treat boundary conditions influence all23

subsequent analyses, leading partly to fully boundary-dominated models. In this24

paper, it is demonstrated that they only have very limited capabilities for the25

analysis and understanding of the physical processes. During the model calibra-26

tion, a compensation for possible boundary errors through an adjustment of the27

thermal properties is possible. Consequently, this has no direct impact on the tem-28

perature distribution but a significant impact on the physical plausibility of our29

model. Hence, for scenarios that lay outside of the calibrated regime, any predic-30

tion capabilities are lost. This is a major restriction when considering the sparse31

nature of observations. The models with a small vertical extent are commonly32

used, although it is well known that diffusion problems a majorly impacted by33

the boundary conditions. Therefore, this paper illustrates the consequences of this34

model choice and demonstrates that crustal-scale models are crucial for basin-scale35

applications.36



Revisiting the Influence of Deep Boundary Conditions 3

In order to investigate the influence of thermal boundaries, full global sensitiv-37

ity analyses (SA) are employed for several case studies. These types of global SA38

approaches are usually not performed due to the high associated computational39

cost. To address these computational challenges, the full finite element solution40

of the forward solves is replaced with the reduced basis solution. This approach41

aims to reduce the complexity of the mathematical instead of physical space, yield-42

ing fast, accurate, and physics-preserving surrogate models. With these surrogate43

models, global sensitivity analyses are performed on several model realizations of44

a regional-scale geothermal basin model in northern Germany (around Berlin and45

the state of Brandenburg) to demonstrate the influence of the lower boundary46

condition on the simulation.47

Additionally, an automated model calibration is executed to provide an ob-48

jective and reproducible way to compensate for the errors of both the physical49

and geological model. Sensitivity analyses for basin-scale models have been per-50

formed before in Noack et al. (2012) and also been combined with automated51

model calibrations (Wellmann and Reid, 2014). Also, Fuchs and Balling (2016)52

consider model calibrations but in their case without sensitivity analyses. Fur-53

thermore, local sensitivity studies are presented in Ebigbo et al. (2016). However,54

none of these can address the computationally demanding nature of the problem.55

Therefore, they are limited in the number of parameters, sensitivity analyses, and56

model calibrations they can perform. By using a physics-based machine learning57

approach instead of the finite element method, the computation time of the for-58

ward solve is reduced by several orders of magnitude. It allows, in turn, to perform59

global sensitivity analysis and full flexibility in the model calibration.60

Global sensitivity analyses have been performed for hydrological problems (Ba-61

roni and Tarantola, 2014; Cloke et al., 2008; Song et al., 2015; Tang et al., 2007;62

van Griensven et al., 2006; Zhan et al., 2013), for volcanic source modeling (Can-63

navó, 2012), and for geothermal heat exchangers (Fernández et al., 2017). In Degen64

et al. (2020a), the authors have investigated the influence of both local and global65

sensitivity studies for the Upper Rhine Graben. In this paper, the combination of66

the global sensitivity study and model calibration, as presented in Degen et al.67

(2020a), is used to investigate the influence of the placement of the boundaries on68

the model predictions.69

The paper is structured as follows: The methodologies and the governing equa-70

tions are presented in Section 2 and in Section 3, the problem of the lower boundary71

condition is conceptually introduced using a simple 1D model. Section 4 presents72

the impact of the lower boundary conditions, by focusing on a real-case basin-scale73

application. Therefore, the results of both global sensitivity analyses and model74

calibrations are presented and discussed.75

2 Materials and Methods76

In the following, the geothermal conduction problem used for the forward simu-77

lations of the temperature is briefly described. Furthermore, the concept of sensi-78

tivity analyses is introduced.79



4 Degen et al.

2.1 Physical Model80

For the simulation of the temperature field, a geothermal conduction problem
with the radiogenic heat production S as the source term (Bayer et al., 1997) is
considered:

λ∇2T + S = 0, (1)

where λ is the thermal conductivity, and T the temperature. For efficiency reasons81

and to investigate the relative importance, the nondimensional form of eq. 1 is82

considered. Therefore, the nondimensional properties T ∗ = T−Tref

Tref
, λ∗ = λ

λref
,83

S∗ = S
Sref

, and ∇∗ = ∇
∇ref

, where the asterisk denotes the nondimensional quantity,84

are required. Inserting them into eq. 1, leads to eq. 2:85

λ

λref Sref

∇2

l2ref
(
T − Tref
Tref

) +
S

Sref Tref λref
= 0. (2)

Here, λref is the reference thermal conductivity, Tref the reference temperature,86

Sref the reference radiogenic heat production, and lref the reference length. Note87

that the equation operates on the nondimensional space. For the motivational88

study, the radiogenic heat production is neglected to focus the analysis on the89

heat diffusion and the boundary condition. Furthermore, for all models Dirichlet90

boundary conditions are applied at the top and bottom of the model domain.91

2.2 Sensitivity Analysis92

Sensitivity analyses aim to determine which model parameters influence the model93

response to what extent. So, these studies investigate, which thermal conductivities94

and radiogenic heat productions have a significant impact on the temperature95

distribution. One distinguishes two types of sensitivity analyses: local and global96

ones. Local sensitivity analyses consider that all parameters are independent of97

each other. In contrast, global sensitivity studies investigate also the parameter98

correlations. A detailed comparison of both methods for hydro-geological problems99

is presented in Wainwright et al. (2014) and for basin-scale geothermal application100

in Degen et al. (2020a).101

For the sensitivity analysis (SA), a quantity of interest needs to be defined.102

Here, the L2-norm of the temperature misfit to the reference model is used as the103

quantity of interest, for the motivational example. The quantity of interest for the104

real-case model is the L2-norm of the temperature misfit between the simulated105

and observed temperature values.106

For the global sensitivity analysis, the Sobol method with the Saltelli sampler107

is used, this is a variance-based sensitivity analysis operating in a probabilistic108

framework. From the variances, the sensitivity indices are derived as the ratio109

between the partial and total variance. In this work, the main interest is on the110

first- and total-order indices. The first-order index is the ratio between the variance111

of the p parameter and the total variance and defines the impact of the parameter112

itself. In addition, the total-order index captures all parameter correlations. This113

includes second-order but also any higher-order terms. Second-order terms describe114

the correlation between two parameters only, whereas higher-order terms define115

the correlation between multiple parameters. Further information regarding the116
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Sobol method can be found in Sobol (2001); Saltelli (2002); Saltelli et al. (2010).117

For the sensitivity analyses the python library SALib (Herman and Usher, 2017)118

is used.119

2.3 Model Calibration120

The main aim of this paper is to investigate the influence of the lower boundary121

condition on the physical interpretation through an evaluation of the temperature122

distribution. This is the reason why global sensitivity analyses are used. In practical123

applications, it is often desired to calibrate the model against existing temperature124

measurements to ensure the correctness of the model.125

For this, model calibrations are required, which aim to compensate for existing126

model errors by an adjustment of the model parameters. For deep geothermal127

applications calibrations are challenging since one usually has only a few shallow128

data points (Degen et al., 2020a). As the real-case study will show, it is possible to129

adjust a given model to the observed temperatures. However, larger model errors130

yield unphysical model parameters, imposing the danger of losing the predictability131

for observation points that have not been included in the calibration. This aspect132

will be discussed in detail later on.133

In this work, a trust region reflective algorithm is employed as the calibration134

method, which is a suitable choice for constrained problems, meaning that the135

thermal parameters have defined ranges (Branch et al., 1999). During the calibra-136

tion, the L1 norm of the misfit between the simulated and observed temperature137

measurements is minimized. The L1 norm is considered to put less weight on out-138

liers. The analysis is performed through the python library SciPy (Virtanen et al.,139

2020). For more details regarding the method, refer to Branch et al. (1999) and140

more details regarding the application to basin-scale models refer to Degen et al.141

(2020a).142

3 Motivational Example143

This paper investigates the influence of the impact of the lower boundary condition144

on the temperature distribution. This is an issue concerning geological models in145

general. For this reason, the problem is first demonstrated using a highly simplified146

motivational model. The motivational study aims to illustrate the general problems147

and not to represent a realistic geothermal application. To demonstrate that the148

issue has a major impact on real-case geothermal applications, the investigation149

is extended to the real-case study of Berlin-Brandenburg (a sedimentary basin in150

north-eastern Germany which is introduced in Section 4).151

3.1 Forward Model152

First, the forward problem used for the motivational study is introduced, for which153

a simplified 1D model is considered. The 3-layer model, schematically shown in154

Fig. 1, consists of three layers, where the middle layer is thinner than both adja-155

cent layers. A thermal conductivity of 1.0 is chosen for the top and bottom layer156
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Layer 1
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z=0____T=0
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λ2=1.5
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z=0T=0
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I1
I2

I1
I2

I1
I2

Fig. 1 Schematic representation of the 3-layer 1D model used for the motivational study of
the boundary condition problem. Shown are the three different positions of the thin layer (P1-
P3) for which the sensitivity analysis (Fig. 2) is conducted. Additionally, the interfaces of the
thin layer are indicated with I1 and I2.The depth is denoted with z, the temperature with T ,
and the thermal conductivity with λ. Please note that a 1D model is considered, the 2D model
representation of this figure was only chosen for an improved visibility.

and a thermal conductivity of 1.5 for the thin layer. To recall, throughout the157

entire section, the dimensionless formulation is used. Consequently, the thermal158

conductivity has no unit. At the top of the model, a Dirichlet boundary condition159

of zero is applied for the temperature, and at the bottom a Dirichlet boundary160

condition of one. The model is solved analytically. Note that the nondimensional161

form is considered to focus the analysis on the relative difference.162

In the following analyses, the influence of the thermal conductivity of the thin163

middle layer (Layer 2 in Fig. 1) with respect to its distance from the boundary164

conditions is analyzed. Therefore, the position of the thin layer changes. Three165

different positions of the thin layer are considered: i) the thin layer adjacent to the166

base boundary condition (position P1 in Fig. 2), ii) the thin layer in the center167

of the model (position P2 in Fig. 2), and iii) the thin layer adjacent to the top168

boundary condition (position P3 in Fig. 2). For the sensitivity analysis, scenario169

P2 is defined as the reference model, where the thin layer is located around the170

center (see Fig. 1). Consequently, the reference model represents the case of the171

lowest possible boundary influence.172

3.2 Impact of the Boundary Condition173

To determine the influence of the lower boundary condition, a global sensitivity174

analysis with 100 equally spaced temperature measurements in depth ranging from175

zero to one is performed. Equally spaced measurements are chosen to avoid any176

bias induced by the spatial distribution of the measurements in the sensitivity177

analysis. Furthermore, the thermal conductivities of all three layers have an allowed178

variation range of ± 50 %.179

The results of the global SA are shown in Fig. 2. Before discussing the results180

for this SA, the terminology needs to be specified. From Fig. 2 first- and total-order181

terms are obtained. The first-order terms describe the influence from the parameter182

itself, whereas the total-order term describes the influence from the parameter183
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plus any parameter correlations. Consequently, the correlation is defined as the184

difference between the total- and first-order contributions. This motivational study185

investigates the influence of both boundary conditions on the model. Therefore, it186

needs to take the scenario, where the thin layer is in the center of the model (P2) as187

the reference case. This means that high influences of the parameters correspond188

to a high boundary dominance.189

For the simple model, all thermal conductivities are dominated by total-order190

contributions for all three scenarios (P1-P3). This means that the parameters have191

high correlations. The high correlations are induced by the set-up of the model,192

where the temperature distribution is only determined by the two Dirichlet bound-193

ary conditions and by the ratio of the thermal conductivities between adjacent194

layers. Furthermore, the influence of λ2 is at all three positions the lowest, which195

is an effect of the lower thickness of this layer. Also note that for λ2, nearly no196

first-order influences are observed.197

Focusing on scenario P1, the highest boundary dominance is achieved for λ1,198

which is situated at the upper boundary condition. The lowest influence is obtained199

for λ2 because of the above-described reason. λ3 has a significantly lower influence200

of the boundary than λ1, which is logical since it is further away from the boundary.201

Interesting is that the decrease in the first-order contributions is more pronounced202

than the decrease in the total-order contributions. This shows that the remaining203

boundary influences are mainly arising from parameter correlations. By having204

a detailed look at the SA, one observes that the main correlations are arising205

from the correlation between λ1 and λ3. For scenario P3, the same behavior with206

reversed roles for λ1 and λ3 is observed. In contrast for scenario P2, a boundary207

dominance of λ1 and λ3, which are both adjacent to the boundaries, is obtained.208

λ2 is situated in the center of the model, resulting in negligible contributions.209

The results for all three scenarios are following the expectations since the210

smallest boundary influences are observed if the layers are further away from the211

boundaries. Note that these results can only be returned by a global SA. A local212

SA would assume that the influence is coming from the parameter itself. As an213

example, in P1 this would lead to a significant overestimation of the influence of214

λ3. In the worst case, this yields the misleading conclusion that λ3 is still greatly215

influenced by the boundary.216

To conclude, for the motivational example the information about the thin layer217

is lost when it approaches the boundary condition. Or, as an alternative view-218

point, these two examples highlight the strong influence of boundary conditions219

on the simulation results. In a typical geothermal simulation setting, the position220

of the top boundary condition is usually defined as the land surface and cannot221

be changed. Its impact and possible ways to solve the issue have been discussed222

in Degen et al. (2020b). In contrast, the position of the lower boundary condition223

is usually adjustable.224

4 Case Study Berlin-Brandenburg225

After the demonstration of the general problem of the placement of the bound-226

ary for geological models, the consequences for real-case studies are illustrated.227

Therefore, the simplified 1D example is exchanged with various representations of228
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Fig. 2 Black Box: Global sensitivity analysis to determine the impact of the boundary condi-
tion. Shown are the first- and total-order Sobol sensitivity indices of the thermal conductivities
for the 3-layer model with respect to the distance from the boundaries. Blue Box: Scenarios
P1, where the thin layer is adjacent to the bottom model boundary. Orange Box: Scenarios
P2, where the thin layer is in the middle of the model boundary. Green Box: Scenarios P3,
where the thin layer is adjacent to the top model boundary. Note that the interfaces of the
thin layer are denoted with I. For a further illustration of the positions of the layers for P1 to
P3, refer to Fig. 1

the Berlin-Brandenburg model, which cover a sedimentary basin in north-eastern229

Germany (see Fig. 3).230

4.1 Berlin-Brandenburg Models231

This paper uses three different versions of the Berlin-Brandenburg (BB) model.232

The model is located in the southeastern part of the Northeast German Basin,233

which is part of the Central European Basin System. The formation of the basin234

started in the Late Carboniferous / Early Permian with a period of extensive235

volcanism (Benek et al., 1996; Noack et al., 2012). Permian and Cenozoic sediments236

are deposited above the volcanic rocks (Noack et al., 2012). The model is mainly237

characterized by mobilized Upper Permian Zechstein salt, which forms salt pillows238

and diapirs due to halokinetic movements (Noack et al., 2012; Scheck et al., 2003).239

Also, the deeper crustal domains of the model are further differentiated to account240

for the different consolidation ages (Noack et al., 2012). For further information241

regarding the geological background, refer to Noack et al. (2012, 2013). The area is242

of interest for geothermal studies due to a temperature anomaly consisting of high243
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heat flow values. This anomaly stretches from Poland to the river Elbe (Noack244

et al., 2012).245

In the following, the numerical discretizations of the Berlin-Brandenburg mod-246

els are presented.247

The first version of Berlin-Brandenburg, from now on denoted as the Berlin-248

Brandenburg LAB model (BB-LAB), has already been presented in Noack et al.249

(2012) and can be seen in Figure 3a. It has an extension of 250 km in the x- and250

of 210 km in the y-direction and extends down to the lithosphere–asthenosphere251

boundary (LAB). The model consists of 15 lithological units and the mesh consists252

of deformed eight-noded prisms. The grid resolution is one km in the horizontal253

directions, whereas the vertical length of the layers corresponds to the vertical254

element length, resulting in a mesh with 840,000 degrees of freedom.255

The second model, in the following, referred to as the Berlin-Brandenburg 6256

km model, or BB-6km (Figure 3b), has the same horizontal extent but extends to a257

depth of 6 km instead of down to the LAB. It is presented in Noack et al. (2013) and258

consists of 12 lithological units. The model is discretized into a tetrahedral mesh.259

In comparison to the Brandenburg LAB model, it is refined in both geological and260

grid resolution terms. The horizontal element resolution is 0.22 km2 and vertical261

resolution is interpolated from the z-evaluations of the geological layers with a262

minimum thickness of 0.1 m, resulting in a mesh of 1,546,675 degrees of freedom.263

a)

Geology
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Fig. 3 Geology of the a) Berlin-Brandenburg LAB model, b) Berlin-Brandenburg 6 km model,
and the c) Berlin-Brandenburg combined model. Please refer to Tab. 1, for the acronyms of
the geological layers.

Combining the Berlin-Brandenburg 6 km model, the Berlin-Brandenburg LAB264

model, and removing the minimal vertical thickness of 0.1 m results in the third265

version of the Brandenburg model, denoted as the Berlin-Brandenburg combined266

model, or BB-combined (Figure 3c). Consequently, this model consists of 17 geo-267

logical layers, where the upper 11 layers have the same resolution as in the BB-6km268

model. The lower six layers have the same vertical resolution as the BB-LAB model269
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and the same horizontal resolution as the Berlin-Brandenburg 6 km model. As the270

Berlin-Brandenburg LAB model this model extents to the LAB (the LAB depth271

varies between about 100 to 140 km). This results in a tetrahedral mesh with272

2,141,550 degrees of freedom.273

For both the BB-LAB and BB-combined model, a Dirichlet boundary condi-274

tion of 8 °C, corresponding to the average annual temperature, is applied at the275

top of the model. Moreover, the Dirichlet boundary condition at the base of the276

LAB is set to 1300 °C corresponding to the melting temperature of the mantle277

rocks (Turcotte and Schubert, 2002). Additionally, a variation of the temperature278

at this boundary condition of ± 10 % is allowed to account for errors in the ge-279

ometrical description of the LAB. The Berlin-Brandenburg 6 km model has the280

same upper boundary condition, but at the base, various Dirichlet boundary con-281

ditions directly taken from the Berlin-Brandenburg LAB model are considered.282

Furthermore, a lower boundary conditions derived by Kriging is taken into ac-283

count. For this interpolation, 900 equally spaced temperature observation from284

the BB-LAB model in a depth of 6 km are considered and the interpolated bound-285

ary is derived with a spherical variogram. All thermal properties are summarized286

in Table 3 in the Supplementary Material. The forward simulations are performed287

using the DwarfElephant package (Degen et al., 2020c) with a linear and nonlin-288

ear solver tolerance of 10-10. Due to the nondimensional nature of the problem,289

no preconditioners are needed for the finite element evaluations.290

The reference thermal conductivity λref is equal to the maximum thermal con-291

ductivity of the BB-LAB model of 3.95 W m-1 K-1. For the BB-LAB and the BB-292

combined model, the maximum temperature of 1300 °C is the reference tempera-293

ture Tref, whereas for the BB-6km model a reference temperature of 8 °C is chosen.294

Homogeneous Dirichlet boundary conditions are used to achieve a better perfor-295

mance of the numerical methods (Degen et al., 2020c). The Berlin-Brandenburg 6296

km model has a constant Dirichlet boundary condition at the top. At the base, the297

model has a Dirichlet boundary condition with a different temperature value for298

each element. The top boundary condition is normalized to zero by using the value299

of the top boundary as the reference parameter. The bottom boundary condition300

is set to zero via a lifting function. In case of the Berlin-Brandenburg LAB and301

combined model, the models have constant Dirichlet boundary condition values302

for both upper and lower boundary, and hence one can use both of them as the ref-303

erence parameter. The value of the lower boundary condition was chosen to better304

reduce the magnitude of the temperatures, which yields a better performance. The305

maximum radiogenic heat production of the BB-LAB model of 2.5 µW m3 is the306

reference radiogenic heat production Sref. The reference length lref corresponds to307

the maximum x-extent of all models (250,000 m).308

For the validation of the models the temperature measurements presented in309

Noack et al. (2012, 2013) and based on Förster (2001) were used. The observations310

consist of 81 temperature measurements from 44 wells in the area of Brandenburg.311

It has been measured at various depth and stratigraphic levels.312

4.1.1 Reduced Models313

The reduced basis (RB) method is a model order reduction technique that aims to314

significantly reduce the dimensionality of problems resulting from a discretization315

(e.g. via finite elements) of parameterized partial differential equations (PDE).316
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The method is decomposed into an offline and online stage, where the offline317

stage, being a one time cost, constructs a reduced basis, and therefore comprises318

all expensive pre-computations.319

The online stage uses this reduced basis to allow very fast forward evalua-320

tions, typically in the range of a few milliseconds (Degen et al., 2020c). In contrast321

to other surrogate models, the RB method has the advantage that the physics322

is preserved. Other surrogate model techniques build their models upon observa-323

tions (Miao et al., 2019), without explicitly considering the PDE. The RB method324

maintains the input-output relationship, meaning that the structure of the origi-325

nal finite element problem (and consequently the PDE) is preserved (Hesthaven326

et al., 2016). Hence, the method allows an extraction of the entire state vector327

(e.g. the temperatures at every node of the model). Furthermore, for geothermal328

conduction problems, it provides an error bound, enabling an objective evaluation329

of the approximation quality. For further information regarding the RB method330

refer to Hesthaven et al. (2016); Prud’homme et al. (2002); Veroy et al. (2003) and331

for further information in the context of geosciences refer to Degen et al. (2020c).332

For using the RB method, the geothermal problem is decomposed into a333

parameter-dependent and -independent part. In the following, the affine decom-334

positions of the integral formulation of the PDE for the various scenarios of the335

Brandenburg model are defined. Note that this paper uses the operator represen-336

tation. Therefore, it presents the bilinear form instead of the stiffness matrix, and337

the linear form instead of the load vector.338

For all Berlin-Brandenburg models, the bilinear form a has the following de-
composition:

a(w, v;λ) = −
n∑
q=0

λq

∫
Ω

∇w ∇v dΩ, ∀v, w ∈ X, ∀λ ∈ D, (3)

where w ∈ X is the trial function, v ∈ X the test function, “q” denotes the index339

of the training parameter (for more information see Tab. 3 in the Supplementary340

Material), X the function space (H1
0 (Ω) ⊂ X ⊂ H1(Ω)), Ω the spatial domain341

in R3, λ ∈ D the parameter, and D the parameter domain in Rn. The number of342

thermal conductivities in the training sample is denoted with n. Consequently, n is343

equal to thirteen, nine, and fourteen for the BB-LAB, BB-6km, and BB-combined344

model, respectively.345

For all Berlin-Brandenburg models, except the BB-6km model with a lower
boundary condition derived via Kriging, the linear form f is decomposed in the
following way:

f(v;λ, s) =−
n∑
q=0

λq s

∫
Γ

∇v g(x, y, z) dΓ + s

∫
Γ

∇v S dΓ, ∀v ∈ X, ∀λ ∈ D,

with g(x, y, z) = Ttop
h(x, y, z)− zbottom(x, y)

d(x, y)
.

(4)
Here, Γ is the boundary in R3, s the scaling parameter for the lower boundary346

condition, g(x, y, z) the lifting function, Ttop the temperature at the top of the347

model, h(x, y, z) the location in the model, zbottom(x, y) the depth of the bottom348

surface, and d(x, y) the distance between the bottom and top surface.349
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For the BB-6km with a Kriging lower boundary condition, the linear form
slightly changes to the following:

f(v;λ, s) =−
8∑
q=0

3∑
i=0

λq si

∫
Γ

∇v gi(x, y, z) dΓ + s2

∫
Γ

∇v S dΓ, ∀v ∈ X, ∀λ ∈ D,

with g1(x, y, z) = g3(x, y, z) = 1− h(x, y, z)− zbottom(x, y)

d(x, y)
,

g2(x, y, z) =(
3 d(x, y)

2a
− 1

2
(
d(x, y)

a
)3)(1− h(x, y, z)− zbottom(x, y)

d(x, y)
).

(5)
Here g1, g2, and g3 are again the lifting functions, with s1 being the nugget, s2 the350

partial sill, s3 the scaling parameter for the mean temperature, and a the range.351

4.1.2 Parameterization and Set-Up of the Sensitivity Analysis352

The sensitivity analyses are performed with 13 (BB-LAB model – Fig. 3a), 11 (BB-353

6km model – Fig. 3b), 14 parameters (BB-combined model – Fig. 3c) and with354

10,000 realizations for each parameter to reduce the statistical error. Note that355

for the Berlin-Brandenburg 6 km model exemplarily the results using the Kriging356

lower boundary condition are shown. The results of the sensitivity analyses using357

the other boundary conditions are analog to the one shown in this manuscript.358

In this paper, only the thermal conductivities are varied and the radiogenic heat359

productions are kept constant, to reduce the number of parameters within the360

reduction and all further analyses. The radiogenic heat productions are fixed and361

not the thermal conductivities because their influence on the overall temperature362

distribution is smaller. In Tab. 1, a list of all rock properties is provided. A vari-363

ation of ± 50 % from the initial thermal conductivities is allowed for all thermal364

conducitivities. Also, for the nugget and the partial sill, a variation of ± 50 %365

is enabled. For the scaling parameter of the lower boundary of both the Berlin-366

Brandenburg LAB model and Berlin-Brandenburg combined model a variation ±367

10 % and for the scaling parameter of the mean temperature at the lower bound-368

ary condition of the BB-6km model ± 20 % is used, in order to account for the369

uncertainties related to those boundary conditions.370

Table 1: Initial thermal properties Noack et al. (2012, 2013) of all
models for and after the automated model calibration. The radio-
genic heat production is denoted with S, and the initial thermal
conductivity with λinit.

ID Layer S
[µWm−3]

λinit
[Wm−1K−1]

Q Quaternary 0.7 1.50
T Tertiary 0.7 1.50
TPR Tertiary-post-Rupelian clay 0.7 1.50
TRC Tertiary Rupelian-clay 0.45 1.00
TPRC Tertiary-pre-Rupelian-clay 0.3 1.90
UC Upper Cretaceous 0.3 1.90
LC Lower Cretaceous 1.4 2.00
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J Jurassic 1.4 2.00
K Keuper 1.4 2.30
M Muschelkalk 0.3 1.85
BS Buntsandstein 1.0 2.0
Z Zechstein 0.09 3.5
B Basement 1.5 2.50
SR Sedimentary Rotliegend 1.0 2.16
PCV Permo-Carboniferous Volcanics 2.0 2.50
PP Pre-permian 1.5 2.65
UCR Upper crust 2.5 3.10
LCR Lower crust 0.8 2.70
LM Lithospheric Mantle 0.03 3.95

4.2 Results371

As for the conceptual study, this work demonstrates the influence of the lower372

boundary condition. Therefore, first the results from the sensitivity analysis and373

then the results from the model calibration are presented.374

4.2.1 Sensitivity Analysis375

Before presenting the results of the sensitivity analyses, note that all analyses376

were performed with the aim to investigate the influence of the lower boundary377

condition. The paper does not aim to characterize the influences of every single378

thermal parameter in the model. Nevertheless, some geological impacts can be379

derived and are presented in the following.380

Regarding the sensitivities, the Berlin-Brandenburg LAB (Fig. 4a) is mostly381

influenced by the Lower Cretaceous/Jurassic/Buntsandstein layer. The first-order382

sensitivity index is dominant over the higher-order indices. Furthermore, the model383

is sensitive to the Quaternary/Tertiary layer and the Lithospheric Mantle. For384

the Quaternary/Tertiary layer, one again has predominantly first-order influences,385

whereas the Lithospheric Mantle mostly impacts through higher-order contribu-386

tions. Less pronounced is the influence from the Zechstein layer. The observed in-387

fluence has similar first- and higher-order contributions. This is counter-intuitive388

since one would expect a high influence of the Zechstein layer due to its high ther-389

mal conductivity and highly variable thickness resulting in significant property390

contrast. To explain this discrepancy, a closer look at the set-up of the sensitivity391

analysis is required. In the analysis, layers with equal thermal conductivities were392

combined. Therefore, the thermal conductivities of the Lower Cretaceous, Juras-393

sic, and Buntsandstein layer are combined. Consequently, the high influence of this394

layer is originating from this high combined sediment thickness. Keep in mind that395

the aim of this analysis is to determine the influence of the boundary condition.396

For determining which individual thermal conductivity has the highest influence397

a separate analysis is required. The remaining thermal conductivities have minor398

influences and are therefore disregarded in further analyses.399

The Berlin-Brandenburg 6 km model is only influenced by the Basement layer400

and by the variability of the lower boundary condition (Fig. 4b). The influence of401
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𝜏 = 10-1
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Fig. 4 Global Sensitivity analysis for a) the Berlin-Brandenburg LAB, b) Berlin-Brandenburg
6 km model, and c) Berlin-Brandenburg combined model. Shown are the first- (blue) and total-
order contributions (orange). The black line denotes the threshold value τ for the truncation.
Please refer to Tab. 1, for the acronyms of the thermal conductivities.

the scaling parameter of the mean temperature is significantly higher than the one402

from the Basement layer. Higher-order contributions dominate both parameters.403
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Note that the Basement layer has nearly no first-order contributions, whereas the404

scaling parameter has non-dominant first-order contributions.405

For the Berlin-Brandenburg combined model (Fig. 4c), one observes a similar406

pattern. The highest influences, dominated by first-order contributions, are arising407

from the Lower Cretaceous/Jurassic/Buntsandstein layer. The influence of both408

the Lithospheric Mantle and the scaling parameter of the lower boundary con-409

dition increased, but higher-order contributions still dominate both parameters.410

The Tertiary-pre-Rupelian-clay/Upper Cretaceous, and the Zechstein layers are411

also influencing on the model and comparable first- and higher-order contribu-412

tions to each other.413

4.2.2 Model Calibration – Temperature Distribution414

The results from the global sensitivity analysis are taken as an input for the follow-415

ing model calibration.Therefore, only the influencing model parameters are consid-416

ered as shown in Fig. 4. Hence, four model parameters for the Berlin-Brandenburg417

LAB, two parameters for the Berlin-Brandenburg 6 km, and five parameters for418

the Berlin-Brandenburg combined model have to be taken into account for the419

model calibration. The remaining parameters are kept constant within the cali-420

bration since the sensitivity analysis identified them as having no impact on the421

temperature response. Model calibration is necessary to account for model errors422

of the Berlin-Brandenburg model.423

The calibration of the Berlin-Brandenburg 6 km model is challenging because424

of the lower boundary condition. The conventional way to define this boundary425

condition is to extract it from the calibrated BB-LAB model and apply it to426

the BB-6km model, although it is generally not clear that the calibration for the427

larger model is also valid for the shallower model. To evaluate the influence of428

different calibration results, the model calibration for the shallow model using the429

boundary condition from two uncalibrated Brandenburg LAB model versions and430

various hierarchical model calibrations are compared. For the hierarchical models,431

either the boundary condition from the calibrated BC or a boundary condition432

obtained via Kriging as the lower boundary condition are chosen.433

Therefore, Figure 5 compares the model calibrations using various lower bound-434

ary conditions of the Berlin-Brandenburg 6 km model. At the top panel, it shows435

the difference at the observation points. The differences between the various meth-436

ods are comparably small, which is not surprising since the calibration aims to437

minimize the difference between the simulated and observed temperatures at these438

locations. However, if one looks at the three points (P1 to P3, positions shown in439

Fig. 5), one observes differences between the various calibrations that can exceed440

50 °C. This means that for temperature prediction for points included inside the441

calibration data set good fits are obtained (regardless of the chosen boundary442

conditions). This changes once the points outside the calibration data set (P1 to443

P3)are considered, here significant differences for the different boundary condi-444

tions are obtained. This is of great importance for geoscientific applications since445

many studies face the problem of data sparsity. The model has many regions,446

where no data is available. Still, these regions might be of major importance. Con-447

sequently, it is desired to obtain models that are physically plausible to maintain448

the predictability of the models. To conclude, one can fit every model to a given449

temperature data set, with the consequences that the thermal conductivities get450
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partly unphysical. This is less important if the target area coincides with a high451

data density. However, this is often not the case. Therefore, the need to ensure452

that the generality of the model is preserved remains.453

P1 P2 P3

Measurement Points

Fig. 5 Comparison of the different calibration versions of the Berlin-Brandenburg-6 km model
for the observed temperatures at all temperature measurements within the model (top panel)
and at three points in the model (bottom panels) The position of the three points P1-P3 are
shown in Fig. 6. They where chosen to cover the low temperature, the high temperature, and
the by salt structures influenced temperature regions.

Fig. 6 compares the temperature distributions for the interval of the uppermost454

6 kilometers of all three versions of the Berlin-Brandenburg model. For the BB-6km455

model, exemplarily the hierarchical model calibration is shown. The differences456

for all three points (P1 to P3) are comparable among the models. Note that the457

possible variation range of the BB-6km is much larger since the determination458

of the lower boundary condition is uncertain (see Fig. 5). The BB-LAB and BB-459

combined model already show the maximum possible variation, whereas the BB-460

6km model shows only the maximum variation range of the good-fit model.461

Lastly, Fig. 7 shows the differences in the temperature distributions at the three462

points (P1 to P3) for the entire depth of the BB-LAB and BB-combined models.463

The major difference between both models is induced by the different treatments464

of the boundary condition. During the sensitivity analysis of the BB-LAB model,465

the scaling parameter of the lower boundary condition did not significantly in-466

fluence the model response, contrary to the analysis of the BB-combined model.467

Therefore, in the latter model the scaling parameter in the calibration is consid-468

ered, wheres the value is kept constant for the former model. Although, with a469

maximum temperature increase of 10 % a great amount of variation is allowed, the470

possible variations at a depth of 6 km are comparable to those of the Brandenburg471

6 km model.472
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Fig. 6 Comparison of the temperature distribution over an interval of 6 km depth for all
three versions of the Berlin-Brandenburg model at three different points in the models. The
top left panels show the initial and calibrated temperature values or BB-LAB model and the
stratigraphic columns for the points P1-P3. The top right panels show the same for the BB-
6km model and the bottom panels for the BB-combined model. The bottom right panel shows
the spatial position of the three points P1-P3.

BB-LAB BB-combined

De
pt

h 
[k

m
]

0

20

60

80

100

120

40

2000 400 600 800 1000 1200
Temperature [˚C]

De
pt

h 
[k

m
]

0

20

60

80

100

120

40

2000 400 600 800 1000 1200
Temperature [˚C]

1400

P1

P2

P3

P1

P2

P3

Fig. 7 The left panel shows the calibrated and initial temperature distributions at the points
P1-P3 for the BB-LAB model over the entire model depth. The right panel displays the initial
and calibrated temperature distributions at the points P1-P3 for the BB-combined model over
the entire model depth. For the positions of P1-P3 refer to Fig. 6.

4.3 Discussion473

In the following, the dangers of constructing models with a small vertical depth474

are demonstrated. To further illustrate the importance of the placement of the475

lower boundary condition, first its impact is demonstrated by using the results476

of the global sensitivity study. Afterwards, the consequences for inverse processes477

are emphasized, by using a deterministic model calibration. Both analyses are478

presented for the case study of the Berlin-Brandenburg model.479
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4.3.1 Sensitivity Analysis480

The impact of the lower boundary condition is apparent by focusing on the dif-481

ference between the BB-6km, and the BB-LAB and combined models. For the482

Berlin-Brandenburg 6 km model, the boundary condition is fixed at 6 km depth,483

resulting in an entirely boundary dominated model. This is observable due to the484

enormous sensitivity of the model to the:485

– Basement layer,486

– scaling parameter of the respective boundary condition, and487

– correlation between both parameters.488

Consequently, all information that is obtained from the Brandenburg 6 km model489

is coming from the boundary condition. Hence, the model is uninformative con-490

cerning the upper layers. However, these are the layers that are of interest since491

the target region is within these layers. Loosing the information about the thermal492

conductivities means that only the boundary is determining the solution. Hence,493

any errors of the boundary conditions have a possible huge impact on the temper-494

ature distribution at the target depth. This demonstrates that generating diffusive495

models with an extremely small vertical to horizontal length ratio is to be avoided496

at any cost.497

The results of the global sensitivity analysis of the BB-LAB and combined498

model are matching the expectations. A high sensitivity is observed for the up-499

per layers, which is caused by the shallow measurements (500 m to 6,820 m).500

First-order contributions of the Lower Cretaceous/Jurassic/Buntsandstein layers501

mostly impact the model. That means that the thermal conductivities of these502

layers are influencing the model themselves and not through a correlation with503

other layers. For the BB-LAB model, the thermal conductivity of the Quater-504

nary and the Tertiary layer were combined into one training parameter. For the505

Brandenburg combined model, the thermal conductivities of the Quaternary and506

Tertiary-post-Rupelian, and the Tertiary-pre-Rupelian-clay and Upper Cretaceous507

were combined. Comparing the sensitivity analysis of both the BB-LAB model and508

combined model, one can conclude that the Tertiary-pre-Rupelian-clay is the layer509

that the model is sensitive to. The Quaternary, and the Tertiary-post-Rupelian510

layer can be ruled out because the Berlin-Brandenburg combined model is insen-511

sitive to it. Furthermore, also the Upper Cretaceous can be eliminated because512

the Berlin-Brandenburg LAB model is insensitive to it. Also, the influence of the513

thermal conductivity of the Tertiary-pre-Rupelian-clay is mainly originating from514

the parameter itself and not from interactions between various parameters. Again,515

the influence of the Tertiary-post-Rupelian-clay seems counter-intuitive due to its516

low thickness. This influence is a combination of the shallow measurements, which517

lead to higher influences for the upper layers and the Dirichlet boundary condition518

at the top. This boundary conditions fixes the temperature for each evaluation to519

the same value, yielding a reduced influence of the Quaternary and therefore a520

relatively higher influence of the Tertiary layers.521

Additionally, for both models a significant influence of the Lithospheric Mantle522

is retrieved. Higher-order contributions dominate this parameter, and the second-523

order sensitivity indices show the parameter is correlated to the scaling parameter524

of the lower boundary condition. The Zechstein layer has similar influences in both525

model versions and is less significant in comparison to the overall influences.526
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To conclude, the only meaningful way to construct the model is by inserting527

the refined model into the original Berlin-Brandenburg LAB model. This results in528

the BB-combined model, which again shows the expected sensitivity distribution.529

One needs to keep in mind that this means an increase in degrees of freedom530

from 1,546,675 to 2,141,550. Nonetheless, both the finite element and the online531

execution time for both models are comparable since the complexity in these two532

models remains similar. This demonstrates that a reduction in the mathematical533

and not in the physical space is advantageous since it is much less restrictive.534

4.3.2 Model Calibration535

At first hierarchical model calibrations seem to be a way to transfer the knowledge536

from large-scale coarse models to smaller-scale fine discretized models. However,537

the sensitivities clearly show that the smaller model becomes uninformative to-538

wards the upper layers. That is especially dangerous because it is not noticeable539

looking at the temperature distributions at the observation points only. Hence, at540

a first glance, one would get to the conclusion that cutting-of the model at 6 km is541

a valid approach. However, this would only be possible if our sole interests are the542

temperatures at the measurement points used within the calibration. Naturally,543

a calibration will match the simulation to the observed temperatures. However,544

that comes at a cost. For the various model calibrations of the BB-6km model545

one obtain thermal conductivities ranging between 1.49 W m-1 K-1 and 2.83 W546

m-1 K-1 for the Basement layer. Meaning that no longer physical thermal conduc-547

tivities but effective ones are retrieved. These effective thermal conductivities are548

tailored to our measurements. However, if a different location (e.g. new drill-hole549

location) is of interest, one can no longer derive reliable temperatures since the550

model calibration is not valid for this point and the model lost the information551

about the physical system.552

This reveals the next important point. The above-described procedure is valid553

in a limited application field. However, one should be aware that the model is554

no longer representative of the physical processes. In contrast, both the BB-LAB555

and combined model have significant influences from various thermal conductivi-556

ties. The lower boundary condition is further away from the target area, reducing557

possible effects from this condition.558

In general, one wants to improve through global SA the understanding of the559

physical model. In this specific case study, it a way to determine the most in-560

fluencing parameters allowing a back correlation to the geoscientific context was561

demonstrated. Note that both the SA and the calibration focus on the observa-562

tion locations. Hence, higher influences of shallower layers are observed. A study563

focusing solely on the temperatures at certain locations is applicable for some geo-564

physical studies but if the interest goes beyond fitting the temperatures it is not565

advisable to use models that are cut-off at a shallow depth.566

Note that the changes for the thermal conductivities were not discussed in de-567

tail here. The reason is that the discussion of this paper focuses on the influence of568

the boundary condition. For further information about the thermal conductivities,569

refer to the Supplementary Material.570
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4.3.3 Outlook571

Through this study, the path to subsequent tasks is opened. It would be interesting572

to further investigate the lower boundary condition. For some of the calibrations,573

very high thermal conductivities of the Lithospheric Mantle were obtained, which574

might be caused by the geometrical inaccuracies of the LAB. These inaccura-575

cies would impact the lower boundary condition and the calibration would try576

to compensate for this by adjusting the thermal conductivity of the Lithospheric577

Mantle. A scaling factor to the temperature value of this boundary to account578

for these inaccuracies was applied, which slightly improved the results. However,579

a single parameter is not enough to compensate for the model errors. Therefore,580

it would be interesting to replace the scaling factor by a function, which could581

be, for instance, determined through data assimilation. For this reason, a promis-582

ing next step to take would be to investigate if 3D-Var data assimilation yields583

improved results. In contrast to classical sequential data assimilation techniques,584

such as the Ensemble Kalman Filter (Burgers et al., 1998; Evensen, 1994), vari-585

ational data assimilation is a continuous approach, where the entire time frame586

is considered. Variational data assimilation methods minimize a cost function to587

obtain an estimate of the state variable. Three dimensional variational data assim-588

ilation has been studied intensively in numerical weather forecast by, for instance,589

Barker et al. (2004); Lorenc et al. (2000) but is fairly unknown for geothermal590

simulations. It has been studied in combination with the RB method already by591

Aretz-Nellesen et al. (2019). However, so far, the study is using benchmark prob-592

lems only. Therefore, it would be interesting to investigate the performance of the593

method for complex geophysical problems.594

5 Conclusion595

Throughout the entire paper, the high impact of the lower boundary conditions for596

conductive crustal-scale applications was demonstrated. Using a novel combination597

of reduced-order modeling techniques and global sensitivity analysis, the paper598

illustrated that cutting-of models at a shallow depth has severe consequences. For599

these models, the information content of the geological structures is entirely lost.600

This is of utmost importance if one aims to derive physical knowledge from the601

model and or want to perform predictions with the given model. These findings602

should be well known, still, it is a common procedure to construct models with a603

small vertical extent. Therefore, this work aims to explicitly show the consequences604

of this approach. The clear visualization of the boundary problem becomes only605

apparent through the utilization of a global sensitivity analysis since this method606

allows also the investigation of parameter correlations. Note that the value of a607

“too” small vertical extend differs for each model since it is dependent on various608

factors such as the type of boundary condition, the geological structure, and the609

governing physical principles. This further highlights the importance of sensitivity610

analyses in order to reliably determine whether a model is boundary-dominated.611

In order to construct informative models with a smaller vertical extend one could612

use, for instance, the Moho as the base boundary condition and apply a Neumann613

boundary condition, which is less restrictive than a Dirichlet boundary condition.614
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Another possibility is to use optimal experimental design techniques to determine615

a feasible depth of the model.616
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Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algo-789

rithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020.790

doi: 10.1038/s41592-019-0686-2.791

Haruko M Wainwright, Stefan Finsterle, Yoojin Jung, Quanlin Zhou, and Jens T792

Birkholzer. Making sense of global sensitivity analyses. Computers & Geo-793



Revisiting the Influence of Deep Boundary Conditions 25

sciences, 65:84–94, 2014.794

Norihiro Watanabe, Wenqing Wang, Christopher I McDermott, Takeo Taniguchi,795

and Olaf Kolditz. Uncertainty analysis of thermo-hydro-mechanical coupled796

processes in heterogeneous porous media. Computational Mechanics, 45(4):263,797

2010.798

J Florian Wellmann and Lynn B Reid. Basin-scale geothermal model calibration:799

Experience from the Perth Basin, Australia. Energy Procedia, 59:382–389, 2014.800

Che-Sheng Zhan, Xiao-Meng Song, Jun Xia, and Charles Tong. An efficient inte-801

grated approach for global sensitivity analysis of hydrological model parameters.802

Environmental Modelling & Software, 41:39–52, 2013.803



JOURNAL OF GEOPHYSICAL RESEARCH

Supporting Information for “Crustal-Scale Thermal

Models: Revisiting the Influence of Deep Boundary

Conditions”
Denise Degen1, Karen Veroy2,3, Magdalena Scheck-Wenderoth4,5, Florian

Wellmann1

1Computational Geoscience and Reservoir Engineering (CGRE), RWTH Aachen University, Wüllnerstraße 2, 52072 Aachen,
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We denote all parameters that are not involved in the model calibration, due to too low
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sensitivities or that are not applicable for the specific model version, with n/a. Addition-

ally, the IDs of the training parameters µ are provided. We denote the radiogenic heat

production with S, the initial thermal conductivity with λinit, and the calibrated thermal

conductivity with λcal.

Introduction

This supporting material provides additional information regarding the results of the

model calibration for the thermal conductivities (Text S1 and Table S1). Figure S1

shows the convergence for the maximum relative error for all three versions of the Berlin-

Brandenburg model.

Text S1: Model Calibration – Thermal Conductivities

Table S1 presents the changes in the thermal conductivity between the initial and the

best-calibrated values for all models. Regarding the Berlin-Brandenburg LAB model, we

observe an increase from 2.0 W m-1 K -1 to 2.45 W m-1 K -1 for the Lower Cretaceous-

/Jurassic/Buntsandstein layers. For the Berlin-Brandenburg combined model, we see a

more pronounced increase, resulting in a value of 2.53 W m-1 K -1. Furthermore, a sub-

stantial increase in thermal conductivity is observed for the Lithospheric Mantle, resulting

in conductivities of 5.93 W m-1 K -1 for the BB-LAB and combined model. Additionally,

the scaling parameter for the lower boundary condition shows an increase to 1.10 for BB-

combined model. Also, we obtain decreased thermal conductivities for the Zechstein layer

of 3.45 W m-1 K -1 (BB-LAB model), and an increased value of 3.73 W m-1 K -1 (BB-

combined model). The calibration of the Berlin-Brandenburg LAB model leads to an

increased thermal conductivity of 1.99 W m-1 K-1 for the Quaternary/Tertiary layer, and
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the calibration of the Berlin-Brandenburg combined model to an increased thermal con-

ductivity of the Tertiary-pre-Rupelian-clay/Upper Cretaceous layer to 1.93 W m-1 K -1.

The parameter distribution for the BB-6km model shows an increased thermal conductiv-

ity of 2.78 W m-1 K -1 for the Basement layer. The scaling factor for the mean temperature

is 21.54 after the calibration resulting in a mean temperature of 180 °C.

For the discussion of the thermal conductivities of the calibration results, we talk about

the results from the Berlin-Brandenburg LAB and combined model because of the un-

informative nature of the Berlin-Brandenburg 6 km model. We observe similar trends

for both the original and the refined model. Although, the parameter distribution of the

BB-combined model after the calibration is closer to the initial parameter distribution

than the one from the BB-LAB model. This demonstrates the need for model calibration.

It is incredibly challenging and time-consuming to construct a model that accounts for all

structural effects. Taking the lack of data into account, it becomes a somehow impossible

task. Therefore, we follow a different approach in this work. We compensate, for the

model errors, by replacing the physical by effective thermal conductivities. In that way,

we obtain a representative model. Also, keep in mind that the major shortcoming of the

BB-6km model could only be revealed using a global sensitivity analysis. However, this

requires so many forward simulations that it is not realizable, even with state-of-the-art

finite element solvers, on a basin-scale without using surrogate models.

Considering the geological setting, the significant increase in thermal conductivity for

the Lower Cretaceous/Jurassic/Buntsandstein layers (BB-LAB model and BB-combined

model) is most likely caused by unresolved salt structures. Further investigations are

required to analyze whether all layers (Lower Cretaceous/Jurassic/Buntsandstein) or only
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one layer contain unaccounted structures. The increase in thermal conductivity for the

Zechstein layer is also most likely caused by unaccounted salt structures. Note that the

increase in thermal conductivity for the Zechstein layer is significantly lower for the Berlin-

Brandenburg combined model than for the Berlin-Brandenburg LAB model leading to the

conclusion that the geological refinement captured successfully missing salt structures.

The Keuper layer has after the calibration nearly the same value as the Muschelkalk

layer leading to the assumption that we underestimated the sediment thickness of the

Muschelkalk.

Combining the increase in thermal conductivity of the Lithospheric Mantle and the vari-

ation of the lower boundary conditions leads to the conclusion that a wrong geometrical

parameterization of the LAB causes this increase. The correlation between both param-

eters confirms this. The fact that fixing the boundary condition to 1300 °C leads to an

even higher increase in thermal conductivity further emphasizes this. For further studies,

one could either allow a larger variation at the lower boundary condition or use a bound-

ary condition that is either derived by data assimilation or considers tomography-derived

temperatures.

Regarding the BB-6km model, we already stated that it is completely boundary domi-

nated. Therefore, we focus the discussion on the Berlin-Brandenburg LAB and combined

model. From the sensitivity analysis, we know that the main influence from the upper

layers is arising from the Tertiary-pre-Rupelian-clay. Again, the increase is less dominant

for the BB-combined model than for the BB-LAB model. This leads us to the conclusion

that structural effects mainly cause this mismatch. The refined model version resolves

this much better.
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Figure S1. Convergence of the maximum relative error bound for the Brandenburg 6

km model (denoted in purple), the Brandenburg combined model (denoted in green), and

the Brandenburg LAB model (denoted in blue). We are using an error tolerance of 1·10-3

for the Brandenburg 6 km model, and an error tolerance of 5·10-4 for the Brandenburg

combined and LAB model.
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