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Abstract

Drought conditions significantly impact human and natural systems in the Tropics. Here, multiple observational and reanalysis

products and ensembles of simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are analyzed with

respect to drought areal extent over tropical land regions and its past and future relationships to the El Niño/Southern

Oscillation (ENSO). CMIP5 models forced with prescribed sea surface temperatures compare well to observations in capturing

the present day time evolution of the fraction of tropical land area experiencing drought conditions and the scaling of drought

area and ENSO, i.e., increasing tropical drought area with increasing ENSO warm phase (El Niño) strength. The ensemble

of RCP8.5 simulations suggests lower end-of-the-century El Niño strength-tropical drought area sensitivity. At least some of

this lower sensitivity is attributable to atmosphere-ocean coupling, as historic coupled model simulations also exhibit lower

sensitivity compared to the observations.
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Key Points 18 

• Comparison of observed and model-simulated tropical land region drought areal extents 19 
show favorable agreement.  20 

• Tropical land region drought area increases with increasing strength of El Niño.     21 

• The apparent decrease in future ENSO-tropical drought area sensitivity appears to arise 22 
in part from atmosphere-ocean coupling. 23 
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Abstract. Drought conditions significantly impact human and natural systems in the Tropics. 24 

Here, multiple observational and reanalysis products and ensembles of simulations from the 25 

Coupled Model Intercomparison Project Phase 5 (CMIP5) are analyzed with respect to 26 

drought areal extent over tropical land regions and its past and future relationships to the El 27 

Niño/Southern Oscillation (ENSO). CMIP5 models forced with prescribed sea surface 28 

temperatures compare well to observations in capturing the present day time evolution of the 29 

fraction of tropical land area experiencing drought conditions and the scaling of drought area 30 

and ENSO, i.e., increasing tropical drought area with increasing ENSO warm phase (El 31 

Niño) strength.  The ensemble of RCP8.5 simulations suggests lower end-of-the-century El 32 

Niño strength-tropical drought area sensitivity.  At least some of this lower sensitivity is 33 

attributable to atmosphere-ocean coupling, as historic coupled model simulations also exhibit 34 

lower sensitivity compared to the observations. 35 

Plain Language Summary   36 

Many regions of the planet are extremely vulnerable to drought. In the tropics, the El 37 

Niño/Southern Oscillation (ENSO) phenomenon is recognized as a key driver of drought 38 

occurrence.  In this study, we analyze the spatial extent of droughts over tropical land regions 39 

and evaluate its connection to ENSO in the recent past in observations and current generation 40 

models as well as simulated future projections. We demonstrate overall model fidelity in 41 

capturing a positive relationship between the tropical land area under drought and El Niño in 42 

the recent past and consider how this relationship may change in the future.  43 

Index Terms:  Drought (1812), ENSO (4922), Global Climate Models (1626), Tropical 44 

Dynamics (3373), Climate Variability (1616)  45 
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1) Introduction 46 

Tropical rainfall extremes have significant repercussions for the human and natural systems 47 

[Kumar et al., 2013].  Interannually, the El Niño/Southern Oscillation (ENSO) strongly 48 

modulates tropical rainfall.  Furthermore, anthropogenic forcing of climate, from greenhouse 49 

gases or other factors, is likely to impact rainfall across multiple timescales. For example, 50 

climate model projections of future monthly-mean tropical rainfall indicate increases in both 51 

dry and wet extreme monthly accumulations, leading to broadening of the precipitation 52 

distribution [Lintner et al., 2012]. 53 

Comprehensive assessment of droughts and their associated impacts requires the 54 

quantification of multiple facets of their behavior.  While drought intensity, duration, and 55 

frequency are integral to assessing their impact on human and natural systems, the spatial 56 

characteristics of drought, including their areal extent, are also critical. Lyon [2004] and Lyon 57 

& Barnston [2005], hereafter L04 and LB05, respectively, explored the drought areal extents 58 

over tropical land and their relationship to ENSO. Using a standardized precipitation index 59 

and categorical definitions of drought, L04 and LB05 demonstrated that during ENSO warm 60 

phase (El Niño) conditions, spatially coherent and nearly simultaneous droughts develop over 61 

tropical land regions. That is, there is an overall increase in total tropical land area during El 62 

Niño events.  63 

Given use of climate models for projecting future hydroclimate impacts, evaluating 64 

model fidelity in drought simulation is crucial.  Nasrollahi et al. [2015] analyzed trends in 65 

continental drought areas in an ensemble of Coupled Model Intercomparison Project Phase 5 66 

[CMIP5; Taylor et al. 2012] models and reported broad similarity in the geographic areas 67 

subject to droughts but with disagreement among trends.  More recently, Ukkola et al. [2018] 68 
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evaluated multiple drought metrics both globally and regionally and demonstrated that, 69 

despite the high intermodel agreement, CMIP5 models systematically underestimate drought 70 

intensity compared to observations. Langenbrunner & Neelin [2013] demonstrated CMIP5 71 

model skill in capturing the observed intensity of teleconnected ENSO rainfall anomalies, 72 

albeit with generally poor performance in capturing the detailed spatial structure.  While 73 

Ukkola et al. [2018] analyzed several dimensions of drought in CMIP5, they did not 74 

explicitly evaluate model fidelity with respect to spatial extent.  On the other hand, 75 

Nasrollahi et al. [2015] evaluated spatial aspects of drought trends but without particular 76 

emphasis on ENSO. Dai et al. [1998] found the leading mode of variability in the 77 

observationally-derived Palmer Drought Severity Index (PDSI) to be significantly positively 78 

correlated with ENSO, with some indications of a strengthening relationship over the latter 79 

part of the 20th century.  Coelho & Goddard [2009] considered some aspects of simulated 80 

drought extent and related these to teleconnected precipitation responses to ENSO under both 81 

current climate and future projections.  82 

Here, we apply the categorical index-based approach of L04 to quantify spatial drought 83 

extent aggregated over all tropical land regions in observations, reanalyses, and CMIP5 84 

models. Our first objective is to validate CMIP5 model performance for the observed ENSO-85 

drought area relationship in current climate, while our second objective is to consider the 86 

future ENSO-drought area relationship.  In light of the possible changes to ENSO with 87 

anthropogenic warming, we seek to determine whether the current ENSO-drought area 88 

relationship will hold in the future, i.e., do future projections reflect similar drought area 89 

increases with the strength of El Niño as in present climate?   90 
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Needless to say, multiple definitions of drought are used by the scientific community, 91 

with the choice of drought indices often motivated by the particular type or aspect of drought 92 

(meteorological, ecological, agricultural, or hydrological) examined [Wilhite & Glantz, 93 

1985]. Since we only consider water supply (rainfall) assessed via a standardized rainfall 94 

index (SRI), we expect our results to be most directly applicable to meteorological drought.  95 

Other drought indices may very well reflect different behavior than what we report below. 96 

 97 

2) Data sets and methods 98 

We employ several publically-available gridded observational and reanalysis datasets, 99 

including: CPC Merged Analysis of Precipitation [CMAP; Xie & Arkin, 1997]; 100 

Tropical Rainfall Measuring Mission [TRMM; Huffman et al. 2014]; Global Precipitation 101 

Climatology Project  [GPCP; Adler et al. 2003]; Global Precipitation Climatology Centre 102 

[GPCC; Schneider et al. 2011]; University of Delaware Precipitation [UDel; Willmott, & 103 

Matsuura, 2001] University of East Anglia [UEA; Hulme 1992; Hulme et al. 1998]; ERA-104 

Interim [Dee et al. 2011]; and Climate Forecast System Reanalysis [CFSR; Saha et al. 2010; 105 

Saha et al. 2012]. The GPCC, UEA, and UDel data sets are based on station observations; 106 

CMAP, GPCP, and TRMM are based on merged land observations and satellite data; and 107 

CFSR and ERA-Interim are reanalyses.  108 

We also use three model ensembles from CMIP5: N = 29 prescribed SST simulations 109 

between January 1979 and December 2005, also known as Atmospheric Model 110 

Intercomparison Project (AMIP) simulations [Taylor et al. 2012]; N = 22 fully coupled 111 

simulations covering January1979-December 2005; and N = 22 fully coupled simulations 112 

under the RCP8.5 projection scenario between January 2005 and December 2100.  (A 113 
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summary of model names and acronyms is provided in the supplemental information.)  By 114 

applying observed SST boundary conditions, the AMIP simulations generally exhibit smaller 115 

biases and model spread relative to historic coupled atmosphere-ocean model simulations.  116 

The AMIP simulations further allow direct comparison to observed ENSO events, unlike 117 

coupled simulations that do not reproduce the observed time evolution of SSTs.  AMIP 118 

model selection was based on the availability of monthly fields over the observational 119 

analysis period; for the other two ensembles, model selection was guided by an interest in 120 

analyzing models appearing in both ensembles.  For all models, only a single integration is 121 

analyzed, even though multiple realizations exist for some models.  122 

In the interest of standardizing our analyses, all observational products and models were 123 

regridded to a common 2.5°x2.5° grid via bilinear interpolation.  The interpolation procedure 124 

likely results in the muting of more extreme behavior, especially given the occasionally sharp 125 

spatial gradients present in tropical rainfall.  Qualitatively, however, the behavior of the 126 

diagnostics described below computed on the regridded versus native resolution is similar.   127 

As in L04, we compute timeseries of monthly SRI at every tropical land pixel.  The SRI 128 

analyzed, denoted as 𝑆!", represents a 12-month sum of weighted, standardized monthly 129 

precipitation anomalies in the log of rainfall: 130 

𝑆!"(𝑖) =
!"#!!!!"#!!

!!
. !!
!!

!
!!!!!"         (1) 131 

In (1), 𝑖 represents each month during January 1980-December 2008 (348 months total), 𝑃! 132 

and 𝑃!, represent the monthly precipitation of the jth month in the sum and total annual 133 

accumulation, respectively, and overbars represent climatological mean values.  𝜎! is the 134 

monthly standard deviation of 𝑙𝑜𝑔 (𝑃). Use of 𝑙𝑜𝑔 (𝑃) yields a distribution closer to 135 

Gaussian than 𝑃, the distribution of which is often positively skewed [Lyon & Barnston, 136 
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2005].  The weighting factor, 
!!
!!

, representing the climatological monthly fraction of annual 137 

precipitation, damps the influence of large standardized anomalies during months with 138 

climatologically low rainfall.  For the historical simulations and RCP8.5 projections, the 139 

climatology used for 𝑃! and 𝑃!, as well as the monthly standard deviations 𝜎! correspond to 140 

January 1979-December 2005 and January 2074-December 2099, respectively. 141 

𝑆!" values are further normalized by standard deviation to obtain a dimensionless index 142 

of aggregated precipitation deficits (or surpluses), with values typically ranging from −2 to 143 

+2.  L04 applied equation (1) to gridded monthly-mean precipitation to calculate timeseries 144 

of tropical land area fraction subject to selected threshold levels of drought.  In what follows, 145 

we adopt the same categorical definitions used in L04, namely moderate, intermediate, and 146 

severe, defined respectively for index values < −1, <−1.5, and < −2. By construction, the 147 

moderate category includes the intermediate and severe categories, and the intermediate 148 

category includes the severe category.   149 

We assess model performance by comparing timeseries for categorical drought land area 150 

(as percentages of total tropical land area over 30°S-30°N) obtained from individual models 151 

and the multimodel ensemble mean (MEM) with the observationally-based (or reanalysis) 152 

datasets. The principal metrics considered for model evaluation are temporal correlation, 153 

root-mean-square error (RMSE), and linear unidimensional scaling (LUS, [Hubert et al., 154 

2002]).  The latter represents an approach for arranging input objects along a single axis; it 155 

does so via a linear least-squares minimization procedure applied to a matrix of distances 156 

between every pair of objects (the "proximity matrix").  157 

We further quantify the sensitivity of the observed and simulated categorical drought area 158 

timeseries to the strength of El Niño via linear regression analysis.  As a simple diagnostic of 159 
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observed (and AMIP) ENSO strength, we consider SST anomalies over the NINO3.4 region 160 

(170ºW-120ºW, 5ºS-5ºN):  specifically, we use the NOAA's Climate Prediction Center’s 161 

Oceanic Nino Index (ONI).  For the historical and RCP8.5 model ensembles, ONI indices are 162 

constructed from each model's unique SST field.  Given the use of multiple indices to define 163 

ENSO, it is possible that the results and conclusions below would differ based on the index 164 

selected. 165 

Finally, we consider histograms of drought area percentage binned according to ONI 166 

values, which gives a sense of how drought area scaling varies with the strength of ENSO.  167 

Summing the product of the histogram slope with the frequency of occurrence of binned ONI 168 

values provides an additional measure of sensitivity. 169 

 170 

3) Results and discussion 171 

The top row of Figure 1 depicts timeseries of the three categorical drought areal fractions for 172 

all land gridpoints between 30°S-30°N for the analyzed observations and reanalysis products.  173 

The most notable characteristic of the time evolution is the pronounced increases in tropical 174 

land region drought area fraction across the three drought categories during El Niño 175 

conditions (vertical lines), consistent with the findings of L04.  Because of the 12-month sum 176 

in the definition of 𝑆!", the peak drought fractions lag the peak in El Niño by ~6 months.  177 

During some El Niño events, between 20-30% of global tropical land area falls under the 178 

moderate category, 15-20% under intermediate, and 5-10% under severe.  To put the El Niño 179 

drought increases into perspective, the time-mean percentages for the three categories are 180 

~15%, ~7.5%, and ~2%; hence, El Niño conditions are frequently associated with expanding 181 
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the aggregated tropical drought area by a factor of 2 or more relative to climatological 182 

expectation. 183 

Mechanistically, L04 explained the increase in drought area with El Niño in terms of the 184 

increased stability of the tropical troposphere to precipitating deep convection with the 185 

warming, building on the theoretical framework of Chiang & Sobel [2002].  In particular, 186 

tropospheric warming associated with anomalous diabatic (convective) heating over the 187 

ENSO source region in the Pacific spreads rapidly via planetary wave dynamics throughout 188 

the entire tropical belt.  That precipitation over land decreases in response to El Niño forcing 189 

[Lintner & Chiang 2007] is qualitatively consistent with the expansion of tropical land 190 

fraction experiencing drought.  Of course, how reduced rainfall quantitatively translates to 191 

greater drought area is not obvious and should be investigated further.  192 

It is clear, however, that not all El Niño events are associated with large increases in 193 

drought area.  Focusing on, e.g., CMAP (orange lines in Figure 1), the most pronounced 194 

increases in drought fraction coincide with the 1982/83, 1991/92, and 1997/98 El Niño 195 

events; while not shown here, the 2015/16 El Niño exhibits a similar increase.  As L04 and 196 

LB05 noted, this likely reflects event-to-event intensity differences—1982/83 and 1997/98 197 

ranked as the strongest 20th century events in terms of peak (December-January-February-198 

mean) SST anomalies, while 2015/16 has been the strongest El Niño to date in the 21st 199 

century.  However, it may also reflect more subtle differences inherent in the underlying 200 

spatial details, or flavor, of ENSO events.  In particular, the 1982/83, 1991/92, and 1997/98 201 

events are recognized as so-called Eastern Pacific events, which are characterized by 202 

maximum SST anomalies located further to the east than those for Central Pacific events  203 
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[Capotondi et al. 2015].  The degree to which different ENSO flavors may systematically 204 

impact the tropical ENSO teleconnection represents an area of ongoing research interest.  205 

The other observations depicted in Figure 1 reflect time evolution broadly similar to 206 

CMAP, although there are clearly differences among the observations across the three 207 

categories and across El Niño events.  In GPCC (dark blue line), for example, moderate 208 

drought extent is of greater magnitude for 1982/83 and 1991/92 but of lesser magnitude for 209 

1997/98 compared to CMAP. Both the UEA (gray) and UofD (red) datasets yield lower 210 

amplitude peaks compared to CMAP (or GPCC and GPCP).  The two reanalysis products, 211 

CFSR and ERA-Interim (dark green and light green, respectively), agree poorly with the 212 

observations.  Some of the differences among the observations and reanalyses can be tied to 213 

specific regional signatures, e.g., GPCC manifests much larger El Niño phase drought area 214 

increases over tropical Africa relative to CMAP (not shown).  While cursory, our comparison 215 

of observations (and reanalyses) illustrates the need for caution in establishing observational 216 

benchmarks (or "truth") for model evaluation.   217 

In the AMIP models (Figure 1, bottom row), the MEM timeseries across all three 218 

categories (black curves) largely mirror the observed time evolution.  To enable more 219 

quantitative comparisons of AMIP models to the observations, in Figure 2 we present Taylor 220 

plots [Taylor, 2001] computed relative to the mean of the five observational products.  With 221 

the exception of a few models, most of the AMIP models across all three categories are 222 

correlated with the observed timeseries at or above the 95th percent confidence interval 223 

according to a two-tailed student t-test, and many are correlated at or above the 99th 224 

percentile.  The observational products themselves are highly mutually correlated, generally 225 

at levels exceeding the model correlations shown in Figure 2.   226 
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On the other hand, the two reanalysis products are poorly correlated with the observed 227 

timeseries (not shown on Figure 2), with many of the AMIP models exceeding the reanalysis 228 

correlations. Since these reanalysis products do not assimilate rainfall, comparable 229 

performance to the models is not unexpected; for other drought measures that incorporate 230 

additional information such as temperature, which reanalysis products do assimilate, better 231 

performance relative to the models is likely.  Perhaps not surprisingly, the AMIP MEM 232 

outperforms nearly all of models individually in terms of correlation and RMSE, i.e., the 233 

model errors are likely not systematic, so they cancel in the ensemble averaging.  234 

Figure 2 also presents the results of LUS application to the 30 x 30 proximity matrix of 235 

all model to model and model to mean observation pairs for moderate drought conditions.  236 

The results displayed here correspond to the arrangement of models and observational mean 237 

according to the LUS unidimensional scaling coordinate. Comparing the distribution of 238 

models in the Taylor plot for moderate drought to the LUS shows that many of the highest 239 

RMSE models, which are also more strongly correlated with the mean observations, occur on 240 

the righthand side of the scaling axis.  (Note that while the relative positioning in LUS is 241 

meaningful, the overall ordering may be reversed.)  Although a full exploration of the 242 

implications of LUS ordering of the models and observations is beyond the scope of this 243 

study, we highlight some aspects in support of its utility as a tool for model intercomparison.  244 

For example, models from the same family are typically situated close to one another along 245 

the LUS axis, although not necessarily as immediate neighbors.  Models 7 and 13 present an 246 

interesting contrast, as they appear in the Taylor plot with comparable RMSE and correlation 247 

to the observational mean but are well separated along the LUS scaling axis, that is, these 248 
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models may be viewed as having comparable fidelity to the observational mean even though 249 

they may be considered relatively dissimilar according to LUS. 250 

Given the prominent phase relationship evident between ENSO and tropical land region 251 

drought area, we next quantify the scaling of drought area to ENSO strength via simple linear 252 

regression of the categorical drought extent timeseries against ONI, focusing here on the 253 

moderate drought category for simplicity.  For the sensitivity values discussed here, uniform 254 

sample sizes are considered by selecting different 20-year periods for the observations and 255 

each model ensemble, although qualitatively similar results are obtained with nonuniform 256 

sample sizes.  257 

For the five observational products, the mean ENSO sensitivity is 3.6±0.5% ºC-1; 258 

inclusion of the CFSR and ERA reanalyses slightly lowers the estimated sensitivity 259 

(3.3±0.5% ºC-1). The mean sensitivity of the AMIP models compares well to the observations 260 

(3.3% ºC-1), albeit with a larger standard deviation (1.7% ºC-1).  In fact, roughly 1/3 of the 261 

AMIP models exceed the highest observed sensitivity (GPCC, 4.1% ºC-1), while another 1/3 262 

fall below the lowest observed sensitivity (UofD, 2.8% ºC-1).  We will further investigate the 263 

drought area-El Niño strength relationship below, but for now, we briefly address future 264 

RCP8.5 projection of the categorical droughts over tropical land.    265 

Figure 3 depicts timeseries of the three drought categories from the RCP8.5 ensemble 266 

over the course of the 21st century.  From these timeseries, it is clear that there is little overall 267 

consensus on the projected 21st century trends in tropical land region drought fraction.  The 268 

inconsistent trends in changing tropical land drought area in the RCP8.5 ensemble may be 269 

indicative of model-to-model spread in capturing the physical pathways mediating global 270 

warming-related precipitation change.  While observed global warming is moistening the 271 
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atmosphere (Chung et al. 2014), and will likely continue to do so, it is not necessarily clear 272 

that this should increase rainfall on regional scales.  Moreover, the aggregation of 𝑆!" across 273 

different mean climate regimes and wet and dry seasons may contribute to the trend 274 

inconsistency, since distinct precipitation change mechanisms may act over different regions 275 

or seasons.  For example, the so-called wet-wetter/dry-drier paradigm suggests that wet 276 

regions (or seasons) will become wetter and dry regions (or seasons) will become drier with 277 

warming [Liu & Allen, 2013], potentially leading to changes of either sign in tropical drought 278 

fraction. 279 

What about the future drought-ENSO relationship in the RCP8.5 models?  The estimated 280 

sensitivity of (moderate) drought area to ENSO over the last two decades of the 21st century, 281 

1.0±2.1% ºC-1, is significantly smaller than is observed or simulated by the AMIP models for 282 

the recent past.  By itself, this lower sensitivity suggests that future El Niño events of a given 283 

magnitude may produce smaller increases in tropical land drought area than in current 284 

climate.  However, it is necessary to provide some further context about this apparent lower 285 

sensitivity. 286 

First, while the uncertainty in the RCP8.5 mean sensitivity is slightly higher than in the 287 

AMIP models (which, as indicated above, is larger than in the observations), approximately 288 

one quarter of the RCP8.5 models exhibit negative drought area-ENSO sensitivities, in 289 

contrast to the AMIP models for which all sensitivities are positive.   Although the latitude 290 

band over which we compute drought fraction encompasses some regions (e.g., southeastern 291 

South America) for which observed El Niño conditions are associated with increasing, rather 292 

than decreasing, rainfall—and as such, may contribute to decreasing El Niño phase drought 293 

fraction—these areas are unlikely to dominate the aggregated response. Moreover, in the 294 
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RCP8.5 simulations, the ONI itself warms in response to anthropogenic forcing:  between the 295 

2010s and 2090s, the mean ONI region SST in the RCP8.5 ensemble increases by 2.8±0.9ºC.  296 

Thus, the MEM RCP8.5 model projection exhibits ONI SSTs by the end of the 21st century 297 

corresponding to a strong present day El Niño.  Of course, the ONI region warming needs to 298 

be considered in terms of widespread warming of the rest of the planet, and thus the shifting 299 

threshold for defining El Niño. 300 

We also point out that the mean sensitivity from the historic coupled model ensemble is 301 

1.8±2.1% ºC-1, i.e., higher than the RCP 8.5 projections, but still smaller than the observed 302 

(or AMIP) sensitivities.  In other words, even under historic forcing conditions, coupled 303 

models manifest smaller drought area sensitivities to El Niño strength than the prescribed 304 

SST-forcing AMIP models.  Thus, the smaller future ENSO sensitivity appears to be 305 

explained, at least in part, by the behavior of coupled atmosphere-ocean models.  Coupled 306 

models are well-known to exhibit biases and errors in tropical Pacific mean state climate 307 

(e.g., an excessive cold tongue) that impact the fidelity of ENSO simulation (Guilyardi et al. 308 

2009), although it is not immediately clear what aspects of incorrect simulation of ENSO 309 

account for the differences between the historic and AMIP ensembles. 310 

As a final diagnostic, Figure 4a depicts histograms of moderate tropical land drought 311 

fraction bin-averaged according to ONI index after subtraction of 10 year (120 month) 312 

running means.  Removal of the running mean provides a way to account for the shifting 313 

baseline of ENSO events in the presence of a warming background.  Figure 4b illustrates the 314 

normalized occurrence frequencies of binned ONI values for the observations and model 315 

ensembles.  In general, for ONI>0, the histograms in Figure 4a indicate increasing land 316 

drought with increasing ONI, consistent with expectations.  Considered over the whole range 317 



15 
 

of ONI, the histograms exhibit some nonlinearity; for ONI>0, there is a hint of nonlinear 318 

scaling, with more rapid increase of drought area with progressively warmer ONI region 319 

SSTs. 320 

Despite the qualitative agreement of scaling behavior among the observed, AMIP, 321 

historic, and RCP8.5 projection histograms, scatter at given values of ONI is evident; in 322 

particular, for the RCP8.5 and, to a lesser extent, historic histograms, the bin averages for 323 

ONI>1 are systematically lower than for either the observations or AMIP.  In fact, the 324 

ordering is consistent with the sensitivity estimates derived from the linear regressions.  325 

Some small differences are also evident in the ONI occurrence frequencies shown in Figure 326 

4b:  the observed (or AMIP) ONI distributions are slightly more negatively skewed than for 327 

either the historic or RCP8.5 ensembles, and the small bump in the distribution at moderate 328 

to strong El Niño intensities appearing in the observations is not present in the historic or 329 

RCP8.5 distributions. 330 

Since the histogram slopes can be viewed as sensitivities over intervals of (detrended) 331 

ONI values, we can more directly compare the regression-based sensitivities to sensitivities 332 

derived by summing over the product of the histogram slope in each bin (𝑚!) with the 333 

occurrence frequency of ONI per bin (𝑓!), i.e.,  334 

  Λ = 𝑓!𝑚!
!
!!!      (2) 335 

Applying this to the data shown in Figure 4, we obtain histogram-based sensitivities of 2.4, 336 

2.3, 1.8, and 1.2% ºC-1 for the observations, AMIP, coupled historic, and coupled RCP8.5 337 

ensembles, respectively.  That the Λ are lower than the regression-based estimates for the 338 

observations and AMIP reflects the fact that this approach emphasizes more frequent values 339 
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closer to the center of the distribution, which have smaller slope.  That said, the coupled 340 

historic and RCP8.5 ensembles again exhibit smaller sensitivities than the observations. 341 

 342 

4) Summary and conclusions 343 

Motivated by the prior work linking observed tropical drought land fraction to ENSO 344 

strength, we apply a categorical drought index approach to analyze ensembles of global 345 

climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5).  Our 346 

analysis of prescribed sea surface temperature CMIP models (the AMIP ensemble) 347 

demonstrates global climate model fidelity in capturing the observed time evolution of bulk 348 

tropical drought area and its scaling relationship with ENSO. In particular, both the 349 

observations and AMIP models manifest comparable increases in the aggregated percentage 350 

of tropical land region experiencing drought conditions during El Niño events.   351 

By considering the RCP8.5 ensemble, we document an apparent decrease in future 352 

tropical land drought area sensitivity to ENSO.  As we have shown, roughly half of this 353 

decrease may be attributed to differences introduced by the coupled model framework, since 354 

the ensemble of historic coupled CMIP5 models shows lower sensitivity in comparison to 355 

observations (or AMIP models).  After accounting for the influence of simulated coupling 356 

with an interactive ocean, the residual smaller end of the 21st century drought area sensitivity 357 

to ENSO in RCP8.5 may indicate less pronounced impact of the ENSO teleconnection over 358 

tropical land regions.  Indeed, the effects of widespread anthropogenic warming could 359 

potentially counteract some of the El Niño-related drying (through, e.g., moistening of the 360 

atmosphere).   361 
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On the other hand, the aggregate view of tropical land drought area and its scaling, while 362 

facilitating model comparison, obviously neglects the regional nature of droughts.  A more 363 

variable future hydroclimate will likely enhance drought severity when and where droughts 364 

occur; hence, even if a smaller fraction of tropical land experiences drought in response to 365 

ENSO forcing, the local impacts may be exacerbated.  Furthermore, we have only considered 366 

drought area behavior through rainfall “supply”:  water demand over tropical continents will 367 

almost certainly be compounded with future El Niño warming occurring in a warming world. 368 

 369 
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Figure 1: Timeseries of the fraction of tropical land region experiencing drought by category (moderate 
[TMD], left; intermediate [TID], middle; and severe [TSD], right; see text for definitions) from 
observations/reanalyses (top row) and prescribed SST (AMIP) simulations from CMIP5 (bottom row).  For the 
observations/reanalyses, individual products are labeled with colored lines according to the legend, with the 
mean over the five observational products analyzed given by the thick black line.  For the AMIP models, the 
model ensemble mean (MEM) corresponds to the thick black line, with the ±1σ envelope of the MEM denoted 
by dark shading, and the maximum-minimum range of the models by light shading.  Vertical lines in each plot 
correspond to the peaks of El Niño conditions. 
	  



 

  
 
 
Figure 2. Quantitative comparison of the observational mean and AMIP models. The top row depicts Taylor 
plots for the categorical drought fraction timeseries of the AMIP models relative to mean of the observations 
shown in Figure 1 for the TMD (left), TID (middle), and TSD (right) categories.  For each category, the 
observational mean (OEM) is shown by the star along the x-axis, while each model is labeled by its numerical 
value indicated in the legend.  The bottom row depicts the LUS ordering of the models and the observed mean 
for the TMD category.  The models are again labeled by numerical values according to the legend. 
 
 
 
  



 
 
Figure 3. Categorical drought fraction timeseries (TMD, left; TID, middle; and TSD, right) for RCP8.5 
projections.  The model ensemble mean (MEM) corresponds to the thick black line, with the ±1σ envelope of 
the MEM denoted by dark shading, and the maximum-minimum range of the models by light shading.   
 
 
 
 
  



 
 
 

 

 
 
 
 
Figure 4.  Histograms of detrended TMD fraction for observations and models vs. detrended ONI (top) and 
counts of detrended ONI values (bottom) in observations (and reanalyses; blue) and the AMIP (orange), 
coupled historic (orange), and RCP8.5 (purple) model ensembles.  Prior to construction of these histograms, a 
moving 10-year (120-month) running mean is removed. 


