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Abstract

Evolving preferential dissolution channels are common features formed during reactive fluid flow in carbonate rocks. Un-

derstanding these is of particular importance in applications involving subsurface engineered reservoirs but predicting their

progression is currently challenging and poorly understood. Here, we propose a new approach to predict both the spatial

distribution and extent of dissolution using a combination of experimental work, X-ray microtomography (μCT) and machine

learning. We have conducted experiments, under reservoir conditions of temperature and pressure, involving pre- and post-

flooding μCT characterisations, and coupled the outputs with a neural network to predict locations where carbonate was most

likely to be dissolved. Our simulations demonstrate that our new solution can identify the key geometrical features that are

important during dissolution, and can accurately predict the location and spread of dissolution. An important benefit of this

approach is that it can accurately predict dissolution channels through forward prediction, while it does not require further

chemical parameters, using instead common and accessible variables.
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Abstract15

Evolving preferential dissolution channels are common features formed during reac-16

tive fluid flow in carbonate rocks. Understanding these is of particular importance17

in applications involving subsurface engineered reservoirs but predicting their pro-18

gression is currently challenging and poorly understood. Here, we propose a new19

approach to predict both the spatial distribution and extent of dissolution using20

a combination of experimental work, X-ray microtomography (µCT) and machine21

learning. We have conducted experiments, under reservoir conditions of temperature22

and pressure, involving pre- and post-flooding µCT characterisations, and coupled23

the outputs with a neural network to predict locations where carbonate was most24

likely to be dissolved. Our simulations demonstrate that our new solution can iden-25

tify the key geometrical features that are important during dissolution, and can26

accurately predict the location and spread of dissolution. An important benefit of27

this approach is that it can accurately predict dissolution channels through forward28

prediction, while it does not require further chemical parameters, using instead29

common and accessible variables.30

1 Introduction31

Injection of fluid into carbonate reservoir rocks is a widely used process in-32

volved in subsurface engineered reservoirs to manage permeability and fluid flow33

(geothermal, groundwater management, carbon sequestration, enhanced oil recov-34

ery, etc.). The injected fluid creates changes in the fluid dynamic and stress state,35

leading to dissolution where the pore network, chemistry, temperature, fluid compo-36

sition and pressures all influence the location, degree, and spread of the preferential37

channelling (Hoefner & Fogler, 1988; C. N. Fredd & Fogler, 1998; Golfier et al.,38

2002; Menke et al., 2017). The reactive and heterogeneous nature of carbonates39

make predictions of fluid behaviour challenging, and much work has been done on40

channelisation and classification in a variety of fluid-mineral systems as a function41

of the fluid flow rate and the fluid properties (Hoefner & Fogler, 1988; Steefel &42

Lasaga, 1990; Frick et al., 1994; Bazin et al., 1995; C. Fredd et al., 1996; C. N. Fredd43

& Fogler, 1998; Golfier et al., 2002; Walle et al., 2015), where fluid properties have44

been identified as largely controlling dissolution and channelisation in carbonates45

(Golfier et al., 2002). Numerical modelling studies have attempted to recreate these46
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dissolution processes by including variables influencing the general shape and spread47

of the dissolution footprint, such as system pressure, permeability, velocity of the48

fluid, or diffusion rate across boundary layers. Models have been tested, from a49

conceptual approach that considered a pre-existing cylindrical wormhole (Hung et50

al., 1989; Wang et al., 1993; Buijse et al., 1997; Huang et al., 1997, 1999), to more51

complex approaches focusing on the grain scale (Hoefner & Fogler, 1988; Daccord et52

al., 1989), on the fluid mechanics (Daccord, Lenormand, & Lietard, 1993; Daccord,53

Lietard, & Lenormand, 1993), or the mass and flow transfer (Liu et al., 1997; Chen54

et al., 1997). Most of these approaches displayed reasonable qualitative results of55

channel geometry and were backed by experimental outputs, against computation-56

ally expensive treatments operating over millimetre scale volumes. Here, we have57

coupled experimental work and Artificial Neural Networks (ANNs). The benefit of58

ANNs stems from the non-linear aspect of the solving algorithms coupled with their59

ability to learn and recognise patterns (Basheer & Hajmeer, 2000). Although stud-60

ies have joined µCT imaging and machine learning as a segmentation tool for 3D61

volumes (Cortina-Januchs et al., 2011; Chauhan et al., 2016) and for rock modulus62

estimations (Sonmez et al., 2006), no work has been published on predictions of the63

spatial distribution of carbonate dissolution, purely relying on µCT images. Our64

approach has the advantage that it works as a predictive tool for channel spatial dis-65

tribution, spread, and magnitude, over centimetre large volumes, in relatively short66

computational times. We have combined experimental data with an ANN to develop67

a predictive tool for preferential flow-path development.68

The model presented in this study used datasets that were generated during exper-69

imental investigations of reactive fluid flow in carbonate samples. We investigated70

channels development through carbonate samples of heterogeneous nature by com-71

paring the ANN computed solutions to 4 experimental results. For the experimental72

fluid flows, we used a range of flow rates and these have been named High Flow73

Rate 1 and 2 (HFR 1; HFR 2), Medium Flow Rate (MFR), and Low Flow Rate74

(LFR). Our coupled numerical work included a pre-processing of pre-experimentally75

tested core samples µCT-scans followed by a training of the ANN against the post-76

experimental channels data. The pre-experimental data - referred to as Input data77

- were based on 18 + 1 variables describing the geometrical attributes of the pore78

network (steps A and B in Figure 1). The differential result between pre- and post-79
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experimental µCT-scans allowed to pinpoint dissolution channels, leading to the80

generation of the Signature dataset (steps C and D in Figure 1). We trained multi-81

ple hidden layer ANNs on six datasets (including Input and Signature datasets) and82

blindly predicted on two (including the Input dataset only), corresponding to the83

four experimental regimes (further explained in Section 2.1). By doing so, we have84

been able to favourably predict the occurrence, shape, and magnitude of the disso-85

lution pathways evolution in heterogeneous carbonate rocks using only attributes86

extracted from µCT scans, before flooding, on representative volumes. Moreover,87

the processing times of our solution were significantly smaller than the various88

computationally expensive systems models (Budek & Szymczak, 2012), with the89

non-negligible advantage of using larger cuboids inputs (Blunt et al., 2013; Bijeljic et90

al., 2004).91

Figure 1: Data acquisition workflow. The two sub-sampled cuboids (pre-flooding and

channels) are of the same size. Both stacks have been re-sliced a hundred times in two

orthogonal directions. A & B: input data acquisition; C & D: signature data (or true solu-

tion) acquisition; E & F: input and signature data as attributes for the ANN.
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2 Materials and Methods92

2.1 Experimental matrix and dissolution regimes93

The experimental dataset used to develop our methodology, and train and test94

the ANN, comprised a set of four experiments on highly heterogeneous - in porop-95

ermeability - travertine samples. Each core was 3.8 cm in diameter and differing96

in length (6.8 cm < L < 8.1 cm). The experimental procedure started with a pre-97

experimental preparation and conditioning of the core samples, followed by µCT98

acquisitions of the clean cores. The post-experimental process consisted of sonicat-99

ing the samples in distilled water, before drying them for a week at 65 °C for one100

week, followed by post-experimental µCT acquisitions. The experimental flooding101

consisted in injecting an artificially made seawater of known pH (cf. supplemen-102

tary information). The four experiments were carried under realistic geo-reservoir103

conditions of pressure and temperature (temperature T = 60 °C). The effective104

stress used in this study refers to the work of Terzaghi (1951), while the pore volume105

rate (PVrate) used in this study is described by: PVrate = Q(t)/Vp, with Q(t) the106

amount of fluid injected per minute logged (m3) and Vp the volume of pore of the107

rock sample (m3). The porosity is calculated before the experiments, using the triple108

weighing technique (Luquot et al., 2016), and displays an average value of ∼11 %109

(from ∼5 % to ∼14 %). Table 1 presents the four experimental scenarios.110

Experiment Flow rate (cm3/min) PVrate (-) Eff. stress (MPa) Conf. pressure (MPa)

HFR 1 15.58 2.6 10 50

HFR 2 14.25 2.5 40 50

MFR 6.24 1 10 50

LFR 1 0.2 40 50

Table 1: Flow rate, pore volume rate, effective pressure and confining pressure used for

the four experimental floodings. Further petrophysical and chemical data on the rock

samples are given in supplementary information.
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2.2 µCT Processing111

2.2.1 Data Acquisition112

For each core, pre- and post-experimental flooding, tomographic data were113

acquired at 130 kV, and 25 W target power loading. Each dataset consists of 2,000114

projections; each of 2 s duration, during a 360° revolution. Reconstruction by fil-115

tered back-projection used Octopus v8.7 software (Dierick et al., 2004), while post-116

processing data analysis and registrations of the pre- and post-flooding dataset of117

each rock, followed by the processing of the differences between both stacks were118

done using Fiji (Schindelin et al., 2012) and Avizo®9 functions.119

2.2.2 Channel Resolution120

The channels formed during our experimental fluid flooding can be detected121

through image processing by processing the difference between the pre- and post-122

experimental µCT volumes, while taking into account the initial porosity. The two123

types of datasets were generated. The first one represented the 3D volumes of pre-124

experimental scans - referred to as input data. These datasets were used for training125

the ANN and/or predicting the preferential pathway(s) location and magnitude.126

The second one were 3D volumes of dissolution channels - referred to as signature127

data. These datasets represent the true solution of channel(s) formation and were128

used for training the ANN.129

As a way to account for the difference in samples sizes, we sub-sampled the 3D130

stacks into cuboids of variable side lengths (550 px to 650 px large) and constant131

axial length of 710 slices (∼2.5 cm by ∼2.9 cm). Both input and signature volumes132

of a single core sample are sub-sampled at the same location: To save further com-133

putational time, the 3D sub-sampled volumes were re-sliced a hundred times in two134

orthogonal directions - each sampled direction creating a dataset which we treated135

as independent - with respect to the axial axis and the original orientation of the136

sample within the sub-sampled core. Figure 1 presents the workflow for µCT data137

acquisition. In total, we have scanned four samples, translated into eight datasets,138

which were later divided into training & validation data (six datasets) and blind test139

data (two datasets) when developing the ANN.140

–6–



manuscript submitted to Water Resources Research

2.3 Modelling141

2.3.1 Input Data142

The input data were a set of calculated geometric, physical, and simple statis-143

tical variables for predicting material loss during experimental floodings. Extraction144

of the information involved a conversion from the 16-bit grayscale 2D slices stacks to145

normalized 1D variables that can be evaluated by the ANN.146

The formating of the input data has been done via a Visual Basic for Applications147

(VBA) batch coupled with Corel® X7 suite has been used as a quick way to apply148

the same formatting to each 2D slice. The batch automatically and sequentially149

thresholded, smoothed, vectorized, and resized each image to its original size.150

For each formatted 2D slice, a set of nineteen relevant variables were collected151

through an in-depth image analysis. Most variables can easily be explained through152

image interpretation and simple mathematics (1, 6, 7, 9, 10, 13, 14, 15, 17), as well153

as variable 18 (PVrate, cf. Section 2.1). The remaining variables (2, 3, 4, 5, 8, 11,154

12, 16, 19) have been calculated using a bespoke pre-processor which performed cal-155

culations on the equivalent elliptical shapes of each pore and the pore network (cf.156

supporting information). Figure 2 presents a simplified workflow for pore network157

generation. The rationale behind the use of a 2D network of pores rather than a 3D158

pore network skeletonization enables the network to operate on a desktop, where our159

networking software could extract a simplified set of 2D attributes which highlighted160

the key characteristics encountered during a 3D analysis. Studies have simplified the161

complex structure of the pores by the ellipse equivalent shape of a pore (Fournier162

et al., 2011), while Tsukrov (Tsukrov & Kachanov, 1993) demonstrated that elon-163

gated pores could be replaced by their ellipse-equivalent shape for DEM modelling.164

This network, generated for each scanned slice, was based on the arrangement and165

overlapping state of the 2D porosity: Each pore of a 2D slice was replaced by an166

ellipse of equivalent area, shape, and orientation. These ellipses were then enlarged167

by a constant factor. This enlarging factor, called the area of influence, was a com-168

putational way of representing the hydrogeological influence of a pore around its169

neighbourhood; or the numerical way of imaging the 3D influence of a pore on a 2D170

slice. The 2D arrangement of a set of links symbolized a pore network. A link set171

between two pores suggested the potential existence of a pathway between these two172
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pores in the rock. The analysis of this pore network allowed the calculation of the173

variables 2, 3, 4, 5, and 19, while the analysis of the ellipses defined the variables 8,174

11, 12, and 16.175

2.3.1.1 Pore network analysis (variables 2, 3, 4, 5, 19)176

Variables 2, 3, 4, 5, and 19 are determined as follows: the area of connected177

pores (2) is the sum of the 2D area of the pores which are part of a connected net-178

work. The total (3), median (4) and mean length connection (5) are basic math-179

ematical calculations using the length of every link from a 2D slice. Finally, the180

I/O connection (19) is a variable which is not part of the variables processed by the181

ANN, but rather an independent measurement used in determining the potential182

breakthrough location. A recursive function analyses the 2D network of links, and183

detects if at least one path between bottom to top of the image is found.184

2.3.1.2 Ellipse analysis (variables 8, 11, 12, 16)185

The ellipse shape of a pore can resolve the following variables: the ratio of pore186

area (8) represents the ratio between the area of the largest pore over the mean pore187

area of a 2D slice. This variable is used for excluding large outliers. Both the small188

(11) & the large (12) ellipse perimeter are calculations of both the ellipse shape of a189

pore and its enlarged version. The mean aspect ratio (16) is represented by the ratio190

of the minor axis b over the major axis a of an ellipse.191

2.3.2 Signature Data Pre-processing192

The signature data refers to the estimated channels magnitudes and locations.193

This dataset was computed from the differential result between the pre- and post-194

experimental scans. Our methodology involved a registration of both unaltered and195

altered datasets into the same 3D space, allowing us to further subtract both stacks196

in order to account for potential differences. Isolating and computing the dissolu-197

tion channels and sub-sampling has been dine under Avizo ®9. The cuboids were198

re-sliced and thresholded using the Fiji AutoTresholding function (Schindelin et199

al., 2012; Ridler et al., 1978). The percentage of black and white area was calcu-200

lated for each 2D slice using a batch code based on the Measure function under Fiji201

(Schindelin et al., 2012), and was used as the true solution of the channel shape and202

size for a set of slices of the 3D stack. The signature data were finally normalized203
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so that the maximum percentage area of white equals 1 (presence of dissolution204

channel) while the minimum was equal or close to 0 (no dissolution detected).205

2.3.3 Regression and Neural Network Modelling206

In this work, we trained both linear regressions and multiple hidden layer207

ANNs on six datasets and predicted on two, which corresponded to the four ex-208

perimental regimes as explained in Section 2.1. With this network trained, we209

then predicted the remaining two, blind datasets’ spatial channel signatures, cor-210

responding to the remaining experimental regimes. For the four combinations of211

three training experimental regimes (six datasets) and one blind test experimental212

regime (two datasets), we performed a linear regression where eighteen normalized213

features were input and fitted to minimize the least-squares misfit when compared to214

the measured spatial channel signature extracted from before and after µCT scans,215

as described in Section 2.3. We did not perform any regression or model training216

using the I/O variable (19), which was held aside for comparison, as seen in Section217

2.3.1. After the linear regression was parametrized, we performed modelling using218

an ANN based on the MATLAB’s Deep Learning Toolbox (Hudson Beale et al.,219

2018), with three hidden layers, consisting of 11, 8, and 5 neurons respectively. All220

eighteen variables were normalized, as discussed in Section 2.3.1, before inputting221

into the network. All transfer functions between the input and all hidden layers in222

the ANN were hyperbolic tangent functions. The transfer function between the last223

hidden layer and the output layer was linear. Our experimental aim was to train the224

ANN on three experimental regimes (six datasets; three rocks), and predict channel225

formation on a fourth experimental regime (two datasets; one rock).226

We have randomly partitioned the data from six training datasets into 74% training227

data and 26% validation data. We trained an ANN given this random partitioning228

of training and validation data and forward-modelled the spatial channel signature229

on the remaining two blind test datasets. This workflow has been repeated 3,000230

times independently, each time training a new network given a different random par-231

titioning of training and validation data from the same six datasets, and produced232

3,000 predictions of the two blind datasets’ spatial channel signatures. This amount233

of iteration allowed to obtain large enough outputs in reasonably short computing234

times (half a day for ANN training over 3,000 iterations, while predicting processing235
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was done within minutes). These 3,000 predictions have been made into a density236

plot which shows the most likely spatial channel signature, as well as the sensitivity237

of the network to the partitioning of input data into test and validation datasets.238

We performed this workflow for all four combinations of three training experimen-239

tal regimes (six datasets) and one prediction experimental regime (two datasets),240

allowing us to simulate four, independent experiments.241

A

B

C

Figure 2: Steps for the detection of a link between two pores (black shapes), virtually

representing a suspected connection between two pores in a rock. The step (A) represents

the area of influence applied around a pore through a multiplier of the original pore area.

Case (B) shows two non-overlapping pores. Case (C) displays a case of overlapping el-

lipses.

3 Results242

3.1 Example of Post-experimental µCT Results243

Figure 3 presents an example of signature from two datasets (blue curve; cf.244

steps C and D in Figure 1) plotted under their corresponding channel. The back-245

ground greyscale images are the last image from the image stack in the Y-axis (left)246

and X-axis (right), and are displayed in a way to contextualize the channels in their247
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volumes. The cross-plotting of the thresholded percentage area of black to white of a248

channel offers a good insight into the location, the spread, and the magnitude of the249

created pore space. The values of the signature data were cross-normalized between250

datasets.251

Figure 3: Example of signatures plotted under their respective cross-sectional direction

for the HFR 1 experiment. Left: XZ direction; Right: YZ direction. The blue volumes

represent the material removed after fluid flow through the core sample, while the plot

underneath each graph represents the intensity of this material removal, per direction.

3.2 ANN Outputs252

The predicted spatial channel signatures from the fitted linear regression mod-253

els, as seen in Figure 5, are displayed as white curves, with the signatures measured254

from µCT scans displayed as red curves. Table 3 shows the percentage decrease in255

RMS error when predicting channel location and magnitude with the ANN over256

a linear regression, with values ranging from 26.5% to over 90% decrease in error.257

Moreover, the linear regressions model was generally ineffective at predicting spatial258

channel signatures. A ranking of the linear regression weights for all features is given259

in Table 2 and Figure 4 over all four training scenarios. In Figure 4, we show the260
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linear regression weights for all features. The last feature shown (19) is the size of261

the constant term or bias in the linear regression.262

Figure 4: Linear regression weights for all features. The outlying weight on feature 12 is

-6.22.

As all features were normalized before performing linear regression, we propose that263

features that ended with small weights were related to physical attributes which had264

little effect on a channel’s formation. By this reasoning, we interpret that features265

2, 4, 6, 8, 16, and 18 all correspond to physical properties which had little influence.266

These features are the area of connected pores, the median length of connections,267

the median pore area, the ratio of pore area, the mean ellipse aspect ratio, and the268

mean distance between pores. By the same reasoning as above, we interpret fea-269

tures with larger weights as proxies for the rocks’ physical attributes which broadly270

exerted a stronger influence on channel formation. These features include numbers271

9 to 12, which correspond to the number of pores, the mean pore perimeter, the272

small ellipse perimeter, and the large ellipse perimeter respectively. Of course, this273

reasoning of inferring feature influence on enhanced permeability of pre-existing274

pathway from linear regression weights is flawed as normalized features with large275

outliers may require large scaling to minimize their fitting residuals. Also, as we see276

in many cases, linear regression is not an effective predictor of channel formation on277

blind test data. Nevertheless, this analysis offers a crude, qualitative first estimate278
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of which features may or may not be important in channel formation prediction279

processes within heterogeneous carbonate rocks featuring macropores.280

# Key parameters Influence

1 Total pore area Medium

2 Area of connected pores Low

3 Total length connection Low

4 Median length connection Low

5 Mean length connection Low

6 Median pore area Low

7 Mean pore area Medium

8 Ratio pore area Low

9 Number of pores High

10 Mean pore perimeter High

11 Small ellipse perimeter High

12 Large ellipse perimeter High

13 Porosity Medium

14 Number of pore greater than mean size Low

15 Number of pore greater than median size Medium

16 Mean ellipse aspect ratio Low

17 Mean distance between pores Medium

18 Pore volume rate Low

19 I/O connection -

Table 2: Summary of the key parameters used in this study and their apparent relative

influence on preferential channel formation.

4 Discussion281

The background density plots (Figure 5) show the distribution of blind predic-282

tions generated by the 3,000 neural network simulations, given each combination of283

three training experimental regimes (six datasets) and one blind test experimental284

regime (two datasets). Intensity ranges from low (blue) to high (yellow) number of285
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HFR 2 - XZ HFR 2 - YZ

HFR 1 - XZ HFR 1 - YZ

MFR - XZ MFR - YZ

LFR - XZ LFR - YZ

Figure 5: Measured data (red) overlain on density plot of 3,000 trained neural networks’

blind test predictions for the four experiments. The white lines show the fitted linear

regression models. The black lines represent the best fit for the network blind test pre-

dictions. The diamonds are the non-neural network solutions for regions of likelihood for

breakthrough independently computed using variable 19 (not included in the neural net-

work predictions).
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Core name ANN RMSE Linear Reg. RMSE Difference in RMSE (%)

LFR XZ 0.04 0.45 -90.6

LFR YZ 0.04 0.43 -90.2

HFR 2 YZ 0.13 0.23 -42.5

HFR 2 XZ 0.18 0.27 -35.9

HFR 1 YZ 0.11 0.66 -83.4

HFR 1 XZ 0.20 0.59 -65.7

MFR YZ 0.09 0.19 -51.3

MFR XZ 0.07 0.09 -26.5

Table 3: Percentage of the decrease in root-mean-square-error between linear regression

and our ANN solution (respectively white and black lines in Figure 5). Our solution

shows an increase in prediction quality of up to ∼90%.

solutions in the bins histogram. The black lines represent the averaged best solu-286

tions from our predictions. The “true” solutions (signatures) have been plotted in287

red on top of each result. We observed a generally effective prediction of dissolution288

channel location and magnitude by our approach for all four training and prediction289

experiments. There was a notable improvement of accuracy over the linear regres-290

sion modelling. The spread in the density plot at locations with a large spatial chan-291

nel signature indicated the sensitivity of neural network training to the particular,292

random segmentation of validation and training data. The red diamonds on Figure293

5 indicate where the feature 19 has found an existing pore space connection from294

sample input to output in the pre-flooded rock. This single feature was an effec-295

tive predictor for breakthrough and principal channel(s) location. This implied that296

dissolution channels are likely to occur where there is a pre-existing input/output297

connection in the rock before flooding. We note this feature only predicted the lo-298

cation, rather than the magnitude. For this reason, the use of our neural network299

method was beneficial over using only feature 19.300

The influence of the key parameters has been assessed through an analysis of the301

linear regression weights for all the features processed by the ANN (Figure 4). We302

attributed a rank to a feature by summing, per feature, the weights of each of the303
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four experiments. A feature was ranked “Low” if the sum S was ≤ 1; “Medium” if304

1 ≤ S ≤ 2, and “High” if S < 2. The parameters ranked as “High” in Table 2 were305

assumed important as they reflected how physical (eg. fluid dynamic) and chemical306

variables (such as reactive transport, the acidity of the fluid, chemical interaction,307

etc.) could have been influenced by the surface of the pores so that the larger a pore308

perimeter was, the more important the wall surface in contact with the flooding fluid309

should have been. These effects were positively impacted by the amount of pores310

present. This also validated the ellipse shape assigned to each pore as a correct311

simplification of the general shape of a pore (Tsukrov & Kachanov, 1993; Fournier312

et al., 2011). We noted that the variables linked to the area of the pores were not313

ranking higher than “Medium” (and most often “Low”). We explained this by the314

relatively small importance of the area of the pores. While large pores should have315

driven more fluid, the large perimeter (likely associated with a large area) guar-316

anteed more wall-fluid interaction that could have been associated with a higher317

degree of alteration. This was consistent with Darcy’s law, where the flow will tend318

to be slower and residence time longer. This was possibly accentuated in the case of319

travertine rocks by the initial high surface roughness caused by calcite overgrowth320

in the pores, leading to the very high initial perimeter (although not measurable at321

the scale of our scans). We also believe that the ANN has made a clear distinction322

between porosity and number of pores, for reasons similar to that which have been323

explained above: a large effective porosity could have been associated with large324

pore areas, while the number of pores remained largely uncorrelated to the area of325

the pores.326

5 Conclusions327

This study offers a new way to accurately predict the location and shape of328

channels formed during water flooding in carbonates, by coupling Artificial Neu-329

ral Networks (ANNs) and µCT images. A limited number of studies have already330

successfully linked these two tools as a segmentation method, and for rock modulus331

estimation, but none used ANNs for dissolution prediction. While it is commonly332

stated that the velocity of flow at the inlet of a core sample is the main factor for333

rock dissolution and/or material removal, this is only part of the story. The find-334

ings of our work showed that spatial distribution of the porosity evolution can be335
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predicted using only the pore network information held by the rock sample; where336

the micro- or macro-heterogeneities of the porous medium drive the flow instabili-337

ties to direct the fluid flow and, as such, chemical removal, towards zones of highest338

permeability leading to material loss. Our results showed that specific variables339

stand-out of the ANN analysis, and validate that geometric factors linked to the340

porosity and pore shape of a rock contain, most of the time, the necessary data for341

predicting material loss during rock-water flooding. If a linear combination of these342

µCT-extracted attributes can successfully predict a rock’s spatial channel signature,343

the weights from the linear regression could be considered indicators of the influence344

of µCT-extracted feature in channel formation. While this statement is valid in het-345

erogeneous travertine rocks, we remain careful with other types of carbonate, or even346

other types of lithology which have not been tested in this study.347
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Sample Characteristics

We used travertine rocks, whose formation and morphology were first introduced in

the 1960’ (Kitano, 1963), and further studied by various authors (Marques Erthal, 2018;

Chafetz & Folk, 1984; Pentecost, 1990; Guo & Riding, 1992, 1994, 1998; Chafetz & Guidry,

1999; Kele et al., 2008; Jones & Renaut, 2010; Wright, 2012; Chafetz, 2013; Chitale et

al., 2015; Wright & Barnett, 2015; Claes et al., 2017; Erthal et al., 2017; Fouke et al.,

2000; Soete et al., 2015; Yagiz, 2009). Travertine rocks are considered good proxies for the

upper Pre-salt reservoir rock (shrub framestone) due to petromorphological resemblance

between both formations (Marques Erthal, 2018; Claes et al., 2017; Virgone et al., 2013;

Borghi et al., 2013; Schröder et al., 2016; Rezende & Pope, 2015; Soete et al., 2015;

Chitale et al., 2015; Boyd et al., 2015). Travertines are carbonate formations deposited

in lacustrine environments. They are structured in millimetres to centimetres layers of

CaCO3 expending upwards. They are highly heterogeneous and can be brittle depending

on the burial history of each sample. All four samples’ geometrical and physical properties

are presented in Table S1. For this study, the core samples have been sourced from large

blocs of travertines (shrub layer, sampled from Saturnia Italy).

Travertines are mainly made of calcium; usually > 90%CaCO3 (Pentecost, 2005). The

secondary principal element is magnesium which substitutes Ca and can be found under

the form of calcite magnesian, dolomite, or montmorillonite ((Ca,Mg)CO3) in low quan-

tities (Chafetz & Folk, 1984; Pentecost, 2005; Kele et al., 2008; Erthal et al., 2017). The

results of an XRD analysis ran on our block of travertines are shown in Table S2.

Figure S1 shows µCT slices taken from each core sample used in this work. The porous

media is composed of heterogeneously distributed pores, whose size and shape appeared

March 18, 2021, 7:31am



: X - 3

to widely vary throughout a slice. A (LFRLES sample) and B (MFRHES sample)

displayed a mixture of shrubby porosity coupled with coated bubbles which have been

formed due to degassing during the precipitation of the calcite. Both samples evolved

towards the shrubby structures seen in C (HFRHES sample) and D (HFRLES

sample), which displayed elongated pores and dendritic calcite crystals (not seen under

µCT imaging) (Ronchi & Cruciani, 2015).

µCT Imaging Acquisition

Fluids injected through carbonate rocks generate dissolution that physically re-

lates to the formation of wormholes. They are preferential flow-paths that increase

fluid conductivity and allow the injection fluid to flow more easily from one end of

the sample to another (Hoefner & Fogler, 1988; Fredd & Fogler, 1998; Golfier et

al., 2002). These changes in the rock matrix can be detected using µCT scanning

acquisition and post-processing of the images, by arithmetically comparing the pre-

and post-experimental datasets. The µCT facility of the University of Edinburgh has

been used for qualitative and quantitative analyses of these post-flooding damages.

A reconstructed volume provides us with a 3D map of absorbed light due to the

difference in density of the matrix of a rock (Landis & Keane, 2010). For each core,

pre- and post-experimental flooding tomographic data were acquired at ∼130 kV, and

∼25 W target power loading, with a copper energy filter. A rotary stage is placed on

top of an adjustable screw, which allowed the scans of different parts of a sample by

adjusting its elevation. The instrument had a conventional cone-beam configuration

with a Feinfocus 10-160 kV dual transmission/reflection source, a MICOS UPR-160 air
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bearing rotary stage and a Perkin Elmer XRD 0822 amorphous silicon 1 MP flat-panel

camera with a terbium-doped gadolinium oxysulfide scintillator. The geometry of the

cone-beam window was approximately 3 cm wide, which can be less than the length of

the cores, therefore each scan of a whole sample was split into two to three sections.

Scans consisted of 2,000 projections; each of 2 s duration, during a 360° revolution.

They were first recorded as 2D TIFF of projected images, followed by tomographic

reconstructions into 3D stacks. Further details about acquisition and reconstruction

processes along with the underlying physics of µCT scanning can be found in various

studies (Landis & Keane, 2010; Salvo et al., 2010). For each section, reconstruction

by filtered back-projection was done by using Octopus v8.7 software (Dierick et al.,

2004), while post-processing data analysis was done through Fiji (Schindelin et al., 2012)

and Avizo® 9 functions (https://www.thermofisher.com/uk/en/home/industrial/

electron-microscopy/electron-microscopy-instruments-workflow-solutions/

3d-visualization-analysis-software.html).

Additional Information on µCT Imaging Processing

The reconstruction stage of the projected images was done using Octopus v8.7

(https://octopusimaging.eu/). Back processing, registration, and analysis were done

via Avizo® 9, using the Image Registration Wizard and the Merge tool. Image Regis-

tration Wizard assists the user into registering several 3D volumes by mathematically

enclosing the overlap between them while the Merge function combines the stacks

into one set of data. Our methodology involved the registration of both unaltered

(pre-experimental) and altered (post-experimental) datasets into the same 3D space,
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allowing us to further subtract both stacks to account for potential differences. As such,

we used several tools in Avizo® 9: the Arithmetic operator, Interactive Thresholding,

Label Analysis, and the Analysis Filter function. The Arithmetic operator applies

a mathematical condition on the input 16-bit datasets; here we wanted to have the

absolute difference between the pre- and post-experimental dataset. The Interactive

Thresholding module differentiates the volumes based on the intensity values of the

raw images. Thresholding was applied over the entire volume, and a voxel was set to

black if its intensity Iij is less than a fixed value T set by the user, so that Iij > T = 1

and Iij < T = 0. The Label Analysis function creates a connected network of voxels

depending on their 3D arrangement, i.e. whether they are connected by their sides,

corners, or faces. Finally, we used the Analysis Filter which applies a user-defined filter

over any geometrical parameter of the 3D volume. We filtered our dataset to isolate the

main parts of the channels by removing 3D volumes smaller than a certain amount of

voxels. The drawback of imaging 38 mm diameter large samples relies on acquiring the

images at a lower resolution, against the high energy needed to scan through the entire

sample. As a result, our volumes displayed a voxel side length of 40 µm, which was

enough to resolve most of the features that could be expected in these kinds of studies,

but too large to obtain a detailed picture of the microporosity.

µCT Imaging Output Data

µCT images have been obtained on dry samples, before and after each experimental

flooding. The core samples have been cleaned for ∼15 min in a sonic bath, after the

coring/cutting phases and after the flooding stage, to drive the remaining seawater out
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the sample. These extra steps have allowed us to obtain clearer outputs from the µCT

scanning. The reconstruction process produced ∼2.5 GB 16-bit greyscale images.

The shape and spread of a wormhole have been calculated by evaluating the density

of nodes per region of ∼0.01 cm2. A wormhole formation expands and branches as

the injection rate is increased (Siddiqui et al., 2006) implying that the thickness of a

wormhole should then be primarily linked to the forcing of the fluid. In this work, we

have isolated the main wormholes and branches.

µCT Images: Pre-processing

The pre-processor used in this work is an evolving solution developed over the entire

course of this study and is usually referred to as the “ICCR-Macropore”. It has been used

in two ways:

• As a processor of macro structures of 2D slices. It performed geometrical calculations

based on the images and generated spreadsheets which were used for further analysis.

• As a data pre-processor of the OGS software (Kolditz et al., 2012). It generated 2D

mesh files of the slices for further HMC modelling. Figure S4 shows an example of input

file for OGS used.

The solution uses 2D slices taken from 3D volumes of the image stacks. The volumes

were rendered by the µCT scan of a rock sample while the reconstruction process of the

3D rendering was done under Fiji (Schindelin et al., 2012) and Avizo® 9.

Pre-processor Software: Numerical Structure of a Pore
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The interpretation of an SVG file (converted TIFF files) by the ICCR-Macropore creates

instances or objects. Figure S2 is a simplified Unified Modelling Language (UML) diagram

displaying the relationship between the different classes. At this stage, a pore is interpreted

as a polygon; a polygon is comprised of nodes, referred to as points; each pair of point

forms a line. These classes belong to a single project. The relationship between classes

can be summarized as follows:

• A project contains 1 to n Polygon(s).

• A polygon belongs to 1 Project only and is made of n Point(s).

• A point belongs to 1 Polygon only.

• A line is made of 2 Points, and can only belong to 1 Polygon.

Pre-processor Software: Numerical Analysis Workflow

Figure S3 presents the general workflow for using the tool. Four types of input file are

necessary (further developed in Section “Pre-processor software: Input files”). The tool

offers three options: option 1) and 2) process one or more orthogonal slices, while option

3) observes the evolution of porosity and area of the pores of a 2D image stack in the axial

direction. Along with the above-mentioned geometrical analysis, the ICCR-Macropore

also creates .GEO and .GLI files of the scanned slices, which are inputs for OGS.

Pre-processor Software: Input Files

The input files are described as follows:

• CNT file: this file is the control file. It contains interpretive and boundary variables.

This user-defined file is read by the executable before analysing each image and defines

how finely the images should be interpreted.
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• SVG file(s): an SVG file is an XML-based vectorized image. The well-documented

encoding system allowed us to create reading functions capable of extracting the geomet-

rical data of a 2D slice such as the contour of the pores, their positions, the size of the

picture, and the differentiation between pores and background rock matrix. The input

picture could take the form of a picture of a clean-cut of a rock or a slice of a 3D volume

of a core sample. Each picture was further binarized and converted into an SVG file.

• Comm file: the comm file is a communication file used by the Slice Picker (further

described in Section “Slice Picker Software”).

• Slice text files: they contain the names of the SVG files that should be processed by

the ICCR-Macropore, and take the form of two text files for the two sampled orthogonal

direction (X input.txt and Y input.text).

Pre-processor Software: Output Files

The tool can extract data from an SVG file format according to the user-defined settings.

It produces the following files:

• data.geo is used for meshing a slice (Figure S4). A GEO file can be further edited

using Gmesh (Geuzaine & Remacle, 2009), before producing the mesh for modelling pur-

poses. The data.geo file is further used as a mechanical mesh (eg. in Section “Example

of 2D analysis of fluid flow”).

• data1D2D.geo is used for meshing the links between pores (Figure S7). Similar to

the “data.geo” file, the links between pores can be edited and adjusted under Gmesh

(Geuzaine & Remacle, 2009) before being meshed. The theory behind link generation is

described in Section “Pre-processor software: Ellipse simplification”.
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• svg.gli is used in OGS (Kolditz et al., 2012) to connect the meshes with the desired

system of equations that calculates a solution. The .gli file represents the geometry of the

mesh (under the form of points and polylines). These geometric objects connect the mesh

to the rest of the OGS code, calculating the solution. An example of such work is given

in Section “Example of 2D analysis of fluid flow”

• Geometrical attributes: they are the results of mathematical interpretation of the

polygons analysed by the ICCR-Macropore functions. Each of the attributes of interest

is described in Section “Pre-processor software: Geometrical attributes”.

Pre-processor Software: Geometrical Attributes

Area of each pore: The area of each pore is calculated from any irregularly shaped

polygon. Each polygon’s perimeter being formed by points of known coordinates (x, y),

we use the following formula for Area calculation:

a =

∣∣∣∣(x1y2 − y1x2) + (x2y3 − y2x3)...+ (xny1 − ynx1)
2

∣∣∣∣ (1)

Pore perimeter: The perimeter of irregularly shaped pores is calculated using the

distances between each pair of point (x1, y1) and (x2, y2), so that:

d =
√

(x1 − x2)2 + (y1 − y2)2 (2)

Coefficient A (major axis): The coefficient A represents the largest axis of an

ellipse shape of a pore (Figure S5).

Coefficient B (minor axis): The coefficient B represents the smallest axis of the

ellipse shape of a pore and is perpendicular to the major axis (Figure S5).

D and l: D and l parameters are the average width and height of each pore, plus the

average width and height of the entire porosity of slice.
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Distances: This file contains a summary of the distance between each pore. Each

pore is defined by a centre point of coordinate (x, y), while the distance between two pores

is computed using the same function as for the pore perimeter.

Ellipse perimeter: The perimeter of an ellipse is calculated using Ramanujan’s ap-

proximation (Ramanujan, 1914), and is expressed as follows:

h =
(a− b)2

(a+ b)2

p ≈ π(a+ b)

(
1 +

3h

10 +
√

4− 3h

) (3)

with a and b being the major and minor axis of the ellipse. This formula has been chosen

due to its very good approximation of near-circular ellipses while being very simple to

implement.

Ratio: Per 2D slice scanned, the ICCR-Macropore generates an excel file which

contains all aspect ratios (a/b) of all ellipses (pores) present on that slice.

Pre-processor Software: Ellipse Simplification

The ICCR-Macropore has been developed as a 2D interpreter of pore network. This

network, generated for each scanned slice and saved under the “data1D2D.geo” file,

relies on the arrangement and overlap state of the 2D porosity: each pore of a 2D slice is

virtually replaced by an ellipse of equivalent area, shape, and orientation. Studies have

simplified the complex structure of the pores by the ellipse equivalent shape of a pore

(Fournier et al., 2011), while (Tsukrov & Kachanov, 1993) demonstrated that elongated

pores could be replaced by their ellipse-equivalent shape for DEM modelling. Although

we have not done any DEM modelling, we assume that the ellipse shape has a similar

impact on the surrounding pores. The ellipses generated by the ICCR-Macropore are
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enlarged by a factor controlled by the user and defined as the area of influence and

set constant for the entire sample analysis. This factor is a 2D computational way of

representing the 3D hydro-geological influence of a pore over its surrounding area. Figure

S5 presents a simplified workflow for pore connection detection. The overlap-detection

function of ICCR-Macropore uses the geometrical attributes of an ellipse: knowing that

the sum of the distances between the foci F1,2 and any point of the ellipse E1 is a constant

C1, we assume that if the distance between foci of E1 and any point of a second ellipse

E2 is less than C1, then E2 overlaps E1, leading to the creation of a link, referred to as

“Line” in Figure S2, between those two pores. A link is a 2D representation of a potential

connection in 3D, while the 2D arrangement of a set of links symbolizes the pore network

of a 2D slice (Figure S7). The ellipse simplification has the advantage of avoiding

corner effects that can be encountered by a rectangular simplification against more

resource-consuming processing. Figure S6 shows an example of artefact produced during

link detection between two pores: we observe that replacing the pores by rectangular

shapes (case A) would have developed a connection (represented by a blue area) where

case B does not detect any.

The materialized links are displayed in Figure S7. For this example, a slice has been

analysed three times, using three different area of influence. As observed in Figure

S7-Left, a small factor of 5 only connected the larger pores, which had a large influence

on their nearest neighbours. In Figure S7-Middle, a factor of 10 was applied on the same

slice. In this case, most of the larger vugs were connected, while the microporosity began

to be part of the global hydraulic network. No connection between the top and bottom

of the slice is detected yet. With Figure S7-Right, we saw that almost all pores were part
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of a network. Only the ones sitting where the rock matrix is most present are avoided,

highlighting the poor influence of rock matrix and microporosity during water flooding.

The larger vugs have created a bottom-to-top connection.

Slice Picker Software

The Slice Picker is a software written in C++ and specifically developed as a pre-

processor for the Artificial Neural Network study, by generating a pre-formatted dataset

of variables. The software is based on the ICCR-Macropore main functions.

The following files are needed to run the Slice Picker (Figure S8):

• The executable of the ICCR-Macropore, along with the input files needed for a correct

use of the software.

• The Comm file. The “Status” variable should be set to 0 before running the Slice

Picker.

• The “Slices” text file, which should contain the names of the files to be analysed.

The Slice Picker generates a formatted excel spreadsheet containing 18 variables,

further used by the neural network solution, plus 1 variable (In/Out connection).

The In/Out connection is a Boolean offering a rapid and alternative way to control

whether a breakthrough might occur on a 2D slice of a pre-experimental scan of a

rock. The function, compiled within the executable of the ICCR-Macropore, can

only be triggered through the use of the Slice Picker and is based on the recursive

analysis of the connected network of pores, based on the area of influence. The variable

is set to 1 if at least one route connects the bottom of the slice to the top, and 0 otherwise.
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Slice Picker & ICCR-Macropore Interactions

The “Status” variable of the Comm file guides both software into splitting tasks (Figure

S9). A Comm status of 0 indicates a running Slice Picker, while a Comm status of 1 puts

the Slice Picker in a stand-by mode during which the ICCR-Macropore processes the

current 2D slice through a set of available and hidden functions only triggered through the

use of the Slice Picker. Once done with the slice processing, the ICCR-Macropore updates

the Comm file accordingly and closes itself, while the Slice Picker saves the set of 18 + 1

variables in a vector. The process continues until each slice has been analysed, after which

an excel spreadsheet containing all the data gathered by the coupled solution is generated.

Acknowledgments. The authors would like to thank Petrobras and Shell for their

sponsorship of the International Centre for Carbonate Reservoirs (ICCR), and for per-

mission to publish this work from the GeoMeChem project.

The data used in this work are available at the following address: https://doi.org/

10.6084/m9.figshare.c.5335454 (Brondolo et al., 2021).

References

Borghi, L., Corbett, P. W., et al. (2013). Lacustrine carbonates-for the purpose of

reservoir characterization are they different? In Otc brasil.

Boyd, A., Souza, A., Carneiro, G., Machado, V., Trevizan, W., Santos, B., . . . others

(2015). Presalt carbonate evaluation for santos basin, offshore brazil. Petrophysics ,

56 (06), 577–591.

Brondolo, F., Cilli, P., Fraser-Harris, A., Butler, I., Edlmann, K., & Mc-

March 18, 2021, 7:31am



X - 14 :

Dermott, C. (2021, Mar). Machine learning based prediction of chan-

nelisation during dissolution of carbonate rocks. figshare. Retrieved

from https://figshare.com/collections/Machine learning based prediction

of channelisation during dissolution of carbonate rocks/5335454/1 doi:

10.6084/m9.figshare.c.5335454

Chafetz, H. S. (2013). Porosity in bacterially induced carbonates: Focus on microp-

oresmicroporosity after bacterial decay. AAPG bulletin, 97 (11), 2103–2111.

Chafetz, H. S., & Folk, R. L. (1984). Travertines; depositional morphology and the

bacterially constructed constituents. Journal of Sedimentary Research, 54 (1), 289–

316.

Chafetz, H. S., & Guidry, S. A. (1999). Bacterial shrubs, crystal shrubs, and ray-crystal

shrubs: bacterial vs. abiotic precipitation. Sedimentary Geology , 126 (1-4), 57–74.

Chitale, V. D., Alabi, G., Gramin, P., Lepley, S., Piccoli, L., et al. (2015). Reservoir

characterization challenges due to the multiscale spatial heterogeneity in the presalt

carbonate sag formation, north campos basin, brazil. Petrophysics , 56 (06), 552–576.
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Sample Length (mm) Diam. (mm) φ (%) Vp (cm3) Vs (cm3)
HFRHES 71.58 38 7.57 6.20 75.71
HFRLES 68.68 38 7.65 5.96 72.01
MFRHES 73.39 38 7.11 5.89 76.94
LFRLES 81.2 38 5.64 5.2 86.99

Table S1. Petrological characteristics of the samples. The volume of solid was calculated

from the difference between the volume of the cylindrical core and the volume of pore: V - Vp.

Compound Sample 1 (%) Sample 2 (%)
Calcite 95.15 95.02
Calcite magnesian 4.41 4.02
Dolomite 0.24 0.47
Quartz 0.1 0.1
Montmorillonite 0.1 0.4

Table S2. Chemical composition of a block of travertine (Saturnia Italy). Data from a

in-house XRD analysis.

1 cm 1 cm

1 cm1 cm

Figure S1. µCT slices of each travertine core sample used in this study. A: LFRLES; B:

MFRHES; C: HFRHES; D: HFRLES. Image size: each slice is 3.8 cm by 3.8 cm.
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Figure S2. Simplified UML diagram presenting the main classes of the ICCR-Macropore, as

well as the relationship between them.

.CNT

.SVG

Comm 

file

X_input.txt

Y_input.txt

.GEO

.GLI

Figure S3. General workflow for the ICCR-Macropore. Three input types are necessary (a

CNT file, a comm file, a text file, and the SVG pictures). The tool generates three types of

output files (mesh file, geo files, and geometrical data).
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Figure S4. Left) Slice from a travertine sample used in this study (LFRLES); Right) Isolated

porosity after ICCR-Macropore processing.

A

B

C

Figure S5. Steps for the detection of a link between two pores (black shapes). Step (A)

represents the area of influence applied around a pore through a multiplier of the original pore

area. The case (B) shows two non-overlapping pores; Case (C) displays a case of overlapping

ellipses.
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Comm 

file

Slice.txt

.EXE

Figure S8. Input files of the Slice Picker. The three input units are the ICCR-Macropore, the

Slice.txt file, and the Comm file.

Figure S6. Sketch of overlap detection (blue square) between two pores (black) defined by

area equivalent of a) rectangles and b) ellipses.
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Area of influence: 5 Area of influence: 10 Area of influence: 15

Figure S7. Visual rendering of the 2D connections between pores forming a network of

interconnected vugs. Three different area of influence have been used: 5, 10, and 15.

Comm file reading

+

Comm file update

Slice processing 

+

Comm file update

Comm 

file

Comm 

file

Figure S9. Programming logic and communication between the Slice Picker and the ICCR-

Macropore. The Comm file is used as an intermediate file.
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