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Abstract

In 2015, the Olympic Mountains contain 255 glaciers and perennial snowfields totaling 25.34 ± 0.27 km2, half of the area in

1900, and about 0.75 ± 0.19 km3 of ice. Since 1980, glaciers shrank at a rate of -0.59 km2 yr-1 during which 35 glaciers and

16 perennial snowfields disappeared. Area changes of Blue Glacier, the largest glacier in the study region, was a good proxy

for glacier change of the entire region. A simple mass balance model of the glacier, based on monthly air temperature and

precipitation, correlates with glacier area change. The mass balance is highly sensitive to changes in air temperature rather

than precipitation, typical of maritime glaciers. In addition to increasing summer melt, warmer winter temperatures changed

the phase of precipitation from snow to rain, reducing snow accumulation. Changes in glacier mass balance are highly correlated

with the Pacific North American index, a proxy for atmospheric circulation patterns and controls air temperatures along the

Pacific Coast of North America. Regime shifts of sea surface temperatures in the North Pacific, reflected in the Pacific Decadal

Oscillation (PDO), trigger shifts in the trend of glacier mass balance. Negative (‘cool’) phases of the PDO are associated with

glacier stability or slight mass gain whereas positive (‘warm’) phases are associated with mass loss and glacier retreat. Over

the past century the overall retreat is due to warming air temperatures, almost +1oC in winter and +0.3oC in summer. The

glaciers in the Olympic Mountains are expected to largely disappear by 2070.
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Abstract 36 

 37 

In 2015, the Olympic Mountains contain 255 glaciers and perennial snowfields totaling 25.34 ± 38 

0.27 km2, half of the area in 1900, and about 0.75 ± 0.19 km3 of ice. Since 1980, glaciers shrank 39 

at a rate of -0.59 km2 yr-1 during which 35 glaciers and 16 perennial snowfields disappeared. 40 

Area changes of Blue Glacier, the largest glacier in the study region, was a good proxy for 41 

glacier change of the entire region. A simple mass balance model of the glacier, based on 42 

monthly air temperature and precipitation, correlates with glacier area change. The mass 43 

balance is highly sensitive to changes in air temperature rather than precipitation, typical of 44 

maritime glaciers. In addition to increasing summer melt, warmer winter temperatures changed 45 

the phase of precipitation from snow to rain, reducing snow accumulation. Changes in glacier 46 

mass balance are highly correlated with the Pacific North American index, a proxy for 47 

atmospheric circulation patterns and controls air temperatures along the Pacific Coast of North 48 

America. Regime shifts of sea surface temperatures in the North Pacific, reflected in the Pacific 49 

Decadal Oscillation (PDO), trigger shifts in the trend of glacier mass balance. Negative (‘cool’) 50 

phases of the PDO are associated with glacier stability or slight mass gain whereas positive 51 

(‘warm’) phases are associated with mass loss and glacier retreat. Over the past century the 52 

overall retreat is due to warming air temperatures, almost +1oC in winter and +0.3oC in 53 

summer. The glaciers in the Olympic Mountains are expected to largely disappear by 2070. 54 

 55 

 56 

1. Introduction 57 

 58 

The Olympic Mountains are the western-most alpine terrain in the Pacific Northwest US, 59 

isolated on the Olympic Peninsula of Washington State. These mountains are first to intercept 60 

moisture-laden storms originating over the Pacific Ocean with the highest peak (Mt. Olympus)  61 

56 km inland. Although the mountains only reach to 2432 m above sea level (asl), glaciers 62 

mantle the highest mountains due to the heavy winter snowfall and cool summers. 63 
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Precipitation varies from 3000 mm yr-1 on the west side of the range to only 500 mm yr-1 on the 64 

east (Rasmussen et al., 2001). 65 

 66 

Figure 1. Location of the Olympic Peninsula and glaciers. The dark black line is the boundary of 67 

Olympic National Park. The gray outlined box surrounds Mt. Olympus.  68 

 69 

Glaciers were first photographed in 1890 during a US Army Exploring Expedition (Spicer, 1989; 70 

Wood, 1976). One glacier, the Blue Glacier, became the focus of interest because it is the 71 

largest glacier in the region. During the International Geophysical Year in 1957 it was mapped 72 

and identified as one of the glaciers in western North America suitable for monitoring (AGS, 73 

1960). In that same year a mass balance monitoring program was established and has 74 

continued intermittently (Armstrong, 1989; Conway et al., 1999; LaChapelle, 1959).  75 

Spicer (1986) compiled the first detailed inventory of the region. He mapped the glaciers by 76 

modifying glacier outlines on US Geological Survey 1:36,360-scale topographic maps according 77 

to their extent on vertical aerial photographs (1:24,000 to 1:60,000) acquired in 1976, 1979, 78 

1981, and 1982, and supported by field observations from 1980 - 1983. Ice masses were 79 

classified as glaciers if they persisted for at least two years; displayed evidence of glacier flow 80 



4 
 

such as crevasses, medial moraines, meltwater with glacier flour; or showed glacial activity such 81 

as terminal or lateral moraines.  82 

 83 

Fountain et al. (2017) developed a second inventory of glaciers and perennial snowfields in the 84 

Olympic Mountains as part of a larger inventory that included the entire western US exclusive 85 

of Alaska. The outlines of this newer inventory were abstracted from US Geological Survey 86 

1:24,000-scale topographic maps drawn from aerial photography flown in 1943, 1968, 1976, 87 

1979, 1985, and 1987. Most glaciers (93%) were photographed during 1985-1987 and only a 88 

few in 1943. This inventory identified more glaciers (391) than Spicer (265) largely due to 89 

Spicer’s 0.1 km2 area threshold for inclusion, compared to the 0.01 km2 adopted by Fountain et 90 

al. (2017). When the 0.1 km2 threshold was applied to Fountain et al. (2017) the distributions of 91 

both inventories largely accord. Riedel et al. (2015) compiled a third inventory of glaciers based 92 

on aerial photography from 2009. One of the authors (Fountain) was involved with the 93 

compilation of this inventory the details of which are summarized in Methods below. 94 

 95 

Our objectives are to provide a comprehensive examination of the glaciers in the Olympic 96 

Mountains, how they have changed in area and volume since the early 1980s to 2015, and how 97 

they responded to climatic variations since 1900. This report differs from Riedel et al. (2015) in 98 

several ways. First, we provide two new inventories and examine in detail how the populations 99 

change over time. We demonstrate that area changes of Blue Glacier are representative of the 100 

population as a whole and examine the precipitation and air temperature influences on Blue 101 

Glacier in the context of larger climate indices that represent hemispheric scale oceanic and 102 

atmospheric processes. Finally, we predict the future of glacier cover in the Olympics over the 103 

next century. 104 

 105 

2. Methods 106 

To assess the changing area and distribution of glaciers in the Olympic Mountains we relied on 107 

several previously published glacier inventories and created two new inventories. The first 108 

glacier inventory from Spicer (1986) provides the earliest detailed inventory, however, results 109 
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are in tabular form with approximate latitude and longitude locations. Newer inventories were 110 

compiled in a geographic information system as digital outlines of glaciers and perennial 111 

snowfields. Three new inventories were compiled for the Olympic Mountains using vertical 112 

aerial photographs flown in September of 1990, 2009, and 2015. The 1990 images are black and 113 

white digital orthoquadrangles (DOQs) with a ground resolution of 1 m. They were downloaded 114 

from the University of Washington Geomorphological Research Group webpage (UW, 2019). 115 

The 2009 and 2015 imagery were obtained from the U.S. Department of Agriculture (USDA) 116 

National Agricultural Imagery Program (NAIP) website (USDA, 2019) as 1 m color georectified 117 

orthophotographs. The 2009 inventory was reported in Riedel et al (2015). The 2015 imagery 118 

included all but 16 glaciers, which were outlined using WorldView-2 satellite imagery, 0.5 m 119 

spatial resolution obtained from Digital Globe and acquired in August and September (Gorelick 120 

et al., 2017). The comprehensive inventory of the continental US (Fountain et al., 2007, 2017) 121 

was not used because the original USGS imagery of the Olympic Mountains included extensive 122 

seasonal snow masking many of the glacier outlines. Also, the imagery dates are within a couple 123 

of years of Spicer’s inventory rendering the inventory unnecessary. 124 

 125 

The new inventories include both glaciers and perennial snowfields (G&PS) because they are 126 

often hard to distinguish when small and perennial snowfields can be locally important for late 127 

summer runoff (Clow & Sueker, 2000; Elder et al., 1991). Glaciers are identified by the presence 128 

of exposed ice and crevasses, indicating a perennial nature and movement, respectively. 129 

Snowfields, on the other hand, rarely provide visual clues regarding their perennial nature 130 

because their firn core is usually snow-covered in the imagery. We only track their persistent 131 

presence in the imagery. Given the episodic nature of suitable imagery over four decades these 132 

features cannot be tracked closely. Therefore, we adopt rules from (DeVisser & Fountain, 2015) 133 

to distinguish seasonal from perennial features. In short, if a feature is present in the first 134 

inventory (Spicer for glaciers, 1990 for snowfields) and not found in subsequent inventories it is 135 

considered seasonal and eliminated. If the feature is found in the first two inventories it is 136 

considered perennial, and if it is absent from any subsequent inventory it is considered no 137 

longer perennial. Outlines were digitized in ArcGIS (ArcMap, ESRI, Inc) at a scale of 1:2,000 with 138 
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vertices spaced at a 5 m interval. This approach balanced accuracy, productivity, and image 139 

resolution. The minimum area threshold was 0.01 km2, consistent with Fountain et al. (2017) 140 

for the Western US, and global guidelines for glacier inventories (Paul et al., 2010). To insure 141 

internal consistency, the three new inventories were intercompared and any abrupt change in 142 

area initiated a reexamination of that G&PS outline. 143 

 144 

Area uncertainty results from three sources, positional, digitizing, and interpretation (DeBEER & 145 

Sharp, 2009; DeVisser & Fountain, 2015). Positional uncertainty (Up) is the error in the location 146 

of the perimeter caused by alignment of the base image during the orthorectification process. 147 

Digitizing uncertainty (Ud) results from inaccuracies in following the glacial perimeter during 148 

manual digitizing. Finally, interpretation uncertainty (Ui) is the location uncertainty of the 149 

glacier margin due to masking by seasonal snow cover, rock debris, or shadows. The total 150 

uncertainty (Ut) for each feature is the square root of the sum of the square of each 151 

contributing uncertainties (Baird, 1962). 152 

 153 

 𝑈𝑈𝑡𝑡 = �𝑈𝑈𝑝𝑝2 + 𝑈𝑈𝑑𝑑2 + 𝑈𝑈𝑖𝑖2 ( 1 ) 154 

 155 

To evaluate (1), we ignored positional uncertainty (Up) because we are concerned with area not 156 

exact location. Furthermore, the digitized points are highly correlated such that they are not 157 

independently determined. To evaluate the digitization uncertainty (Ud), we follow (Hoffman et 158 

al., 2007) who adapted the method of (Ghilani, 2000). This uncertainty is a product of the 159 

length of the side of a square (S) that has the same area as the feature polygon in question 160 

multiplied by the linear uncertainty (σd), 161 

 162 

 𝑈𝑈𝑑𝑑 = 𝑆𝑆𝜎𝜎𝑑𝑑√2 ( 2 ) 163 

 164 

To estimate the linear uncertainty (σd). Ten features of various sizes were digitized at the 165 

normal 1:2000 scale and again at 1:500. The linear difference was measured perpendicularly 166 

between outlines and the standard deviation calculated. For interpretation uncertainty we tried 167 
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several approaches including, visual estimates (e.g. 5% of the area is in shadow, uncertainty is 168 

±2.5%), measured glacier area with and without the questionable subregion using one half of 169 

the difference as the uncertainty, or a combination of both approaches where measurements 170 

were used to calibrate visual estimates. In most cases we found little difference between 171 

methods. 172 

 173 

The uncertainty for snowfields was estimated differently. Snowfield area commonly changed 174 

dramatically (~ 50%) between imagery surveys, due to residual seasonal snow. Because its firn 175 

core was rarely observed uncertainty is unknown. To document the presence of perennial 176 

snowfields but eliminate them from analysis, a large uncertainty was estimated using a buffer 177 

around the outline such that the observed changes in area were smaller than the uncertainty.  178 

 179 

To calculate the topographic characteristics of the initial, (Spicer, 1986) inventory, we used the 180 

original National Elevation Dataset based on the 1:24,000 paper maps (Gesch et al., 2002). 181 

Most of the mapping (94%) in the Olympics was based on aerial photography from 1980-1987 182 

(Fountain et al., 2017). As will be shown later, during this period little glacier recession occurred 183 

and we consider the topography to be representative of the 1980 inventory. 184 

 185 

Volume change was estimated by differencing surface elevations of the glaciers collected at 186 

different times. Two digital elevation models (DEMs) were used. The earlier DEM is the National 187 

Elevation Dataset and the more recent DEM is from aerial lidar collected in summer 2015 188 

(Painter et al., 2016). Uncertainty was estimated by the root-mean square error of the elevation 189 

differences calculated for the snow-free bedrock adjacent to the glaciers. 190 

 191 

The local climate of precipitation and maximum/minimum air temperatures was defined using 192 

Parameter-elevation Regression on Independent Slopes (PRISM) data (Daly et al., 2007). 193 

Monthly values were downloaded at a scale of 4 km within a box 10.7 km by 8.5 km, centered 194 

over Mt. Olympus (47.7986o, -123.693o) (OSU, 2017). To examine the influence of broader 195 

climate patterns climate indices were downloaded from a number of sources. For the Arctic 196 
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Oscillation (AO, Barnston and Livezey, 1987; Thompson and Wallace, 1998); Nino 3.4 (Bjerknes, 197 

1966; Rayner et al., 2003; Trenberth, 1997); North Atlantic Oscillation (NAO, Jones et al., 1997); 198 

North Pacific index (Trenberth & Hurrell, 1994);  Pacific-North American (PNA, Wallace & 199 

Gutzler, 1981), and the Southern Oscillation Index (Cayan, 1996; Chen, 1982; Ropelewski & 200 

Jones, 1987), the data were downloaded from the US National Oceanic and Atmospheric 201 

Administration, Earth System Research Laboratory, Physical Sciences Division (NOAA, 2018). 202 

The data for the Pacific Decadal Oscillation (PDO, Mantua & Hare, 2002; Newman et al., 2016), 203 

were downloaded from the University of Washington (UW, 2018). The period of correlation was 204 

1900 – 2014 for all variables except Arctic Oscillation, which was 1950-2014 due to data 205 

availability. The correlations reported are for the longer period of record. 206 

 207 

3. Results 208 

 209 

The Spicer (1986) inventory identified 266 glaciers ≥ 0.01 km2, most (94%) of which were 210 

identified from 1979-1982. During this period the glaciers changed little because it coincides 211 

with the mid-century cool period when glaciers were either in equilibrium or advancing slightly 212 

(Conway et al., 1999; Hodge et al., 1998; Thompson et al., 2010). For simplicity, the inventory is 213 

dated to 1980 and referred to as the ‘1980 inventory’. Our reanalysis revised the 1980 214 

inventory to 261 glaciers because one glacier, White Glacier, was counted as two glaciers due to 215 

its split terminus into two lobes, and four other features were considered seasonal because 216 

they were missing from the following 1990 inventory. Total glacier area was 45.89 ± 0.51 km2, 217 

of which almost half, 20.4 km2, are located on the Olympus Massif. The largest glacier was Blue 218 

Glacier, 6.02 ± 0.30 km2 and the smallest was an unnamed ice mass, 0.01 km2. Average glacier 219 

area was 0.18 km2 with a median of 0.05 km2. The area of many glaciers cannot be quantified 220 

because Spicer’s inventory often grouped small glaciers within the same watershed under a 221 

single identification number and summing their area.  Mean glacier elevations range from 1319 222 

m to 2399 m amsl with a mean elevation of 1726 m. The mean elevation of almost all glaciers 223 

(98%) was < 2000 m and 45% have a maximum elevation < 2000 m (Figure 2). Glaciers facing 224 

north (330o to 30o) account for 55.6% of the population and 52% (24.0 km2) of the total area.  225 
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 226 

The glaciers were inventoried again using imagery from 1990, 2009, and 2015. These were the 227 

years with suitable late-summer imagery. The quality was good to excellent with moderate 228 

amounts of snow cover in some places. The summer of 2015 was a particularly low snow year 229 

and the alpine landscape was largely snow-free. The root mean square error of uncertainty for 230 

all outlines in each inventory was 1% of the total area. Forty-seven more G&PS were identified 231 

in the new inventories compared to the original 1980 glacier inventory. GIS methods and 232 

comparison between inventories more conclusively defined perennial features (Table 1).  233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 

 241 

 242 

 243 

 244 

 245 

 246 

 247 

 248 

Figure 2. Topographic characteristics of the 1980 glacier inventory. Clockwise from upper left: 249 

Frequency distributions of glacier area, mean elevation, aspect, and mean slope. For bar graphs, 250 

the value of the bin is the maximum value for bin. For area, note the logarithmic values on the x-251 

axis. 252 

 253 
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Tracking the glaciers originally identified by the 1980 inventory showed that by 2015, total 254 

glacier area decreased by -45% (-0.59 km2 yr-1), mean glacier area decreased from 0.18 km2 to 255 

0.10 km2, and 35 glaciers disappeared (Table 1 Partial Inventory). The distribution of glacier 256 

area in 1980 approximates a normal distribution, but becomes increasingly skewed favoring 257 

smaller glaciers with time resulting in a highly skewed area-population distribution by 2015 258 

(Figure 3). Given the close correspondence of fractional area change between the complete and 259 

partial inventories, we estimate that about 45% of the ice-covered area was lost between 1980 260 

and 2015. A total of 51 G&PS in the complete inventory disappeared and 134 decreased below 261 

0.01 km2 (but > 0) , the minimum threshold for glacier inclusion (Fountain et al., 2017; Paul et 262 

al., 2010). These very small ice masses remain in the inventory given their perennial nature and 263 

their known history.  264 

 265 

The time periods between inventories vary from 6 to 19 years, during which 19% - 37% of area 266 

changes were less than the uncertainty. During every time period total glacier area decreased, 267 

but with one to eight glaciers increased area greater than uncertainty. No glacier increased area 268 

for two or more consecutive time periods. The rate of total area change slowed from -0.66 km2 269 

yr-1 (1980-1990) to about -0.48 km2 yr-1 (1990-2009) before accelerating again to -0.82 km2 yr-1 270 

(2009-2015). Of the G&PS that disappeared, most occurred in the last period, 1990-2009. 271 

 272 

Table 1. Statistics for inventories of all glaciers and perennial snowfields found in the Olympic Mountains. 273 

The Complete Inventory summaries all glaciers found in each inventory and the Partial Inventory are 274 

those that are common to the 1980 inventory.  For area and uncertainty (km2), Max is maximum, Min is 275 

minimum, Med, is median area. Area change is the change since last inventory and can only be 276 

calculated for inventories that include the same populations; R Frc Chg is the relative fractional area 277 

change since previous inventory and is the change (and uncertainty) divided by the area of the previous 278 

inventory; T Frc Chg Is the total fractional change since the 1980 inventory; Rate Chg is the rate of area 279 

change in km2 yr-1 based on the area change and years between inventories; Total Num is the number of 280 

glaciers and perennial snowfields in the inventory; Disappeared is the number that have vanished since 281 

last inventory. Uncertainty is included in smaller font, and is the root mean square error except for the 282 
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mean, which is the standard deviation. The 2009 inventory was originally published in Riedel et al ( 283 

2015).  284 
 

          
1980 

 
1990 

 
2009  2015  

Complete Inventory       

   Max Area 6.02 ± 0.30      5.74 ± 0.30    5.35 ± 0.08 5.14 ± 0.09 

   Min Area 0.01 ± 0.00) 0.001 ± 0.001  0.000 ± 0.000 0.000 ± 0.000 

Mean Area 0.18 ± 0.59     0.13 ± 0.51  0.10 ± 0.46 0.08 ± 0.43 

Med. Area 0.05 
 

    0.02 
 

 0.01 
 

0.01 
 

Total Area 45.89 ± 0.51  39.66 ± 0.53  30.35 ± 0.22 25.34 ± 0.27 

Area Chg 
    

  -9.31 ± 0.58 -5.01 ± 0.35 

R. Frc. Chg 
    

  -0.23 ± 0.01 -0.17 ± 0.01 

T. Frc. Chg 
    

  -0.23 ± 0.01    -0.36 ± 0.02 

Rate Chg     -0.49 ± 0.03 -0.84 ± 0.06 

Total Num 261 
 

308 
 

306 
 

255 
 

Disappeared 
 

        0    
 

2 
 

  51 
 

Partial Inventory       

   Max Area 6.02 ± 0.30 5.74 ± 0.30 5.35 ± 0.08 5.14 ± 0.09 

   Min Area 0.01 ± 0.00 0.001 ± 0.001 0.000 ± 0.000 0.000 ± 0.000 

Mean Area 0.18 ± 0.59 0.15 ± 0.55 0.12 ± 0.49 0.10 ± 0.47 

Med. Area 0.05 
 

0.03 
 

0.02 
 

0.01 
 

Tot. Area 45.89 ± 0.51 39.31 ± 0.53 30.16 ± 0.22 25.25 ± 0.27 

Area Chg   -6.58 ± 0.74 -9.15 ± 0.58 -4.90 ± 0.35 

R. Frc. Chg 
  

-0.14 ± 0.02 -0.23 ± 0.01 -0.16 ± 0.01 

T. Frc. Chg 
  

-0.14 ± 0.02 -0.34 ± 0.01 -0.45 ± 0.02 

Rate Chg    -0.66      -0.48 ± 0.03    -0.82   ± 0.02  

 Total Num      261  261 
 

259   226 
  

Disappeared 
 

    0 
 

  2 
 

    35 
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 285 

Figure 3. The number of glaciers as a function of their area for each of the inventories. The 286 

horizontal axis intervals are logarithmic increasing by a power of 0.5; tick labels on the x-axis 287 

represents maximum bin value. The G&PS in the zero column are those that disappeared since 288 

the previous inventory.  289 

 290 

4. Analysis  291 

 292 

4.1 Effect of Topography 293 



13 
 

To examine the influence of topographic factors, such as elevation and aspect, on glacier 294 

area change, the change was first normalized by dividing by initial area yielding a fractional 295 

area change. Results show that smaller glaciers shrink proportionally more than larger 296 

glaciers but the variability of shrinkage is also much larger. Much of the variability in very 297 

small glaciers is probably due to local topographic effects, such as topographic shadowing 298 

by valley walls or local snow accumulation via avalanching and wind drift (Basagic & 299 

Fountain, 2011; DeBEER & Sharp, 2009; Kuhn, 1995). In contrast, local boundary conditions 300 

affect larger glaciers much less. In order to minimize boundary effects, the glaciers <0.1 km2 301 

were eliminated from the topographic analysis.  302 

 303 

Figure 4. Fractional  area change of the glaciers and perennial snowfields in the Olympic 304 

Mountains as a function of initial area from 1980 to 2015 using the only the glaciers identified in 305 

1980.    306 

 307 

No correlation of fractional area change was found with area, aspect, slope, distance from the 308 

Pacific Ocean, winter precipitation or average seasonal temperature (summer, winter). The only 309 

correlative factor was elevation (Figure 5). Area changes were further examined by sorting the 310 

entire data set, including the small G&PS, from greatest to least, then subdivided into four 311 

groups. The topographic and climatic characteristics of the group with the largest change ( ≥ -312 
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92%) were compared to those of the smallest change (≤ -51%). Each group consisted of about 313 

55 glaciers. For glaciers with the largest relative change, almost half (21) disappeared, had a 314 

lower maximum elevation (∆ -250 m). Although no significant differences were observed for the 315 

other variables, the glaciers with the largest fractional change tended to be smaller (mean of 316 

0.06 km2 versus 0.56 km2), and warmer ( ∆ +0.7oC) air temperature in summer and winter, 317 

consistent with a lower elevation (Table A1).  318 

 319 

To examine the effect of the distribution of glacier area with elevation the hypsometry index 320 

was compared with fractional area change. The index is a ratio of the elevation differences 321 

between the maximum and median and the median and minimum (Jiskoot et al., 2009). For 322 

example, if the elevation difference above the median is smaller than below the median it 323 

implies a shallow broad accumulation zone compared to a longer, narrower ablation zone. We 324 

expected that glaciers with a greater elevation extent above the median than below exhibit less 325 

area change over time. No pattern was found; accounting for aspect, elevation, or local climate 326 

provided no improvement.  327 

 328 

 329 

 330 

 331 
Figure 5. The factional area change (1980 to 2015) of glaciers and perennial 332 

snowfields ( >0.1km2) with elevation.  333 

 334 
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4.2 Volume Change 335 

  336 

The SnowEx lidar surveyed 216 of 261 glaciers (83%) identified by 1980 inventory. In terms of 337 

that inventory those 216 glaciers account for 43.0 km2 (94%) of the total 45.9 km2 area. The 338 

estimated volume change between 1980 and 2015 is -0.694 ± 0.164 km3 with a specific average 339 

volume change of -16.1  ± 3.8 m. If this average is applied to the 45 glaciers not included in the 340 

lidar survey, the total estimated volume change is -0.741 ± 0.164  km3. No significant spatial 341 

trends were observed with mean glacier elevation, slope, latitude, or longitude. If we assume 342 

that all mass loss from storage occurs during the months of August and September, the period 343 

in which seasonal snow is at a minimum and maximum ice is exposed, then the contribution to 344 

stream runoff is about 347,000 ± 77,000 m-3 dy-1.  345 

 346 

We estimated the remaining ice volume in 2015 using an area – volume scaling relation (Bahr et 347 

al., 2015). For glacier area, S, the volume, V, can be estimated as, 348 

 349 

                                                V = cSγ  ,                                                      (1) 350 

 351 

with c and γ as undefined parameters. We used parameter  values from the literature including 352 

those based on theoretical grounds (Bahr et al., 2015) and on empirical results (Chen & 353 

Ohmura, 1990; Farinotti et al., 2009). Five estimates of volume were generated. The high and 354 

low volume estimates were eliminated and the middle three were averaged, those included 355 

Chen and Ohmura’s (1990) categories of ‘for the Cascades and other areas’, ‘for Cascades, small 356 

glaciers’; and Farinotti et al., (2009), yielding,  0.75 ± 0.19 km3. The uncertainty is the standard 357 

deviation of the estimates. The Cascades refers to the mountain range ~100 km northeast of 358 

the Olympics and it has a similar climate regime. From this estimate volume and the volume 359 

change, the estimated total volume of all glaciers in 1980 is 1.49 ± 0.25 km3. 360 

 361 

4.3 Mt. Olympus 362 

 363 
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To investigate glacier change more closely we focus on the glaciers mantling Mt. Olympus, the 364 

highest peak (2,432 m) in the Olympic Mountains, representing 61% of the total glacier area in 365 

the region including the four largest glaciers and 6 of the 19 named glaciers. From 1980 to 366 

2015, the glaciers lost about 0.42 km3 (61% of total, Figure 6). The specific volume change for 367 

all glaciers was -20 ± 4 m, ranging from -30 ± 5 m (Humes Glacier) to -6 ± 4 m for one of the 368 

smaller unnamed glaciers. For Blue Glacier, the largest glacier, the specific volume change was -369 

22 ± 4m. 370 

 371 

The distribution of glacier area shifted to higher elevations, although the elevation of maximum 372 

area, 1700-1750 m, had not changed. (Figure 6). The fractional area change with elevation  373 

generally followed the fractional volume change with maximum change (decrease) at about 374 

1500m. For elevations above about 1950 m, glacier area remained constant but thinned. 375 

Specific volume, above 1250 m shows a rapid decrease with elevation until about 1900 m 376 

where it reaches a relatively constant value of about -9 m. Below 1250 m glacier area is much 377 

smaller and some of it is debris-covered.  378 

 379 
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 380 

  381 

 382 
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Figure 6. Area and volume changes of the glaciers n Mount Olympus (1980-2015) as a function 383 

of elevation, in 50 m intervals. The top image shows the elevation change of all the glaciers. The 384 

numbers identify the unnamed glaciers, the 55XX is the record number of Fountain et al. (2017) 385 

and the 231XXX number is the hydroID of Spicer (1986). The bottom graph is the glacier change 386 

averaged over 50 m elevation bands. Frac is the fraction of total and Vol is volume. Specific 387 

volume change, shaded, is the volume change per unit area with an uncertainty of ± 4m.  388 

 389 

To test whether the changing glacier area on Mt. Olympus is representative of the other 390 

glaciers in the region the two were compared using the compiled inventories (Figure 7). Results 391 

show the two are highly correlated. The linear correlation suggests that should all the other 392 

glaciers disappear the area of those on Mt. Olympus shrinks to about 12.5 km2. 393 

 394 

  395 

Figure 7. Area of all the glaciers in the region, except those on Mt. Olympus, plotted with 396 

respect to the area of the glaciers on Mt. Olympus (grey dots), and the area of all glaciers 397 

including those on Mt. Olympus, except Blue Glacier, plotted against the area of Blue Glacier 398 

alone (black squares). Linear regressions are shown. Ao is the area sum of all the other glaciers 399 

in the Olympic Mountains, not including those of the independent variable. Am is the area of all 400 

glaciers on Mt. Olympus and Ab, the area of Blue Glacier.  401 
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 402 

The most extensively studied glacier in the Olympic Mountains is Blue Glacier, dating back to 403 

the late 1950s (Conway et al., 1999; LaChapelle, 1959; Rasmussen et al., 2000; Spicer, 1989). 404 

Because of this activity and interest, the glacier area has been well-documented over time 405 

(Figure 8). The pattern shows equilibrium for the first two decades of the 20th Century, followed 406 

by rapid retreat that ended in the middle 1940s. The glacier was stable/advancing slightly over 407 

the next 40 years, peaking in the early 1980’s. Note the stability in the late 1970’s to early 408 

1980’s, the period of time when the Spicer and the USGS were making glacier maps of the 409 

region. By the 1990’s the glaciers were in rapid retreat continuing through to 2015. Based on 410 

the correlation shown in Figure 7, the changes in the glacier area for the Olympic Mountains 411 

should vary in a similar manner. The estimated total area in 1900 is 55.3 km2, more than twice 412 

the 2015 area of 25.3 km2. 413 

 414 

Figure 8. Changes of Blue Glacier and mass balance drivers. a. Area change of Blue Glacier since 415 

1900 (circles) and estimated cumulative (cumm) monthly mass balance (grey line). Area data 416 

prior to 1990 from Spicer (1989), see Table A2. The vertical dashed lines are climate regime 417 
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shifts of the North Pacific 1923, 1946, 1977, and 1998 (see text). b. Contribution to the mass 418 

balance (MB) departures (5-year running mean) from winter accumulation (black), winter air 419 

temperature (white), and summer air temperature (cross hatched) departures  420 

 421 

4.4 Climate Change and Glacier Mass Balance 422 

 423 

The climate of the Olympic Mountains is maritime, with relatively warm winters with abundant 424 

precipitation followed by cool dry summers (Figure 9a). The accumulation and ablation seasons 425 

were defined using air temperature. Winter was defined for those months when the minimum 426 

and mean (average of the maximum and minimum) temperatures <0oC; and included 427 

December through March. Monthly maximum temperatures were commonly > 0oC. Summer 428 

was defined for those months in which the minimum temperatures were ≥0oC; and included 429 

May through October. The transition months are November and April. The net balance year 430 

nominally starts in November and ends in October.  431 

 432 

To determine how temperature and precipitation has changed over the past century, the 433 

monthly averages of the first 50 years of record were subtracted from the monthly averages of 434 

the last 20 years (Figure 9b). For all months, the average air temperature warmed by +0.5oC and 435 

precipitation increased by +171 mm (+8%). Summer air temperatures warmed by +0.4oC and 436 

precipitation slightly decreased -8 mm (-1%); for winter, temperatures warmed by +0.7oC and 437 

precipitation increased by +47 mm (+2%). For specific months, monthly air temperatures 438 

warmed the most in midwinter (January, +1.8oC) and in mid-summer (August, +0.9oC). 439 

Precipitation changed little except for greater precipitation in October and November, months 440 

when the average air temperature is above freezing.  441 

 442 
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Figure 9. Climate of the Mt. Olympus region from averaged monthly PRISM data (Daly et al., 443 

2007), (a) over period 1900 – 2017. The bars represent precipitation (precip); the gray dashed 444 

and black solid curves are minimum, mean, and maximum air temperature (temp). The mean is 445 

an average of the maximum and minimum values. The fine horizontal dashed line represents 446 

0oC. The second panel (b) are the departures in mean temperature and monthly precipitation 447 

between the average of the first 50 years of record and the last 20 years.  448 

 449 

The time series of air temperature and precipitation show a century-scale warming trend for 450 

both summer and winter temperatures but no trend in precipitation (Figure 10). At decadal 451 

scales both temperature and precipitation vary. Warming winter temperature is particularly 452 

important because it is already near 0oC and further warming changes the phase of 453 

precipitation from snow to rain, reducing snowfall (mass gain) to the glaciers. 454 

a. 
 
 
 
 
 
 
 
 
 
 
 
b. 
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 455 
Figure 10. Difference from the mean (1900-2017) seasonal air temperature and precipitation, 456 

with a 5-year running mean applied, Mt Olympus, WA. The light solid grey is winter 457 

precipitation, the solid black line is winter temperature the dotted line is summer temperature.  458 

 459 

To examine how glaciers in the Olympic Mountains respond to climatic variations we use Blue 460 

Glacier as a proxy because its area has been well-documented over the past century, its change 461 

correlates well with regional area changes, and mass balance has been measured at the glacier 462 

(Armstrong, 1989; Conway et al., 1999; LaChapelle, 1965). We use a simple model of glacier 463 

mass balance to provide a more direct link to climate, rather than observed changes in area 464 

that also responds to dynamic readjustment (Cuffey & Paterson, 2010). The model is simple and 465 

based on monthly PRISM values of precipitation and air temperature over the entire glacier 466 

(Daly et al., 2007; McCabe & Dettinger, 2002; McCabe & Fountain, 2013). Three adjustable 467 

parameters are required, two of which define the phase of precipitation for snow 468 

accumulation, the threshold temperatures for snowfall (≤ -2oC), and for rain (≥ +2oC). For 469 

temperatures between the snow/rain thresholds the ratio linearly changes from 1 to 0. 470 

Coincidently, Rasmussen et al (2000) found empirically that snowfall occurred in the 471 

accumulation zone of the glacier at air temperatures ≤ -2oC. One adjustable parameter is 472 

required to estimate ablation and defines the rate of melt as a function of air temperature. The 473 

monthly mass balance is then the sum of snow accumulation and ablation. We recognize the 474 
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limitations of this simple model, but use it here to understand the variations in mass balance, 475 

caused by changes in air temperature and precipitation, rather than for predictive values of 476 

mass balance.  477 

 478 

Variations in the estimated mass balance closely matches the variations in glacier area over 479 

time (Figure 8). The cumulative mass balance over the period 1987-2015 is -17 m w.e. and 480 

compares favorably with the specific volume change -20 m w.e.± 4 m (-22 m ± 4 m elevation 481 

change) over the same period. Comparison with the estimated cumulative mass balance of Blue 482 

Glacier (1956-1997) by Conway et al. (1999), is good, although their mass balance increase in 483 

the 1980s was not apparent in our model. Comparisons to measured mass balances of five 484 

glaciers in the Cascade Range were also favorable in terms of synchronous change and 485 

magnitude (Riedel & Larrabee, 2016). Of the five glaciers the cumulative mass balance most 486 

closely resembled Sandalee Glacier.  487 

 488 

Annual mass balance is best correlated with accumulation (R2 = 0.98) and less so with the 489 

ablation (-0.79). Accumulation is correlated equally with winter air temperature (-0.61) and 490 

winter precipitation (+0.61). Ablation, as expected, is highly and inversely correlated with 491 

annual, winter, and summer temperatures (-0.98, -0.74, -0.84, respectively). Taken together, 492 

this is suggestive of the important role of air temperature in determining mass balance with 493 

precipitation playing a secondary role. To investigate the role of air temperature further, all 494 

variables were rescaled as mean standardized departures and a multiple linear regression was 495 

calculated to predict the model mass balance from annual air temperature and winter 496 

precipitation. The regression yielded a correlation coefficient of (R2 = 0.85) and the correlation 497 

between the two independent variables was insignificant (R2 = 0.001, p = 0.69). The relative 498 

importance of each independent variable on the mass balance was evaluated by multiplying the 499 

time series of each independent variable by its regression coefficient (McCabe & Wolock, 500 

2009). Annual air temperature accounted for 83% of the variability in the root mean square 501 

value of mass balance whereas winter precipitation accounted for 53%. The regression was run 502 

again but with three independent variables, winter precipitation, summer air temperature and 503 
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winter air temperature, to define which seasonal air temperature was most influential. The 504 

regression yielded a slightly lower correlation (R2= 0.82); and winter precipitation, summer, 505 

winter air temperatures accounted for 56%, 28%, and 68% of mass balance variability, 506 

respectively. Of the seasonal air temperatures, winter is more important. The time series of the 507 

contribution to the total mass balance departure was smoothed with a 5-year running mean 508 

and show that winter precipitation and winter air temperature vary most (Figure 8b). The mid-509 

century cool period ~1946-1977 shows two episodes of cool winter air temperatures (positive 510 

departures of mass balance) simultaneously with two episodes of positive precipitation 511 

departures. The two episodes are separated by a warm winter period (negative mass balance 512 

departures) and average winter precipitation. 513 

 514 

To examine the influence of broader climate patterns, monthly values of mass balance, air 515 

temperature, and precipitation were smoothed with a 12-month central running mean and 516 

correlated with the climate indices (Table A3). The highest correlations were found between 517 

the PDO, PNA, and NP with monthly air temperatures (R2 = +0.53, +0.64, -0.58 respectively) and 518 

with mass balance (-0.52, -0.59, -0.56 respectively). Note that PDO, PNA, and NP are highly 519 

inter-correlated (e.g. PDO-PNA,+0.66; PNA-NP, -0.71) as are air temperature and mass balance 520 

(-0.74). Lesser correlations were found with Nino 3.4 and SOI for temperature (+0.52, -0.47), 521 

and for mass balance (-0.43, +0.40). Correlations between precipitation and the indices did not 522 

exceed ±0.19 and the correlation between air temperature and precipitation was also low, -523 

0.12. Therefore, at annual time scales, PDO, PNA, and NP are the most influential atmospheric 524 

patterns on air temperature and mass balance.  525 

 526 

The shifts in the mass balance of Blue Glacier coincide with regime shifts of sea surface 527 

temperatures in the North Pacific Ocean, which are typically related to the Pacific Decadal 528 

Oscillation PDO. Shifts occur in 1923, 1946, 1977, and 1998 (Figure 8) (Bond, 2003; Gedalof & 529 

Smith, 2001; Jo et al., 2015; Litzow & Mueter, 2014; Mantua & Hare, 2002; Minobe, 2002; 530 

Overland et al., 2008), and 1998 (Hare & Mantua, 2000; Jo et al., 2015; Minobe, 2002). No clear 531 

response is observed with the 1989 shift suggested by (Hare & Mantua, 2000). The periods of 532 
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glacier stability, 1890-1924, and 1947-1976 are associated with “cool” PDO regimes, whereas 533 

periods of glacier recession, 1925-1946, and 1977-1998, are associated with “warm” PDO 534 

regimes (Mantua and Hare, 2002). These data show that the mass balance of Blue Glacier 535 

specifically, and by implication those in the Olympic Mountains, are very sensitive to the sea 536 

temperatures conditions of the North Pacific.  537 

 538 

5. The Glacier Future to 2100 539 

 540 

To predict the future extent of the glaciers in the Olympic Mountains we applied the Regional 541 

Glaciation Model (RGM) developed by Clarke et al (2015) in modified form. The RGM is a 542 

distributed 2-dimensional, plan-view model. It grows glaciers from a bare-earth landscape at 543 

time steps of one year. The bare-earth landscape at 25m-scale digital elevation model is 544 

estimated by removing the glaciers identified by the Randolph Glacier Inventory using a surface 545 

inversion (Huss & Farinotti, 2012; Pfeffer et al., 2014). The final bare-earth landscape was 546 

rescaled to 100m. To drive the RGM model, monthly meteorological fields from a global climate 547 

model (GCM are downscaled. The Community Climate System Model 4 (CCSM4, Gent et al., 548 

2011) generated these fields under various emission scenarios for the future. These scenarios 549 

are described as Regional Concentration Pathways (RCP, Van Vuuren et al., 2011) for different 550 

climate scenarios of low (2.6 W m-2 of additional forcing by 2100), moderate (4.5 W m-2), or 551 

“business as usual” (8.5 W m-2 ), respectively. The GCM simulations of air temperature, 552 

precipitation, and solar radiation are provided for grid cells 1o x 1o (latitude, longitude) and one 553 

cell covered the model domain. Spatial variation in air temperature and precipitation across the 554 

model domain was estimated using the Parameter-elevation Relationships on Independent 555 

Slopes Model (PRISM, Daly et al., 2007), an 800 m gridded data set based on weather station 556 

measurements and rescaled to 100m to match the digital elevation model. Monthly PRISM 557 

values, averaged over the period 1980-2010, subtracted from the GCM value, also averaged 558 

over the same period, producing a cell by cell offset for temperature and precipitation (Gray, 559 

2019). We assume the spatial offsets do not change with time. The spatial pattern of solar 560 

radiation is calculated from the solar position at a constant solar angle for that month and the 561 
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value from the GCM is distributed accordingly. Finally, snow accumulates on the landscape 562 

when precipitation occurs at air temperatures below 0oC. Snow and ice melt are estimated 563 

from a degree-day melt model and exposure to solar radiation.  564 

 565 

Initial results showed that model could not predict the presence of glaciers in part of the 566 

domain, east of Mount Olympus, despite extreme adjustments to the parameters. We 567 

concluded that the source of the problem was snow accumulation through direct snowfall and 568 

secondary sources of avalanching and wind redistribution. Significant uncertainty plagues 569 

spatially distributed precipitation in mountainous regions (Gutmann et al., 2012; Livneh et al., 570 

2014). And secondary sources make important contributions to small glaciers (Frans et al., 571 

2018; Kuhn, 1995). Precipitation was increased by a factor of 3 over the footprint of the glaciers 572 

producing reasonable results for glacier location and extent, similar to the approach of (Clarke 573 

et al., 2015). Results showed the total area of modeled ice in 1980 was 106% of measured and 574 

in 2015, 97%.  About 60% of the glaciers were correctly placed. This mismatch is not of great 575 

concern given the coarseness of the model, in terms of spatial resolution and approximation of 576 

the mass balance processes. 577 

 578 

Over time the model shows a dramatic loss of ice (Figure 11). For the RCP 8.5 “business as 579 

usual” scenario shows that the glaciers will largely vanish by about 2070. With a moderate 580 

reduction in greenhouse gases (RCP 4.5) the total glacier area will be reduced to a few km2 at 581 

most and limited to Mt. Olympus. The spikey character of the glacier area plot is typical of 582 

widely dispersed small glaciers (Clarke et al., 2015). 583 

 584 

 585 

 586 

 587 

 588 
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 589 

Figure 11. Predicted area and volume for the glaciers of the Olympic Peninsula. The black line is 590 

RCP 8.5 ‘business as usual’ scenario, and the grey line is the RCP 4.5 modest reduction (Van 591 

Vuuren et al., 2011). The dot in the area plot is the measured glacier area in 2015. 592 

 593 

6. DISCUSSION 594 

 595 

Our method of inventorying differed from the original inventory (Spicer, 1989) due to new 596 

technology and digital imagery. This posed some challenges to developing a seamless series of 597 

inventories over time. The methodological difference highlighted an important and often 598 

overlooked issue. When updating an inventory completed by different authors, original 599 

methods must be understood in order to minimize apparent changes in area resulting from 600 

methodological differences (Paul et al., 2010; DeVisser and Fountain, 2015; Riedel and 601 

Larrabee, 2016). This is also true for individual glaciers where interpretations of a glacier 602 

boundary may differ dramatically between investigators. It is not so much a matter of boundary 603 

interpretation as assumptions regarding which tributary or connected ice-covered landscape to 604 

include. Imagery resolution is also important. Our new inventories were compiled from aerial 605 
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photographs or high-resolution satellite imagery both with a spatial resolution ≤ 1 m. This 606 

resolution seemed suitable for outlining small glaciers (≥0.01 km2) and certainly provides a 607 

much better accuracy than 15 m resolution Landsat (Fischer et al., 2014). Also, compiling 608 

inventories for more than one set of imagery is advantageous because although a single author 609 

may compile the two new inventories some adjustment between inventories is required 610 

because shifting assumptions during the data collection period. A second author complied the 611 

last inventory and had to reconcile those outlines against the prior two inventories. This 612 

minimized interpretation error over time.  613 

The inventories are split into two categories. The partial inventories track only those 261 614 

glaciers ≥ 0.1 km2, identified in 1980 by Spicer (1986). The complete inventories, starting in 615 

1990, include initially 308 glaciers and perennial snowfields ≥ 0.01 km2. Although the 616 

inventories differ by 47 features, the total areas did not differ by more than 0.35 km2 and the 617 

trend with time did not differ. To maintain the longest record the results from the partial 618 

inventories are summarized. 619 

 620 

The Olympic Mountains are populated by small glaciers, as of 2015 the average area was 0.08 621 

km2, and they have been shrinking over time like other regions in North America and elsewhere 622 

globally (Abermann et al., 2009; DeBEER & Sharp, 2007; DeVisser & Fountain, 2015). Thirty-five 623 

glaciers and 16 perennial snowfields have disappeared. The pattern of change is also similar 624 

with the smaller glaciers exhibiting a wide range of shrinkage, but generally shrinking faster, 625 

than the larger glaciers, which exhibit a smaller range of shrinkage (Bolch et al., 2010; 626 

Granshaw & Fountain, 2006; Paul, 2004). The total area decreased by -45% since 1980 at a rate 627 

of -1.3% yr-1, faster than that for western Canada -0.6% yr-1 (1985-2000) (Bolch et al., 2010) and 628 

faster than in the North Cascade Range 100 km to the northeast, -0.4% yr-1 (1959-2009) (Riedel 629 

and Larrabee, 2016). However, as Bolch et al., (2010) point out this difference is probably due 630 

to differences in glacier size because, as a general rule, smaller glaciers retreat faster than 631 

larger glaciers. In addition, the glaciers in the Olympic Mountains are found at lower elevations 632 

than most other regions. The retreat rate in the Olympics is more similar to the retreat rate of 633 

small glaciers in western Canada such as on Vancouver Island (-1.11 % yr-1), the Central Coast (-634 
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1.2% yr-1), or the Northern Interior (-1.11 % yr-1). Our rate is also faster than glaciers in the 635 

Wind River Range, Wyoming, USA (-0.65% yr-1, 1966-2006), or the European Alps (-0.9% yr-1, 636 

1970 – 2003) although Paul et al. (2011) argue for a rate of about 2% yr-1 from the mid-1980’s 637 

to 2003. In any case, the rate of retreat is within the range of other published studies. 638 

 639 

Examination of topographic influences on glacier shrinkage showed that elevation was the only 640 

significant influence, similar to other studies (DeVisser & Fountain, 2015). The scatter about the 641 

regression line can be due to any number of factors including glacier hypsometry, aspect, and 642 

slope (Fischer et al., 2015; Tangborn et al., 1990).  A confounding factor is that smaller glaciers 643 

generally retreat more than larger glaciers, and the retreat variability in much greater for 644 

smaller glaciers (Figure 4; DeBEER & Sharp, 2007; Granshaw & Fountain, 2006; Paul, 2004). The 645 

presence and change of small glaciers is highly dependent on the interrelation of topographic 646 

and climatic factors (DeBEER & Sharp, 2009; Kessler et al., 2006; Kuhn, 1995). The absence of 647 

hypsometric influence on the magnitude of area change may be due to the relatively small 648 

glaciers that do not span a large elevation range so the climate differs little between the 649 

terminus and head of the glacier.  650 

 651 

The rate of specific volume changes averaged -0.46 m yr-1, 1980-2015, and is comparable to the 652 

mass change of the 30 global reference glaciers for the same time period (WGMS, 2019). Our 653 

value is also close to that for the Olympic Mountains of -0.55 m yr-1 (2000-2015) estimated from 654 

satellite imagery (Menounos et al., 2018) and to Riedel et al. (2015) of -0.54 m yr-1 (1980-2009) 655 

based on aerial photographs. Using area-volume scaling, about 0.75 ± 0.19 km3 of ice remains in 656 

the Olympic Mountains as of 2015. Examining the changes on Mount Olympus, the largest 657 

fraction of glacier-covered area is at 1750 m, but the maximum fractional volume change 658 

(1980-2015) occurs 150 m lower at 1600 m amsl. This is the cross-over point between 659 

decreasing specific volume change with elevation and increasing glacier-covered area. Such an 660 

elevation offset is probably not unusual. Abermann et al. (2009) found similar results in Austria 661 

for area change. Specific volume change no longer decreases with elevation above 2000 m, 662 

becoming constant at -9 m. A similar result, -11 m (1985-1999), occurs for glaciers of British 663 
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Columbia, Canada (Schiefer et al., 2007). A constant thinning with elevation seems to occur at 664 

about 0.75 of the normalized elevation differences from the terminus to the glacier head in a 665 

number of regions (Arendt et al., 2006; Schiefer et al., 2007). The constant thinning at the 666 

upper-most elevations is similar to the constant mass balance at the upper-most elevations of 667 

individual glaciers and not a unique finding (Dyurgerov et al., 2002). The effect of altitude on 668 

ablation and accumulation can decrease significantly at high elevation due to cooler air 669 

temperatures, snowfall may decrease with elevation due to limits on cloud elevation, and high 670 

winds at elevation redistributes snow erasing an elevation dependence. 671 

 672 

Based on the mass balance model of Blue Glacier, it is clear that variations in mass balance are 673 

highly sensitive to variations in air temperature (83% of the variability) and less so to variations 674 

in precipitation (53%), given their low elevation and high mass turnover. This is a known 675 

attribute of maritime glaciers (Anderson & Mackintosh, 2012; Oerlemans & Fortuin, 1992). 676 

Overall the retreat of these glaciers is due to increasing air temperatures over the past century, 677 

which has warmed by almost 1oC in winter, which can change the phase of precipitation from 678 

snow to rain reducing mass accumulation and by about +0.3oC in summer, which increases 679 

melt. The Olympic Mountains have been identified as one of the regions within the Pacific 680 

Northwest with warm snowpacks vulnerable to winter warming and increasing proportions of 681 

winter rain rather than snow (Klos et al., 2014; Nolin & Daly, 2006). 682 

 683 

Of the climate indices correlated with monthly air temperatures and mass balance of Blue 684 

Glacier and therefore the glaciers of the Olympic Mountains, the PNA and PDO patterns were 685 

the strongest. PNA is a measure of the amplitude of the planetary wave field of atmospheric 686 

heights (pressures) over the northeast Pacific and North America at intramonthly time scales. It 687 

is correlated with freezing level in the atmosphere over western North America and most highly 688 

correlated over coastal Oregon and Washington (Abatzoglous, 2011). The PNA documents 689 

changes in atmospheric circulation, which contributes to wintertime warming and has been 690 

shown to correlate with snowpack generally in the western US (Barnston & Livezey, 1987; 691 

Cayan, 1996; Gutzler & Rosen, 1992). The impact of warming winter air temperatures on snow 692 
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accumulation in the western US has been described generally (McCabe & Wolock, 2009; Mote 693 

et al., 2005, 2018) and specifically for Blue Glacier (Rasmussen & Conway, 2000). Given that the 694 

mass balance of Blue Glacier is highly sensitive to air temperature correlation with the PNA 695 

index is not surprising. For PDO, the statistically significant correlation between temperature 696 

and mass balance is also reflective of conditions in the North Pacific. The PDO, based on sea 697 

surface temperatures, tends to vary over decadal time scales and is highly correlated with the 698 

PNA (Mantua and Hare, 2002; Newman et al., 2016). Like the PNA, the PDO is also correlated 699 

with snowpack variability such that positive PDO values, indicate warming along the coast of 700 

the Pacific Northwest and warmer air temperatures and reduced snow accumulation in the 701 

Pacific Northwest (McCabe & Dettinger, 2002; Zhang et al., 2010). It is striking that the shifts in 702 

the trend of mass balance of Blue Glacier are highly correlated with changes in the state of the 703 

Pacific Ocean, which is related to the PDO. They also largely explain the variation in winter mass 704 

accumulation estimated by Rasmussen & Conway (2000). The ‘warm’ phases of the PDO, where 705 

the ocean waters along the coast of western North America are warmer than normal, coincide 706 

with periods of decreasing mass balance whereas ‘cool’ phases are associated with the glacier 707 

mass balance in equilibrium or slightly gaining. This relationship has also been noted for Blue 708 

Glacier by Malcomb and Wiles (2013). 709 

 710 

The response of glacier mass balance to climate indices in the Pacific Northwest have been well 711 

explored and show that the glacier mass balance is sensitive to conditions in the North Pacific 712 

Ocean (Bitz & Battisti, 1999; Hodge et al., 1998; Walters & Meier, 1989). Using the measured 713 

mass balance record from South Cascade Glacier, 150 km to the northeast of Blue Glacier in the 714 

Cascade Mountains, McCabe and Fountain (1995) showed that variations in in annual mass 715 

balance were driven by winter snow accumulation. From that Hodge et al., (1998) showed good 716 

correlations between winter mass balance and PNA; Bitz and Battisti (1999) showed good 717 

correlations with PDO and much less so with ENSO. McCabe and Fountain (1995) examined the 718 

correlations between the 700 mb atmospheric pressure field and the winter mass balance, 719 

finding a correlative pressure pattern across western North America similar to the PNA. 720 

Atmospheric circulation patterns that increase zonal westerly flow from the Pacific Ocean to 721 
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the Pacific Northwest have been shown to increase precipitation, particularly in high alpine 722 

terrain (Luce et al., 2013; Menounos et al., 2018; Shea & Marshall, 2007). Increases in such 723 

precipitation in winter, if air temperatures are below freezing, increase glacier mass balance. 724 

However, increasingly warm winter climate since 2000 suggests that the cool phase of the PDO 725 

is also becoming warmer reducing its ability to nourish the glaciers (Josberger et al., 2007). 726 

 727 

The predicted demise of the glaciers by 2100 is not unique. Predictions of glacier change in 728 

western Canada suggest a 70% volume loss by 2100 but for the Coastal Mountains of the 729 

Central Coast and Vancouver Island, complete loss on or before 2100 (Clarke et al., 2015) (see 730 

also supplementary material). This supports prior work in along the eastern slopes of the 731 

Canadian Rocky Mountains and for selected glacier-populated basins in the Pacific Northwest 732 

that are predicted to lose 80-90% of the glacier volume by 2100 (Frans et al., 2018; Marshall et 733 

al., 2011). Predictions of global alpine glacier change suggest rapid loss for the rest of the 734 

century and for the region of western Canada and US, exclusive of Alaska, at least 50% loss 735 

(Radić & Hock, 2011). 736 

 737 

7. Conclusions 738 

 739 

Careful updating of prior glacier inventories is required to avoid introducing error based on 740 

methodological differences or different assumptions regarding glacier boundaries. Glacier by 741 

glacier comparisons between inventories minimized such errors. 742 

The initial inventory of glaciers in the Olympic Mountains showed that the total area in 1980 743 

was 45.9 ± 0.51 km2 with a mean glacier area of 0.18 km2. By 2015 the total area decreased -45 744 

± 0.02 %, mean glacier area decreased to 0.08 km2, and 35 glaciers and 16 perennial snowfields 745 

disappeared. Over this period glacier area decreased at a rate of -0.59 km2 yr-1, with the fastest 746 

rate during the 2009-2015 period, -0.82 ± 0.02 km2 yr-1. Like other studies elsewhere, smaller 747 

glaciers retreated more than larger glaciers, they also showed the most variability. The 748 

variability is probably a result of favorable local conditions that decrease melt and increase 749 

accumulation compared to less favorable conditions. To infer changes prior to 1980 we used 750 
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Blue Glacier, the largest (5.143 ± 0.094 km2 in 2015) and most well documented glacier in the 751 

region, as a proxy for regional glacier change because of its high correlation with the regional 752 

area change. In 1900, the total area covered by glaciers was 55.3 km2 more than twice the area 753 

in 2015.  754 

A simple mass balance model of Blue Glacier, based on monthly air temperature and 755 

precipitation, showed good correspondence with changes in glacier area. Interrogation of the 756 

model showed that variations in monthly mass accumulation is better explained by variations in 757 

air temperature than precipitation, suggesting the importance of temperature control on the 758 

precipitation phase. Ablation is highly correlated with temperature alone. Taken together air 759 

temperature is the dominant influence on glacier mass balance in the Olympic Mountains, 760 

explaining 83% of the variance, with precipitation playing a secondary role. This is common to 761 

glaciers in maritime climates where winter air temperatures are close to the 0oC threshold and 762 

only a small change in temperature can change the phase of the precipitation from snow to 763 

rain. The mass changes are highly correlated with the Pacific North American index, a measure 764 

of the strength of zonal versus meridional air flow over North America at weekly-seasonal time 765 

scales. The changes are also correlated with regime shifts of the Pacific Decadal Oscillation, a 766 

measure of sea surface temperatures in the North Pacific that varies over decadal time scales. 767 

Finally, the future of these glaciers is grim. Using a coupled global circulation model with a 768 

distributed glacier flow model shows that the glaciers of the Olympic Mountains should largely 769 

disappear by 2070. 770 
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Appendix 1098 
 1099 
Uncertainty Assessment of the interpretation uncertainty evolved over time. For the 1990 1100 
imagery we followed Spicer (1986) whereby it was visually ranked into three categories: 1) 1101 
excellent – minimal snow/rock cover or shadows, ±2.5%; 2) good - moderate cover or shadows, 1102 
±7.5%; and 3) poor - extensive cover or shadow ±20%. For the 2009 inventory, each glacier was 1103 
outlined twice. The first outline included only clean and debris-covered ice as indicated by 1104 
crevasses. The second outline included exposed ice, debris, and seasonal snow. The 1105 
interpretation uncertainty is one-half of the difference between the two areas outlined. 1106 
Although more precise, results did not vary significantly from a broader calibrated assessment 1107 
we applied to the 2015 inventory. The glaciers were visually grouped into two categories low 1108 
and high uncertainty. A subset of 37 (low) and 34 (high) glaciers were than outlined using the 1109 
min/max method. The difference between the minimum and maximum outline was then 1110 
normalized to the glacier area and an average was calculated for the two groups. The low 1111 
category had a ± 4% uncertainty, and the high had ± 16% uncertainty.  1112 
 1113 
Table A1. Comparison of the topographic characteristics for the most and least 1114 
changed glaciers from the quartile analysis. Elev is elevation, Asp – aspect, Win – 1115 
winter, Sum – summer, Ann – annual, Temp – air temperature, Precip – precipitation 1116 
Long – longitude, Lat – latitude, Frac Chg – fractional area change From: Olympic-1117 
Wilson-ReAnalysis/Quartile 1118  

 
Largest 
fractional 
change 

 
 
Standard 
deviation 

 
Least 
fractional 
change 

 
 
Standard 
deviation 

 
 
Upper minus 
lower 

Mean Slope 21 5 23 6 -3 
Mean Elev 1612 149 1764 124 -152 
Max  Elev 1672 159 1923 183 -250 
Min Elev 1566 158 1598 181 -32 
Mean Asp 207 157 211 144 -5 
Win Precip 2697 1019 2655 1035 42 
Win Temp -1.7 0.9 -2.4 0.9 0.7 
Sum Temp 9.3 0.8 8.7 0.8 0.6 
Ann. Precip 3730 1429 3622 1482 108 
Ann Temp 2.8 0.8 2.2 0.8 1 
Mean Long -123.6 0.2 -123 0.2 -0.1 
Mean Lat 47.8 0.1 48 0.1 0.0 
Mean Area 0.06 0.09 0.56 1.19 -0.50 
Mean Frac Chg -0.98 0.03 -0.37 0.12 -0.61 
Number 54 

 
55 

  

 1119 
 1120 
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Table A2. The area (km2) of Blue Glacier used for the mass balance model. The area for the 1121 
years 1915 – 1982 were from Spicer (1989). The area for 1990 – 2015 came from our analysis.  1122 
The area is that of the trunk glacier and does not include the ‘snow dome’ which did not change 1123 
in area over the time observed. 1124 
 1125 

Year Area 
1815 5.98 
1900 5.61 
1906 5.61 
1912 5.61 
1913 5.61 
1915 5.61 
1919 5.61 
1924 5.57 
1933 5.38 
1939 5.31 
1952 5.21 
1957 5.23 
1964 5.22 
1965 5.22 
1966 5.23 
1967 5.23 
1968 5.23 
1970 5.24 
1976 5.30 
1977 5.30 
1978 5.30 
1979 5.31 
1981 5.31 
1982 5.30 
1990 5.08 
2009 4.71 
2015 4.47 

 1126 
 1127 
 1128 
 1129 
Table A3. Correlations between monthly values modeled glacier mass balance, air temperature, 1130 
and precipitation, and various climate indices over the period 1900-2014, all smoothed by a 1-1131 
year running mean. The bold indicates the highest correlations between the indexes and glacier-1132 
local measurements. The abbreviations are, ppt –precipitation (mm), temp – average air 1133 
temperature, MB – mass balance, Nino 3.4 – sea surface temperature anomaly in the 3.4 region 1134 
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of the Pacific Ocean, PDO – Pacific decadal oscillation, PNA – Pacific North America, SOI – 1135 
Southern oscillation index, NP – North Pacific. See text for citations and data sources. 1136 
 1137 
  ppt  temp       MB Nino 

3.4 
PDO PNA SOI NP NAO Sunspots 

ppt  1.00          
temp  -0.12 1.00         
MB  0.52 -0.74 1.00        
Nino 3.4 -0.13  0.52 -0.43 1.00       
PDO -0.19  0.53 -0.52  0.55 1.00      
PNA -0.11  0.64 -0.59  0.53  0.66 1.00     
SOI  0.15 -0.47  0.40 -0.83 -0.54 -0.47 1.00    
NP  0.15 -0.58  0.56 -0.45 -0.58 -0.71  0.48 1.00   
NAO  0.08  0.05  0.05  0.04  0.01 -0.15 -0.11  0.18 1.00  
Sunspots -0.04  0.09 -0.11  0.03 -0.06 -0.08  0.01 -0.05 0.15 1.00 

 1138 
 1139 
 1140 
 1141 
 1142 
 1143 
 1144 
 1145 
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 1146 
 1147 
Figure A1. Smoothed time series (1 year) of monthly local air temperature, precipitation, two 1148 
climate idiocies (PNA – Pacific North America; PDO – Pacific Decadal Oscillation) and modeled 1149 
glacier mass balance. 1150 


