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Abstract

We propose to make the damping time scale, which governs the decay of pseudo-elastic waves in the Elastic Viscous Plastic

(EVP) sea ice solvers, independent of the external time step and large enough to warrant numerical stability for a moderate

number of internal time steps. In this case, EVP becomes very close to the recently proposed modified EVP (mEVP) method

in terms of stability. With the proposed damping time scale, the numerical stability of EVP is independent of mesh resolution

in setups where the sea ice model component is called every time step of the ocean model. In a simple test case dealing with

sea ice breaking under the action of a moving cyclone, EVP with specified damping time scales can produce linear kinematic

features very similar to those from the mEVP method. There is more difference in simulated Arctic sea ice thickness and

linear kinematic features in realistic configurations, but the difference is minor considering model uncertainties associated with

parameter choices in sea ice models.
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Abstract13

We propose to make the damping time scale, which governs the decay of pseudo-elastic14

waves in the Elastic Viscous Plastic (EVP) sea ice solvers, independent of the external15

time step and large enough to warrant numerical stability for a moderate number of in-16

ternal time steps. In this case, EVP becomes very close to the recently proposed mod-17

ified EVP (mEVP) method in terms of stability. With the proposed damping time scale,18

the numerical stability of EVP is independent of mesh resolution in setups where the sea19

ice model component is called every time step of the ocean model. In a simple test case20

dealing with sea ice breaking under the action of a moving cyclone, EVP with specified21

damping time scales can produce linear kinematic features very similar to those from the22

mEVP method. There is more difference in simulated Arctic sea ice thickness and lin-23

ear kinematic features in realistic configurations, but the difference is minor consider-24

ing model uncertainties associated with parameter choices in sea ice models.25

1 Introduction26

Most of the existing climate models rely on the Elastic Viscous Plastic (EVP) ap-27

proach (Hunke and Dukowicz [1997]) to solve the sea ice dynamics. The EVP solvers have28

been the subject of several recent papers which proposed a modification of the original29

EVP approach, called mEVP further (Lemieux et al. [2012], Bouillon et al. [2013], Kimm-30

ritz et al. [2015]). In the mEVP, the aspects of convergence to the Viscous Plastic (VP)31

solution (Hibler [1979]) and numerical stability are separated, allowing stable performance32

independent of whether the solution is converged to the VP rheology. Despite the close-33

ness between the EVP and mEVP there remains some vagueness on how they are related34

in terms of performance. This note attempts to clarify some points by proposing a mod-35

ified view on the EVP based on the stability argument, which puts the EVP and mEVP36

on an equal footing.37

Our discussions in this note will be based on the stability analyses of Hunke and38

Dukowicz [1997] and Hunke [2001]. The focus is not on the development of new sea ice39

solvers, but rather on how to use traditional EVP in existing climate models to reach40

good numerical stability while keeping a high numerical efficiency. We will use 1D pro-41

totype equations to explain the stability issues. The conclusions from the stability anal-42

ysis will be complemented by simulations performed with FESOM (Danilov et al. [2017]),43

the sea-ice component of which is described in Danilov et al. [2015]. The simulations are44
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done on meshes with high horizontal resolution, which allow numerous linear kinematic45

features (LKFs) to be simulated with the EVP approach (see e.g. Wang et al. [2016]).46

The EVP version used in FESOM is adjusted so that all the components of stresses tend47

to the VP stresses at the same rate. This improves stability (see, e.g., Bouillon et al. [2013],48

Danilov et al. [2015], Wang et al. [2016]). Full equations solved with the EVP and mEVP49

methods can be found in papers cited above. A brief summary of their implementation50

in FESOM is given in the Appendices of Koldunov et al. [2019a].51

2 The stability of EVP52

2.1 The role of pseudoelastic time scale T53

Consider the following 1D prototype of the standard EVP equations (see, e.g., Hunke54

and Dukowicz [1997]):55

∂tσ =
1

2T
(η∂xu− σ), (1)

m∂tu = ∂xσ + τ, (2)

where

η =
P

2max(∆,∆min)
,

u is the velocity, τ the wind and ocean forcing, and P the ice strength. We discarded56

some numerical factors in these equations for simplicity. The field ∆ is the 1D version57

of58

∆2 = (ε̇211 + ε̇222)(1 + e−2) + 4ε̇212 e
−2 + 2ε̇11ε̇22(1− e−2) (3)

of the VP rheology, where e = 2 and59

ε̇ij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(4)

are the components of the strain rate tensor, with i, j being the x or y. We intend to make60

the equations tractable analytically, and assume the worst case in terms of stability when61

∆ < ∆min = const (∆min is commonly 2 × 10−9 s−1). We assume also that P is con-62

stant, leading to the constant viscosity η.63

In the standard EVP, the time scale T is selected to be a fraction of the external

time step ∆t (see, e.g., Hunke [2001]). The ∆t can be the time step of an ocean model

if the sea ice is integrated together with the ocean, and we assume that this is the case.
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If T/∆t is sufficiently small, then an equilibrium will be reached within the external time

step ∆t and the rhs of the σ-equation will approach zero, giving the VP regime

σ = η∂xu.

Consider for a while the other balance in (1):

∂tσ =
1

2T
η∂xu,

which corresponds to ’E’ (elastic) in the EVP. Inserting it in the time differenced mo-

mentum equation (2) and neglecting forcing τ , we get

∂ttu = ∂x
P

4Tm∆min
∂xu,

which is the wave equation with the phase speed

c2 =
P

4Tm∆min
.

For T = 103 s, ∆ = 2 × 10−9 s−1, P = hP ∗ with P ∗ = 3 × 104 N/m and m = hρ64

we get c2 ∼ 4×106 m2/s2 taking the ice density ρ=900 kg m−3 (the mean thickness h65

drops out). The phase speed is rather large (≈2000 m/s), and limits the internal time66

step (substep) in the standard EVP as67

c∆tEV P = c∆t/NEV P < C∆x, (5)

leading to68

NEV P > c∆t/(C∆x), (6)

where NEV P is the number of substeps, C is a numerical factor on order one and ∆x69

is the mesh cell size. For ∆x=100 km the time step limit is less than 50 s, which for ∆t =70

1 h means NEV P > 70.71

However, when mesh is refined, the ratio of ∆t/∆x does not change much (due to72

the dependence of ∆t on ∆x for maintaining the numerical stability of ocean model),73

while T becomes smaller if we keep the ratio of T/∆t fixed. This increases c, implying74

an increase in NEV P as (∆t)−1/2, thus a reduction in model numerical efficiency. There-75

fore, it is the desire to damp the pseudo-elastic waves within the external time step (T/∆t <76

1) that causes the standard EVP to be more expensive on refined meshes.77

As is known, we generally fail to damp these waves to the degree that a converged78

solution is reached. The decay of pseudo-elastic waves in the EVP is only exponential,79
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roughly following e−∆t/2T per external time step in the 1D prototype here, so T should80

be unacceptably small for the solution to really approach the VP dynamics within the81

external time step ∆t. The mEVP approach behaves similarly in this respect, with eNEV P /α
82

roughly defining the decay per time step.83

Let’s take an oscillating forcing τ = τ0e
−iωt+ikx, where ω is the frequency of os-

cillations and k the wavenumber. In this case the solution of (1) and (2) is

u =
1− 2iωT

ω(−i− 2ωT )m+ k2η
τ0.

In order to approach the VP regime we need 2ωT � 1 in the nominator (the η term84

generally prevails in the denominator). If we have 3-hourly wind forcing, the largest fre-85

quency in forcing will be π/3 h−1, so T ∼ 500 s will correspond to 2ωT ∼ 1. In real-86

ity, the local peak in high-frequency wind forcing is at the inertial frequency, which in87

high latitudes corresponds to π/6 h−1. Depending on the forcing used, the resolution (which88

might be too coarse to see the effects) and the compromise we are ready to make, T about89

0.5− 1 h can be still sufficient to get solutions that are close to VP solutions.90

If we fix T instead of varying it for different ∆t, NEV P needed for stability will be91

fixed too, losing the dependence on ∆t and hence on the resolution. The situation with92

EVP will then resemble the case with the split-explicit solvers for the sea surface eleva-93

tion used in many ocean circulation models. They employ small internal time steps in94

order to be stable with respect to fast surface waves. The number of internal time steps95

is dictated by the wave phase speed, and generally does not depend on the mesh reso-96

lution because ∆x and ∆t are varied accordingly. For a fixed T and an appropriate value97

of NEV P the EVP becomes similar to the mEVP proposed by Bouillon et al. [2013], as98

explained in the next section.99

The total number of EVP internal steps per simulation depends on the internal time100

step governed by the speed of pseudo-elastic waves (see (5)). Therefore, even when sea101

ice models are integrated with external time steps larger than in ocean models, the to-102

tal number of internal time steps will not change and the overall efficiency of the EVP103

solver will not be increased.104
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2.2 EVP and mEVP105

The pair of σ and u equations in EVP is integrated using forward–backward time

stepping as

σp+1 − σp =
∆tEV P

2T
(η∂xu

p − σp),

m(up+1 − up) = ∆tEV P∂xσ
p+1.

Here p is the index of subcycling (p = 0 corresponds to the values at the end of exter-106

nal time step n, and the values at p = NEV P are those for n+ 1).107

The prototype form of mEVP is

σp+1 − σp =
1

α
(η∂xu

p − σp),

up+1 − up =
1

β
(un − up +

∆t

m
∂xσ

p+1).

Here α and β are large parameters, and un is the velocity at the end of the last exter-108

nal time step. The iterative process can be considered as pseudo time stepping. We see109

that with α = 2T/∆tEV P the σ-equations of EVP and mEVP become identical.110

The u-equations are slightly different. The difference lies in the estimate of time

derivative: it is time-local in EVP, but weighted between two estimates in mEVP. If we

divide the u-equation of mEVP over ∆tEV P = ∆t/NEV P and then associate the time

interval ∆tEV P with single iteration of mEVP, (up+1−up)/∆tEV P is the time-local es-

timate of time derivative ∂tu. The quantity (up−un)/(p∆tEV P ) is the mean time deriva-

tive ∂tu
p

over the time interval from n (p = 0) to p. The u-equation then becomes

m(
β

NEV P
∂tu+

p

NEV P
∂tu

p
) = ∂xσ

p+1,

featuring an up-weighted time derivative, which leads to the response as if ice mass were111

larger than in reality (unless β/NEV P � 1, which is seldom the case in practice). Ac-112

cordingly, the transient response to fast changes in forcing will be slower. It is not the113

case for EVP, and in this respect the EVP is a more consistent option than mEVP un-114

less NEV P � β in the latter.115

We now compare stability conditions for both methods (see, e.g., Hunke [2001] and116

Kimmritz et al. [2015]). In the case of EVP, it is117

N2
EV P > CE

∆t

T

η∆t

m(∆x)2
, (7)
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and in the case of mEVP method, it is118

αβ > Cm
η∆t

m(∆x)2
. (8)

Here CE and Cm are numerical factors determined experimentally in realistic applica-119

tions. (∆x)−2 in both cases appears as an estimate of the maximum eigenvalue of −∂xx.120

It misses a numerical factor which depends on discretization and is hidden in CE and121

Cm. We note that Equation (7) is the same as (6), but written differently to facilitate122

a comparison with the mEVP case.123

As mentioned, for EVP, if ∆t ∼ ∆x with mesh refinement, stability does not de-124

pend on resolution for fixed T . For mEVP, the product αβ needs to be increased with125

mesh refinement if ∆t ∼ ∆x, as indicated by Equation (8).126

Although mEVP does not pose explicit constraints on NEV P , the need to approach127

to the VP solution implies that NEV P should be related to α, β. If we write α = cαNEV P128

and β = cβNEV P , with cα and cβ the numerical factors, then the ratio T/∆t in EVP129

plays the role of the product cαcβ in mEVP as concerns stability (up to a numerical fac-130

tor hidden in CE and Cm). The stability is achieved by similar means in EVP and mEVP:131

to keep NEV P moderate, one takes large T/∆t in EVP or large cαcβ in mEVP. For ex-132

ample, Koldunov et al. [2019a] report mEVP simulations that were run with α = β =133

500 with NEV P = 100, which should be similar to EVP case with T/∆t = 25, which134

corresponds to T about several hours.135

In both cases using relatively low NEV P affects the formal convergence to VP so-136

lutions. Whether or not such a choice of NEV P is acceptable depends on the presence137

of high-frequency components in forcing, and can be evaluated through simulations for138

both EVP and mEVP (see, e.g., Kimmritz et al. [2017]). On high-resolution meshes the139

results can be further affected by LKFs emerging in simulations, which remains to be140

seen.141

The next two sections present results illustrating the consistency between the EVP142

and mEVP solutions in an idealized test case and in realistic simulations in the Arctic143

Ocean. Both cases develop multiple LKFs, and their pattern is used as one of criteria144

to judge on the consistency.145

In practice, moderate violation of (7) or (8) in, respectively, EVP or mEVP sim-146

ulations does not imply numerical instability, but rather noise in strain rates. The noise147
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distorts sea ice dynamics and should be avoided. We therefore will continue to use the148

term ’stability’ in the sense of (7) or (8).149

3 Idealized test case150

We run the test case described in Mehlmann et al. [2021] on a triangular mesh with151

the triangle side of 2 km. The sea ice occupies a rectangular box of 512 by 512 km in152

size. It is deformed by stresses due to a cyclone travelling along the diagonal toward the153

north-east corner. We compare the pattern of simulated LKFs at the end of the 2nd day154

of simulations. The ice thickness is relatively thin (initially around 0.3 m), and does not155

change substantially except for the northern and partly eastern boundaries. The sim-156

ulated ice velocities in this test case allow the external time step ∆t to be larger than157

30 min if judged only by sea ice advection. The external time step ∆t is set to 2 min in158

all runs, which is a value expected from an ocean model running on a 2 km mesh in high159

latitudes.160

Table 1 specifies the parameters of runs presented in Fig. 1 and 2.

Run ∆t, min T min α, β NEV P

S1 2 60 100

S2 2 25 100

S3 2 0.25 1000

M1 2 500 100

M2 2 500 3000

Table 1. The parameters of runs performed with EVP and mEVP.161

162

Figure 1 illustrates the behavior of EVP with different parameters. Shown are the167

field of ice concentration and ∆. In S1, T is larger than needed for stability for the se-168

lected external time step ∆t. S2 uses the lowest T that ensures stability. The difference169

between the results from S1 and S2 is very minor. If T is further reduced, noise starts170

to appear in ∆ and velocity strain rates. It is localized in the corners, where the strain171

rates are small, down to T = 15 min. Although the solutions remain very close to S2172

elsewhere (not shown), larger areas might be affected in longer simulations, and such T173
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Figure 1. Ice concentration (top row) and ∆ (bottom row) in test case runs with the EVP

method. S1 differs from S2 by larger T (T = 1 h vs T = 1500 s), which leads to minor differ-

ences in detail. S2 and S3 differ in the ratio ∆t/T by two orders of magnitude, but simulate close

patterns.

163

164

165

166

are not allowed. If T is increased further than in S1, some reduction in number of LKFs174

is generally noticeable (not shown). As mentioned above, the question on admissible T175

depends on temporal scales present in forcing and possibly on spatial resolution.176

Run S3 has T/∆t = 0.125, to allow for a decay of pseudoelastic waves within the177

external time step, as intended in the traditional EVP. Note that the ratio is smaller than178

the commonly used value of 1/3 (Hunke [2001]) to ensure stronger decay. NEV P is 10179

times larger than in S1 and S2, which is dictated by stability condition (7) as the con-180

sequence of strong reduction in T/∆t. It can be seen that there are only very minor dif-181

ferences between the results of S3 and those of S1 and S2 in details. However, the EVP182

solver efficiency in S1 and S2 is 10 times higher than in S3. Simulation with ∆t = 30183

min, T = 3 min and NEV P = 4500 carried out by us to reach small T/∆t in a more184

economical way results in patterns almost identical to S3, but are still about 3 times more185

expensive than S2.186

Figure 2 compares the EVP and mEVP solutions. While the details of LKFs of S2187

and M1 are not identical, the difference is minor. This leads us to conclude that EVP188
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Figure 2. Ice concentration (top row) and ∆ (bottom row) in test case runs with EVP and

mEVP solvers. S2 and M1 have the same NEV P = 100. While there are small differences in

details, the patterns of LKFs agree between EVP and mEVP runs. M2 differs from M1 taking

NEV P = 3000 instead of 100. The increase in NEV P causes little additional changes in model

results when stability is ensured.

204

205

206

207

208

with the specified T behaves very similarly to mEVP, and there is no practical argument189

to prefer one over another. M2 keeps the same parameters as M1, except for 30 times190

larger NEV P . Now NEV P is much larger than α, β, which formally should lead to a closer191

convergence to the VP regime. Once again, this increase in NEV P creates only minor192

differences, emphasizing the fact that in mEVP NEV P is only required to be high enough193

to ensure some initial error reduction in the iterative process. As expected from the anal-194

ysis above, increasing α, β for fixed NEV P in mEVP will eventually lead to an effect sim-195

ilar to that of increasing T in EVP, filtering high-frequency response to forcing (not shown).196

As concerns the differences between the simulated LKF patterns, we should note197

that the patterns depend, in addition to forcing and rheology, also on the details of nu-198

merical discretization. This is not surprising because LKFs are forming close to the grid199

scale, where all discretized differential operators contain numerical errors. As shown in200

Mehlmann et al. [2021], the change in the type of discretization, for example the place-201

ment of velocities on triangle centers or edges, induces much larger differences in the pat-202

terns of LKFs than those seen in Fig. 1 and 2.203
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4 Arctic simulations209

Run ∆t, min T min α, β NEV P 1 year run time, min

EVP2H 10 120 100 75

mEVP500 10 500 100 75

EVP0 600 10 3.3 600 110

EVP1H 10 60 100 75

mEVP800 10 800 100 75

EVP0 10 3.3 100 75

Table 2. The parameters of Arctic Ocean runs performed on a 4.5 km mesh, and resulting

model run time per year of simulations.

210

211

Here our intention is to demonstrate that the similarity between functioning of EVP216

and mEVP is also preserved in realistic model configurations. Simulations are carried217

out with FESOM2 in the global configuration used in Koldunov et al. [2019a] where the218

Arctic Ocean is resolved at 4.5 km in terms of grid triangle height. We initialise the model219

in the year 1978 with PHC3 climatology Steele et al. [2001] and 2 meter ice where sur-220

face ocean temperature is below freezing point. The model is forced by JRA55-do re-221

analysis fields (Tsujino [2018]), which have horizontal resolution of about 55 km and tem-222

poral interval of 3 hours. The experiment setup gives an opportunity to observe devel-223

opment of sea ice fields starting from uniform sea ice distribution, but under realistic forc-224

ing and for realistic geometry.225

We performed 6 experiments. The EVP and mEVP experiments use NEV P = 100226

if not otherwise stated. Relying on the test case above and expression (7), we expect that227

T ≈ 2 h will lead to stable simulations in this case. The increase in T from 25 min in228

S2 is related to a 2.2 times higher ratio ∆t/∆x in Arctic simulations. The standard EVP229

run with T = 2 h is labelled EVP2H, and the standard mEVP run with α=β=500 is230

labeled mEVP500. An additional EVP experiment is run with T = 1 hour (labeled EVP1H).231

An additional mEVP experiment is run with α=β=800 (labeled mEVP800). The other232

two experiments use the original EVP implementation (with T = ∆t/3 as in Hunke [2001])233

and differ in the value of NEV P , with EVP0 having NEV P = 100 and EVP0 600 hav-234

–11–
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Figure 3. Spatial distribution of ∆ fields at October 27, 1980 for simulations initialised at

January 1 with 2m thick ice, 1978 and run with JRA55-do forcing.

212

213

ing NEV P = 600. EVP1H and EVP0 violate (7), but to a different extent. For conve-235

nience, the parameters are listed in Table 2.236

The daily mean spatial distributions of ∆ on October 27, 1980 (Fig. 3) are quite237

similar for all experiments, except for EVP0. The large-scale spatial patterns of LKFs238

in ∆, defined by the forcing and ability of rheology to react to it, show good resemblance.239

The parameters in these simulations are selected such that the standard runs are not very240

far from their stability boundary. Run EVP1H, where the parameter T is lower than needed,241

reproduces a pattern of ∆ that is very close to that of EVP2H. Daily averaging smooths242

small-scale noise, and it may stay unnoticed in this case. However, sea ice thickness is243

affected, as we shall see below.244

In run mEVP800 the parameters α, β are excessively high. Some differences be-245

tween mEVP500 and mEVP800 can be seen in some of the long LKFs and in the po-246

sition and numbers of LKFs near ice edge. However, the differences are rather minor.247

Although we do not illustrate it, the results from EVP and mEVP runs remain very sim-248
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Figure 4. Spatial distribution of sea ice thickness at October 27, 1980 for simulations with

different EVP versions and settings (summarized in Table 2.)

214

215

ilar when T (in case of EVP solver) and α, β (in case of mEVP solver) are increased in249

some limits beyond the values listed in Table 2.250

The comparison of EVP0 and EVP0 600 (Fig. 3, right column) shows that the pic-251

ture of deformations using the original EVP implementation becomes close to that of mEVP252

and EVP with adjusted T only if NEV P is significantly increased to ensure (7). This,253

however, increases the computational cost of the sea ice model in our setup from about254

20% of the ocean time step in case of NEV P = 100 to about 100% in the case of NEV P =255

600 (see also Fig. 1 in Koldunov et al. [2019a]). The situation may become worse with256

an increase in the number of computational cores, since EVP dynamics do not scale very257

well due to large number of inter-core communications (Koldunov et al. [2019b]). Sim-258

ply increasing T to a specified high value allows the computational cost of the EVP solver259

to be kept the same low as for the mEVP solver (NEV P = 100). The overly smooth260

pattern of ∆ seen in EVP0 is related to noise and daily averaging. It leads to distorted261

distribution of internal stresses and different dynamics.262
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While the patterns of ∆ in Fig. 3 are rather close for stable EVP and mEVP runs,263

small differences in sea ice dynamics and, hence, thermodynamics accumulate with time,264

and may result in noticeable differences in sea ice thickness regionally. The sea ice thick-265

ness snapshot at October 27 1980 (Fig. 4) shows that the general spatial pattern of the266

sea ice thickness is similar between the EVP and mEVP runs that respect numerical sta-267

bility requirements. Runs mEVP500 and EVP0 600 show the closest thickness distribu-268

tions, while the sea ice simulated in EVP2H is slightly thinner, indicating that some in-269

crease in T above 2 h is still needed in this case. Runs EVP0 and EVP1H are obvious270

outliers, showing a reduced thickness and almost no (EVP0) or a reduced number (EVP1H)271

of LKFs. We refrain from quantifying the differences in the number of LKFs and describ-272

ing effects on the behaviour of the sea ice and ocean properties, postponing this work273

for future studies.274

5 Discussions275

To make the cost of the EVP sea ice solver moderate, we select NEV P around 100276

and determine the time scale T (around 1-2 h) that ensures numerical stability. The num-277

bers given here can be used as guiding, but in each case the final choice is experimen-278

tal. For given forcing and resolution, there generally exist a range of T where the dif-279

ferences between simulations are relatively small with respect to the well behaving case280

(EVP0 600 here). If such a range is identified, there is also some freedom in selecting281

the number of internal steps NEV P : it can be even further reduced without violating sta-282

bility if higher values of T are taken (according to (7), doubling T allows a factor of
√

2283

decrease in NEV P ). However, an increase in T beyond some bound will have implica-284

tions for sea ice dynamics as discussed above.285

If T needed for stability appears to be too large (e.g. for some high-resolution forc-286

ing), NEV P has to be increased to maintain stability for an appropriate T . For exam-287

ple, in Arctic simulations above, NEV P = 200 would allow T smaller than 1h.288

The mEVP approach masks these issues because its numerical stability does not289

depend on NEV P . However, high ratios of α, β to NEV P needed to ensure stability and290

low computational cost, are similar to ∆t/T ratio in EVP and imply possible divergence291

from the VP regime.292
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Similar to the adaptive approach proposed for the mEVP solver in Kimmritz et al.293

[2016], the selection of T in EVP can also be done adaptively. Indeed, high values of T294

are only necessary in certain areas where ice strain rates are low and viscosities of the295

VP rheology are high. The values of T necessary for stability at a particular location can296

be diagnosed at the end of external time steps based on (7) with experimentally deter-297

mined C, and used locally at each grid cell over the next external step. We did not try298

this in FESOM yet.299

6 Conclusions300

The elementary analysis and examples above can be summarized as follows.301

• EVP becomes very similar to mEVP in terms of stability if T of EVP is taken con-302

stant and sufficiently large (about 1-2 h) and if adjustments are made to ensure303

the same decay for all components of stress tensor. NEV P can then be kept rel-304

atively low (about 100) independent of resolution, provided that ∆t is varied pro-305

portionally to ∆x. mEVP will still require some adjustment of α, β to mesh re-306

finement if ∆t is varied proportionally to ∆x.307

• This leads to a conceptual change: the background pseudoelastic waves in solu-308

tions are admitted, whereby the EVP solution becomes slightly different from the309

VP solution. These waves are slowed down through the choice of T in EVP or α, β310

in mEVP for stability with affordable NEV P .311

• The reaction of ice to fast varying forcing is likely to be affected in both EVP and312

mEVP if T or α, β are high. Both cases are a compromise between the compu-313

tational demand (moderate NEV P ) and closeness to VP solutions. However, the314

VP rheology is also an approximation.315

We believe that our conclusions and illustrations are of practical interest and could316

guide the selection of sea ice model parameters.317
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