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Abstract

Increasing atmospheric CO2 measurements in North America, especially in urban areas, may help enable the development of

an operational CO2 emission monitoring system. However, isolating the fossil fuel emission signal in the atmosphere requires

factoring out CO2 fluctuations due to the biosphere, especially during the growing season. To help improve simulations

of the biosphere, here we customize the Vegetation Photosynthesis and Respiration Model (VPRM) at high-resolution for

an eastern North American domain, upwind of coastal cities from Washington D.C. to Boston, MA, optimizing parameters

using domain-specific flux tower data from 2001 to the present. We run three versions of VPRM from November 2016 to

October 2017 using i) annual (VPRMann) and ii) seasonal parameters (VPRMseas), and then iii) modifying the respiration

equation to include the Enhanced Vegetation Index (EVI), a squared temperature term and interactions between temperature

and water stress (VPRMnew). VPRM flux estimates are evaluated by comparison with other models (the Carnegie-Ames-

Stanford Approach model, or CASA, and the Simple Biosphere Model v4), and with comparison to atmospheric CO2 mole

fraction data at 21 surface towers. Results show that VPRMnew is relatively unbiased and outperforms all other models in

explaining CO2 variability from April to October, while VPRMann overestimates growing season sinks by underestimating

summertime respiration. Despite unknown remaining errors in VPRMnew, and uncertainties associated with other components

of the atmospheric CO2 comparisons, VPRMnew appears to hold promise for more effectively separating anthropogenic and

biospheric signals in atmospheric inversion systems in eastern North America.
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Key points 15 

1. VPRM was customized for eastern North America with a respiration model including EVI, 16 

quadratic temperature and water stress factors. 17 

2. The modified VPRM improves agreement with atmospheric CO2 observations by increasing 18 

growing season respiration. 19 

3. The modified VPRM better explains hourly atmospheric CO2 variability from April to October 20 

compared to other models in 2016/ 2017. 21 

 22 

Plain Language Summary 23 

Monitoring fossil fuel emissions with atmospheric CO2 measurements can provide an independent check 24 

on bottom-up estimates and support mitigation policies by tracking emission trends over time and 25 

identifying unknown sources.  However, atmospheric CO2 is influenced by anthropogenic emissions and 26 

the natural carbon cycle from plants and soils, which contributes a strong hourly-varying signal in the 27 

atmosphere during the growing season.  Here we implement a relatively simple model of the biosphere, 28 

i.e., the Vegetation Photosynthesis and Respiration Model, at high spatiotemporal resolution in eastern 29 

North America.  The equation describing sources to the atmosphere from respiration (i.e., “breathing” 30 

from plants and decaying organic matter) is modified to make it more physiologically realistic by 31 

accounting for increases in leaf respiration during summer.  Model estimates are compared with output 32 

from other similar biospheric models and with atmospheric CO2 observations, and results show that the 33 

new VPRM better explains CO2 fluctuations in the atmosphere during the growing season compared to 34 

other models.  The model improvements shown here demonstrate promise for helping to isolate the 35 

biospheric signal in atmospheric CO2 measurements and thus improve estimation of fossil fuel emissions 36 

year-round in areas with significant nearby and upwind vegetation. 37 

 38 

  39 
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Abstract 40 

Increasing atmospheric CO2 measurements in North America, especially in urban areas, may help enable 41 

the development of an operational CO2 emission monitoring system.  However, isolating the fossil fuel 42 

emission signal in the atmosphere requires factoring out CO2 fluctuations due to the biosphere, 43 

especially during the growing season.  To help improve simulations of the biosphere, here we customize 44 

the Vegetation Photosynthesis and Respiration Model (VPRM) at high-resolution for an eastern North 45 

American domain, upwind of coastal cities from Washington D.C. to Boston, MA, optimizing parameters 46 

using domain-specific flux tower data from 2001 to the present.  We run three versions of VPRM from 47 

November 2016 to October 2017 using i) annual (VPRMann) and ii) seasonal parameters (VPRMseas), and 48 

then iii) modifying the respiration equation to include the Enhanced Vegetation Index (EVI), a squared 49 

temperature term and interactions between temperature and water stress (VPRMnew).  VPRM flux 50 

estimates are evaluated by comparison with other models (the Carnegie-Ames-Stanford Approach 51 

model, or CASA, and the Simple Biosphere Model v4), and with comparison to atmospheric CO2 mole 52 

fraction data at 21 surface towers.  Results show that VPRMnew is relatively unbiased and outperforms all 53 

other models in explaining CO2 variability from April to October, while VPRMann overestimates growing 54 

season sinks by underestimating summertime respiration.  Despite unknown remaining errors in 55 

VPRMnew, and uncertainties associated with other components of the atmospheric CO2 comparisons, 56 

VPRMnew appears to hold promise for more effectively separating anthropogenic and biospheric signals 57 

in atmospheric inversion systems in eastern North America. 58 

 59 

1. Introduction 60 

Carbon dioxide (CO2) surface fluxes from the terrestrial biosphere produce a large and variable signal in 61 

the atmosphere during the growing season (due to both photosynthetic uptake and ecosystem 62 

respiration) that can dwarf the signal from fossil fuel emissions in biologically productive areas (Shiga et 63 

al., 2014).  Even in the dormant season (e.g., December to March in the northern hemisphere), 64 

biospheric sources from ecosystem respiration have the same sign and an accumulated signal in the 65 

atmosphere potentially as large as that from fossil fuel emission sources, especially when integrated 66 

over large areas.  Within cities and their suburban surroundings there is also an active biosphere year-67 

round within parks, lawns, and gardens, and from urban street trees and city-scale agriculture 68 

(Buyantuyev & Wu, 2009; Golubiewski, 2006; Nowak & Crane, 2002; Raciti et al., 2014).  69 

Recent efforts to estimate anthropogenic CO2 emissions using inversion models with atmospheric 70 

measurements collected in urban and suburban areas close to fossil fuel emission sources are 71 

confounded by the difficulty in separating out the biospheric from the fossil fuel signal (Lauvaux et al., 72 

2021; Miller et al., 2020; Sargent et al., 2018; Shiga et al., 2014; Yadav et al., 2016).  Many previous 73 

inversion studies (Gurney et al., 2002; Hu et al., 2019; Rödenbeck et al., 2003) at continental and global 74 

scales factored out the influence of fossil fuel emissions (assumed as well-known) from atmospheric 75 

observations and then used the inversion to optimize biospheric flux estimates.  However, in order to 76 

estimate emissions with atmospheric inversions, the problem must be reversed by assuming biospheric 77 

fluxes as known or separately estimating both biospheric and anthropogenic fluxes with additional 78 

tracers like C14 (e.g., Basu et al., 2020).  Regardless, any errors in biospheric CO2 flux estimates will be 79 

directly aliased onto emission estimates, and thus, a high-quality biospheric model at fine spatial and 80 



4 
Submitted to Journal of Geophysical Research - Biogeosciences 

temporal scales consistent with the variability of CO2 in the atmosphere can further help to isolate the 81 

emissions signal.  Put another way, the better that the biospheric CO2 signal can be modeled in the 82 

atmosphere (at surface observing locations, along aircraft trajectories and/ or in total columns as seen 83 

from satellites), the more statistical power that inversion models will have to adjust the emission signal 84 

using observed atmospheric CO2 mole fractions.  In fact, the terrestrial biosphere is considered as one of 85 

the largest sources of uncertainty in atmospheric CO2 inversions during the growing season for the 86 

North American and smaller regional domains (Feng et al., 2019a; Feng et al., 2019b; Sargent et al., 87 

2018). 88 

A further complication with inversions designed to isolate the anthropogenic CO2 signal, especially in 89 

urban areas, is that biospheric CO2 fluxes need to be appropriately modeled not just inside the specified 90 

domain, but also in upwind areas outside the domain (also known as background conditions).  For urban 91 

areas downwind of significant vegetation (e.g., agriculture or forests), determining the background CO2 92 

contribution to observed mole fractions can be a substantial challenge (Karion et al., 2021; Lauvaux et 93 

al., 2021; Sargent et al., 2018).  This is exemplified by recent efforts to expand the urban and suburban 94 

atmospheric CO2 monitoring network in the Northeast Corridor (NEC) of the USA (from Washington D.C. 95 

to Boston, MA; Karion et al., 2020; Lopez-Coto et al., 2017; Pitt et al., 2020; Sargent et al., 2018), given 96 

that regions upwind of the NEC include the biologically productive Appalachian deciduous forests, 97 

northern mixed forests and southern pine plantations, croplands in the Midwestern Corn Belt and 98 

Mississippi river valley, grasslands in Kentucky and Tennessee and coastal and northern wetlands (Figure 99 

1).  Furthermore, the influence of background conditions vs. fluxes inside the domain is largely a 100 

function of how the domain is defined.  Future efforts to combine multiple urban areas into nested 101 

domain inversions (with high-resolution fluxes estimated in urban areas and coarser resolution outside, 102 

e.g., Schuh et al., 2019; Turner & Jacob, 2015), would increase the signal to noise inside the domain by 103 

using towers with overlapping constraints and reduce the influence of background uncertainty.  With 104 

such a setup, it will become even more important to appropriately model the biosphere at high spatial 105 

and temporal resolution in both urban and surrounding rural areas.   106 

Towards these ends, we focus here on improving and evaluating biospheric models specifically for a 107 

domain in the eastern USA and Canada upwind of the NEC (Figure 1).  For this region, we create a 108 

customized version of the Vegetation Photosynthesis and Respiration Model (VPRM; Mahadevan et al., 109 

2008) for a single year (November 2016 to October 2017), optimizing model parameters with data from 110 

flux towers in and near the domain (Figure 1), and using both annual (VPRMann) and seasonally-varying 111 

(VPRMseas) parameters.  Given the relatively simplistic respiration model in the original Mahadevan et al. 112 

(2008) formulation (with a baseline value and linear temperature dependence), we also introduce a 113 

modified respiration model in VPRM (i.e., VPRMnew) that includes additional covariates: i) a quadratic 114 

temperature term, ii) a vegetation index to better capture seasonality in autotrophic respiration, and iii) 115 

a water stress scaling factor and its interactions with temperature to capture drought and soil moisture 116 

effects.   117 

By comparing three versions of VPRM optimized for this domain, we evaluate different aspects of model 118 

improvement, and identify their contributions to improved performance relative to two types of 119 

observations: flux tower direct measurements of Net Ecosystem Exchange (NEE) and near-surface 120 

atmospheric CO2 mole fractions.   We also evaluate VPRM in comparison to two other commonly-used 121 

terrestrial biosphere models in North America: the Carnegie-Ames Stanford Approach (CASA) model 122 

(Potter et al., 1993; Randerson et al., 1996; Zhou et al., 2020) and the Simple Biosphere model, version 4 123 
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(SiB4;  Haynes et al., 2019; Sellers et al., 1986, 1996).  VPRM, CASA and SiB4 represent a range of 124 

biospheric modeling approaches that vary from the most empirical (VPRM) to the most process-based 125 

and mechanistic (SiB4), with the CASA model of intermediate complexity.  Additional details of the 126 

models and their principal differences are discussed in Section 2.1.   127 

The seasonal cycles, diurnal cycles, and gridded spatial patterns of CO2 flux estimates are first compared 128 

across models, with the goal to identify differences and commonalities in model inputs, formulation and 129 

outputs, and potential mechanisms contributing to differences.  Next, we compare modeled fluxes to 130 

flux tower NEE observations at 22 sites in the domain with relatively complete data in 2016/ 2017, 131 

examining how each model’s diurnal and seasonal cycle compares to observations at these discrete 132 

locations.  Finally, we couple modeled CO2 fluxes with two different transport and dispersion models 133 

and compare simulated atmospheric CO2 mole fractions to measurements collected at 21 surface tower 134 

locations in our domain (Figure 2).  Fossil fuel emissions and background conditions are factored out to 135 

isolate atmospheric CO2 enhancements due to the biosphere, and simulations are compared to 136 

observations using both monthly means and hourly time series to assess how well modeled fluxes 137 

reproduce spatial gradients, seasonality and finer-scale (diurnal and synoptic) temporal variability in the 138 

atmosphere.  The comparison with atmospheric CO2 measurements helps to evaluate the models using 139 

a regional integrated signal (albeit with intermittent sampling in space and time and dilution due to 140 

atmospheric mixing and transport), and thus identify how biological flux models manifest in reproducing 141 

atmospheric CO2 variability.   142 

 143 

2. Methods 144 

2.1  Biospheric models 145 

All three biospheric models (VPRM, CASA and SiB4) separately estimate carbon release to the 146 

atmosphere due to ecosystem respiration (Re, or the sum of autotrophic, Ra, and heterotrophic, Rh, 147 

respiration) and carbon uptake due to photosynthesis (also known as Gross Primary Production, or GPP), 148 

with Net Ecosystem Exchange (NEE) defined as their difference (i.e., Re - GPP).  Each model also 149 

differentiates flux dynamics across land cover categories, referred to as Plant Functional Types (PFTs), 150 

and then merges the flux estimates from each category into a total flux for each pixel.  However, the 151 

models differ in their physiological representations of GPP and Re, their input datasets, PFT 152 

classifications and phenology (or seasonal timing) schemes, as will be discussed further below (and 153 

shown in Table S1). 154 

Each biospheric model was run for a single year from Nov 1, 2016 to Oct 31, 2017 for our domain of 155 

interest:  -92 °W to -68 °W, 33 °N to 47 °N (Figure 1), with all models run at or downscaled to hourly 156 

temporal resolution.  The spatial resolution for each model varies, with VPRM run at 0.02° 157 

(approximately 2 km2), CASA at 500 m in the coterminous USA (and 5 km in Canada), and SiB4 at 0.5° 158 

(approximately 50 km).  Flux estimates from all models are aggregated/ disaggregated to 0.1° for further 159 

analysis, a scale which allows for comparison of fine-scale spatial variability and computational 160 

tractability.  The availability of transport model runs from two models limited the study to this single 161 

year; however, weather patterns in this year were within the range of 20 years of interannual variability 162 

in most parts of the domain (Figure S1).   163 
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In this section, we review the original VPRM model from Mahadevan et al. (2008), and then describe the 164 

modified version developed for this study (Table 1).  We then briefly describe the model structure and 165 

implementations of CASA and SiB4 included in the model inter-comparison, with further details and 166 

inputs for all three models also included in Table S1.   167 

 168 

2.1.1 VPRM 169 

The Vegetation Photosynthesis and Respiration Model (VPRM) is a diagnostic light-use efficiency model 170 

that relies on remote-sensing inputs to calculate GPP and simulate phenology.  It was implemented here 171 

using the original equations from Mahadevan et al. (2008), as well as a version with a respiration 172 

equation modified to include additional covariates, as described below.  PFT-specific parameters for 173 

both versions are optimized using hourly NEE observations from 69 flux towers in and near our domain 174 

with data at any time from 2001 to the present (Figure 1; Table S2), excluding data in 2017 for model 175 

evaluation.  (More details on the flux tower data is included in the supplemental material.)   176 

The GPP equation is the same for all VPRM model versions, and is defined as: 177 

 178 

 
𝐺𝑃𝑃 = 𝜆 ∗ 𝑇𝑠𝑐𝑎𝑙𝑒 ∗ 𝑃𝑠𝑐𝑎𝑙𝑒 ∗ 𝑊𝑠𝑐𝑎𝑙𝑒1  

1

(1 +
𝑃𝐴𝑅
𝑃𝐴𝑅0

)
∗ 𝑃𝐴𝑅 ∗ 𝐸𝑉𝐼 

Eq. 1 

 179 

where PAR is Photosynthetically Active Radiation, EVI is the Enhanced Vegetation Index, and Tscale, Pscale, 180 

and Wscale1 are temperature, phenology and water stress scaling factors, as defined in Mahadevan et al. 181 

(2008).  Parameters optimized with flux tower data are λ (a potential light-use efficiency factor) and 182 

PAR0 (the half-saturation constant of PAR, or photosynthetic efficiency at high light levels).  PAR*EVI 183 

represents the amount of absorbed radiation, with GPP modeled as potential uptake (i.e., λ*PAR*EVI) 184 

downregulated by each of the scaling factors.   185 

Wscale1 is defined for all PFTs as: 186 

𝑊𝑠𝑐𝑎𝑙𝑒1 =  
1 + 𝐿𝑆𝑊𝐼

1 + 𝐿𝑆𝑊𝐼𝑚𝑎𝑥
 

 

Eq. 2 

where LSWI is the remotely-sensed Land Surface Water Index (Chandrasekar et al., 2010) from MODIS, 187 

and LSWImax is the site-specific maximum daily LSWI from a multi-year mean for May to October (Xiao et 188 

al., 2004).   189 

The original VPRM model formulation estimates Re as a baseline value plus linear function of 190 

temperature:  191 

 𝑅𝑒 =  𝛽 +  𝛼 ∗ 𝑇𝑎𝑖𝑟. Eq. 3 

Here, Tair is the surface air temperature (in °C), and β (baseline level) and α (temperature sensitivity of 192 

respiration) are optimized parameters.  In Mahadevan et al. (2008), Tair below a threshold (Tlow) is set 193 



7 
Submitted to Journal of Geophysical Research - Biogeosciences 

equal to Tlow to account for continued respiration in winter, when soils remain warmer than air 194 

temperatures.  Here instead, we just set predicted negative Re values to zero.   195 

For the original VPRM model, GPP (λ and PAR0) and Re (β and α) parameters are optimized 196 

simultaneously by minimizing least squares across all 24-hours of hourly NEE observations.  This 197 

optimization procedure ensures zero bias on an average basis across the full time period of the data but 198 

does not guarantee that optimized parameters will explain all variability, e.g. the peaks of the diurnal or 199 

seasonal cycles.  We first optimize a set of annual (i.e., time-invariant) parameters for each PFT, and 200 

then four sets of seasonally varying parameters (for December to February, March to May, June to 201 

August and September to November; Table S3), given that the optimal grouping of parameters (in time 202 

and space) in VPRM remains an open question (T. W. Hilton et al., 2013, 2014).  These VPRM runs using 203 

the original VPRM equations are henceforth referred to as VPRMann (annual parameters) and VPRMseas 204 

(seasonal parameters) throughout the paper (Table 1). 205 

To help improve the respiration model, the equation for Re is then updated to include additional 206 

predictor variables:    207 

 𝑅𝑒 =  𝛼1 ∗ 𝑇′ + 𝛼2 ∗ 𝑇′2 +  𝛾 ∗ 𝐸𝑉𝐼 + 𝜃1 ∗ 𝑊𝑠𝑐𝑎𝑙𝑒2 + 𝜃2 ∗ 𝑊𝑠𝑐𝑎𝑙𝑒2 ∗ 𝑇′ + 𝜃3 ∗ 𝑊𝑠𝑐𝑎𝑙𝑒2 ∗ 𝑇′2
 Eq. 4 

where α1, α2, γ, θ1, θ2 and θ3 are optimized parameters (discussed below), and T’ are modified low 208 

temperatures designed to simulate soil temperatures that remain warmer than air temperatures in 209 

winter: 210 

 𝐹𝑜𝑟 𝑇𝑎𝑖𝑟 <  𝑇𝑐𝑟𝑖𝑡            𝑇′ = (𝑇𝑎𝑖𝑟 − 𝑇𝑐𝑟𝑖𝑡) ∗ 𝑇𝑠𝑐𝑎𝑙𝑒 + 𝑇𝑐𝑟𝑖𝑡  
 

Eq. 5 

 𝐹𝑜𝑟 𝑇𝑎𝑖𝑟  ≥  𝑇𝑐𝑟𝑖𝑡           𝑇′ = 𝑇𝑎𝑖𝑟 Eq. 6 

where Tcrit is a low temperature threshold (in °C) and Tscale is a scalar from 0 to 1, which is multiplied by 211 

air temperatures below Tcrit, and both are optimized parameters.  This modification of low air 212 

temperatures for Re is like the fixed Tlow threshold in Mahadevan et al (2008), but here T’ can still slope 213 

downward in winter.  A slightly different water stress scaling factor is also used in the updated Re 214 

equation, with Wscale2 defined as a normalized LSWI: 215 

 216 

 
𝑊𝑠𝑐𝑎𝑙𝑒2 =  

𝐿𝑆𝑊𝐼 − 𝐿𝑆𝑊𝐼𝑚𝑖𝑛

𝐿𝑆𝑊𝐼𝑚𝑎𝑥 − 𝐿𝑆𝑊𝐼𝑚𝑖𝑛
. 

Eq. 7 

 217 

The new respiration model formulation (Equation 4) was chosen by running various multivariate 218 

regressions against observed nighttime average NEE at the flux towers to determine a single equation 219 

that consistently improves model fit across PFTs.  Models were evaluated by comparing adjusted R2s 220 

across different sets of potential covariates, which, like other model selection algorithms, penalizes the 221 

addition of spurious predictor variables.  Wscale2 gave a slightly better model fit for the grasslands, 222 
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soybean/ other crops and shrubland PFTs compared to Wscale1, and equivalent fits for the other PFTs; 223 

hence this definition of Wscale was chosen for the Re equation.   224 

In the modified respiration equation, the squared temperature term introduces a non-linear 225 

temperature response, while EVI introduces realistic seasonality and spatial patterns into Re estimates.  226 

The Wscale2 parameter and its interactions with temperature help to account for water stress, especially 227 

at high temperatures when soils tend to dry out.  Literature supports the use of these additional factors 228 

to help explain Re fluxes, given that autotrophic respiration has large seasonal increases associated with 229 

canopy development (Jassal et al., 2007), current assimilation (i.e., photosynthetic uptake) is known to 230 

account for a large portion of above and below-ground autotrophic respiration during the growing 231 

season (Amthor, 2000; Högberg et al., 2001), and that soil moisture limits both autotrophic and 232 

heterotrophic respiration during drought periods (Flexas et al., 2006; Meir et al., 2008; Molchanov, 233 

2009).  These additional factors have also previously been suggested as needed improvements to the 234 

VPRM Re equation in Li et al. (2020).   235 

With the new Re model, all parameters (α1, α2, γ, θ1, θ2, and θ3) in Equation 4 are estimated as 236 

coefficients from the nighttime NEE regressions using flux tower data for each PFT, while Tcrit and Tscale 237 

are optimized by maximizing R2 values in the regressions across a range of realistic values.  GPP 238 

parameters are then optimized using partitioned daytime GPP observations (determined by subtracting 239 

predicted daytime respiration from observed daytime NEE).  Only one set of time-invariant parameters 240 

are optimized for each PFT with this updated Re model given that EVI and LSWI help to account for 241 

seasonal changes (Table S4).  This version of VPRM is henceforth referred to as VPRMnew (Table 1). 242 

For all three versions of VPRM (VPRMnew, VPRMann and VPRMseas), the original PFT classification from 243 

Mahadevan et al. (2008) and the AmeriFlux database was re-examined to see how tower-specific 244 

optimized parameters cluster across and between PFTs.  Based on this preliminary analysis (Figure S2), 245 

corn is separated from other crop categories, evergreen needleleaf and mixed forests are merged and 246 

then divided into north and south at 40°N (the halfway latitude in the domain, where fast-growing pine 247 

plantations in the south behave differently from more mature forests in boreal areas, Figure 1).  This is 248 

consistent with previous work (Hilton et al., 2013; J. Xiao et al., 2011) showing that stand age and 249 

disturbance history may be equally as important as climate and PFTs for understanding NEE variations at 250 

large regional scales.  The optimal temperature for corn (which goes into the Tscale parameter) was set 251 

higher than for other crops to match literature values and reflects higher temperature optima for C4 252 

relative to C3 crops (Tables S3 and S4).  Minimum, maximum and optimal temperatures for other PFTs 253 

are taken from previous implementations of VPRM and based on literature values (T. W. Hilton et al., 254 

2013; Mahadevan et al., 2008).    255 

For all versions of VPRM, developed land with low, medium and high intensity in the National Land 256 

Cover Database (NLCD; Jin et al., 2019; Yang et al., 2018) in the USA (and “urban/ developed” in the 257 

Canadian land cover product, Table S1, Figure 1) is classified as an urban PFT.  However, the “developed-258 

open” category in the NLCD, i.e., cemeteries, gardens, lawns, and parks, is instead classified as 259 

grasslands, with the assumption (in the absence of other information) that they behave like other 260 

unmanaged grasslands.  Parameters for the urban PFT are assumed to be the same as for deciduous 261 

broadleaf forests (as in Hardiman et al., 2017), presumably the native vegetation of most cities in our 262 

domain.  A correction was then applied to reduce heterotrophic respiration (assumed as half the total) 263 

by the fraction of impervious surfaces in the urban PFT, but the autotrophic respiration correction in 264 
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Hardiman et al (2017) was not applied, given the difficulty in identifying reference pixels outside of 265 

every city in the domain.  For VPRMnew, Re is also lower in urban areas due to lower EVI values.   266 

Gridded VPRM fluxes are estimated across the domain using the single GPP equation and two different 267 

Re equations using PFT-specific parameters, with total fluxes derived as weighted averages of PFT-268 

specific fluxes using fractional gridded land cover maps.  Fluxes are estimated hourly, using daily EVI and 269 

LSWI inputs (interpolated from overlapping 16-day and 8-day composite products from the MODIS Terra 270 

and Aqua satellites), and hourly air temperature and radiation data from the High Resolution Rapid 271 

Refresh model (HRRR; Benjamin et al., 2016).  VPRM inputs, including land-cover maps, are described in 272 

more detail in the supplemental material.   273 

 274 

2.1.2 CASA 275 

The CASA model was first developed in the 1990s to take advantage of remote-sensing data from NASA 276 

satellites (Potter et al., 1993; Randerson et al., 1996) and to probe scientific questions about the global 277 

carbon cycle at coarse spatial scales.  Since then, it has been used extensively as a biospheric prior in 278 

global and continental inversion studies, e.g. in the North American CarbonTracker CO2 inversion system 279 

from NOAA-ESRL (https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/).  CASA is a diagnostic light-use 280 

efficiency model, which incorporates remotely-sensed data, meteorological inputs and light-use 281 

efficiency factors to estimate GPP.  Unlike VPRM, CASA also includes a process-based respiration model, 282 

originally based on a simplified version of the CENTURY model (Parton et al., 1988), which tracks carbon 283 

across three live pools (leaves, stems, roots), three litter pools, five soil pools and two coarse woody 284 

debris pools (Zhou et al., 2020, Table S1).  Respiration fluxes are then determined from each pool as a 285 

function of carbon supply from photosynthetic uptake, pool-specific turnover and decay-rate constants, 286 

and environmental stress factors.   287 

The CASA model operates at a monthly timestep but an algorithm was introduced by Fisher et al. (2016) 288 

to downscale monthly fluxes to 3-hour resolution using temperature and radiation data (further linearly 289 

interpolated to an hourly resolution here).  This downscaling algorithm has proven useful for inversion 290 

studies that need to account for diurnal variability in biospheric fluxes in order to avoid biasing flux 291 

estimates at coarser temporal and spatial scales (Gourdji et al., 2010; L. Hu et al., 2019).  Even with the 292 

temporal downscaling, monthly fPAR (fraction of photosynthetically active radiation) is still used to track 293 

phenology in CASA, which can exacerbate phenological errors during times of rapid seasonal transitions 294 

(Guindin-Garcia et al., 2012; Zhou et al., 2020).  A comparison between the monthly fPAR used in CASA 295 

and 8-day EVI for VPRM in cropland and deciduous broadleaf forest pixels (indicated in Figure 1) is 296 

shown in Figure S3 in the supplemental material. 297 

The implementation of CASA used here was run as an ensemble for the ACT-America project (Zhou et 298 

al., 2020a; Zhou et al., 2020b) at relatively fine spatial scales (500 m in the coterminous US and 5 km in 299 

Canada).  Here, we use the Level 2 pruned version of the ensemble with 27 members, which contains 300 

PFT-specific parameters calibrated with flux tower data.  We then use the ensemble mean with 301 

downscaled 3-hour fluxes interpolated to hourly resolution throughout the analysis.  Ensemble means 302 

typically have superior performance compared to individual ensemble members due to a reduction in 303 

random errors (Elder, 2018; Schwalm et al., 2010).  Zhou et al. (2020) also demonstrated that the CASA 304 
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ensemble mean included in this study agrees well with flux tower measurements compared to other 305 

models, with a reasonable downscaled diurnal cycle.     306 

For this study, we merge the 500 m fluxes in the US (about ¾ of land area in the domain) with the 5 km 307 

resolution fluxes in Canada.  Given that CASA is run using the dominant land cover in each pixel, we 308 

expect that the high resolution of the 500 m runs in the USA will help to improve model performance in 309 

this part of the domain by better representing patchy land covers relative to the 5 km product.  Table S1 310 

and Zhou et al. (2020) show other details of the CASA implementation used here.   311 

 312 

2.1.3  SiB4 313 

The Simple Biosphere Model (SiB), despite the name, is a complex process-based, fully prognostic model 314 

of the carbon cycle which can be used to predict future carbon dynamics.  Unlike CASA and VPRM, SiB 315 

simulates both the carbon and energy cycles, and was originally developed for coupling with general 316 

circulation models to improve their boundary conditions (Sellers et al., 1986, 1996).  Like CASA, 317 

respiration in SiB4 is calculated by tracking carbon pools, although with five live pools (including 318 

products for agriculture) and six dead pools (two for litter, three for soil and one for coarse woody 319 

debris; Table S1).   320 

GPP in SiB4 is estimated using the Farquhar et al. (1980) enzyme-kinetic photosynthesis algorithm 321 

(unlike CASA and VPRM) every 10 minutes, with explicit leaf and canopy-level dynamics and daily 322 

updating of phenological variables and carbon pools.  Thus, SiB4 has finer temporal resolution than 323 

either the CASA or VPRM models.  However, given the computational cost associated with running this 324 

complex model with high temporal resolution, fluxes were estimated here at the spatial resolution of 325 

0.5° using weighted average land-cover, which can partly account for sub-pixel variability in PFTs.  The 326 

weighted land-cover approach (also implemented in VPRM) has been shown to improve performance of 327 

land surface models and to make model performance less sensitive to the spatial resolution of the 328 

estimates (Li et al, 2013).   329 

Unlike previous versions of SiB, SiB4 (Haynes et al., 2019) has prognostic phenology, with internally 330 

calculated leaf area temporal dynamics.  This prognostic phenology scheme has been shown to perform 331 

well in croplands across distinct crop types (i.e., winter and spring wheat, corn, soybeans and generic C3 332 

and C4 crops; Lokupitiya et al., 2009) and grasslands (Haynes et al., 2019), two ecosystems with sharp 333 

seasonal transitions that may be difficult to detect with remote-sensing data having sparse sampling 334 

frequency (Guindin-Garcia et al., 2012).  However, predicted phenology can still become decoupled from 335 

actual phenology due to unmodeled management effects (e.g., fertilization, irrigation, planting and 336 

harvest), and other non-climatic factors such as disturbances.  Table S1 shows other details of the SiB4 337 

implementation used here. 338 

 339 

2.2 Model evaluation with observations 340 

 341 

In order to evaluate model performance, NEE flux estimates from the three VPRM versions, CASA and 342 

SiB4 are compared to two kinds of observations: flux tower observations of NEE at 22 flux towers 343 

(shown in Figure 1) and atmospheric CO2 measurements at 21 towers in the domain (Figure 2, Table S5).   344 
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 345 

Flux towers directly measure NEE in relatively homogeneous terrain in a ~1 km2 footprint around each 346 

tower, and thus can be used for biospheric model evaluation.  Towers are selected here to have 347 

relatively complete data coverage in 2016/ 2017, but still only cover only a small fraction of area in the 348 

domain given the limited number of sites and their small footprint, which is not necessarily 349 

representative of overall land cover patterns.  However, a range of PFT’s across the selected towers 350 

helps to represent land cover heterogeneity in the domain, with towers sited in deciduous broadleaf 351 

forest and mixed forest (6), evergreen needleleaf forest (4), wetlands (3), croplands (4) and grasslands 352 

(4).  Modeled NEE estimates are extracted in 2016/ 2017 at each flux tower location at the finest 353 

possible spatial scale to match the flux tower footprint: 0.02° for VPRM, 500 m for CASA in the 354 

coterminous USA and 5 km in Canada, and 0.5° for SiB4, but for the specific PFT of the flux tower.  355 

Comparisons of flux estimates to observations across towers are principally made to assess biases in the 356 

seasonal and diurnal cycles corresponding to each model.  For individual towers, mismatches may occur 357 

due to the spatial scale mismatch and errors in the underlying land cover maps for each model, although 358 

previous work comparing regional and site-specific biospheric model runs to observations at flux tower 359 

sites has found that most of the mismatch occurs because of model structure, parameters and inputs, 360 

not differences in spatial scale (Raczka et al., 2013).      361 

 362 

A complementary analysis was also performed using atmospheric CO2 mole fractions measured at 21 363 

surface towers (Figure 2, 3a; Table S5) to help evaluate biospheric model performance, as these 364 

observations reflect the influence of regional CO2 fluxes diluted by atmospheric mixing and transport.  365 

The footprint (or sensitivity to fluxes in space and time) of each atmospheric observation varies by tower 366 

location, inlet height and weather patterns, although the towers generally see the influence of high-367 

resolution fluxes (in space and time) near the tower, and a more diffuse signal coming from farther 368 

away.  With changes in wind direction and synoptic weather conditions, what towers “see” in the near-369 

field may also be sparse and variable, but on average, most parts of the domain and the full flux diurnal 370 

cycle are sampled, albeit intermittently (Figure 2).  Thus, atmospheric CO2 data can help to evaluate CO2 371 

flux estimates at coarser spatial and temporal scales over more parts of the domain compared to the 372 

flux tower comparison, although atmospheric measurements are not a direct measurement of CO2 flux 373 

and the comparison is subject to errors in other components (i.e., transport, background, fossil fuel 374 

emissions) in the analysis, as described below. 375 

 376 

2.2.1 Atmospheric CO2 tower observations, footprints and fossil fuel emission products 377 

In order to simulate atmospheric CO2 mole fractions for comparison with observations, NEE flux 378 

estimates from the models and fossil fuel emission estimates at 0.1° are multiplied by footprints from an 379 

atmospheric transport model (Lin et al., 2003).  This multiplication is referred to as a convolution where 380 

flux units of 𝜇𝑚𝑜𝑙 ∗ 𝑚−2 ∗ 𝑠−1 are converted to 𝜇𝑚𝑜𝑙/ 𝑚𝑜𝑙, representing the mole fraction 381 

enhancement of CO2 at the observation location and time due to modeled fluxes in the domain.  Fossil 382 

fuel (FF) emissions are similarly convolved with footprints and then subtracted from CO2 observations, 383 

to remove the enhancement due to FF and isolate the biospheric influence in the atmosphere.  Finally, 384 

the influence of background conditions (CO2 in air masses originating outside the domain) is also 385 

subtracted from observations in order to isolate the influence of biospheric fluxes occurring solely 386 

within the domain of interest.  Throughout the study, we thus compare convolved NEE fluxes (or 387 
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simulated CO2 enhancements) with observed biologic enhancements, defined as total observed CO2 388 

mole fractions – FF convolutions – background influence.  We use the term “enhancement” here, 389 

although technically these can be other positive or negative due to both biospheric sources and sinks. 390 

Hourly average atmospheric CO2 observations are used here from 21 towers in our domain (Figures 2 391 

and 3, Table S5), which are primarily sited in rural areas and from a variety of data providers (Karion et 392 

al., 2020; Miles et al., 2018; Mitchell et al., 2019; NOAA ESRL, 2019; Richardson et al., 2017).  Other 393 

potential towers were excluded from the study due to challenging topography for modeling transport or 394 

urban locations where fossil fuel emissions have a stronger impact on observations.  We use CO2 395 

observations at the tallest sampling inlet on each tower during afternoon hours for the analysis, with 396 

“afternoon” as defined in Section 2 of the supplemental material.   397 

Footprints corresponding to each atmospheric observation were generated from two different transport 398 

models:  WRF-STILT and NAMS-STILT.  WRF (Weather Research and Forecasting model, Skamarock et al., 399 

2008)) was run with a 1 km, 3 km, and 9 km nest, with the finer scale nests centered around the 400 

Washington DC/ Baltimore area (Figure 2).  NAMS (North American Mesoscale System; NCEI et al., 2020) 401 

is a meteorological product with a spatial resolution of 12 km made publicly available by NOAA/ARL 402 

((ftp://arlftp.arlhq.noaa.gov/nams).  The Stochastic Time-Inverted Lagrangian Transport model (STILT, 403 

Lin et al., 2003) was then used to generate footprints on a 0.1° grid across the domain by releasing 404 

particles from each observation point and tracing them back in time and space using winds from the two 405 

different meteorological products.  Further details of the custom WRF runs and footprint generation is 406 

included in Section 3 of the supplemental material.   407 

WRF-STILT with its custom setup and higher spatial resolution may help to better model transport in the 408 

Appalachian mountain range that crosses most of our domain (Pillai et al., 2011) and within the two 409 

inner nests from Washington D.C. to Philadelphia, as compared to NAMS-STILT.  However, without a 410 

more in-depth study evaluating the two transport models in our domain, it is difficult to know which set 411 

of footprints is more accurate in different regions and at different times of the year.  Averaging across 412 

process-based models is known to help reduce the influence of systematic and random errors (Elder, 413 

2018); therefore, for this study, we average convolutions using WRF-STILT and NAMS-STILT footprints 414 

and present these averaged results in the main text.  Corresponding figures using convolutions from just 415 

WRF-STILT or NAMS-STILT footprints alone are included in the supplemental material, and results from 416 

the atmospheric CO2 comparison are only highlighted which are robust across both transport models. 417 

In order to remove the influence of fossil fuel emissions from atmospheric CO2 observations, we pre-418 

subtract convolved fossil fuel flux estimates from the Vulcan 3.0 product (Gurney et al., 2020) in the USA 419 

merged with the FFDAS product (Asefi‐Najafabady et al., 2014) in Canada.  Both products are defined 420 

hourly for the year 2015, with FFDAS at 0.1° and Vulcan 3.0 at 1 km resolution.  The merged fossil fuel 421 

product at 0.1° is adjusted to match the days of week in our year of interest (2016/ 2017), given that 422 

fossil fuel emissions are known to behave differently on weekdays vs. weekends (Gurney et al., 2020).   423 

Uncertainty associated with fossil fuel emission estimates is generally considered to be lower than that 424 

from biospheric flux estimates (Lauvaux et al., 2021), especially during the growing season; however, 425 

emission magnitudes and their fine spatiotemporal patterns are not perfectly known, especially if the 426 

emission product was developed for a year other than the one of interest, as in this study.  In order to 427 

simplify the analysis, we pick what we consider to be the highest-quality emission product defined at 428 

fine spatiotemporal scales in our domain for the atmospheric CO2 comparison.  This choice is supported 429 
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by minimal differences between fossil fuel convolutions using different emission products (e.g., FFDAS in 430 

the USA rather than Vulcan 3.0) compared to the spread associated with varying transport, biospheric 431 

model and background conditions, as seen in other studies in eastern North America as well (e.g., 432 

Martin et al., 2019).  However in winter, fossil fuel and biospheric enhancements for towers in the 433 

domain are similar in magnitude and have the same sign (Figure 3c); thus small errors in the emissions 434 

estimates could have a larger relative impact on the CO2 analysis in winter months. 435 

 436 

2.2.2 Background conditions 437 

Atmospheric CO2 observations at the towers are influenced by CO2 fluxes occurring within the domain of 438 

interest, as well as by air masses flowing into the domain from outside (predominantly from the west 439 

and northwest in this case.)  Thus, in order to factor out the “background” influence from atmospheric 440 

CO2 observations (Karion et al., 2021; Mueller et al., 2018), STILT virtual particles are traced backwards 441 

from each observation location and time period to the points at which they exit the domain, and then a 442 

4-dimensional CO2 mole fraction field is sampled and averaged at those exit locations and time periods.  443 

Modeled CO2 mole fractions at exit points are taken from two optimized data assimilation products for 444 

comparison: CarbonTracker v2019B (CT19B; Jacobson et al., 2020) and CarbonTracker Europe (CTE; 445 

Peters et al., 2010).   446 

Background conditions at the towers from the two products (CT19B and CTE) differ throughout the year, 447 

with mean monthly differences ranging from 0.5 µmol/mol (or parts per million, ppm) in November and 448 

December to 1.4 µmol/mol in August and 1.8 µmol/mol in September (Figure 3b), in part due to 449 

differences in the underlying biospheric models used as priors in each optimization system.  In fact, the 450 

difference between the background conditions is larger in magnitude than the biologic enhancements 451 

for about 23 % of observations in winter months (November to April) and 12 % of observations from 452 

May to October, with even higher percentages in early spring (e.g., 37 % in March and 29 % in April).   453 

Therefore, in order to minimize biases associated with background conditions (and better isolate the 454 

influence of biospheric fluxes occurring inside the domain), we compare modeled atmospheric CO2 at 455 

the surface level (i.e., the total mole fraction, not their background contribution) from CT19B and CTE 456 

and their mean to hourly afternoon observations at the tower locations in our year of interest.  We then 457 

visually inspect the monthly mean biases across towers to select the product with the smallest bias and 458 

lowest spread (Figure S4) in each month.  Only surface CO2 is compared here, whereas many particles 459 

exit the domain at higher altitudes and in the free troposphere; also, errors in CT19B or CTE fluxes inside 460 

the domain could affect these model-data comparisons.  However, 1) the CarbonTracker fluxes are 461 

optimized with atmospheric CO2 data and 2) systematic biases across towers are likely to be at least in 462 

part influenced by background air flowing into the domain. 463 

This analysis resulted in selecting CT19B in July, CTE in October and the mean of the background 464 

products in all other months as “optimal”, with these monthly selections then used throughout the 465 

atmospheric CO2 comparisons.  Using the mean of the two products in most months helps to cancel out 466 

opposing biases, especially during the growing season, although residual biases in all months will still 467 

affect the atmospheric CO2 comparisons.   468 

  469 
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2.2.3 Statistical metrics 470 

To compare variability in model simulations to flux tower NEE or biologic atmospheric CO2 471 

enhancements, we use the coefficient of determination (R2) and the Nash-Sutcliffe coefficient (or NSC, 472 

Moriasi et al., 2007):   473 

𝑁𝑆𝐶 = 1 −  
∑ (𝑝𝑟𝑒𝑑𝑖 − 𝑜𝑏𝑠𝑖)2𝑛

𝑖=1

∑ (𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠̅̅ ̅̅ ̅)
2𝑛

𝑖=1

. 474 

The R2 is used to assess how much variability in the observations (obsi) can be explained by model 475 

predictions (predi), after accounting for any biases.  The NSC is calculated using the same equation as a 476 

coefficient of determination (R2), but instead of using a fitted regression model (that is guaranteed to 477 

have zero mean bias), the NSC metric uses the actual model simulations, or in this case, the NEE 478 

convolutions with atmospheric footprints.  Therefore, the NSC can vary from -∞ to 1, with values < 0 479 

indicating that the model performs worse than the observational mean for prediction (due to biases in 480 

the model), and values > 0 implying a better fit than the mean.  Thus, this metric allows us to assess 481 

variability, while also penalizing model fits that have particularly biased flux estimates.  We also include 482 

comparisons between hourly convolutions and observations using other statistical metrics (like root-483 

mean squared error) by tower and season in the supplemental material. 484 

 485 

3. Results and discussion 486 

 487 

3.1 VPRM respiration model improvement 488 

The modified respiration model in VPRMnew (dark green points in Figures 4, S5) is shown to substantially 489 

improve the fit of predicted Re fluxes to nighttime average NEE (or Re) observations, as compared to the 490 

fit using annual (VPRMann) or seasonal (VPRMseas) parameters with the original model formulation.  In the 491 

temperate, humid climate that covers most of our domain, including EVI was seen to be the single most 492 

important factor improving model fit for VPRMnew across all PFTs, except in evergreen needleleaf and 493 

mixed forests (Table S6).  This is consistent with the fact that canopy development during the growing 494 

season for crops, deciduous forests and other non-evergreen ecosystems induces large increases in 495 

autotrophic respiration.  In particular, the cropland PFTs (maize and soybean/ other crops) have a 496 

dramatic improvement in model performance with VPRMnew, where e.g., the NSC in the maize PFT for 497 

VPRMnew is 0.62 compared to 0.28 for VPRMseas and 0.21 for VPRMann.  In more water-limited ecosystems 498 

(e.g., shrublands) and times of the year (i.e., late summer, early autumn), the water stress scaling factor 499 

and its interactions with temperature also help to improve performance.  For example, the NSC for 500 

shrublands with VPRMnew is 0.33, while for VPRMann and VPRMseas the NSC is negative, implying that 501 

these latter models perform worse than using the observational mean for prediction.   502 

In forested ecosystems, VPRMnew also has better performance than either VPRMann or VPRMseas, but the 503 

increase in NSC is less dramatic.  This may be because seasonal increases in leaf area (particularly in 504 

evergreen forests) and/ or water stress are relatively less important predictors of Re fluxes in these 505 

ecosystems compared to air temperature.  In deciduous broadleaf forests and southern evergreen and 506 

mixed forests, relatively low NSC values even with VPRMnew (0.33 and 0.19 respectively), may be 507 

because the respiration model does not account for inputs to dead carbon pools (e.g. from leaf litter at 508 

the end of the season or events like storms and logging). 509 
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In contrast to VPRMnew, night-time respiration estimates using the standard VPRM model with annual 510 

parameters (i.e., VPRMann, yellow lines in Figures 4 and S5) are biased low in all PFTs at the highest 511 

temperatures, as compared to historical NEE observations and to a linear regression model fit to only 512 

nighttime data (purple lines).  This is because the only seasonality in the original respiration model 513 

comes from temperature, which is not enough to explain changes in Re associated with seasonality in 514 

biomass.  Also, there is no guarantee that VPRMann will produce unbiased flux estimates for any portion 515 

of the diurnal or seasonal cycle, as explained in Section 2.1.1.  NSC values for VPRMann are lowest among 516 

the three VPRMs across all PFTs. 517 

VPRMseas shows slightly higher NSC values than VPRMann for all PFTs, in part by estimating a different 518 

baseline respiration in each season.  In particular, the bias at high temperatures seen in VPRMann is 519 

alleviated with seasonal parameters (i.e., light green lines at high temperatures in Figures 4 and S5).  520 

Spring and fall show similarly positive relationships between Re and temperature for most PFTs, but a 521 

negative relationship is inferred in summer for 7 of 8 PFTs (with evergreen needleleaf and mixed forests 522 

> 40°N the only exception; Table S3).  This relationship apparent in the data shows that water limitations 523 

play a role in limiting Re at the height of the growing season when soil moisture has been depleted by 524 

spring and early-summer growth.  Nevertheless, the negative inferred relationship between 525 

temperature and Re in summer is unlikely to explain the relationship well in areas and time periods that 526 

are not water-limited, and therefore provides further justification for an improved respiration model 527 

that can include additional mechanistic detail.   528 

 529 

3.2 Gridded CO2 flux comparison across models 530 

 531 

Flux estimates for GPP, Re and NEE are first compared across the full domain by examining gridded 532 

fluxes (at 0.1°) averaged across 3-monthly seasons (i.e., December/ January/ February, or DJF, March/ 533 

April/ May, or MAM, June/ July/ August, or JJA, and September/ October/ November, or SON).  SiB4, 534 

CASA and VPRMnew fluxes are principally compared in the main text (with corresponding plots comparing 535 

VPRMnew, VPRMseas and VPRMann in the supplemental material.)  The seasonal and diurnal cycles are then 536 

compared for two aggregated spatial groupings: deciduous broadleaf forest and croplands (Figure 1, 537 

right panel; Figure S6).  Together, these two land cover types make up about half of the land area in the 538 

domain and are the predominant land covers upwind of the Northeast Corridor, thus disproportionately 539 

influencing atmospheric CO2 in many of the urbanized areas of the domain.  Moreover, the Corn Belt is 540 

known to be one of the most biologically productive ecosystems on Earth during the height of the 541 

growing season (Gray et al., 2014; Hilton et al., 2017; Zeng et al., 2014), and therefore has a strong 542 

influence on CO2 across the domain, especially in June, July and August.   543 

 544 

3.2.1 GPP, Re and NEE spatial patterns by season 545 

Gridded 3-monthly mean GPP, Re and NEE vary across models in terms of flux magnitude and spatial 546 

patterns (and with SiB4 having a coarser spatial resolution; Figures 5, 6, 7, 8, S7, S8, S9, S10).  In winter 547 

and spring, all the models generally capture the north-south gradient with dormant conditions in the 548 

north and a more active biosphere in the south of the domain, whereas in summer and fall, the spatial 549 

patterns are more distinct across models (Figure S11).  Spatial patterns are, not surprisingly, influenced 550 

by the underlying land cover maps for each model, such that e.g., in summer, SiB4 has a larger area of 551 
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peak uptake in croplands relative to the other models (Figure 7), given more extensive cropping areas in 552 

Michigan, Wisconsin and the Carolinas (Figure S6).  Also, CASA has strong Re fluxes in the spring and fall 553 

across large parts of the domain (Figures 6 and 8), in areas principally defined as deciduous broadleaf 554 

forests, which have a larger spatial extent in this model compared to the definitions for VPRM and SiB4 555 

(Figure S1).  The higher Re fluxes for CASA in spring across most parts of the domain are also related to 556 

differences in timing across the models, as discussed further in Section 3.2.2.   557 
 558 
In summer, despite differences in flux magnitude, spatial patterns for GPP, Re and NEE fluxes are the 559 

most correlated between SiB4 and VPRMnew, with both capturing strong net uptake in the midwestern 560 

Corn Belt extending north into Wisconsin, neutral uptake in the Mississippi River valley, Alabama and 561 

Georgia, and strong uptake in the northeastern USA forests (Figure 7, Figure S11).  CASA also has strong 562 

net uptake in cropping areas from the Corn Belt through the Mississippi River valley, but GPP is relatively 563 

homogeneous throughout the domain and Re is slightly lower in croplands compared to other areas, 564 

unlike in VPRMnew and SiB4 which show the opposite pattern.  Given that CASA and VPRMnew share the 565 

same light-use efficiency formulation for photosynthesis, whereas SiB4 uses a more physiologically 566 

realistic enzyme-kinetic formulation, the closer correspondence in GPP spatial patterns between SiB4 567 

and VPRMnew in summer show that spatial patterns may be more influenced by the underlying land 568 

cover maps, PFT-specific parameters and sub-pixel weighting in each model than the underlying 569 

photosynthesis algorithm.   570 

 571 

In addition to a larger cropland spatial extent, SiB4 fluxes also differ in timing in cropping areas 572 

compared to the other models.  In the Mississippi River Valley which has substantial soybean 573 

production, SiB4 shows an earlier start to the cropping season in spring (Figure 6) and an earlier end in 574 

summer (Figure 7).  In the fall, SiB4 GPP has already shut down in all cropping areas, while Re continues 575 

at a reduced rate in the Midwestern Corn Belt, leading to large net sources from Indiana, Illinois and 576 

Ohio in these months (Figure 8), consistent with results from previous atmospheric CO2 inversions in 577 

these areas (Gourdji et al., 2012).  CASA and VPRMnew also show net sources to the atmosphere from 578 

cropping areas in October and November, although lower in magnitude and less evident at the 3-579 

monthly average timescale shown here because cropland GPP in CASA extends through the end of 580 

September and the VPRM respiration models do not explicitly consider inputs of dead biomass to 581 

carbon pools in these months.  Across the domain, SiB4 also shows the strongest Re fluxes in the fall 582 

months from forested areas in Wisconsin and Pennsylvania, whereas both CASA and VPRM show 583 

stronger Re fluxes towards the south of the domain, perhaps due to a stronger sensitivity of Re to 584 

temperature in these models. 585 

 586 

In winter, all the models capture the north to south gradient for GPP, with non-zero productivity in the 587 

south and correlations > 0.8 across models (Figure 5).  Spatial patterns for winter Re and NEE are more 588 

distinct, with CASA and VPRMnew showing higher correlations than SiB4 and VPRMnew (Figure S11).  In 589 

this season, SiB4 shows relatively homogeneous Re fluxes throughout the domain (as in fall), whereas 590 

CASA and VPRMnew show reduced sources in the north compared to the south.  NEE spatial patterns also 591 

show opposite north-south gradients between models, with stronger net sources for SiB4 in the north of 592 

the domain and for CASA and VPRMnew in the southern half.  CASA also shows anomalously low Re and 593 

NEE fluxes in parts of Ontario during winter months, which could be related to the 5 km spatial 594 

resolution (along with the dominant land cover formulation) in this part of the domain.   595 

 596 
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Across the VPRM versions, correlations in GPP spatial patterns are > 0.95 in all seasons, whereas 597 

correlations in Re spatial patterns are > 0.8, with slightly lower correlations in summer (Figures S7, S8, 598 

S9, S10).  VPRMseas has the most distinct spatial patterns across the three versions of VPRM for Re in 599 

summer and NEE in winter, and it also shows the strongest net sources in cropping areas in the fall 600 

months.  Interestingly, the Re spatial patterns for VPRMnew in spring, summer and fall are marginally 601 

more correlated to those in CASA and SiB4 than are the correlations with VPRMann or VPRMseas (Figure 602 

S11), providing some evidence of improvement in skill for the new respiration model.   603 

 604 

Finally, the three biospheric models differ in how they represent fluxes in urban areas.  CASA in 605 

particular shows weaker fluxes near cities (Figures 5, 6, 7, 8), e.g., in Indianapolis and Atlanta in summer, 606 

given that GPP and Re are set to zero in this model for pixels at the native spatial resolution (500 m or 5 607 

km) where urban is the dominant land-cover.  VPRMnew has somewhat lower Re and GPP fluxes in urban 608 

areas due to lower EVI and the impervious surface correction to heterotrophic respiration in this model.  609 

In contrast, SiB4 does not have an urban PFT, and therefore does not show any reduced Re or GPP fluxes 610 

in pixels dominated by urban land use.   611 

 612 

3.2.2 GPP, Re and NEE seasonal and diurnal cycles 613 

CASA, SiB4 and the three versions of VPRM differ in the magnitude of GPP and Re fluxes during the 614 

growing season (Figure 9) in both croplands and deciduous broadleaf forests.  CASA and SiB4 have 615 

similarly strong GPP at their peak in both ecosystems, and then a lower peak magnitude (by about 25%) 616 

for VPRMnew followed by VPRMseas and VPRMann (about 30 to 40% lower).  GPP timing is relatively 617 

consistent across the models with CASA having a slightly longer growing season, especially in croplands, 618 

where the peak occurs slightly earlier in CASA and SiB4 compared to the VPRM models.  Re fluxes also 619 

differ across models in terms of both magnitude and timing, with CASA having an earlier ramp-up and 620 

peak (by about a month) compared to the other models, and the strongest peak magnitude, followed by 621 

SiB4, VPRMnew, VPRMseas and then VPRMann.   622 

For the NEE seasonal cycle during the growing season, the models generally agree well in terms of 623 

timing and magnitude in deciduous broadleaf forests, but they have more distinct patterns in croplands.  624 

SiB4 has a peak NEE uptake shifted about a month earlier compared to the other models, despite a GPP 625 

seasonal cycle similar in timing to CASA and a Re seasonal cycle more similar to the VPRMs.  In contrast, 626 

the similarity in NEE timing between CASA and the VPRMs in croplands, despite differences in timing for 627 

GPP and Re, is likely due to some combination of both models using remote-sensing inputs and 628 

calibration with flux tower NEE.   629 

VPRMann and SiB4 have the strongest peak uptake in July and August in both ecosystems, and CASA and 630 

VPRMnew the weakest (with VPRMseas in the middle.)  It is interesting to note that VPRMann has the 631 

strongest net uptake in summer months, despite having the lowest magnitude of GPP and Re fluxes, 632 

which is because Re in VPRMann is most depressed relative to GPP during summer months.  Also, CASA 633 

and SiB4 show stronger net sources to the atmosphere in winter than the VPRMs for both ecosystems, 634 

given the predominance of Re in this season.   635 

The mean diurnal cycle in July for GPP and Re (Figure S12) shows a similar pattern as that seen for the 636 

seasonal cycle, i.e., CASA has the strongest component fluxes, then SiB4, followed by the three versions 637 
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of VPRM (with VPRMnew stronger than VPRMann and VPRMseas).  For the NEE diurnal cycle, CASA has by far 638 

the strongest net afternoon drawdown and nighttime sources compared to the other models, about 639 

40% stronger than SiB4 and the VPRMs, which are more similar in shape.  At night in this month, 640 

VPRMnew has the second highest sources after CASA, followed by SiB4 and VPRMseas, and then VPRMann.      641 

Larger component fluxes for CASA and SiB4 compared to the VPRM models could be due to several 642 

reasons.  First, CASA and SiB4 are (mostly) neutral biosphere models that start from equilibrium carbon 643 

pools in this year, which could lead to overestimation of Re in areas with net sinks, e.g., in forests 644 

recovering from disturbances (e.g. storms, insect attacks or harvest) or in croplands where harvested 645 

products are transferred to other areas for consumption (Zhou et al., 2020).  (As a side note, net sources 646 

and sinks in VPRM primarily reflect the influence of the flux tower observations used in the parameter 647 

optimization, which in this case results in a net annual sink in the domain 4.5 times greater than that for 648 

CASA and SiB4 in this year.)  Secondly, the flux tower observations used for VPRM parameter 649 

optimization (especially at night) and/ or the partitioning algorithms for separating component fluxes 650 

could potentially be biased, leading to biased flux estimates (Aubinet, 2008; Lasslop et al., 2010; 651 

Reichstein et al., 2005; Yi et al., 2000).  Third, the parameter optimization using 24 hours of NEE data for 652 

VPRMseas and VPRMann does not ensure unbiased fluxes for any portion of the diurnal cycle, as 653 

mentioned previously. 654 

The differing seasonal timing in the models are also likely explained by several reasons.  First, the longer 655 

growing season for CASA in both GPP and Re relative to the other models, is likely influenced by the 656 

monthly fPAR inputs used to drive the model, which are coarser in time than the 8-day average EVI in 657 

VPRM and daily internally-calculated Leaf Area Index in SiB4 (Figure S3; Zhou et al, 2020).  Longer 658 

growing seasons for process-based models compared to observations at flux towers in deciduous forests 659 

was also seen in Richardson et al. (2012).  The shorter growing seasons in VPRM could be more accurate, 660 

but could also be influenced by long gaps in the overlapping 16-day EVI composites for each sensor, due 661 

to the satellite passing too early or too late within adjacent composites (Corbin et al., 2010; Guindin-662 

Garcia et al., 2012).  GPP phenology could potentially be modeled most accurately with an algorithm 663 

incorporating remotely-sensed solar induced fluorescence (Joiner et al., 2011; Parazoo et al., 2019; Shiga 664 

et al., 2018; X. Wang et al., 2020), which does not rely solely on “greenness” to sense growing season 665 

transitions.   666 

Uncertainty in the timing of Re across models may be more difficult to diagnose, although the earlier 667 

onset of Re in CASA compared to VPRMnew and SiB4 is also seen in Messerschmidt et al (2013), with the 668 

latter timing more consistent with atmospheric column CO2 and flux tower observations (Falge et al., 669 

2002).  In future work, the timing of GPP and Re fluxes could potentially be investigated further by using 670 

additional atmospheric tracers like carbonyl sulfide measurements to separate GPP and Re at regional 671 

scales (e.g., Berry et al., 2013; Hilton et al., 2017; Wang et al., 2016).  The magnitude and timing of NEE 672 

across the models in this year will also be evaluated with comparison to flux tower data in Section 3.3 673 

and to atmospheric CO2 observations in Section 3.4.   674 

 675 

3.3 Model evaluation with flux tower observations 676 

The comparison of modeled hourly NEE to flux tower observations at 22 locations in 2016 - 2017 shows 677 

that all biospheric models perform relatively well at capturing observed seasonal and diurnal variability, 678 
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with mean NSC values for the full year > 0.5 for most towers and models, and with CASA performing 679 

marginally better at the hourly timescale than the VPRM models and SiB4, perhaps due to its finer 680 

spatial scale in the USA.   681 

 682 

Mean biases in nighttime Re fluxes across towers (Figure 10a) are consistently different across models, 683 

particularly during the height of the growing season, with VPRMnew relatively unbiased throughout the 684 

year (albeit with a weak negative bias in June and July), VPRMann biased low from April to October, and 685 

VPRMseas with intermediate negative biases.  The negative biases in VPRMann from June to August are 686 

large relative to Re fluxes, i.e. ~2 to 4 µmol/m2/s compared to a mean Re of ~6 µmol/m2/s in these 687 

months, while the negative biases are alleviated in VPRMseas and VPRMnew due to higher baseline 688 

summertime respiration in VPRMseas and the EVI covariate in VPRMnew (as discussed in Section 3.1).  In 689 

contrast, nighttime Re for CASA is biased high for most months of the year, particularly in April, May and 690 

June, consistent with findings in Zhou et al. (2020).  SiB4 Re fluxes at night are also biased high in winter 691 

from December to April, and with a large spread during the growing season but small negative biases in 692 

June and July. 693 

 694 

Mean biases in daytime NEE fluxes (Figure 10b) show a large spread across towers for each model from 695 

April to November, with the three VPRM models showing similar weak source biases from June through 696 

October.  Although 2016/ 2017 fluxes were left out of the VPRM parameter optimization, many of the 697 

same sites included in the evaluation shown here were also included in the historical optimization.  698 

Thus, the daytime source biases for VPRM at the evaluation towers may be worsened by the spatial 699 

scale mismatch and mixed land-cover in the full 0.02° pixel, which may be less productive overall than 700 

the ~1 km2 flux tower footprint.  CASA and SiB4 both have daytime source biases in winter months 701 

(December to March), consistent with the nighttime Re biases in these same months.  CASA also shows a 702 

sink bias at most towers in September and October, perhaps due to an overly extended growing season 703 

in this model associated with monthly phenology based on fPAR (Figure S3; Figure S9 in Zhou et al., 704 

2020).  705 

The mean diurnal cycle in July for models and observations is also shown for two specific towers: US-IB1, 706 

a cropland site in Illinois growing corn in this year, and US-UMB, a deciduous broadleaf forest site in the 707 

northern lower peninsula of Michigan.  At US-IB1 (Figure 10c), SiB4 overestimates peak uptake in the 708 

early afternoon by about 20%, whereas the VPRM models underestimate it by about 50%.  CASA most 709 

closely matches the magnitude and timing of daytime drawdown, albeit with a slight underestimate of 710 

peak uptake.  For VPRM, the spatial scale mismatch likely affects this comparison, as this 0.02° pixel is 711 

only 32% corn, but also 44% other crops (which have weaker uptake), and 24% other PFT’s.  The CASA 712 

landcover for this 500 m pixel is cropland, but CASA also parameterizes a single crop type, thus not 713 

allowing for the relatively stronger uptake in some corn fields relative to soybean or other crops, which 714 

is less apparent at this particular tower.  At night, CASA overestimates Re fluxes for this tower and 715 

month, whereas VPRMnew closely matches nighttime Re and VPRMseas, VPRMann and SiB4 slightly 716 

underestimate it. 717 

At US-UMB (Figure 10d), the magnitude of the diurnal cycle is overestimated for CASA during both 718 

nighttime and mid-day, whereas the daytime uptake for the VPRM models and SiB4 is underestimated 719 

by about 20%.  At night, VPRMnew, VPRMseas and SiB4 closely match the magnitude of observed Re, 720 

whereas VPRMann underestimates Re by about 60%.  The period of peak mid-day uptake in SiB4 is longer 721 
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than in the observations and the other models, thus leading to a similar total uptake during daylight 722 

hours compared to the observations and more compared to the VPRM models.  The spatial scale 723 

mismatch could also contribute to the daytime mismatch for the VPRM models at this tower, although 724 

to a lesser extent than at US-IB1, given that the 0.02° pixel surrounding US-UMB is 62% deciduous 725 

broadleaf forest, but also 12% wetlands and open water. 726 

 727 

3.4 Model evaluation with atmospheric CO2 observations 728 

Observed total CO2 mole fractions (Figure 3a) and biologic enhancements (Figure 3b) show both a strong 729 

seasonal cycle and a large spatial variability across towers.  Mean integrated footprints summed across 730 

towers in July show that most of the domain is “seen” on average by this network of towers (Figure 2, 731 

left panel), with slightly less sensitivity along the edges of the domain, and stronger sensitivities in 732 

summer compared to winter (when wind speeds are higher).  Some towers have a stronger influence 733 

from croplands (e.g., BRI, TPD, S01), wetlands (e.g., LEF, SCT), forests (e.g., AMT, DNH, HAF) or urban 734 

areas (e.g., MSH, HCT), while almost all towers have some sensitivity to deciduous broadleaf forests, 735 

crops and grass/pasture (including developed-open space), showing the broad influence of these land 736 

covers throughout the domain (Figure 1, Table S5).  The tower network is also sensitive to both day and 737 

nighttime fluxes on average, with afternoon receptors typically sensitive to nearby fluxes in the morning 738 

of the same day and previous night (Figure 2, right panel).   739 

Simulated and observed biologic atmospheric CO2 enhancements are compared across towers in several 740 

different ways in order to evaluate both bias and variability.  First, we compare weekly mean 741 

enhancements throughout the year at two specific towers, with one predominantly influenced by 742 

croplands (S01 in Indiana) and the other by deciduous and mixed forests (DNH in New Hampshire), the 743 

two predominant land covers in the domain upwind of the NEC (Figure 1; Table S5).  Then, monthly 744 

mean biases are examined across all towers to see how errors in the biospheric models (in terms of 745 

phenology, flux magnitudes and spatial patterns) translate into biased CO2 across the domain and 746 

throughout the year.  Next, we compare hourly variability in the afternoon enhancements across towers 747 

within each month, which tests the biospheric models’ ability to match the diurnal cycle, synoptic 748 

variability, sub-monthly seasonality and spatial gradients seen in the observations at discrete time 749 

periods.  These analyses are meant to inform how incorrect representations in the biospheric models 750 

would affect inversions estimating fossil fuel emissions, with biased biospheric flux estimates translating 751 

directly into biased emission estimates at averaged scales, and incorrect fine-scale variability (both 752 

spatial and temporal) leading to emission estimates incorrectly attributed in space and time. 753 

 754 

3.4.1 Weekly mean comparison at S01 and DNH 755 

Observed weekly mean biologic CO2 enhancements at the S01 (Indiana) and DNH (New Hampshire) 756 

towers show net uptake from the atmosphere from May through October (Figure 11), and net releases 757 

in the rest of the year.  At the S01 tower, which samples CO2 from upwind crops, observations show a 758 

narrow and strong peak drawdown briefly reaching -19 µmol/mol for one week in mid-July, whereas at 759 

DNH, influenced primarily by deciduous and mixed forests (Table S5), observations show a longer period 760 

of peak uptake (about 2 months in June and July) which only reaches ~-8 µmol/mol.  All biospheric 761 
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models (CASA, SiB4 and VPRMnew) capture the broad seasonality seen in the observations, although with 762 

differences in timing and magnitude.   763 

At S01, all models perform reasonably well during the growing season in matching weekly variability, 764 

with VPRMnew having a slightly higher adjusted R2 compared to the other models (i.e., 0.82 compared to 765 

0.78 for CASA and 0.73 for SiB4).  SiB4 best captures the peak drawdown in July with averaged WRF and 766 

NAMS-STILT convolutions and WRF-STILT alone but is too strong with NAMS-STILT convolutions (Figure 767 

11a, Figure S13).  The SiB4 convolutions also match the timing of the observed drawdown well in May, 768 

June and July, but are too weak in August and September, and transition to a net source a couple weeks 769 

early compared to observations in the fall.  For CASA and VPRMnew, the growing season drawdown starts 770 

a few weeks late in June, but both models match the observed timing well from August into September.  771 

In the dormant season from November to April, SiB4 modeled enhancements show the closest 772 

correspondence to observations in terms of both the NSC and adjusted R2 (Figure 11, left panel).   773 

At DNH, VPRMnew better explains weekly variability during the growing season substantially compared to 774 

the other models (with an adjusted R2 of 0.80 for VPRMnew, compared to 0.55 and 0.50 for CASA and 775 

SiB4).  In the winter months, SiB4 best captures the weekly variability (adjusted R2 of 0.47 compared to 776 

0.30 for VPRMnew and 0.13 for CASA) although with the lowest NSC values due to flux estimates which 777 

are biased high (Figure 11b).  Both CASA and SiB4 start the growing season slightly late in May and end 778 

the growing season too late in September and October compared to observations, whereas VPRMnew 779 

matches the timing of the observations much more closely in these seasonal transition months.  In June 780 

and July, VPRMnew and SiB4 have too much net uptake compared to observations, although the 781 

magnitude of peak uptake is sensitive to which transport model is used (Figure S14).  At DNH, NAMS-782 

STILT transport makes all biospheric models look more biased in June and July, perhaps pointing to 783 

errors in summertime footprint strength upwind of this tower.  In general, the summertime biases in the 784 

biospheric models at both S01 and DNH are sensitive to transport, demonstrating, as in Feng et al. 785 

(2019), that transport model uncertainty tends to amplify biospheric model uncertainty during the 786 

growing season, although biases in the dormant season for each model are also seen to be sensitive to 787 

transport here. 788 

 789 

3.4.2 Monthly mean biases across towers 790 

Simulated biologic CO2 enhancements show seasonal biases across towers and biospheric models, with 791 

all three VPRMs biased low in December and January, SiB4 and CASA biased high in February and May, 792 

VPRMann biased low from June to August, SiB4 and VPRMseas biased low in July, and all models biased 793 

somewhat low in October (Figure 12, Table 2).  On the positive side, VPRMnew and CASA both look 794 

relatively unbiased during summer months (i.e., June to August, albeit with some sensitivity to 795 

transport, Figure S15), and all the VPRM versions look relatively unbiased from February to May and in 796 

October and November, pointing to skill in simulating growing season transitions.  SiB4 is the least 797 

biased model on average across towers in December and January, although it also has the largest spread 798 

in biases throughout the year, particularly in April, July and September, which could be associated with 799 

its coarse spatial resolution in this study.   800 

The biases in atmospheric enhancements seen here for each of the biospheric models (which could also 801 

be influenced by biased transport, background and/ or fossil fuel emissions) point to weaknesses in each 802 
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of the biospheric model setups.  First, it appears that the low bias in VPRMann in summer months is likely 803 

due to not enough increase in seasonal Re in this model, particularly at night (as seen in the flux tower 804 

comparison, Figure 10), with this problem alleviated by the use of seasonal parameters in VPRMseas or 805 

the EVI  covariate in the new respiration model (for VPRMnew).  This result also shows the strong 806 

influence of nighttime fluxes on afternoon CO2 observations (Figure 2), given that the VPRM models 807 

differ most in terms of Re fluxes, which dominate the signal at night (Figure 9), as also seen in Hu et al. 808 

(in review) and T. Lauvaux et al. (2008, 2012).  The negative bias for VPRMseas in July could be due to the 809 

negative relationship between temperature and Re inferred for this model setup, which unrealistically 810 

lowers Re in this month.   811 

Secondly, the negative bias in flux estimates in December and January across all VPRM setups could 812 

point to a bias in the flux tower nighttime NEE observations used for optimization (Barr et al., 2013).  813 

While systematic errors in other components of the analysis, i.e., transport, background conditions, 814 

fossil fuels, cannot be ruled out, a bias in flux tower observations themselves is supported by studies 815 

suggesting that drainage loss due to horizontal advection in eddy-covariance systems, particularly at 816 

night with a stratified stable boundary layer, is non-negligible and represents flux to the atmosphere 817 

that is not measured (Aubinet, 2008; Nicolini et al., 2018).  In addition, the biases seen in the VPRM 818 

enhancements in these months is evident with both sets of footprints and background conditions, as 819 

well as with fossil fuel convolutions using FFDAS across the entire domain.  If the problem is in fact an 820 

observational bias in the flux tower data, this could point to systematic underestimation of respiration in 821 

VPRM throughout the year, which would be more difficult to detect with atmospheric CO2 in months 822 

when GPP fluxes are stronger.   823 

The biases in atmospheric CO2 seen for CASA and SiB4 also have several plausible mechanisms.  The 824 

positive biases in February and May and for most towers in November and March (also Figure S16) are 825 

likely due to over-estimated Re in these models associated with balanced biosphere assumptions which 826 

do not account for vegetative and soil carbon sinks (Haynes et al., 2019; Zhou et al., 2020).  Similarly, 827 

Zhou et al. (2020) also found an NEE source bias in the CASA ensemble mean compared to flux tower 828 

data from November to March in all biome types.  The biases in May and October for SiB4 and CASA also 829 

point to difficulties in simulating phenology during seasonal transition months, but potentially also 830 

errors in the relative extent of crops and forests in each model (Figure S6), given that these two land 831 

cover types have different timings of seasonal drawdown (Figure 9).  Difficulty simulating autumn 832 

phenological transitions in these two process-based models, particularly in deciduous forest ecosystems 833 

(e.g., near DNH), is also consistent with results from the model inter-comparison study of Richardson et 834 

al. (2012). 835 

For SiB4, the biases in July, August and September are especially strong for the three towers with large 836 

cropland influence (Figure S16; Table S5), i.e., TPD and BRI, with negative biases in July of -5 µmol/mol 837 

and -7 µmol/mol respectively, and S01, with positive biases of 4 µmol/mol in August and September.  838 

This could point to errors in cropland fluxes for SiB4 associated with an over-estimate of the uptake rate, 839 

the prognostic phenology and/ or their spatial extent (Figure 7, Figure S6).  These errors then propagate 840 

throughout the domain, given that all towers have some amount of cropland influence in their 841 

footprints (Table S5) due to the horizontal advection of air masses towards the east of the domain.  842 

CASA and VPRMnew also show anomalous behavior at these same towers during summer months, which 843 

points to the difficulty in accurately simulating the strong drawdown in the Corn Belt for crop PFTs 844 

across models.    845 
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 846 

3.4.3 Comparison of hourly CO2 variability across towers 847 

The hourly comparisons of simulated to observed biologic CO2 enhancements across towers by month 848 

show that VPRMnew generally outperforms all other models in reproducing CO2 variability during the 849 

growing season in terms of both NSC’s and R2s, with an average NSC from May to October of 0.38 850 

compared to 0.32 for VPRMseas, 0.25 for VPRMann, 0.24 for CASA, and 0.05 for SiB4 (Figures 13, S17).  851 

Tower-specific RMSE, NSC and R2 metrics calculated with hourly enhancements (Tables S7, S8, S9, S10) 852 

are also highest for VPRMnew at most towers in the spring, summer and fall, and even in winter with the 853 

R2 metric, although CASA is least biased in this season. 854 

All three versions of VPRM also have significantly higher R2 values compared to CASA and SiB4 in May, 855 

June, September and October, and higher NSC values in May, September and October (due to the 856 

summer-time sink biases in VPRMann).  This result points to strengths in VPRM across versions associated 857 

with the high temporal resolution phenology and potentially the domain-specific parameter 858 

optimization for this study, and not just the improved Re model in VPRMnew.  In the winter months, 859 

performance across the VPRM versions and CASA is more equivalent, with some month-to-month 860 

variation, and SiB4 again showing the lowest correspondence with observations.  For SiB4, NSC values 861 

are negative in February, April, July, September and October and R2s are < 0.1 in April, September and 862 

October, pointing to problems simulating phenology and high-resolution spatial variability in this model, 863 

as well as having biased flux estimates, e.g., in July.  CASA NSC values are positive for all months of the 864 

year except February.    865 

For all biospheric models, the NSC and adjusted R2 metrics are somewhat higher during the growing 866 

season from May to October when the biospheric signal is stronger (Figures 3b, 3d), compared to winter 867 

months (November to February), when the uncertainties associated with transport, fossil fuel emissions 868 

and background become proportionally larger due to weaker biologic enhancements.  In fact, the mean 869 

biologic enhancements in January across towers are of similar magnitude to the fossil fuel emission 870 

enhancements (Figure 3c), given the large extent of the domain over which Re fluxes accumulate in the 871 

atmosphere.  The biospheric models also better explain hourly variability in atmospheric CO2 when 872 

biases are accounted for, as seen by higher R2 values across months compared to NSC values (Figure 13).  873 

However, NSC and adjusted R2 values are no higher than 0.4 and 0.5 respectively in any month 874 

throughout the year, pointing to substantial unexplained variability in modeled CO2 compared to 875 

observations.  The unexplained variability could be due to errors in biospheric flux estimates, but also 876 

from errors in transport, boundary conditions and/ or fossil fuel emissions.   877 

Interestingly, the NSC and adjusted R2 metrics are higher when using averaged WRF-STILT and NAMS-878 

STILT convolutions, compared to using either transport model alone (Figure S17); e.g., the mean 879 

VPRMnew NSC from May to October goes up to 0.38 with mean transport convolutions compared to 0.33 880 

with WRF-STILT and 0.29 with NAMS-STILT transport alone, and up to 0.13 with the mean convolutions 881 

from November to April, compared to 0.05 using WRF-STILT and NAMS-STILT footprints alone.  This 882 

suggests that convolution averaging helps to reduce random errors and potentially cancel out some 883 

biases in the transport simulations.  NSC values calculated using NAMS-STILT in general are lower during 884 

the growing season compared to the metrics with WRF-STILT  for all biospheric models (Figure S17), 885 

which points to potential biases in footprint strength in NAMS-STILT during these months, as also seen 886 

in the CO2 comparison at DNH. 887 
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 888 

4. Conclusions, future work and recommendations 889 

Three versions of VPRM were run for this study in a single year from November 2016 to October 2017 890 

using customized parameters for an eastern North American domain: i) the original Mahadevan et al. 891 

(2008) implementation with annual parameters (VPRMann), ii) the same model formulation with 892 

seasonally-varying parameters (VPRMseas), and iii) a modified respiration model that accounts for 893 

seasonality in biomass and water stress (VPRMnew).  Flux estimates from the three VPRM versions were 894 

compared to flux tower observations and atmospheric CO2 observations at 21 towers across the 895 

domain, and with flux estimates from the CASA and SiB4 biospheric models in this year. 896 

Results show that the new respiration model in VPRMnew increases the magnitude of nighttime Re fluxes 897 

during the growing season, and thereby helps to realistically strengthen the diurnal and seasonal cycles 898 

of NEE compared to using the original respiration model which has a baseline value and a simple linear 899 

function of temperature.  VPRMnew thus better reproduces spatiotemporal variability in hourly 900 

atmospheric CO2 observations, in part due to the strong influence of nighttime fluxes on afternoon CO2 901 

enhancements.  In contrast, using annual parameters with the original VPRM model is seen to 902 

underestimate Re during the height of the growing season, which results in a sink bias relative to 903 

atmospheric observations in these months.  Using seasonal parameters removes the summertime bias 904 

but also puts an unrealistic negative relationship between temperature and Re for 7 of 8 PFTs in this 905 

season.   906 

The inter-comparison of the VPRMs with SiB4 and CASA sheds some light on the relative strengths and 907 

weaknesses of each model, at least as seen in this single year.  Overall, VPRMnew and VPRMseas are less 908 

biased and better explain the variability in hourly atmospheric CO2 during the growing season compared 909 

to CASA and SiB4.  The strong diurnal cycle in CASA NEE is seen to be somewhat overestimated 910 

compared to flux tower observations during the growing season, and with Re fluxes overestimated year-911 

round.  However,  CASA NEE fluxes are relatively unbiased compared to afternoon atmospheric CO2 912 

observations at the height of the growing season, although the growing season overly extended into the 913 

spring and fall.  SiB4 has the most mechanistic detail among the three models but does not closely 914 

match observed variability in the atmosphere in this particular year.  This could be because of its coarse 915 

spatial resolution in this study, its prognostic phenology (with errors in the timing of either GPP or Re), or 916 

errors in the underlying land cover maps.   917 

The strong performance from a careful implementation of a relatively simple model like VPRM shown 918 

here suggests that some of the mechanistic detail in more complex models may not be needed to 919 

represent fine spatiotemporal variability of CO2 in the atmosphere due to the terrestrial biosphere (as 920 

also found in Raczka et al., 2013; Schwalm et al., 2010).  Across all versions of VPRM, the custom 921 

parameter optimization using domain-specific historical flux tower data, fine temporal resolution 922 

observed phenology, high spatial resolution flux estimation with weighted average PFTs and high-923 

resolution met drivers all help to improve model performance.  Each of these factors could help to 924 

explain the improved performance of VPRMnew relative to CASA and SiB4, with these latter models likely 925 

having more realistic model structures, particularly for Re, but coarser spatial or temporal resolutions.  926 

At the height of the growing season however, none of the models explain more than 50% of the 927 

variability in atmospheric observations, which could be due to errors in modeled transport, background 928 

conditions, or fossil fuel estimates, but also due to errors in NEE estimates across biospheric models. 929 
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Potential future improvements to VPRM include i) incorporating SIF into the GPP equation (e.g., Luus & 930 

Lin, 2015; Turner et al., 2020a) to better simulate growing season transitions and water stress (when 931 

CO2 uptake can become decoupled from “greenness” observed by satellites), ii)  further modifying the 932 

respiration equation to incorporate accumulated EVI and/ or simultaneous GPP (to represent biomass, 933 

as in Xiao et al., 2011 and to account for the large contribution of recently assimilated carbon to 934 

autotrophic respiration), disturbance maps (to potentially improve spatial patterns), and week-to-week 935 

changes in EVI to account for inputs to surface litter pools at the end of the growing season, and iii) 936 

using pre-partitioned GPP and respiration data in the parameter optimization with more sophisticated 937 

algorithms for separating component fluxes, thus improving simulation of the flux diurnal cycle.  In 938 

addition, the siting of new flux towers, especially in the southern half of the domain, in urban areas and 939 

across disturbance gradients, would help to improve the representativeness of optimized model 940 

parameters and flux estimates (as well as for CASA which also uses flux tower data for parameter 941 

calibration).   942 

Along with parallel and continuing development for each biospheric model, the results of this study 943 

point towards what we might need in an “optimal” biospheric model for use in high-resolution CO2 944 

inversions in eastern North America, whether the biospheric signal is pre-subtracted from atmospheric 945 

observations or the inversion setup allows for the estimation of fossil fuel and biospheric fluxes 946 

simultaneously.  Such a model should ideally include some or all of the following items: multiple land 947 

covers within each pixel weighted by fractional coverage or else very high spatial resolution (e.g., less 948 

than 100 m x 100 m), separation of different crop types to account for the strong uptake of corn relative 949 

to other crops, sub-monthly diagnostic phenology using EVI or SIF to better account for uptake during 950 

early and late growing-season transitions and water-stressed periods, more accurate land cover maps, 951 

improved mechanistic representation of Re fluxes, perhaps aided by remote-sensing inputs, and the 952 

inclusion of processes allowing for net annual vegetative and soil sinks in models that track carbon 953 

pools.  Future work using the tower CO2 data in an atmospheric inversion model will also help to further 954 

identify needed improvements in the biospheric models that will help to enable an operational 955 

atmospheric emission monitoring system in North America.  956 
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Tables & Figures  

 

Table 1: Comparison of features across the three versions of VPRM. 

  VPRMann VPRMseas VPRMnew 

Respiration 
model 

original model: 
linear function of 
temperature 

original model: 
linear function of 
temperature 

expanded model including 
EVI, non-linear temperature 
and interactions with water 
stress 

Parameter 
seasonality 

no yes (winter, spring, 
summer, fall) 

no 

Optimization 
technique 

GPP and Re 
parameters 
optimized 
simultaneously 

GPP and Re 
parameters 
optimized 
simultaneously 

Re parameters optimized 
with night-time data; GPP 
parameters optimized 
separately after subtracting 
predicted Re from daytime 
NEE observations 

 

 

Table 2: median across towers of the absolute monthly mean bias of simulated – observed biologic CO2 

enhancements for each biospheric model and month, using both WRF-STILT, NAMS-STILT and the mean 

of WRF-STILT and NAMS-STILT convolutions.  Model/month combinations with a median absolute error 

less than 1 µmol/mol are shaded in light yellow, from 1 µmol/mol to 1.5 µmol/mol in dark yellow and > 

1.5 µmol/mol in peach.  The model(s) with the smallest median absolute bias (within 0.1 umol/mol) for 

each month is (are) highlighted in bold.  The last row shows the value across all towers in the full year 

(where the number of towers varies by month). 

 

 

  

VPRMann VPRMseas VPRMnew CASA SiB4 VPRMann VPRMseas VPRMnew CASA SiB4 VPRMann VPRMseas VPRMnew CASA SiB4

201611 0.54 0.46 0.68 1.03 1.02 0.72 0.68 1.03 0.54 0.85 0.59 0.64 0.89 0.88 0.85

201612 1.72 2.39 1.82 0.88 0.93 2.04 2.66 2.21 1.29 1.02 1.87 2.63 2.07 1.15 0.96

201701 1.20 1.75 1.43 1.03 1.33 1.29 2.01 1.50 1.15 1.84 1.24 1.78 1.49 0.99 1.66

201702 0.67 0.54 0.51 1.55 1.35 0.41 0.59 0.71 1.62 1.27 0.38 0.56 0.65 1.54 1.31

201703 0.46 0.58 0.43 0.53 0.83 0.32 0.56 0.35 0.65 0.89 0.42 0.50 0.33 0.59 0.87

201704 0.31 0.57 0.54 0.63 0.82 0.72 0.59 0.51 0.64 1.23 0.59 0.52 0.54 0.55 1.14

201705 0.65 0.60 0.41 1.67 1.00 0.76 0.76 0.44 1.46 1.00 0.63 0.74 0.37 1.63 0.89

201706 0.85 1.56 1.05 1.46 1.41 2.18 1.01 1.02 0.59 0.87 1.43 0.96 0.98 1.02 0.82

201707 2.03 1.01 1.10 1.05 1.77 3.34 2.37 1.07 1.08 3.08 2.59 1.75 0.99 0.76 2.35

201708 1.59 0.78 0.88 0.95 0.68 2.29 0.90 1.49 0.66 0.74 1.58 0.92 1.26 0.70 0.90

201709 0.82 1.07 1.87 0.87 2.15 0.67 1.29 1.95 0.72 2.32 0.86 1.22 1.95 0.84 2.25

201710 0.49 0.48 0.72 1.46 0.96 0.64 0.75 0.50 1.37 1.20 0.45 0.61 0.61 1.33 1.11

Full year 0.83 0.82 0.89 1.09 1.16 1.02 1.02 0.99 0.96 1.17 0.93 0.93 0.88 0.94 1.14

Mean WRF-STILT & NAMS-STILTWRF-STILT NAMS-STILT



Figure 1:  Map of dominant land cover in domain at 0.02° in eastern USA and Canada, with a rectangle 

around the flux simulation domain (left panel).  Also shown are the flux towers included in the historical 

parameter optimization (triangles), with the towers used for model evaluation in 2016/ 2017 explicitly 

labeled.  (Labeled towers with star symbols are included in the 2017 evaluation, but not the historical 

parameter optimization.)  Deciduous broadleaf forest and cropland pixels used for spatial aggregation 

are shown in the panel on the right, with these pixels selected as containing > 50 % coverage at 0.1° for 

VPRM and CASA, and > 25 % for SiB4 at 0.5° (Table S1; Figure S6).    

 

  



Figure 2: a) map of CO2 observational towers and mean July 2017 afternoon atmospheric footprints 

(averaged across WRF-STILT and NAMS-STILT and summed across towers).  The inner nests for the WRF 

simulation are shown in dark pink.  (SNJ and SMT have no CO2 observations in July 2017; therefore, their 

footprints are not included in the map.)  b) and c) mean spatially integrated footprints in July 2017 as a 

function of hours back from receptor time for two towers: UNY (45 m inlet height) and MNC (213 m inlet 

height).  Time series are averaged across all days in the month for each afternoon receptor hour.  

Receptor hours starting at 12 – 4 pm EST are shown with a thicker line width, although the expanded 

definition of “afternoon” in this study (as described in the supplemental material) allows for more hours 

with well-mixed conditions during summer months (shown with green shading).  Other hours back in 

time are shaded to indicate day (yellow) or night (blue).   

 

 

  



Figure 3:  Atmospheric CO2 observations across towers compared in four different ways: (a) total 

afternoon average CO2 mole fraction for each tower across full year (in grey), with their average in red 

and background contribution from CT19 in blue, b) afternoon average biologic enhancements (using 

CT19 background) for each tower across full year (in grey), with difference in background conditions 

shown in orange, c) mean hourly diurnal cycle of biological enhancements with CT19 background 

conditions for each tower in January (grey) and the mean FF contribution across towers in gold, and d) 

the same as (c) but in July.  For (c) and (d), afternoon hours have a thicker line width, with “afternoon” 

defined as described in the text.  Red line indicates the spatial mean across towers in (a) and (b), and 

green for (c) and (d).  Convolutions and background conditions are averaged across WRF-STILT and 

NAMS-STILT transport. 

 

  



Figure 4:  Scatter plots of observed air temperature vs. night-time average NEE for historical flux tower 

data used in the VPRM parameter optimization.  The VPRMann model fit is shown in yellow, VPRMseas in 

light green, and VPRMnew in dark green, with four lines for VPRMseas corresponding to each season.  Also 

shown are results from a linear regression model fit to just night-time NEE data (purple) for comparison.  

Results are shown for four PFT’s (representing ~65% of total land cover in domain): deciduous broadleaf 

forests (27% + 5% urban), evergreen needleleaf/mixed forests >40°N (12%), maize crops (8%) and 

soybean/ other crops (13%).  The NSC values (equivalent to the adjusted r2 for VPRMnew and the linear 

regression model) are also shown to assess relative performance for each model and PFT. 

 

  



Figure 5:  Mean 24-hour gridded GPP, ecosystem respiration (Re) and NEE at 0.1° for SiB4, CASA and 

VPRMnew in winter months (December/ January/ February).  

 

  



Figure 6:  Mean 24-hour gridded GPP, ecosystem respiration (Re) and NEE at 0.1° for SiB4, CASA and 

VPRMnew in spring months (March/ April/ May).  

 

  



Figure 7: Mean 24-hour gridded GPP, ecosystem respiration (Re) and NEE at 0.1° for SiB4, CASA and 

VPRMnew in summer months (June/ July/ August). 

 



Figure 8: Mean 24-hour gridded GPP, ecosystem respiration (Re) and NEE at 0.1° for SiB4, CASA and 

VPRMnew in fall months (September/ October/ November). 

 

 

 

  



Figure 9: Seasonal cycle of weekly mean GPP, Re & NEE fluxes, spatially aggregated across pixels with 

predominantly deciduous broadleaf forests (DBF, top row) and croplands (bottom row), as indicated in 

Figure 1.  Annual means are shown with dashed lines. 

 

  



Figure 10:  Comparison of VPRMnew, VPRMseas, VPRMann, CASA and SiB4 to observed NEE at 22 flux 

towers in 2016/ 2017.  Model output is extracted at flux tower locations at the 0.02° scale for VPRM, 

500 m (or 5 km) for CASA and for the flux tower PFT in the SiB4 0.5° pixel.    a) boxplot across towers of 

monthly mean biases (model – observations) for each model during nighttime hours.  b) same as a), but 

for daytime hours.  c) mean July NEE diurnal cycle comparing observations to models at the US-IB1 

tower.  d) same as c), but for the US-UMB tower.  The 22 flux towers included in a) and b) are shown in 

Figure 1.   

 

 

 

 

  



Figure 11:  Weekly mean observed and simulated biological enhancements for VPRMnew, CASA and SiB4 

at two [CO2] towers: S01 in Indiana (44 % crops, 30 % forested within the footprint; left) and DNH in 

New Hampshire (63 % forested, 9 % crops within the footprint; right).  The tables below show NSC and 

R2
a metrics comparing weekly mean enhancements from May to October and November to April, with 

the best performing biospheric model highlighted in red and bold.  Enhancements are determined using 

average convolutions with WRF-STILT and NAMS-STILT transport, and with “optimal” monthly 

background conditions and Vulcan 3.0 + FFDAS fossil fuel emissions.  The same figures using WRF-STILT 

and NAMS-STILT transport alone are shown in Figures S13 and S14.   

 

 

  



Figure 12:  Boxplots across towers of monthly mean biases (simulated - observed biospheric CO2 

enhancements) from November 2016 to October 2017 for each biospheric model, using mean of WRF-

STILT and NAMS-STILT convolutions, “optimal” background conditions and Vulcan 3.0 + FFDAS fossil fuel 

emissions.  The table indicates the mean absolute error across towers for winter (Dec/Jan/Feb), spring 

(Mar/Apr/May), summer (Jun/Jul/Aug) and fall (Sep/Oct/Nov) months for each biospheric model, 

calculated using the monthly mean bias for each tower.  Numbers in bold in the table indicate the least 

biased biospheric model(s) in each season (including models within 0.1 of the minimum).  The same 

figures using WRF-STILT and NAMS-STILT transport alone are shown in Figure S15.   

 

 

 

 

 

  



Figure 13: Monthly Nash-Sutcliffe coefficients (left panel) and adjusted R2 (right panel) comparing 

convolutions from each biospheric model to observed hourly biologic enhancements across all towers.  

Convolutions using WRF-STILT and NAMS-STILT transport are averaged, and Vulcan3.0 (+FFDAS in 

Canada) fossil fuel emissions and “optimal” monthly background conditions are used for all 

comparisons.  The same plots using WRF-STILT or NAMS-STILT transport alone are shown in the 

supplemental material in Figure S17. 

 



Supplemental information 

 

1. Additional VPRM methods: 

All flux tower NEE and meteorological data was downloaded from the AmeriFlux 

(https://ameriflux.lbl.gov/) and National Ecological Observatory Network (NEON; 

https://www.neonscience.org/) websites and u-star filtered using site-specific thresholds (Barr et al., 

2013).  Including historical towers that are no longer operational allows us to include many more spatial 

locations in the optimization than if we only relied on towers which are currently running.  In fact, 46 of 

the 69 flux towers used in this study were not included in either Mahadevan et al. (2008) or Hilton et al., 

(2013, 2014).  However, the distribution of flux tower site-years in our database is heavily tilted towards 

the north of the domain, with grassland and wetland sites under-represented, particularly in the 

developed-open category (i.e. suburban lawns, parks and gardens) and the coastal Carolinas.  Also, 

despite the large number of forest sites in the database (42 out of 69), there are few sites in the 

Appalachian deciduous forests and the northern mixed forests in Canada.  Therefore, in order to the 

spatial representativeness of sites in the database, data from northern sites with long records were sub-

sampled to emphasize more recent years and some sites in coincident locations were removed (e.g. US-

NE1), but even after this procedure, 70% of site-years in the database are still north of 40°N.   

Gridded land cover maps are taken from the National Land Cover Database 2016 (NLCD2016; Yang et al., 

2018) in the USA, with corn and other crop areas determined from the Cropland Data Layer (Boryan et 

al., 2011) specifically for 2017.  In Canada, the Agriculture and Agri-Food Canada Annual Crop Inventory 

2017 (Agriculture and Agri-Food Canada, 2016); which includes non-crop land cover types as well) was 

used.  All high-resolution (i.e 30 m) land-cover products were aggregated up to 0.02 degree to 

determine fractional coverage across pixels in our domain.   

Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI) are extracted from the MODIS 

Aqua and Terra products MOD13A2/MYD13A2 and MOD09A1/MYD09A1 at 1 km and 500 m resolution 

respectively, and then aggregated up to 0.02 degree for the gridded runs.  A daily interpolation is 

performed across EVI and LSWI values from 8 and 16-day composites respectively using the actual dates 

of the satellite overpass within the composite period for each pixel.  Using the satellite overpass dates in 

the interpolation has been shown to help improve the simulation of phenology with remotely-sensed 

vegetation indices, particularly in croplands with short growing seasons (Guindin-Garcia et al., 2012; 

Lokupitiya et al., 2009).  However, the actual gap between successive overpasses can be as short as one 

or as long as 24 days (with an average interval of 8 days for EVI and 4 days for LSWI).  For the parameter 

optimization, 500 m EVI from the MOD13Q1/MYD13Q1 products and 500m LSWI from 

MOD09A1/MYD09A1 are extracted at each flux tower location using the R package MODISTools 

(https://cran.r-project.org/web/packages/MODISTools/index.html).  For the EVI and LSWI values at the 

flux towers, the dates for interpolation were assumed as the middle of each composite period in the 

absence of satellite overpass information.  

Gridded air temperature and shortwave radiation data are taken from the High Resolution Rapid Refresh 

(HRRR; Benjamin et al., 2016) model, which is at 3-km resolution and then downscaled to 0.02 degree.  

The high spatial resolution of the HRRR product relative to other meteorological products (like NLDAS, 

https://ameriflux.lbl.gov/


Xia et al., 2012, or the WRF runs for this domain) helps to simulate temperature gradients in urban and 

mountainous areas better than with coarser-resolution products (Figure S1.1).  Many radiation products 

are known to have a clear-sky bias (i.e. they under-represent cloudy conditions; Slater, 2016), including 

the HRRR radiation product used here, although the HRRR biases are less than those with WRF (as seen 

in a comparison to flux tower and NEON tower observations and other models in our domain, Figure 

S1.2).  Although biases in the gridded meteorological data can bias flux estimates, we considered the 

magnitude of these biases to be small relative to other sources of error, and therefore, did not bias-

correct the gridded temperature or radiation data.  Site-specific weather variables are also used in the 

parameter optimization, rather than modeled met data at each flux tower site, which could potentially 

compensate for biases in the meteorological products.   

 

Figure S1.1: Comparison of gridded temperature data from HRRR, NLDAS and WRF to surface observations at nine NEON and 

AmeriFlux towers within our domain from Nov. 1, 2016 to Oct. 31, 2017.  Daytime and night-time mean biases are shown in the 

left and center plots, and 24-hour root mean squared errors (RMSE) in the right plot.  HRRR data is at 3 km spatial resolution, 

NLDAS at 1/8th degree (~12 km), and WRF at 9 km (with 1 km and 3 km nests around Washington DC/ Baltimore.)   

 

 

Figure S1.2: Comparison of gridded shortwave radiation data from HRRR, NLDAS and WRF to surface observations at NEON and 

AmeriFlux towers.  Daytime mean biases and the hourly root mean squared errors (RMSE) are shown for each tower, plus the 

average across towers.  Also shown is the distribution of hourly radiation across all towers within four bins (<=150 W/m2, 150 to 

300 W/m2, 300 to 600 W/m2 and 600 to 1000 W/m2) for each model and the observations.  

  



2. Determination of afternoon hours in atmospheric CO2 observations 

In this study, “afternoon” hours are defined as hours when the middle falls five hours after sunrise and 

just before sunset, thus increasing the number of observations during the height of the growing season 

relative to studies that use a fixed interval, e.g. 12 pm – 4 pm local time.  For example, at DNH (Durham, 

NH) in the north of the domain, sunrise and sunset on July 1, 2017 are at 5:12 am and 8:35 pm EDT, and 

thus we would use eleven hourly observations from 10 am - 9 pm EDT on this day.  This definition of 

afternoon hours relative to sunrise and sunset time was determined by examining vertical gradients in 

measurements across inlet heights (on towers with multiple inlets) to identify when well-mixed 

conditions are most likely to occur.  As seen in Figure 2d in the main text, the gradient across towers 

during afternoon hours during the growing season (July) is lower compared to at other times of the day. 

 

3. Customized WRF and STILT runs to generate footprints 

Following Lopez-Coto et al. (2020), WRF is configured with three nested domains (9 km, 3 km, and 1 

km), with the innermost domain covering the urban area of interest, and 60 vertical levels with 

monotonically increasing thickness from the surface (34 levels below 3 km) for better boundary layer 

representation.  WRF model runs are configured with the RRTMG radiation scheme (Mlawer et al., 

1997), Thompson microphysics scheme (Thompson et al., 2004, 2008), Noah land surface model (Chen & 

Dudhia, 2001), the Kain-Fritsch cumulus scheme (for the 9 km domain only; Kain, 2004), the 1.5- order 

closure scheme MYNN (Nakanishi & Niino, 2004, 2006) with the eddy mass-flux option (Olson et al., 

2019) and the land-use classification from NLCD 2011 (Yang et al., 2018b) which includes four urban 

categories, from developed open space to developed high intensity.  They are also driven by initial and 

boundary conditions from the North America Regional Reanalysis (NARR) three hourly data (Mesinger et 

al., 2006).   

In STILT, 960 particles were released at each observation location and time period, and then tracked 

back for 120 hours (at which point the influence of fluxes inside the domain is assumed minimal).  

Particle influences were summed within each pixel and hour to determine a spatially and temporally-

varying footprint at a 0.1° hourly resolution.  A far-field footprint correction (based on work originally 

done by Fasoli et al., 2018, but modified at NIST) was also implemented to smooth out the discrete 

nature of the atmospheric influence far away from the towers caused by the limited number of particles 

released.   
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Table S1: Characteristics of biospheric models included in the inter-comparison. 

 

 

 

 

VPRM (Mahadevan et al, 2008; this 

study) CASA (Zhou et al, 2020) SiB4v2 (Haynes et al, 2019)
Spatial resolution 0.02 degree 5km 0.5 degree

Temporal resolution hourly

monthly, downscaled to 3-hourly with 

temperature & radiation hourly

Phenology

diagnostic (based on 8-day MODIS EVI/LSWI 

from overlapping 16-day composites) diagnostic (based on monthly MODIS fPAR)

prognostic, climate-driven, daily temporal 

resolution

Photosynthesis model

light-use efficiency with downscaling for 

temperature & water stress

light-use efficiency with downscaling for 

temperature & water stress

enzyme-kinetic (operates at sub-hourly 

timescale)

Respiration model

original model: linear function of temperature 

for each PFT, new respiration model: function 

of quadratic temperature, water stress and 

interactions with temperature, and EVI

3 live carbon pools (leaves, stem, roots), 3 litter 

pools, 5 soil and 2 coarse woody debris pools.  

Autotrophic respiration = 0.5*GPP; 

heterotrophic respiration =  sources from dead 

carbon pools as a function of pool-specific 

decay rate constants, effects of soil moisture, 

temperature (with a Q10 relationship) and 

microbial decomposition efficiency

5 live carbon pools (leaf, wood, products, fine 

and coarse roots) and 6 dead carbon pools (2 

surface litter, coarse woody debris and 3 soil); 

respiration fluxes determined using current 

photosynthetic uptake and decay rate 

constants with environmental limitations for all 

pools

Parameter selection

optimized using NEE observations from flux 

towers in eastern US & Canada operating since 

2001.  original model: optimized with 24 hours 

of hourly flux tower NEE observations, new 

respiration model: respiration parameters 

optimized with night-time average flux tower 

NEE observations, GPP parameters optimized 

with hourly day-time GPP "observations" (i.e. 

NEE - predicted respiration)

GPP parameters calibrated with flux tower 

partitioned GPP observations from towers 

across North America; ensemble approach 

where individual members vary light-use 

efficiency, Topt and Q10; ensemble mean across 

27 members of L2 product used here From literature, previous versions of SiB

Land cover map

USA: NLCD2016 for all categories, except crops 

(https://www.mrlc.gov/data/nlcd-2016-land-

cover-conus); crops from Cropland Data Layer 

(https://www.nass.usda.gov/Research_and_Sci

ence/Cropland/Release/).  Canada:  Canadian 

Annual Crop Inventory 2017 for all categories 

(https://open.canada.ca/data/en/dataset/ba26

45d5-4458-414d-b196-6303ac06c1c9).

MOD12Q1 Global Land Cover, modified with 

National Forest Type and North American 

Forest Dynamics products; tree and grass cover 

from MOD44B Vegetation Continuous Fields

MOD12Q1 Global Land Cover, modified for CLM 

3.0 as in Lawrence and Chase (2007)

Land-cover within pixel weighted fractional coverage dominant land-use weighted fractional coverage

Plant functional types

Deciduous broadleaf forests, Evergreen 

needleleaf/mixed forests (>40N), Evergreen 

needleleaf/ mixed forests (<40N), 

Grass/pasture/dev-open, Shrub/savannah, 

wetlands, corn, other crops

From MODIS IGBP: evergreen needleleaf 

forests, deciduous broadleaf forests, mixed 

forests, closed and open shrublands, woody 

(and non-woody) savannahs, grasslands,  

croplands, urban and built-up, cropland/natural 

vegetation mosaic

In this domain: evergreen needleleaf forest, 

deciduous broadleaf forest, shrubs, C3 

grasslands, C4 grasslands, maize, soybean, 

wheat, generic C3 crops 

Crops

corn vs. other crops (separate parameters & 

land-cover) single crop type

separate parameters for corn, wheat, soybean 

and generic C3 and C4 crops; crop-specific 

prognostic phenology determined by growing-

degree-days

Urban

Low, medium and high intensity developed 

land classified as urban;  heterotrophic 

respiration (i.e. half of total respiration) 

reduced by fraction of impervious surface 

coverage (Hardiman et al, 2017); developed-

open included with grasslands zero flux when dominant land-cover not separately simulated (no urban PFT)

Meteorological variables air temperature and shortwave radiation

air temperature, total precipitation, shortwave 

and longwave radiation

air temperature, precipitation, shortwave and 

longwave radiation, surface pressure, wind 

speed, specific humidity

Meteorological model HRRR (3km resolution)

NARR (32 km resolution; 3-hourly) for 5 km 

North American runs and for temporal 

downscaling; PRISM for precipitation and air 

temperature in 500 m runs; NLDAS-2 for 

radiation in 500 m runs

MERRA, regridded to 0.5° resolution; 

precipitation scaled to GPCP (as in Baker et al, 

2010)



Table S2: flux towers used in the VPRM parameter optimization, along with ancillary information.  All 

data was downloaded from the AmeriFlux (ameriflux.lbl.gov) and NEON (neonscience.org) websites, 

with NEON towers indicated in the description.   

Name Description 
State/ 
Province Latitude Longitude 

Vegetation 
Description 
(IGBP) PFT, this study 

Years 
included in 
optimization 

Included in 
Hilton et al 
or 
Mahadevan 
et al? 

Dataset 
reference 

CA-Gro 

Groundhog River, 
Boreal 
Mixedwood Forest Ontario 48.217 -82.156 

Mixed 
Forests 

Evergreen/mixed 
forests > 40N 2003-2014 Hilton 

McCaughey 
(2003-) 

CA-TP1 

Turkey Point 2002 
Plantation White 
Pine Ontario 42.661 -80.560 

Evergreen 
Needleleaf 
Forests 

Evergreen/mixed 
forests > 40N 2005-2014   

Arain 
(2003-) 

CA-TP3 

Turkey Point 1974 
Plantation White 
Pine Ontario 42.707 -80.348 

Evergreen 
Needleleaf 
Forests 

Evergreen/mixed 
forests > 40N 2012-2016   

Arain 
(2003-) 

CA-TPD 
Turkey Point 
Mature Deciduous Ontario 42.635 -80.558 

Deciduous 
Broadleaf 
Forests 

Deciduous 
broadleaf forests 2012-2016   

Arain 
(2012-) 

TALL 
Talladega National 
Forest (NEON) Alabama 32.951 -87.393 

Mixed 
Forests 

Evergreen/mixed 
forests < 40N 2018-2019   

Sturtevant 
et al (2017-
) 

US-ARC 

ARM Southern 
Great Plains 
control site Oklahoma 35.546 -98.040 Grasslands Grass/pasture 2005-2006   

Torn et al 
(2005-
2006) 

US-ARM 
ARM Southern 
Great Plains Oklahoma 36.606 -97.489 Croplands Crops, other 

2003-2004; 
2006-2012 Hilton 

Biraud et al 
(2002-) 

US-Bar 

Bartlett 
Experimental 
Forest 
(AmeriFlux/NEON) 

New 
Hampshire 44.065 -71.288 

Deciduous 
Broadleaf 
Forests 

Deciduous 
broadleaf forests 

2004-2016; 
2018-2019   

Richardson 
& Hollinger 
(2004-) 

US-Bo1 Bondville Illinois 40.006 -88.290 Croplands Corn/ Crops, other 

Corn: 2001, 
2005, 2007                                        
Soybean: 
2004, 2006 

Mahadevan, 
Hilton 

Meyers 
(1996-) 

US-Bo2 
Bondville 
(companion site) Illinois 40.009 -88.290 Croplands Corn 2006 HIlton 

Bernacchi 
(2004-
2008) 

US-Br1 
Brooks Field Site 
10- Ames Iowa 41.975 -93.691 Croplands Corn/ Crops, other 

Corn: 2005, 
2007, 2011                                        
Soybean: 
2006, 2010   

Prueger & 
Parkin 
(2001) 

US-Br3 
Brooks Field Site 
11- Ames Iowa 41.975 -93.694 Croplands Corn/ Crops, other 

Corn: 2006, 
2010                                                   
Soybean: 
2005   

Prueger & 
Parkin 
(2001) 

US-CaV Canaan Valley West Virginia 39.063 -79.421 Grasslands Grass/pasture 
2004, 2008-
2009 Hilton 

Meyers 
(2004-) 

US-Ced Cedar Bridge New Jersey 39.838 -74.379 
Closed 
Shrublands Shrubs 2006-2014   

Clark 
(2005-) 

US-ChR Chestnut Ridge Tennessee 35.931 -84.332 

Deciduous 
Broadleaf 
Forests 

Deciduous 
broadleaf forests 2006-2009   

Meyers 
(2005-) 

US-CRT 
Curtice Walter-
Berger cropland Ohio 41.629 -83.347 Croplands Crops, other 

2011, 2012, 
2013   

Chen & 
Chu (2011-
2013) 

US-Dix Fort Dix New Jersey 39.971 -74.435 
Mixed 
Forests 

Evergreen/mixed 
forests < 40N 2005-2008   

Clark 
(2005-
2008) 



US-Dk1 
Duke Forest-open 
field North Carolina 35.971 -79.093 Grasslands Grass/pasture 2001-2005 

Mahadevan, 
Hilton 

Oishi et al 
(2001-
2008) 

US-Dk2 
Duke Forest-
hardwoods North Carolina 35.974 -79.100 

Deciduous 
Broadleaf 
Forests 

Deciduous 
broadleaf forests 2001 

Mahadevan, 
Hilton 

Oishi et al 
(2001-
2008) 

US-Dk3 
Duke Forest - 
loblolly pine North Carolina 35.978 -79.094 

Evergreen 
Needleleaf 
Forests 

Evergreen/mixed 
forests < 40N 2001-2006 Hilton 

Oishi et al 
(2001-
2008) 

US-FR3 
Freeman Ranch - 
Woodland Texas 29.940 -97.990 

Closed 
Shrublands Shrubs 2009-2012   

Heilman 
(2004-) 

US-GMF 
Great Mountain 
Forest Connecticut 41.967 -73.233 

Mixed 
Forests 

Evergreen/mixed 
forests > 40N 2001-2003   

Lee (1999-
2004) 

US-Goo Goodwin Creek Mississippi 34.255 -89.874 Grasslands Grass/pasture 
2002, 2004-
2006 Hilton 

Meyers 
(2002-
2006) 

US-Ha1 

Harvard Forest 
EMS Tower 
(AmeriFlux/NEON) Massachusetts 42.538 -72.172 

Deciduous 
Broadleaf 
Forests 

Deciduous 
broadleaf forests 

2001-2012, 
2015, 2018-
2019 

Mahadevan, 
Hilton 

Munger 
(1991-) 

US-Ha2 
Harvard Forest 
Hemlock Site Massachusetts 42.539 -72.178 

Evergreen 
Needleleaf 
Forests 

Evergreen/mixed 
forests > 40N 

2006-2008, 
2012-2013 Hilton 

Hadley & 
Munger 
(2004-) 

US-Ho1 
Howland Forest 
(main tower) Maine 45.204 -68.740 

Evergreen 
Needleleaf 
Forests 

Evergreen/mixed 
forests > 40N 2010-2016 

Mahadevan, 
Hilton 

Hollinger 
(1996-) 

US-Ho2 
Howland Forest 
(west tower) Maine 45.209 -68.747 

Evergreen 
Needleleaf 
Forests 

Evergreen/mixed 
forests > 40N 2001-2009 Hilton 

Hollinger 
(1999-) 

US-Ho3 
Howland Forest 
(harvest site) Maine 45.207 -68.725 

Evergreen 
Needleleaf 
Forests 

Evergreen/mixed 
forests > 40N 2004-2005   

Hollinger 
(2000-) 

US-IB1 

Fermi National 
Accelerator 
Laboratory- 
Batavia 
(Agricultural site) Illinois 41.859 -88.223 Croplands Corn/ Crops, other 

Corn: 2006, 
2008, 2010, 
2012, 2013, 
2016                              
Soybean: 
2005, 2007, 
2009, 2011, 
2014, 2015   

Matamala 
(2005-) 

US-IB2 

Fermi National 
Accelerator 
Laboratory- 
Batavia (Prairie 
site) Illinois 41.841 -88.241 Grasslands Grass/pasture 

2009-2011, 
2015-2016   

Matamala 
(2004-) 

US-KS2 
Kennedy Space 
Center (scrub oak) Florida 28.609 -80.672 

Closed 
Shrublands Shrubs 2003-2006 Hilton 

Drake & 
Hinkle 
(2000-
2007) 

US-KUT 
KUOM Turfgrass 
Field Minnesota 44.995 -93.186 Grasslands Grass/pasture 2006-2009   

McFadden 
(2005-
2009) 

US-Los Lost Creek Wisconsin 46.083 -89.979 
Permanent 
Wetlands Wetlands 2014-2016 

Mahadevan, 
Hilton 

Desai 
(2001-) 

US-MMS 
Morgan Monroe 
State Forest Indiana 39.323 -86.413 

Deciduous 
Broadleaf 
Forests 

Deciduous 
broadleaf forests 2012-2016 

Mahadevan, 
Hilton 

Novick & 
Phillips 
(1999-) 

US-MOz 
Missouri Ozark 
Site Missouri 38.744 -92.200 

Deciduous 
Broadleaf 
Forests 

Deciduous 
broadleaf forests 2013-2016 Hilton 

Wood & Gu 
(2004-) 

US-NC1 NC_Clearcut North Carolina 35.811 -76.712 

Evergreen 
Needleleaf 
Forests 

Evergreen/mixed 
forests < 40N 2005-2009   

Noormets 
(2005-
2013) 



US-NC2 
NC_Loblolly 
Plantation North Carolina 35.803 -76.669 

Evergreen 
Needleleaf 
Forests 

Evergreen/mixed 
forests < 40N 

2012-2016, 
2018   

Noormets 
(2005-) 

US-NC3 NC_Clearcut#3 North Carolina 35.799 -76.656 

Evergreen 
Needleleaf 
Forests 

Evergreen/mixed 
forests < 40N 

2015-2016, 
2018   

Noormets 
(2013-) 

US-NE2 

Mead - irrigated 
maize/ soybean 
rotation Nebraska 41.165 -96.470 Croplands Corn/ Crops, other 

Corn: 2009-
2012                                                    
Soybean: 
2002, 2004, 
2006, 2008 

Mahadevan, 
Hilton 

Suyker 
(2001-) 

US-NE3 

Mead - rainfed 
maize/ soybean 
rotation Nebraska 41.180 -96.440 Croplands Corn/ Crops, other 

Corn: 2009, 
2011                                                   
Soybean: 
2008, 2010, 
2012 Hilton 

Suyker 
(2001-) 

US-Oho Oak Openings Ohio 41.555 -83.844 

Deciduous 
Broadleaf 
Forests 

Deciduous 
broadleaf forests 

2005-2007, 
2009-2010, 
2012   

Chen et al 
(2004-
2013) 

US-ORv 

Olentangy River 
Wetland Research 
Park Ohio 40.020 -83.018 

Permanent 
Wetlands Wetlands 2011   

Bohrer 
(2011-
2016) 

US-OWC Old Woman Creek Ohio 41.380 -82.513 
Permanent 
Wetlands Wetlands 2015-2016   

Bohrer 
(2015-
2016) 

US-PFa Park Falls/WLEF Wisconsin 45.946 -90.272 
Mixed 
Forests 

Evergreen/mixed 
forests > 40N 2001-2008 

Mahadevan, 
Hilton 

Desai 
(1996-) 

US-Ro1 Rosemount- G21 Minnesota 44.714 -93.090 Croplands Corn/ Crops, other 

Corn: 2005, 
2007, 2009, 
2011, 2013, 
2015                                    
Soybean: 
2004, 2006, 
2008, 2010, 
2012, 2014, 
2016   

Baker et al 
(2003-
2017) 

US-Ro2 Rosemount- C7 Minnesota 44.729 -93.089 Croplands Crops, other 2016   

Baker & 
Griffis 
(2003-
2017) 

US-Ro3 Rosemount- G19 Minnesota 44.722 -93.089 Croplands Corn/ Crops, other 

Corn: 2005, 
2007                                                   
Soybean: 
2004, 2006   

Baker & 
Griffis 
(2003-
2010) 

US-Ro4 Rosemount Prairie Minnesota 44.678 -93.072 Grasslands Grass/pasture 2015-2016   

Baker & 
Griffis 
(2014-) 

US-Slt Silas Little New Jersey 39.914 -74.596 

Deciduous 
Broadleaf 
Forests 

Deciduous 
broadleaf forests 2010-2014   

Clark 
(2004-) 

US-Syv 
Sylvania 
Wilderness Area Michigan 46.242 -89.348 

Mixed 
Forests 

Evergreen/mixed 
forests > 40N 

2001-2002, 
2004-2007, 
2012-2016 Hilton 

Desai 
(2001-) 

US-UMB 
Univ. of Mich. 
Biological Station Michigan 45.560 -84.714 

Deciduous 
Broadleaf 
Forests 

Deciduous 
broadleaf forests 2013-2016 

Mahadevan, 
Hilton 

Gough et al 
(1999-) 

US-UMd 

Univ. of Mich. 
Biological Station, 
Disturbance Michigan 45.563 -84.698 

Deciduous 
Broadleaf 
Forests 

Deciduous 
broadleaf forests 2016, 2018   

Gough et al 
(2007-) 

US-WBW 
Walker Branch 
Watershed Tennessee 35.959 -84.287 

Deciduous 
Broadleaf 
Forests 

Deciduous 
broadleaf forests 

2004, 2005, 
2007   

Meyers 
(1995-
1999) 

US-WCr Willow Creek Wisconsin 45.806 -90.080 

Deciduous 
Broadleaf 
Forests 

Deciduous 
broadleaf forests 2013-2016 

Mahadevan, 
Hilton 

Desai 
(1999-) 



US-Wi1 
Intermediate 
hardwood Wisconsin 46.731 -91.233 

Deciduous 
Broadleaf 
Forests 

Deciduous 
broadleaf forests 2003   

Chen 
(2003-
2003) 

US-Wi4 Mature red pine Wisconsin 46.739 -91.166 

Evergreen 
Needleleaf 
Forests 

Evergreen/mixed 
forests > 40N 2005   

Chen 
(2002-
2005) 

US-Wi5 
Mixed young jack 
pine Wisconsin 46.653 -91.086 

Evergreen 
Needleleaf 
Forests 

Evergreen/mixed 
forests > 40N 2004   

Chen 
(2004-
2004) 

US-Wi7 Red pine clearcut Wisconsin 46.649 -91.069 
Open 
Shrublands Shrubs 2005   

Chen 
(2005-
2005) 

US-Wi8 
Young hardwood 
clearcut Wisconsin 46.722 -91.252 

Deciduous 
Broadleaf 
Forests 

Deciduous 
broadleaf forests 2002   

Chen 
(2002-
2002) 

US-Wi9 Young Jack pine Wisconsin 46.619 -91.081 

Evergreen 
Needleleaf 
Forests 

Evergreen/mixed 
forests > 40N 2005   

Chen 
(2004-
2005) 

US-WPT 
Winous Point 
North Marsh Ohio 41.465 -82.996 

Permanent 
Wetlands Wetlands 2011-2013   

Chen & 
Chu (2011-
2013) 

US-xDL Dead Lake (NEON) Alabama 32.542 -87.804 
Mixed 
Forests 

Evergreen/mixed 
forests < 40N 2018   

Sturtevant 
et al (2017-
) 

US-xGR 

Great Smoky 
Mountains 
National Park 
(NEON) Tennessee 35.689 -83.502 

Deciduous 
Broadleaf 
Forests 

Deciduous 
broadleaf forests 2019   

Sturtevant 
et al (2017-
) 

US-xSC 

Smithsonian 
Conservation 
Biology Unit 
(NEON) Virginia 38.893 -78.140 

Deciduous 
Broadleaf 
Forests 

Deciduous 
broadleaf forests 2018-2019   

Sturtevant 
et al (2016-
) 

US-xSE 

Smithsonian 
Environmental 
Research Center 
(NEON) Maryland 39.890 -76.560 

Deciduous 
Broadleaf 
Forests 

Deciduous 
broadleaf forests 2018, 2019   

Sturtevant 
et al (2016-
) 

US-xST 
Steigerwaldt Land 
Services (NEON) Wisconsin 45.509 -89.586 

Deciduous 
Broadleaf 
Forests 

Deciduous 
broadleaf forests 2018-2019   

Sturtevant 
et al (2017-
) 

US-xTR Treehaven (NEON) Wisconsin 45.494 -89.586 

Deciduous 
Broadleaf 
Forests 

Deciduous 
broadleaf forests 2018-2019   

Sturtevant 
et al (2017-
) 

US-xUK 

University of 
Kansas Field 
Station (NEON) Kansas 39.040 -95.192 

Mixed 
Forests 

Evergreen/mixed 
forests < 40N 2018-2019   

Sturtevant 
et al (2017-
) 

US-xUN 

University of 
Notre Dame 
Environmental 
Research Center 
(NEON) Michigan 46.234 -89.537 

Deciduous 
Broadleaf 
Forests 

Evergreen/mixed 
forests > 40N 2018-2019   

Sturtevant 
et al (2017-
) 

 

 

  



Table S3: optimized VPRM parameters for each of the nine PFTs using the original VPRM respiration 

model with annual and seasonal parameters (i.e. VPRMann and VPRMseas).  Deciduous broadleaf forests 

and urban PFTs share the same parameters, and Tmin, Topt and Tmax parameters are in units of °C.  Cells 

are highlighted in grey where the optimized relationship between temperature and respiration (α) is 

negative.   

 

 

  

Deciduous 

Broadleaf Forest 

& Urban

Evergreen/ 

Mixed Forest, 

>40°N

Evergreen/ 

Mixed Forest, 

<40°N

Shrub/ 

Savannah

Grass/Pasture/ 

Dev-open Wetlands Crops, other Crops, corn

Tmin 0 0 0 0 2 0 0 2

Topt 20 20 20 20 18 20 22 25

Tmax 40 40 40 40 40 40 40 40

λ -0.0751 -0.0933 -0.0668 -0.0655 -0.0698 -0.0587 -0.0417 -0.047

PAR0 745 551 1468 1167 1561 794 2405 11155

β 1.396 1.094 0.110 0.805 0.879 0.947 0.788 0.925

α 0.099 0.152 0.205 0.072 0.087 0.059 0.076 0.092

λ -0.011 -0.1184 -0.0951 -0.0643 -0.1526 -0.1849 -0.114 -0.001

PAR0 50000 99 882 1134 235 89 273 10

β 0.983 0.589 0.154 1.224 0.522 0.594 0.380 0.383

α 0.024 0.016 0.165 -0.006 0.030 0.034 0.004 0.016

λ -0.0678 -0.1052 -0.0759 -0.0635 -0.1066 -0.0792 -0.0844 -0.3065

PAR0 676 521 1064 1127 900 595 825 61

β 1.067 0.834 -0.319 -0.244 0.364 0.887 0.231 0.513

α 0.116 0.133 0.238 0.105 0.119 0.044 0.121 0.067

λ -0.0847 -0.099 -0.0621 -0.0708 -0.0839 -0.0733 -0.0478 -0.0494

PAR0 681 549 1647 1061 1158 616 1940 7615

β 5.650 0.889 12.736 5.875 10.243 6.817 6.460 9.775

α -0.050 0.239 -0.276 -0.095 -0.244 -0.150 -0.133 -0.274

λ -0.0901 -0.1309 -0.0848 -0.0754 -0.0978 -0.0746 -0.0414 -0.0433

PAR0 577 424 955 1059 765 525 1193 3754

β 1.410 0.617 -0.129 0.756 0.928 0.994 0.662 0.656

α 0.095 0.226 0.242 0.106 0.093 0.056 0.099 0.119

winter (DJF)

sprng (MAM)

summer (JJA)

fall (SON)

annual



Table S4:  optimized VPRM parameters for each of the nine PFTs using the new respiration model (i.e. 

VPRMnew) developed in this study.  Tmin, Topt, Tmax, and Tcrit parameters are in units of °C. 

 

 

  

Deciduous 

Broadleaf Forest 

& Urban

Evergreen/ 

Mixed Forest, 

>40°N

Evergreen/ 

Mixed Forest, 

<40°N

Shrub/ 

Savannah

Grass/Pasture/ 

Dev-open Wetlands Crops, other Crops, corn
Tmin 0 0 0 0 2 0 0 2

Topt 20 20 20 20 18 20 22 25

Tmax 40 40 40 40 40 40 40 40

Tcrit 11 3 8 11 7 12 7 -1

Tscale 0.15 0.05 0.1 0.15 0 0.05 0 0

λ -0.098 -0.124 -0.081 -0.106 -0.119 -0.096 -0.068 -0.076

PAR0 585 436 1203 655 850 501 1252 2854

β -5.357 0.232 0.673 -4.464 -1.580 -7.892 -1.351 -0.123

α1 0.782 0.073 -0.067 0.685 0.293 1.090 0.246 0.072

α2 -0.0203 0.0048 0.0107 -0.0184 -0.0091 -0.0331 -0.0062 -0.0013

γ 4.87 3.03 2.38 4.35 4.19 4.68 3.66 5.05

θ1 2.370 -1.639 -4.744 -0.764 -1.709 1.852 -0.230 0.189

θ2 -0.365 0.418 0.666 0.057 0.240 -0.439 -0.012 -0.137

θ3 0.0137 -0.0132 -0.0184 0.0031 0.0010 0.0221 0.0080 0.0155



Table S5:  Towers with observed CO2 mole fraction data calibrated to the WMO-CO2-X2007 scale, sorted 

from north to south.  Also shown are other tower characteristics, months with observations from 

November 2016 to October 2017, and the percentage of each land cover within the footprint on average 

for the full year, calculated using the average of WRF-STILT and NAMS-STILT transport.  Data providers 

are National Oceanic and Atmospheric Administration (NOAA), Earth Networks (EN), Environment 

Canada (EC), Harvard University (HU) and Penn State University (PSU).  The data provider ‘EN-NIST’ 

refers to towers operated by Earth Networks and funded by the National Institute of Standards & 

Technology (NIST; Karion et al, 2020).  Tower locations are also shown in Figure 2 of the main text.  

 

 

  

Name Description

Data 

Provider Latitude Longitude

Elevation 

(masl)

Inlet 

height (m)

Months with 

data DBF

ENF/MF,  

> 40N

ENF/MF,  

< 40N Wetlands Shrubs Crops

Grass/ pasture/ 

dev-open

Developed 

(low/med/high)

LEF Park Falls, WI NOAA 45.945 -90.273 474 396 all 30 18 0 30 1 11 8 1

AMT Argyle, ME NOAA 45.035 -68.682 53 107 all 17 45 1 15 3 6 9 4

DNH Durham, NH EN-NIST 43.709 -72.154 560 100 all 28 34 1 7 2 9 13 5

UNY Utica, NY EN-NIST 42.879 -74.785 489 45 all 31 17 2 8 2 14 21 4

TPD Turkey Point, Ontario EC 42.617 -80.550 198 35 all 23 9 2 7 1 37 14 6

HAF Harvard_Forest HU 42.538 -72.172 344 29 all 28 31 2 10 2 8 14 7

MSH Mashpee_MA EN-NIST 41.657 -70.498 32 46 all 20 28 3 10 2 8 16 14

MLD Mildred, PA PSU 41.466 -76.419 591 61 all 36 16 3 6 2 14 18 5

BRI Bremen, IN EN-NIST 41.458 -86.194 252 100 Dec-Oct 16 4 2 8 1 50 13 7

HCT Hamden, CT EN-NIST 41.434 -72.945 197 100 Nov-Mar, Jul 34 17 3 8 2 10 17 11

SNJ Stockholm, NJ EN-NIST 41.144 -74.539 407 53 Nov-May 36 13 3 8 1 12 19 7

S01 Mooresville, IN PSU 39.581 -86.421 256 121 all 25 2 5 4 1 44 16 5

TMD Thurmont_MD EN-NIST 39.577 -77.488 564 113 May-Oct 34 6 9 5 1 17 22 6

BUC Bucktown_MD EN-NIST 38.460 -76.043 3 75 all 22 5 12 18 2 21 16 6

SFD Stafford_VA EN-NIST 38.446 -77.530 76 152 Jul-Oct 31 5 15 7 2 14 21 6

RIC Richmond, VA EN-NIST 37.509 -77.576 89 95 all 27 3 19 7 2 14 21 7

SKY Somerset, KY EN-NIST 36.961 -84.568 375 100 Apr-Jul 37 1 14 3 1 15 25 4

DVA Danville, VA PSU 36.706 -79.437 278 215 Dec-Oct 33 2 18 4 3 12 24 5

MNC Middlesex, NC EN-NIST 35.831 -78.145 73 213 Nov-Mar, May-Oct 20 2 22 13 2 19 18 5

SMT Signal Mountain, TN EN-NIST 35.207 -85.286 610 100 Nov-Apr 36 1 16 3 2 11 26 6

SCT South Carolina Tower NOAA 33.406 -81.833 114 305 all 16 1 23 20 5 12 18 5



Table S6: Adjusted R2’s from regressions predicting night-time average NEE observations with site-

specific meteorological and remote-sensing data for each PFT.  Each column includes additional 

predictor variables into the model, and the last column adds the low air temperature correction to the 

full model with all variables.  Cells are highlighted where the addition of the extra variable(s) in that 

column increased the adjusted R2 by >= 0.025 for that PFT. 

 

 

  

T T+T2 T+T2+EVI T+T2+EVI+Wscale+Wscale*T+Wscale*T2 T+T2+EVI+Wscale+Wscale*T+Wscale*T2 

(with Tlow correction)

Deciduous broadleaf forests 0.270 0.299 0.338 0.338 0.338

Evergreen needleleaf & mixed forests, > 40°N 0.457 0.525 0.547 0.550 0.559

Evergreen needleleaf & mixed forests, < 40°N 0.183 0.199 0.203 0.203 0.205

Grasslands/ pasture 0.289 0.326 0.385 0.401 0.408

Wetlands 0.297 0.338 0.383 0.388 0.395

Shrublands/ savannah 0.173 0.180 0.242 0.305 0.329

Corn 0.348 0.447 0.593 0.618 0.622

Soybean/ other crops 0.279 0.305 0.494 0.531 0.537



Table S7: Seasonal statistics for winter months (DJF) comparing hourly convolutions to observed biologic 

enhancements at each tower, averaging convolutions from WRF-STILT and NAMS-STILT and with towers 

sorted from north to south.  The best performing biospheric model(s) for each tower, defined as the 

lowest values for mean bias (MB in µmol/mol) and root mean squared error (RMSE in µmol/mol) and 

highest values for correlations (r) and Nash-Sutcliffe coefficients (NSC), are shown in grey (within 0.05 

for MB and RMSE and 0.01 for r and NSC), with the “best” model in red and bold.  None of the metrics 

are highlighted for a tower/model combination with zero or negative NSC.  Averaged metrics across 

towers are shown in the last two rows (with mean absolute values in 2nd row).  

 

 

Table S8: Seasonal statistics for spring months (MAM) comparing hourly convolutions to observed 

biologic enhancements at each tower.  Values are highlighted similarly to Table S7. 

 

 

  

VPRMann VPRMseas VPRMnew CASA SiB4

MB RMSE r NSC MB RMSE r NSC MB RMSE r NSC MB RMSE r NSC MB RMSE r NSC

LEF 0.15 2.45 0.38 0.14 0.00 2.45 0.41 0.14 -0.04 2.47 0.37 0.13 0.47 2.73 0.25 -0.06 1.23 3.04 0.24 -0.32

AMT -0.94 2.91 0.41 0.07 -1.18 2.94 0.48 0.05 -1.09 2.91 0.48 0.07 -0.06 2.88 0.41 0.09 0.61 2.86 0.46 0.10

DNH -0.49 2.48 0.64 0.38 -0.88 2.76 0.60 0.24 -0.81 2.63 0.67 0.31 0.74 2.63 0.62 0.31 1.77 3.11 0.62 0.03

UNY -0.31 2.78 0.40 0.09 -0.78 2.84 0.37 0.05 -0.81 2.77 0.41 0.09 0.96 3.13 0.43 -0.16 2.01 3.58 0.45 -0.52

TPD -0.73 3.22 0.56 0.27 -1.51 3.65 0.48 0.07 -1.33 3.44 0.55 0.17 0.85 3.39 0.58 0.20 1.32 3.73 0.48 0.03

HAF 0.46 3.45 0.46 0.20 -0.02 3.47 0.46 0.19 0.06 3.45 0.47 0.20 1.75 4.10 0.39 -0.12 2.66 4.28 0.51 -0.23

MSH -0.59 3.04 0.58 0.27 -0.96 3.26 0.56 0.16 -0.87 3.20 0.57 0.19 -0.01 3.03 0.53 0.28 0.76 3.05 0.55 0.26

MLD -0.58 3.34 0.23 -0.13 -1.28 3.46 0.17 -0.21 -1.04 3.29 0.25 -0.09 0.43 3.65 0.21 -0.34 1.34 3.48 0.34 -0.23

BRI -1.63 4.35 0.65 0.23 -2.62 5.22 0.65 -0.11 -2.13 4.69 0.71 0.10 -0.37 3.78 0.67 0.42 0.65 4.00 0.61 0.35

HCT -1.98 6.15 0.48 0.10 -2.55 6.51 0.45 -0.02 -2.42 6.39 0.50 0.02 -1.47 6.15 0.39 0.09 -0.40 6.01 0.37 0.14

SNJ -0.31 4.93 0.19 -0.03 -1.00 4.96 0.17 -0.04 -0.86 4.86 0.21 0.01 0.45 5.08 0.18 -0.09 1.63 5.12 0.28 -0.11

S01 -1.16 3.43 0.62 0.27 -1.99 4.08 0.49 -0.03 -1.58 3.69 0.62 0.16 -0.20 3.19 0.61 0.37 0.58 3.26 0.60 0.34

TMD NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

BUC -0.95 3.01 0.53 0.20 -1.71 3.50 0.42 -0.08 -1.29 3.20 0.53 0.10 0.03 2.89 0.52 0.26 0.34 3.08 0.43 0.16

SFD NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

RIC -1.46 4.66 0.51 0.13 -2.22 5.11 0.42 -0.05 -1.85 4.76 0.60 0.09 -0.26 4.47 0.44 0.19 -0.48 4.44 0.48 0.21

SKY NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

DVA -1.12 4.84 0.58 0.21 -2.23 5.46 0.66 -0.01 -1.63 5.02 0.66 0.15 -0.12 4.76 0.50 0.23 -0.47 5.06 0.38 0.13

MNC -0.97 4.74 0.52 0.17 -1.84 5.23 0.38 -0.01 -1.36 4.82 0.57 0.14 0.12 4.74 0.41 0.17 0.07 4.96 0.30 0.09

SMT -1.89 4.64 0.36 -0.04 -2.70 5.06 0.36 -0.24 -2.34 4.85 0.37 -0.14 -1.21 4.45 0.35 0.04 -1.58 4.56 0.34 -0.01

SCT -1.08 4.72 0.37 0.08 -1.67 4.96 0.38 -0.02 -1.41 4.78 0.43 0.05 -0.52 4.63 0.35 0.11 -0.90 4.74 0.32 0.07

mean -0.87 3.84 0.47 0.14 -1.51 4.16 0.44 0.00 -1.27 3.96 0.50 0.10 0.09 3.87 0.44 0.11 0.62 4.02 0.43 0.03

MAE 0.93 1.51 1.27 0.56 1.04

VPRMann VPRMseas VPRMnew CASA SiB4

MB RMSE r NSC MB RMSE r NSC MB RMSE r NSC MB RMSE r NSC MB RMSE r NSC

LEF 0.62 1.69 0.72 0.44 0.37 1.65 0.71 0.47 0.50 1.67 0.72 0.45 1.07 2.20 0.55 0.05 0.88 1.96 0.63 0.25

AMT 0.82 1.94 0.63 0.27 0.43 1.82 0.63 0.36 0.68 1.84 0.66 0.35 1.32 2.36 0.56 -0.07 0.97 2.15 0.55 0.11

DNH -0.04 2.10 0.74 0.50 -0.51 2.12 0.75 0.49 -0.16 1.90 0.77 0.59 1.07 2.84 0.54 0.09 0.86 2.43 0.66 0.33

UNY -0.13 2.59 0.80 0.60 -0.62 2.60 0.80 0.60 -0.27 2.59 0.78 0.60 1.61 3.62 0.63 0.22 1.15 3.04 0.73 0.45

TPD -0.45 4.35 0.51 0.25 -0.88 4.36 0.54 0.25 -0.44 4.24 0.57 0.29 0.56 4.41 0.51 0.23 -0.31 4.92 0.32 0.05

HAF 0.49 2.42 0.67 0.31 0.02 2.26 0.69 0.40 0.35 2.18 0.70 0.44 1.32 3.15 0.50 -0.16 1.28 2.86 0.60 0.04

MSH -0.31 3.16 0.17 -0.20 -0.58 3.08 0.19 -0.14 -0.29 2.78 0.32 0.07 0.33 2.99 0.26 -0.07 -0.19 3.37 0.04 -0.36

MLD -0.16 3.10 0.73 0.52 -0.51 3.04 0.74 0.54 -0.05 2.91 0.77 0.58 0.83 4.09 0.48 0.16 0.18 3.59 0.61 0.36

BRI -0.19 3.36 0.62 0.37 -0.42 3.43 0.61 0.35 -0.31 3.40 0.62 0.36 0.31 3.27 0.64 0.41 0.43 3.52 0.59 0.31

HCT -0.25 3.24 0.42 0.17 -0.61 3.28 0.43 0.15 -0.58 3.34 0.40 0.12 0.08 3.25 0.42 0.17 0.41 3.39 0.33 0.09

SNJ -0.50 3.22 0.64 0.36 -0.80 3.19 0.65 0.37 -0.56 3.07 0.66 0.42 0.38 3.36 0.57 0.31 -0.18 3.66 0.47 0.18

S01 -0.58 4.35 0.51 0.25 -0.59 4.34 0.51 0.25 -0.44 4.07 0.60 0.34 0.20 3.83 0.65 0.42 0.23 4.54 0.43 0.18

TMD -1.36 4.80 0.31 -0.38 -1.19 4.50 0.32 -0.22 -0.11 4.38 0.33 -0.15 2.42 5.86 0.10 -1.06 0.75 3.62 0.50 0.21

BUC -0.30 3.85 0.56 0.29 -0.54 3.80 0.58 0.31 0.08 3.48 0.65 0.42 0.93 3.80 0.60 0.31 0.03 4.24 0.40 0.14

SFD NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

RIC -0.81 3.90 0.70 0.46 -0.90 3.89 0.70 0.46 -0.35 3.51 0.76 0.56 0.55 3.95 0.67 0.44 -0.55 4.60 0.51 0.25

SKY -0.76 4.58 0.76 0.56 -0.44 4.64 0.75 0.55 0.31 4.28 0.80 0.62 2.55 5.07 0.77 0.46 1.11 5.92 0.58 0.27

DVA -1.36 3.83 0.70 0.40 -1.41 3.84 0.69 0.40 -0.85 3.45 0.74 0.51 -0.08 3.63 0.68 0.46 -0.82 4.42 0.48 0.20

MNC -1.06 4.53 0.59 0.29 -1.15 4.48 0.59 0.30 -0.06 4.11 0.64 0.41 1.06 4.10 0.68 0.41 1.20 4.38 0.65 0.33

SMT -1.23 4.39 0.33 0.03 -1.38 4.46 0.32 0.00 -1.19 4.16 0.46 0.13 -0.86 4.10 0.45 0.16 -2.57 5.28 0.13 -0.40

SCT 0.19 3.07 0.66 0.43 0.13 3.12 0.65 0.41 0.32 3.11 0.66 0.41 0.04 3.06 0.66 0.43 0.83 3.60 0.59 0.21

mean -0.37 3.42 0.59 0.30 -0.58 3.39 0.59 0.32 -0.17 3.22 0.63 0.38 0.79 3.65 0.55 0.17 0.28 3.77 0.49 0.16

MAE 0.58 0.67 0.39 0.88 0.75



Table S9:  Seasonal statistics for summer months (JJA) comparing hourly convolutions to observed 

biologic enhancements at each tower.  Values are highlighted similarly to Table S7. 

 

 

Table S10:  Seasonal statistics for fall months (SON) comparing hourly convolutions to observed biologic 

enhancements at each tower.  Values are highlighted similarly to Table S7. 

   

VPRMann VPRMseas VPRMnew CASA SiB4

MB RMSE r NSC MB RMSE r NSC MB RMSE r NSC MB RMSE r NSC MB RMSE r NSC

LEF 0.75 3.98 0.47 0.18 1.74 4.35 0.43 0.02 1.32 4.11 0.47 0.13 1.12 4.12 0.47 0.12 1.48 4.27 0.47 0.06

AMT -2.06 5.73 0.28 -0.40 -0.22 4.85 0.34 0.00 -0.60 4.82 0.37 0.01 0.60 5.35 0.28 -0.22 -0.02 5.11 0.29 -0.11

DNH -3.94 6.28 0.46 -0.60 -1.75 4.91 0.49 0.02 -2.03 4.62 0.58 0.13 0.06 4.61 0.51 0.14 -1.53 5.89 0.29 -0.41

UNY -4.29 7.03 0.46 -0.52 -1.41 5.57 0.49 0.04 -1.95 5.34 0.55 0.12 0.15 5.74 0.46 -0.02 -1.80 6.65 0.33 -0.36

TPD -1.36 5.88 0.54 0.20 1.18 5.97 0.51 0.17 1.05 5.13 0.64 0.39 -0.85 5.69 0.56 0.25 -3.51 8.27 0.32 -0.59

HAF -2.27 5.87 0.38 -0.19 -0.12 5.33 0.39 0.02 -0.29 4.92 0.47 0.17 0.96 5.25 0.47 0.05 -0.56 6.44 0.18 -0.43

MSH -2.71 5.69 0.28 -0.59 -1.09 4.88 0.24 -0.17 -1.03 4.43 0.39 0.04 0.07 4.55 0.33 -0.02 -1.16 5.41 0.16 -0.44

MLD -4.47 6.49 0.52 -0.71 -1.82 5.25 0.49 -0.12 -1.73 4.51 0.60 0.17 -0.13 4.87 0.50 0.04 -2.67 6.49 0.35 -0.71

BRI -1.38 5.70 0.75 0.50 0.31 5.63 0.73 0.51 0.64 4.98 0.79 0.62 0.92 5.47 0.74 0.54 -1.85 7.15 0.58 0.21

HCT -2.84 6.89 0.27 -0.21 -1.13 6.25 0.32 0.00 -0.45 5.92 0.35 0.11 2.33 6.69 0.29 -0.14 -1.34 6.85 0.19 -0.20

SNJ -5.18 9.86 0.58 -3.50 -1.00 7.57 0.47 -1.65 -3.32 7.98 0.51 -1.95 -1.62 7.07 0.20 -1.31 -0.89 6.72 0.43 -1.09

S01 0.40 5.82 0.64 0.39 2.07 6.19 0.63 0.30 3.06 6.39 0.66 0.26 1.62 6.04 0.63 0.34 0.32 6.62 0.55 0.20

TMD -2.99 6.14 0.41 -0.21 -0.88 5.33 0.44 0.09 -0.04 5.07 0.47 0.18 -0.14 5.47 0.46 0.04 -1.20 5.50 0.39 0.03

BUC -1.36 5.55 0.46 0.14 0.32 5.58 0.39 0.12 1.51 5.10 0.58 0.27 0.79 5.35 0.50 0.20 0.69 5.66 0.37 0.10

SFD -3.17 7.08 0.48 0.04 -1.24 6.32 0.51 0.24 0.41 5.79 0.61 0.36 -1.16 5.77 0.62 0.36 -0.43 6.28 0.50 0.25

RIC -2.20 4.92 0.67 0.31 -0.45 4.66 0.62 0.38 0.81 4.09 0.74 0.52 -0.11 4.96 0.60 0.30 0.18 5.20 0.48 0.23

SKY -1.32 5.01 0.59 0.29 0.35 4.57 0.64 0.41 1.53 5.07 0.59 0.27 0.99 5.79 0.56 0.05 0.44 5.52 0.44 0.13

DVA -2.51 5.82 0.52 0.10 -0.75 5.43 0.49 0.22 0.77 5.12 0.57 0.31 -0.07 5.71 0.50 0.14 -0.19 5.45 0.47 0.21

MNC -0.98 5.53 0.53 0.23 0.28 5.50 0.50 0.24 1.89 5.45 0.59 0.25 0.45 5.40 0.55 0.27 0.08 5.68 0.44 0.19

SMT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

SCT -0.39 4.14 0.57 0.32 0.18 4.03 0.60 0.35 0.73 3.96 0.63 0.38 -0.47 3.95 0.62 0.38 -0.15 4.28 0.53 0.27

mean -2.21 5.97 0.49 -0.21 -0.27 5.41 0.49 0.06 0.11 5.14 0.56 0.14 0.28 5.39 0.49 0.08 -0.71 5.97 0.39 -0.12

MAE 2.33 0.91 1.26 0.73 1.02

VPRMann VPRMseas VPRMnew CASA SiB4

MB RMSE r NSC MB RMSE r NSC MB RMSE r NSC MB RMSE r NSC MB RMSE r NSC

LEF 0.48 3.67 0.78 0.52 0.57 3.74 0.79 0.50 0.61 3.65 0.80 0.52 -0.77 3.88 0.69 0.46 -0.45 4.32 0.58 0.33

AMT -1.60 6.46 0.47 0.16 -1.81 6.45 0.49 0.16 -0.90 5.60 0.63 0.37 -1.86 6.35 0.51 0.19 -1.28 6.84 0.31 0.06

DNH -0.95 3.98 0.75 0.53 -1.20 4.00 0.75 0.53 -0.07 3.65 0.79 0.61 -1.36 4.71 0.66 0.34 -0.99 5.61 0.43 0.07

UNY -1.31 4.82 0.69 0.39 -1.26 4.74 0.69 0.41 -0.44 4.22 0.73 0.53 -1.97 5.09 0.70 0.32 -1.90 6.70 0.41 -0.17

TPD 0.21 4.47 0.75 0.55 0.59 4.56 0.75 0.53 1.19 4.57 0.78 0.53 0.01 4.61 0.72 0.52 1.02 5.36 0.61 0.35

HAF 1.07 3.80 0.79 0.59 0.80 3.72 0.79 0.61 1.88 4.12 0.80 0.52 0.60 4.54 0.67 0.41 0.69 5.67 0.44 0.09

MSH -0.30 3.23 0.67 0.45 -0.38 3.22 0.68 0.46 0.18 3.18 0.70 0.47 0.15 3.34 0.64 0.41 0.70 3.75 0.53 0.26

MLD -0.78 4.59 0.71 0.49 -0.79 4.56 0.71 0.49 0.30 4.38 0.74 0.53 -1.42 5.41 0.60 0.28 -2.34 6.70 0.36 -0.10

BRI -0.54 4.88 0.80 0.62 0.39 4.88 0.82 0.62 0.44 4.70 0.82 0.65 -1.16 5.65 0.72 0.49 1.96 6.17 0.71 0.39

HCT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

SNJ NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

S01 0.19 3.97 0.78 0.60 0.74 4.09 0.78 0.58 0.99 4.53 0.71 0.48 -0.11 4.69 0.68 0.45 2.78 5.60 0.68 0.21

TMD -0.64 5.75 0.78 0.54 -0.31 5.82 0.78 0.53 0.86 5.88 0.77 0.52 -0.66 6.88 0.59 0.34 0.60 7.70 0.45 0.18

BUC 0.31 4.05 0.75 0.54 0.65 4.12 0.75 0.53 1.08 4.08 0.78 0.53 0.13 4.59 0.65 0.41 1.47 5.20 0.57 0.24

SFD 0.05 4.23 0.79 0.58 0.24 4.29 0.79 0.56 1.34 4.44 0.79 0.53 -0.10 5.22 0.60 0.36 0.75 5.86 0.48 0.19

RIC 0.28 3.81 0.79 0.60 0.45 3.84 0.79 0.59 1.14 4.02 0.79 0.56 0.29 4.40 0.69 0.47 0.54 5.25 0.51 0.24

SKY NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

DVA -0.51 3.91 0.81 0.62 -0.25 3.85 0.82 0.63 0.92 4.00 0.81 0.60 -0.87 4.64 0.69 0.46 0.94 5.57 0.54 0.22

MNC 0.16 3.53 0.78 0.61 0.56 3.59 0.79 0.59 0.98 3.85 0.76 0.53 -0.07 3.96 0.71 0.50 1.93 5.17 0.56 0.16

SMT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

SCT 0.43 3.42 0.75 0.50 0.67 3.53 0.75 0.47 1.09 3.89 0.65 0.35 -0.20 3.41 0.71 0.50 1.96 4.78 0.49 0.02

mean -0.20 4.27 0.74 0.52 -0.02 4.29 0.75 0.52 0.68 4.28 0.76 0.52 -0.55 4.79 0.66 0.41 0.49 5.66 0.51 0.16

MAE 0.58 0.68 0.85 0.69 1.31



Figure S1: Interannual variability in monthly air temperatures (top row) and precipitation (bottom row) 

from 2001-2020.  (These data were obtained from the NASA Langley Research Center POWER Project 

funded through the NASA Earth Science Directorate Applied Science Program, available at 

https://power.larc.nasa.gov/). 

 

  



Figure S2:  Boxplots of site-specific optimized parameters from the original VPRM model with annual 

parameters (i.e. VPRMann), clustered by the Plant Functional Type (PFT) classification used in the paper.   

 

 

 

 

 

  



Figure S3: comparison of daily interpolated EVI (from overlapping 16-day MODIS composites) used in 

VPRM vs. monthly fPAR used in CASA from November 2016 to October 2017.  EVI and fPAR data are 

spatially aggregated across the cropland and deciduous broadleaf forest pixels indicated in Figure 1 of 

the main text. 

 

 

Figure S4: boxplots of monthly mean biases across towers of modeled CO2 – afternoon average 

observations for the two versions of Carbon Tracker (2019B and Europe) and their mean.  The mean 

background condition from the two products is used for all months in the atmospheric CO2 analysis, 

except July and October, where CT2019B and CTE are used respectively.   

 



Figure S5:  Scatter plots of observed air temperature vs. night-time average NEE for historical flux tower 

data used in the VPRM parameter optimization.  Model fit with VPRMann is shown in yellow, VPRMseas in 

light green, and VPRMnew in dark green.  Also shown are results from a linear regression model fit to just 

night-time NEE data (purple) for comparison.  Results are shown for four PFT’s (representing ~36% of 

total land cover in domain): grasslands (including pasture and developed-open, 17%),  evergreen 

needleleaf/mixed forests <40°N (8%), shrublands and savannah (2%), and wetlands (8%).  The NSC 

values (equivalent to the adjusted r2 for VPRMnew and linear regression model) are also shown to assess 

relative performance for each model and PFT. 

 

  



Figure S6: Percent of deciduous broadleaf forests (top row) and croplands (bottom row) at the 0.5° 

spatial scale, as seen in the underlying land cover maps for SiB4, VPRM and CASA (with data sources for 

each model shown in Table S1).  The CASA map is based on the 500 m dominant land cover across the 

domain. 

 

  



Figure S7: Mean 24-hour gridded GPP, ecosystem respiration (Re) and NEE at 0.1° for the three versions 

of VPRM (VPRMann, VPRMseas, and VPRMnew) in winter months (December/ January/ February).   

 

 

 

  



Figure S8: Mean 24-hour gridded GPP, ecosystem respiration (Re) and NEE at 0.1° for the three versions 

of VPRM (VPRMann, VPRMseas, and VPRMnew) in spring months (March/ April/ May).   

 

  



Figure S9: Mean 24-hour gridded GPP, ecosystem respiration (Re) and NEE at 0.1° for the three versions 

of VPRM (VPRMann, VPRMseas, and VPRMnew) in summer months (June/ July/ August). 

  

 

  



Figure S10: Mean 24-hour gridded GPP, ecosystem respiration (Re) and NEE at 0.1° for the three versions 

of VPRM (VPRMann, VPRMseas, and VPRMnew) in fall months (September/ October/ November). 

 

 

  



Figure S11: Spatial correlations across different pairs of models (CASA, SiB4, VPRMann, VPRMseas, 

VPRMnew) for 3-monthly mean gridded GPP, Re and NEE fluxes.   

 

 

 

  



Figure S12: comparison of mean July diurnal cycle of GPP, Re and NEE for spatially-aggregated deciduous 

broadleaf forest and cropland pixels (shown in Figure 1 in the main text).  Monthly means are shown 

with dashed lines.  All flux units are µmol*m-2*s-1.

 

 

  



Figure S13:  weekly mean observed vs. simulated biological enhancements for VPRMnew, CASA and SiB4 

at the S01 tower in Mooresville, IN using NAMS-STILT transport (left panel) and WRF-STILT transport 

(right panel).  Other details are as described in the caption of Figure 11 in the main text.   

 

 

Figure S14:  weekly mean observed vs. simulated biological enhancements for VPRMnew, CASA and SiB4 

at the DNH tower in Durham, NH using NAMS-STILT transport (left panel) and WRF-STILT transport (right 

panel).  Other details are as described in the caption of Figure 11 in the main text.   

 



Figure S15:  Monthly mean biases (simulated - observed) in biospheric CO2 enhancements from 

November 2016 to October 2017 across biospheric models using WRF-STILT convolutions (top row) and 

NAMS-STILT convolutions (bottom row).  Also shown are mean absolute errors across towers for both 

sets of convolutions in the table below.  Other details are the same as in Figure 12 in the main text. 

 

 



Figure S16: Monthly mean biospheric CO2 enhancement biases (model – observations) for all towers for 

each biospheric model (3 versions of VPRM, CASA and SiB4).  Mean of WRF-STILT and NAMS-STILT 

convolutions, Vulcan3.0 fossil fuel emissions and “optimal” background conditions are used for all 

months.  Towers are color-coded to show approximate geographic position and/ or land cover influence 

(gray: towers near edge of domain, orange: cropland influence, dark green: northeastern US, green: 

PA/NY/CT, turquoise: mid-Atlantic, blue: southern).   

  



Figure S17: NSC values (top row) and adjusted R2’s (bottom row) for each biospheric model, comparing 

observed biologic enhancements for each tower against convolved biospheric model.  Same as Figure 13 

in main text but using WRF-STILT and NAMS-STILT convolutions separately.   

 

 

 


