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Abstract

Recent advances in geostationary imaging have enabled the derivation of high spatiotemporal-resolution cloud-motion winds

for the study of mesoscale unsteady flows. Due to the general absence of ground truth, the quality assessment of satellite

winds is challenging. In the current limited practice, straightforward plausibility checks on the smoothness of the retrieved

wind field or tests on aggregated trends such as the mean velocity components are applied for quality control. In this paper,

we demonstrate additional diagnostic tools based on feature extraction from the retrieved velocity field. Lagrangian Coherent

Structures (LCS), such as vortices and transport barriers, guide and constrain the emergence of cloud patterns. Evaluating

the alignment of the extracted LCS with the observed cloud patterns can potentially serve as a test of the retrieved wind field

to adequately explain the time-dependent dynamics. We discuss the suitability and expressiveness of direct, geometry-based,

texture-based, and feature-based flow visualization methods for the quality assessment of high spatiotemporal-resolution winds

through the real-world example of an atmospheric Kármán vortex street and its laboratory archetype, the 2D cylinder flow.
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Key Points:9

• Recently developed high-cadence geostationary satellite winds enable the Lagrangian10

analysis of unsteady island wake flows11

• The good correspondence between the derived Lagrangian Coherent Structures12

and the observed cloud patterns indirectly confirms the fidelity of the fluid dynam-13

ics embedded in the satellite winds14

• Spatial verification metrics that compare measured with simulated Lagrangian flow15

features can complement traditional gridpoint-based statistics in quantitative model16

validation17
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Abstract18

Recent advances in geostationary imaging have enabled the derivation of high spatiotemporal-19

resolution cloud-motion winds for the study of mesoscale unsteady flows. Due to the gen-20

eral absence of ground truth, the quality assessment of satellite winds is challenging. In21

the current limited practice, straightforward plausibility checks on the smoothness of the22

retrieved wind field or tests on aggregated trends such as the mean velocity components23

are applied for quality control. In this paper, we demonstrate additional diagnostic tools24

based on feature extraction from the retrieved velocity field. Lagrangian Coherent Struc-25

tures (LCS), such as vortices and transport barriers, guide and constrain the emergence26

of cloud patterns. Evaluating the alignment of the extracted LCS with the observed cloud27

patterns can potentially serve as a test of the retrieved wind field to adequately explain28

the time-dependent dynamics. We discuss the suitability and expressiveness of direct,29

geometry-based, texture-based, and feature-based flow visualization methods for the qual-30

ity assessment of high spatiotemporal-resolution winds through the real-world example31

of an atmospheric Kármán vortex street and its laboratory archetype, the 2D cylinder32

flow.33

1 Introduction34

Vortex streets formed in the cloudy wake of mountainous islands are the analogues35

of the classic Kármán vortex street observed in laboratory bluff-body flows. Atmospheric36

vortex streets develop in conditions characterized by a well-mixed subcloud layer capped37

by a strong temperature inversion with a weaker stably stratified layer above and con-38

sist of mesoscale eddies, which span the entire marine boundary layer and have a nearly39

upright axis with no height variation in their properties (i.e. they are approximately 2D).40

Although the spatial arrangement (aspect ratio) of these spectacular vortex patterns has41

been studied ever since their first photographs were obtained at the dawn of the satel-42

lite era (e.g. Chopra & Hubert, 1965; Hubert & Krueger, 1962; Lyons & Fujita, 1968;43

Young & Zawislak, 2006), advances in modeling and observational capabilities have re-44

cently led to a renewed interest specifically in their dynamics. Numerical forecast mod-45

els and large-eddy simulations are now capable of handling spatial grid resolutions at the46

lower end of the meso-gamma scale (2–20 km) in a sufficiently large domain (hundreds47

of kilometers on a side) required for the realistic modeling of island wakes (Nunalee &48

Basu, 2014; Nunalee et al., 2015; Heinze et al., 2012).49

The spatial resolution of satellite wind retrievals has also reached the kilometer scale50

(2–8 km), at least in a research setting if not operationally, which allows to character-51

ize the finer details of wake flows. The wind and vorticity field of atmospheric vortex streets52

was successfully measured by stereo cloud-motion winds from the Multiangle Imaging53

SpectroRadiometer (MISR; Horváth (2013)) and also by ocean surface winds from the54

Advanced Scatterometer (ASCAT; Vogelzang et al. (2017)). These polar-orbiter instru-55

ments, however, only offer snapshots of the wind field. The latest generation geostation-56

ary imagers, in contrast, can provide high-cadence wind retrievals that capture the time57

evolution of the wake. Horváth et al. (2020) used the Advanced Baseline Imager (ABI)58

aboard Geostationary Operational Environmental Satellite-16 (GOES-16) to derive 6-59

km resolution cloud-motion winds at 5-min frequency, to characterize the wake oscilla-60

tions and to measure vortex shedding, advection, and decay in the lee of Guadalupe Is-61

land.62

High spatiotemporal-resolution winds represent both challenges and opportunities.63

The validation of satellite winds is difficult due to the general lack of ground truth and64

traditionally relies on comparisons against sparse radiosonde observations. In recent years,65

aircraft observations have also been used to evaluate derived winds, but even with this66

additional data source there are significant gaps in the in-situ measurement network. As67

a result, the quality control of operational satellite winds mostly relies on spatial and68
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temporal self-consistency checks. The quality of retrievals is expressed by the level of vec-69

tor, speed, and direction consistency between neighboring as well as between consecu-70

tive wind vectors (Holmlund et al., 2001). These quality control schemes were designed71

with coarser-resolution global forecast models in mind, which require a description of the72

slowly varying large-scale flow. They are, however, inapplicable to unsteady wake flows73

that are characterized by large wind variations on small spatial and temporal scales, due74

to both small-scale dynamics and measurement uncertainties. Furthermore, the obser-75

vation of local wind vectors alone does not allow flow comparison on the scale of features76

such as vortices, as soon as those are in motion, because of the superimposed transport (Günther77

& Theisel, 2018).78

The effective visualization of high-resolution winds is also challenging. Traditional79

vector plots (wind barbs or arrows) are unsuitable for time-dependent flow, due to their80

inability to separate features from the underlying motion. In addition, spatially dense81

datasets suffer from occlusion of vectors. There are, however, alternative techniques that82

are similarly easy to calculate, yet are more informative, as they reveal underlying trans-83

port dynamics much more clearly. For example, a user survey of 2D vector field visu-84

alization methods found that techniques representing integral curves and conceptualiz-85

ing particle advection tend to perform better in time-varying flows (Laidlaw et al., 2005).86

Recently, Bujack and Middel (2020) pointed out that atmospheric flows are visualized87

almost exclusively by basic techniques only (arrows, streamlines, or color coding the ve-88

locity magnitude) and recommended the more regular use of feature-based methods.89

The goal of the current study, a follow-on to Horváth et al. (2020), is to demon-90

strate the opportunities for progress on both of these fronts. Complex spatiotemporal91

systems such as atmospheric vortex streets are highly structured, but nevertheless or-92

ganize around a lower-dimensional skeleton of coherent features. We investigate selected93

techniques from direct, geometric, image-based, and feature-based flow visualization re-94

garding their potential to serve as diagnostic measure, leading up to Lagrangian Coher-95

ent Structures (LCS; Haller, 2015), which identify the most attracting, repelling, and shear-96

ing material lines of particle dynamics. Such material boundaries, which can now be cal-97

culated thanks to the high-frequency of ABI winds, are of interest, because they segment98

the flow into compartments of coherent behavior. We show that LCS and particle/texture99

advection methods applied to the Guadalupe wind data well describe the emergence of100

the observed cloud vortex patterns and thus indirectly confirm the quality of the satel-101

lite wind retrievals. We argue that these techniques might serve as complementary tools102

for the validation, or at least consistency testing, and visualization of high spatiotemporal-103

resolution wind data. The atmospheric vortex street is a good case study, because we104

can also draw on and compare against well-known results obtained by the above tech-105

niques for the classic 2D cylinder flow.106

The paper is organized as follows. In Section 2, we introduce the notation used and107

briefly describe our measurement and simulation data. Section 3 describes the pitfalls108

of direct visualization methods, such as arrow plots. Section 4 elaborates on the calcu-109

lation and use of geometric visualization methods that are centered around particle in-110

tegration. Section 5 increases the information density by image-based techniques such111

as line integral convolutions. Section 6 takes a feature-centered approach to visualize the112

coherent structures in fluid flow. Finally, Section 7 concludes with an outline of oppor-113

tunities for future work.114

In the supplemental material, we provide a Matlab implementation of the feature115

extraction methods explained throughout the paper, scripts to reproduce the Matlab-116

generated figures, as well as links to the data sets in netCDF format. In addition, the117

supplemental material contains time series animations of the different visualization meth-118

ods.119
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(a)

(b)

Figure 1: Arrow plots of the Cylinder2D flow at t = 7.5 (a) and the Guadalupe flow
at 17:03 UTC (b). The left image shows the full domain and the right image presents a
close-up view of the leeward side of the obstacle.

2 Background and Data120

2.1 Notation121

Throughout this work, we will refer to scalar numbers with italic letters, such as122

s. Vector-valued quantities are expressed with bold letters, such as v. Matrices are de-123

noted with capitalized bold letters, such as J.124

A vector field is a map v(x, t) = v(x, y, t) : D × T → D that assigns each point
x ∈ D in the two-dimensional domain D ⊂ R2 a vector:

v(x, y, t) =

(
u(x, y, t)
v(x, y, t)

)
(1)

If v depends on time it is called unsteady or time-dependent. Otherwise, the flow is called125

steady, i.e., when the time partial derivative vanishes to zero: ∂
∂tv = 0.126

We explain all visualization methods through the examples of (i) a numerically-127

simulated 2D vector field of the classic cylinder flow and (ii) a satellite-retrieved real-128

world quasi-2D meteorological vector field containing an atmospheric Kármán vortex street.129

In the following, we give a brief description of the data sets and explain the first visu-130

alization method.131
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2.2 Data Sets132

Cylinder2D Flow. For reference, we apply the visualization methods to the well-133

known laboratory Kármán vortex street. This fluid flow was numerically simulated with134

the open source solver Gerris (Popinet, 2003). The spatial domain [−0.5, 7.5]×[−0.5, 0.5]135

is filled with a viscous 2D fluid that is injected from the left into a channel with solid136

walls and slip boundary conditions. A circular obstacle is placed at (0, 0) with radius 0.0625.137

The kinematic viscosity is ν = 0.00078125, leading to a Reynolds number of Re = 160.138

The data set is discretized onto a 640×80 grid and the time range [0, 15] is discretized139

with 1501 time steps. The velocity vector field is publicly available; for more details on140

its definition we refer to Günther et al. (2017). Fig. 1a shows the periodic patterns form-141

ing in the wake of the cylinder. Arrows do not align with the flow structures (shown in142

white), which are instead revealed by visualizing structures that tracer particles are at-143

tracted to, i.e., locations at which smoke would collect if it was released from the cylin-144

der. The white structures are calculated by the (backward) finite-time Lyapunov expo-145

nent, which is explained later.146

Guadalupe Flow. Satellite cloud-motion vectors (or ”winds”) were derived for147

the atmospheric Kármán vortex street observed by GOES-16 in marine stratocumulus148

in the lee of Guadalupe Island off Baja California on 9 May 2018. The stratocumulus149

deck was located above a low-level temperature inversion starting at a base height of 570150

m, with cloud top heights varying between 600 and 900 m and having a median value151

of 750 m. The cloud-motion vectors thus represent horizontal winds within a narrow layer152

(at a nearly constant level) and were extracted from 0.5-km resolution red band (0.64-153

µm) imagery provided by ABI every 5 min. Retrievals were generated from consecutive154

image pairs for the 8-hour period between 14:32–22:37 UTC, totaling 96 time steps and155

covering a 602×602-pixel domain encompassing Guadalupe and its wake down to 26◦N156

latitude. A 5 × 5-pixel (∼ 2.5 × 2.5 km2) subscene was centered on each pixel in this157

domain and tracked forward in time by minimizing the sum of squared difference sim-158

ilarity measure between the target image subscene and the search image subscene (Bresky159

et al., 2012; Daniels et al., 2010). The resulting 2.5-km resolution local winds were then160

resampled onto a Universal Transverse Mercator (UTM) grid with a spacing of 6.3 km.161

To reduce noise, each UTM gridbox was assigned the median of the local wind vectors162

it contained. For more details, including a public link to the data repository, see Horváth163

et al. (2020).164

An arrow plot of the island wake is shown in Fig. 1b. Note that the arrows do not165

reveal the mushroom patterns visible in the clouds, since the arrow direction depends166

not only on the local motion indicated by the vortex pattern but also on its transport.167

Namely, the arrow direction is a superposition of flow features (e.g., vortical motion in-168

side vortices) and the ambient transport (overall transport tendency). Thus, arrows are169

unsuitable to study the correlation with the observed imagery. The satellite-retrieved170

data exhibit occasional outliers with exceptionally high wind speed and strong devia-171

tion from surrounding vectors. In Horváth et al. (2020), the vertical component of rel-172

ative vorticity calculated from the horizontal winds was smoothed with a simple 3×3-173

gridbox averaging window to reduce the effect of outliers. In the current paper, we pre-174

process the flow in a more sophisticated manner in order to be able to apply visualiza-175

tion methods that require the numerical estimation of derivatives.176

Let D be the spatial domain of the data and let M ⊂ D be the part of the do-
main in which the velocity values are available and not marked as outlier, i.e., the ab-
solute value of both velocity components is below 8m/sec, a threshold we chose empir-
ically. Given the original vector field v(x, t) at each given time t, we minimize the fol-
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lowing energy E to solve for a new vector field v∗(x, t) such that

E =

∫
M
‖v(x, t)− v∗(x, t)‖2 ∂x︸ ︷︷ ︸

data similarity

+λ

∫
D

∥∥∥∥∂v∗(x, t)

∂x

∥∥∥∥2 ∂x︸ ︷︷ ︸
smoothness

→ min (2)

Since the above energy is quadratic in its unknowns, it has one optimal solution that can177

be found by discretizing the domain and performing a linear least squares fit. Here, we178

fit a vector field to the satellite winds, wherever they are available, and we generally as-179

sume that the desired vector field is smooth, which is known as Tikhonov regularization.180

The parameter λ is thereby a smoothness weight, which we empirically set to λ = 0.2.181

3 Direct Methods182

Direct visualization methods encode components of the vector field by color or place183

glyphs at discrete locations to convey derived information. For general vector field data,184

the most commonly used glyph is an arrow that depicts the wind direction; for the spe-185

cial case of meteorological wind fields an alternative is the wind barb. For a comprehen-186

sive introduction to glyph-based techniques, we refer to the survey of Borgo et al. (2013).187

3.1 Arrow Plots188

Arrow plots visualize a vector field by placing a small arrow at each data grid point,189

indicating the direction of the flow using the arrow direction and the magnitude of the190

vector by the length of the arrow. Examples can be seen in Fig. 1. Care must be taken191

not to make the arrows too long, as they start to overlap otherwise. Because the exact192

magnitude might be difficult to discern when viewing vectors, meteorologists often pre-193

fer the use of wind barbs, which consist of a fixed-length shaft indicating direction and194

a combination of short and long barbs and pennants (collectively ’feathers’) to indicate195

speed. Wind barb overlap, however, is even more of an issue for dense vector fields, due196

to the presence of the ’feathers’. In interactive visualization applications, the number197

of arrows can be increased when the user zooms in to maintain a constant arrow den-198

sity.199

3.2 Discussion200

An arrow plot is generally ineffective in showing a time-dependent fluid flow phe-
nomenon. In Fig. 1a, for instance, the location of vortices and other fluid flow features
is not apparent from the visualization. Arrow plots can therefore not form the basis of
conclusions about flow behavior. The continuum mechanical reason for this is that the
physical interpretation of the vector orientation and length is not objective (Truesdell
& Noll, 1965). Intuitively, lacking objectivity means that two different observers, for ex-
ample one standing still and another one performing a rotation, might draw different con-
clusions when observing the same physical phenomenon, which is highly undesirable. Ob-
jectivity is a mathematical property that is obtained when a measure is invariant un-
der uniform rotations and translations of the reference frame, i.e., all observers will draw
the same conclusion. Formally, let v(x, t) be a vector-valued property observed in frame
F1 and w(y, t) be the same vector-valued property observed in frame F2 that is mov-
ing relative to F1 by a Euclidean transformation:

y = Q(t)x + c(t), (3)

where Q(t) is an arbitrary time-dependent rotation matrix, and c(t) is an arbitrary time-
dependent translation vector. Then, the vector-valued property is objective if it fulfills:

w(y, t) = Qv(x, t). (4)

–6–
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Since arrow length and orientation are different for differently moving observers, arrows201

are not useful to study the behavior of particles in the fluid and their immediate value202

as quality metric in a vector field comparison is limited. Arrow plots can only reveal in-203

stantaneous structures, as for example needed in streamline-oriented topology (Günther204

& Baeza Rojo, 2021). Nevertheless, an arrow plot is a frequent first choice to get an ini-205

tial impression of the vector data, for example to investigate the amount of noise present206

at individual grid points. A more sensible quality metric would inspect reference frame207

invariant features that are derived from the velocity field and would utilize the tempo-208

ral coherence of those structures. In the following section, we take the first step in this209

direction by inspecting integral geometry that reveals patterns and may serve as struc-210

ture along which coherence can be measured.211

4 Geometric Methods212

4.1 Flow Maps213

In experimental flow visualization, a common approach to visualize a usually in-214

visible fluid flow is to release tracers such as smoke or dye or hydrogen bubbles, which215

are advected by the flow, creating striking patterns (streaklines) that convey the motion216

of the fluid (Van Dyke, 1982). In atmospheric flows, this is partially mimicked by the217

observation of clouds, though their evolution is not strictly a matter of passive advec-218

tion. Once vector fields are captured or numerically simulated, computational flow vi-219

sualization provides a multitude of approaches to visualize the fluid flow structures, which220

identify the driving processes that govern the transport. We thereby distinguish between221

Eulerian approaches that analyze the flow per time step and Lagrangian approaches that222

derive an analysis from particle motion. Therefore, a key ingredient is the ability to trace223

virtual particles, which we cover below.224

In an unsteady flow v(x, t), i.e., when the flow is changing over time, the trajec-
tory x(t) of a massless tracer particle is called a pathline. For a given seed point x0 and
seed time t0, a pathline is the solution to the ordinary differential equation (ODE):

d

dt
x(t) = v(x(t), t) with x(t0) = x0. (5)

i.e., the pathline is always tangential to the flow. The trajectory is numerically calcu-
lated as an initial value problem for a given initial condition using:

x(t) = x(t0) +

∫ t

t0

v(x(τ), τ) dτ with x(t0) = x0. (6)

In an unsteady flow, each particle needs to store its current position and also its current225

time, since the vector field that describes where the particles goes next is time-dependent.226

For notational convenience, it is common to introduce the flow map Φτ
t0(x0) : D →

D, which maps a particle seeded at location x0 at time t0 to its destination after path-
line integration for duration τ , cf. Haller (2015):

Φτ
t0(x0) = x0 +

∫ t0+τ

t0

v(x(t), t) dt. (7)

The flow map is rarely visualized directly. Instead structures and features are derived227

from it, which enables more quantification and measurements, for instance for the de-228

tection of transport barriers and vortices. We will describe those approaches later in more229

detail.230

4.2 Integral Curves231

Throughout the flow visualization literature, we can find a number of different line232

geometries that are used to study particle motion (McLoughlin et al., 2010). The tra-233
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(a)

streamlines pathlines

streaklines timelines
(b)

Figure 2: In (a), we see integral curves in the Cylinder2D flow, from top to bottom:
streamlines (t0 = 10, τ = 9), pathlines (t0 = 6, τ = 9), streaklines (t0 = 7, τ = 5)
and timelines (t0 = 8, τ = 1.2). Streaklines and timelines align with the flow patterns in
the background. In (b), integral curves of the Guadalupe flow are shown (t0 = 15:55:20
UTC, τ = 06:06:40 UTC) with satellite images in the background (for streamlines and
pathlines at start time t0, and for streaklines and time lines at end time t0 + τ).

–8–
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jectories of particles in a fluid flow are generally referred to as integral (or characteris-234

tic) curves, referring to the integral formulation of the ODE that defines them, see for235

example Eq. (6). Depending on the type of fluid flow–steady or unsteady–different kinds236

of integral curves arise that have different meaning. In geometry-based flow visualiza-237

tion, we primarily distinguish four types of integral curves, which are illustrated in Fig. 2a238

for the flow behind a Cylinder and in Fig. 2b for the Guadalupe flow. In both cases,239

we would like a Kármán vortex street to appear. In the following, we will investigate how240

well the various types of integral curves are able to reveal this flow pattern.241

• Streamlines are the tangent curves of steady vector fields, i.e., d
dtr(t) = v(r(t))242

where v(x) is a steady (time-independent) vector field or a time slice of an un-243

steady flow. Usually, they are used to study instantaneous vector fields such as244

magnetic fields or truly steady flows. In a time-dependent flow, they are calcu-245

lated per time slice, which is not physically meaningful. Since actual particles move246

forward in time, i.e., the flow is temporally changing as the particles are travel-247

ing, streamlines do not correspond to the physical trajectory of a real particle. When248

plotting streamlines in an unsteady flow, flow patterns such as vortices might be-249

come apparent. It should, however, always be clear that these structures do not250

actually exist and they should not be the foundation of an argumentation in flow251

analysis.252

• Pathlines were defined as the solution to an initial value problem in Eq. (6). Us-253

ing the flow map in Eq. (7), they are given by p(τ) = Φτ
t0(x0) and describe the254

paths of massless particles in fluid flows. These lines are in fact the trajectories255

of individual particles and are therefore the preferred choice when studying trans-256

port properties in time-dependent vector fields. Similar to streamlines, these lines257

are the result of an ODE, cf. Eq. (5). Note how neither streamlines nor pathlines258

are able to reveal the vortex street in the fluid flows. While it is generally not mean-259

ingful to view streamlines in time-dependent flows, it is not enough either to view260

pathlines when looking for flow patterns. A pathline is a series of locations that261

have been visited by a given particle at different moments in time. Pathlines are262

therefore not useful to depict flow patterns at one specific moment in time.263

• Streaklines, on the other hand, are used to reveal flow patterns at one specific mo-264

ment in time. They are assembled by continuously releasing particles from a seed265

point x0 at different times and advecting all particles to the same time slice, which266

is referred to as the observation time t. Using the flow map in Eq. (7), streaklines267

are defined as s(τ) = Φt−τ
τ (x0). Conceptually, streaklines are the equivalent to268

the trail of smoke or ink released from a point source, which takes us much closer269

to experimental flow visualization methods. Note that streaklines are successful270

in revealing fluid flow patterns such as vortices, as long as the particles can reach271

those structures. Unlike streamlines and pathlines, which are computed by advect-272

ing a single particle, streaklines are computed by advecting a continuously grow-273

ing list of particles forward in time. Whenever two subsequent particles are rapidly274

moving apart from each other, a new particle has to be inserted in-between them275

in order to maintain a sufficiently fine discretization of the streakline. Ideally, the276

new particle is inserted at the seed point and is traced up to the observation time.277

For simplicity, however, it is common to interpolate the new particle location at278

the observation time from the two particles that drifted too far apart, which is eas-279

ier since it does not require access to previous time steps, but also introduces in-280

terpolation errors.281

• Timelines are curves that are advected over time. For a seeding curve c(u) at time282

t0, the timeline at observation time t0 + τ is t(u) = Φτ
t0(c(u)). Conceptually,283

timelines correspond to a line of ink that is injected at only one moment in time284

and then advected to the observation time. Similar to streaklines, particles on a285

timeline may separate away from each other, which requires an adaptive refine-286

ment. Both streaklines and timelines reveal physically-meaningful flow patterns.287

–9–
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The main difference between streaklines and timelines is in the analysis question288

they answer: how do particles evolve that were seeded at different times but from289

the same location (streaklines) versus how do particles evolve that were seeded290

at the same time but from different locations (timelines).291

Pathlines, streaklines, and timelines are computed for unsteady vector fields only, whereas292

streamlines can be computed for steady flows as well as for the individual time steps of293

unsteady flows. Note that streamlines, pathlines, and streaklines are identical in a steady294

vector field. It is worth mentioning that similar to streamlines, streaklines and timelines295

can also be calculated as tangent curves in a lifted higher-dimensional vector field com-296

puted from the spatial and temporal gradients of the flow map (Weinkauf et al., 2012).297

When visualizing line geometry, we generally aim for less line intersections (in 2D)298

and less line occlusions (in 3D) in order to avoid visual clutter (Günther et al., 2017).299

An advantage of streamlines is that they cannot intersect, since only one trajectory can300

pass through each point in the domain. When pathlines are plotted in space they can301

intersect, since particles may pass through the same location at different times from a302

different direction. We can observe such intersections in Fig. 2. Streaklines will only in-303

tersect if a streakline sweeps over the seed point of another streakline. Self-intersections304

are also possible when the streakline particles move over their own seed point. Finally,305

timelines will intersect when their seed curves intersect.306

When using line geometry to reveal flow patterns, we not only need an integration307

algorithm, but we also need a good seed placement or line selection algorithm in order308

to avoid the aforementioned intersections and occlusions. Generally, these approaches309

are categorized into density-based (Jobard & Lefer, 1997; Mattausch et al., 2003) meth-310

ods that evenly fill the domain with lines, feature-based (Ye et al., 2005; Yu et al., 2012)311

methods that place lines primarily around points of interest to ensure their visibility, and312

similarity-based (Chen et al., 2007) methods that avoid redundant lines that carry no313

additional information. We refer to Sane et al. (2020) for a recent survey.314

4.3 Discussion315

The various types of integral geometry have different strengths and weaknesses and316

should be applied accordingly. Shared among all types of geometry is the seeding prob-317

lem and the potential visual clutter when showing too many lines. Streamlines and path-318

lines are not suitable when searching for coherent structures, as they cannot reveal cloud319

patterns. While streaklines are preferred in this case, they have the downside that the320

time and place of formation of the revealed structures is unclear. For example, the streak-321

lines in Fig. 2a show more structure further downstream than directly behind the cylin-322

der. This is because the structures have accumulated over the life time of the particles.323

Once a structure has formed it will be advected further down the flow, making it unclear324

whether the implied rotating motion is still ongoing or whether the structure has been325

advected only. Timeline particles, on the other hand, have all been advected for the same326

amount of time, making the structures more comparable.327

As Cimbala et al. (1988) pointed out, early experimental studies of bluff body wakes328

based on streakline photographs often arrived at erroneous conclusions about the local329

flow conditions due to this integrated memory effect. In order to accurately discern the330

flow at some location, the tracer source (smoke-wire, hydrogen bubble generator, or dye)331

must be placed at just the right distance upstream of that location (aka the seeding prob-332

lem). If the source is too close to the observation point, the streaklines do not have enough333

time to deform. Likewise if the source is too far upstream, the streakline pattern gets334

fixed and simply advects along with the mean flow. Laboratory streakline photographs335

may show well-defined vortex pairs far downstream of the obstacle, even though the lo-336

cal flow is nearly parallel. This is because vorticity decays at a much faster rate than smoke337

–10–



manuscript submitted to JGR: Atmospheres

or dye diffuses. A similar disconnect between the visual appearance of far-wake cloud338

vortex patterns and vorticity also affects the Guadalupe flow, see later Section 6.339

An additional issue is line intersection. Streamlines can never intersect. Pathlines340

will intersect frequently, since they are assembled by particles living in different time steps.341

Streaklines will (self-)intersect whenever a streakline is advected over the seed point of342

another streakline–which is guaranteed to happen in any basic visualization tool with-343

out careful seed placement and streakline truncation–, and timelines will intersect when344

their initial seed curves intersect. The visual clutter caused by line intersection can be345

mitigated by truncating lines if their distance falls below a certain threshold.346

5 Image-based Methods347

The previous geometry-based methods require the seeding of line geometry. Even348

when placing lines with an even spacing between them, there is still empty space between349

lines for which the flow behavior is not visualized, potentially missing out details. In the350

following, texture-based methods are described, which encode information at every out-351

put pixel.352

5.1 Texture Advection353

A common approach to observe air and liquid flows in experimental flow visual-
ization is by dye injection. Computationally, this can be reproduced by advecting a scalar
field. The computational setting, however, allows us to inject patterns leading to more
expressiveness. Since this advection is usually done on graphics processing units (GPUs),
where scalar fields are best represented in texture memory, this technique is also known
by the name texture advection. More formally, we can express the texture advection of
a scalar field s(x) with the flow map Φτ

t0(x), cf. Section 4.1, by using

s(x, t) = s(Φt0−t
t0 (x)) (8)

which results in the time-dependent scalar field s(x, t), which is equal to the initial tex-354

ture at t = t0. Conceptually, there are many different ways to implement the advec-355

tion, such as numerically solving it as a partial differential equation (MacCormack, 2002),356

which would also allow for the modeling of effects like dissipation, or by taking a Lagrangian357

approach that advects a particle backwards to the seed time and fetches the texture value,358

as done in Eq. (8). The latter method is illustrated in Fig. 3, which is able to deform359

the texture, here a simple checkerboard pattern, without numerical dissipation. The black360

regions show locations from which the backward particle integration in Eq. (8) left the361

flow domain. The deformation of individual squares becomes quickly apparent as they362

stretch under the repelling flow and roll up into vortices. In fact, structures emerge even363

when a noise texture is advected with the flow. Using patterns such as the checkerboard,364

we can also see where no deformation has occurred, which is less obvious in previous vi-365

sualization methods. Note that edges in the checkerboard are timelines of the flow.366

5.2 Line Integral Convolution367

The line integral convolution (LIC) (Cabral & Leedom, 1993) is among the most
common flow visualization methods, which is used to visualize the streamlines of a steady
vector field v(x). Given a texture T (x) with random noise values in [0, 1] and a convo-
lution kernel k(s) with a support in s ∈ [−l, l], the line integral convolution computes
a gray value image I(x0) for every point x0 in the domain:

I(x0) =

∫ s0+l

s0−l
k(s− s0) · T (s(s)) ds (9)

where s(s) is the streamline released at x0 that is traced in forward and backward di-368

rection for length l. Examples are shown in Fig. 4 (a)–(b). Conceptually, the LIC inte-369
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(a)

(b)

Figure 3: Texture advection of a checkerboard pattern reveals how patches deform during
advection. In (a), Cylinder2D flow from t0 = 10 for duration τ = 0.5 (top) and τ = 1.0
(bottom). In (b), Guadalupe flow from t0 = 20:22 UTC for τ = 02:46:40.
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(a) (b)

(c) (d)

Figure 4: Line integral convolution for the original flows (a)–(b), and after subtrac-
tion of the ambient motion (c)–(d). The ambient motion describes how flow features are
advected. After subtraction, flow features are revealed. In (a) and (c), we see the Cylin-
der2D flow at time t0 = 10 for τ = 0.2 ((a) top), τ = 1.0 ((a) bottom), τ = 0.1 ((c) top)
and τ = 0.5 ((c) bottom). In (b) and (d), Guadalupe at 18:57 UTC is shown.

grates the noise values along a streamline, where the length of the streamline is a user370

parameter. For pixels located nearby on the same streamline, the integration accumu-371

lates almost identical noise values, resulting in very similar gray values along the stream-372

line. Adjacent streamlines, however, sample an uncorrelated set of random values, re-373

sulting in a different gray value. It is important to note that the streamline should be374

arclength parameterized. If it were parameterized by the integration duration, too many375

identical noise values would be added once a streamline approaches a critical point or376

gets stuck at an obstacle, leading to noticeable artifacts and loss of visual contrast.377

5.3 Discussion378

The effectiveness of texture advections depends on the patterns that are advected,379

for example, the size of the squares of a checkerboard pattern. The larger the patterns,380

the less localized information becomes visible. While the shape of the advected squares381

informs the reader whether a deformation occurred or not, the display of non-deformed382

black and white squares still grabs attention through the display of edges that do not383

carry a particular meaning.384
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Despite their popularity, line integral convolutions are limited to the display of stream-385

lines, making them unsuitable for the extraction of dynamical features in time-dependent386

flow. The LIC images plotted for a given timestep in Figs. 4a and 4b convey very sim-387

ilar information to the streamlines plotted in Fig. 2. Their main advantage is that they388

cover the entire domain and avoid the seeding problem of the streamlines. While some389

extensions have been proposed that integrate along pathlines (Han-Wei Shen & Kao, 1997),390

those are less frequently used. A more common alternative is to subtract the ambient391

velocity from the flow in order to separate features such as vortices from their movement.392

In the literature, a number of approaches can be found, including the subtraction of an393

average inflow velocity (Weinkauf et al., 2007), or the harmonic component of a Helmholtz394

decomposition (Bhatia et al., 2014) to separate external from internal flow behavior. Al-395

ternatively, the ambient velocity can be described as the velocity of an observer that moves396

with flow features such as vortices. Motivated by the seminal observation of Lugt (1979)397

that there is no single observer that can follow all flow features in the domain at once,398

Günther et al. (2017) searched for an observer locally that sees the vector field in an as-399

steady-as-possible way. The velocity field seen by this observer thereby becomes approx-400

imately steady, making the use of streamlines appropriate to reveal flow features. The401

result of such an unsteadiness minimization using the spatially-varying formulation of402

Baeza Rojo and Günther (2020) is shown in Fig. 4 (c)–(d), which now reveals the vor-403

tices. Similar optimizations have been done globally (Hadwiger et al., 2019) and on gen-404

eral manifolds (Rautek et al., 2021). The optimization of reference frames is numerically405

challenging, especially on measured data, as it requires accurate derivative estimates. In406

the following, we move on to feature-based methods that are derived from pathline be-407

havior.408

6 Feature-based Methods409

6.1 Lagrangian Coherent Structures410

Fluid flows are a continuum of particles. In a flow, there are distinguished sets of411

particles, so-called material lines, that determine the behavior of the fluid. For a com-412

parative fluid flow analysis, those material lines are of high interest, since they divide413

the domain into regions with coherent behavior, which could be compared among given414

vector fields. For instance, such material lines enclose vortices or denote transport bar-415

riers, which are both important objects when studying transport and mixing. In the fluid416

dynamics literature, these structures are called Lagrangian coherent structures (LCS).417

Recently, Haller (2015) gave a comprehensive overview of the types of LCS and their ex-418

traction algorithms. We refer to Onu et al. (2015) for more details on LCS extraction419

techniques. LCS structures can be derived from variational principles, i.e., they are lines420

that maximize or minimize a certain behavior. Commonly, three types are distinguished:421

• Hyperbolic LCS are material lines that repel or attract particles locally the strongest (Haller,422

2011). These lines act as transport barriers and are found by observing flow be-423

havior in forward and backward time.424

• Elliptic LCS are the boundaries of vortices, which have been characterized as lines425

that bound coherent rotations (Haller et al., 2016), that show no stretching dur-426

ing advection (Serra & Haller, 2016), or that inhibit vorticity diffusion (Katsanoulis427

et al., 2019).428

• Parabolic LCS are material lines along which material shearing is minimized (Farazmand429

et al., 2014), which identifies jet cores. In atmospheric flows, they have also been430

characterized as lines with maximal flow velocity (Kern et al., 2017).431

In the following, we take a closer look at vortices and transport barriers, since those are432

the structures that can be found in Kármán vortex streets.433
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Figure 5: Comparison of vorticity, which is calculated per time slice, with its temporally-
coherent extension named Lagrangian-averaged vorticity deviation (LAVD). In (a), the
Cylinder2D flow is visualized by calculating vorticity (top) at time t0 = 12, and using
LAVD (bottom) at t0 = 12, τ = 2, U = 41 × 41 grid points. In (b), the Guadalupe flow
is depicted by vorticity (left) at 17:02 UTC and by LAVD (right) from t0 = 15:47 UTC
for duration τ = 02:46:40 and U = 21× 21 grid points, which covers 252 km2.

6.2 Vortices434

Vortex measures are categorized into region-based and line-based methods. Region-435

based methods return a scalar field that expresses how strong the vortical behavior is436

at a certain location. To extract vortices, a threshold needs to be applied, which is of-437

ten not easy to set, since vortices decay over time or carry a varying amount of angu-438

lar momentum throughout the domain. Line-based methods on the other hand return439

the so-called vortex coreline, which is the line that all other particles swirl around. In440

the following, we explain two of the most common vortex measures for two-dimensional441

flows. We refer to Günther and Theisel (2018) for a recent and comprehensive overview442

of vortex extraction techniques.443

One of the most prominent region-based vortex measures is the vorticity scalar field
ω(x, y)

ω(x, y) =
∂v(x, y)

∂x
− ∂u(x, y)

∂y
(10)
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For meteorological flows, we let ω(x, y) be the vorticity measured relative to the Earth’s
rotation, which is then also referred to as relative vorticity. The sign of ω determines the
rotation direction, whereas the magnitude relates to twice the angular velocity of a vir-
tual tracer particle. It can be seen in Eq. (10) that the vorticity field requires an esti-
mation of derivatives, which is challenging in noisy measurement data. It can be expected
that the resulting vorticity scalar field contains patches of noise, which in fact are ap-
parent in Fig. 5. Rather than spatially averaging the values to remove the noise, as was
done in Horváth et al. (2020), it is more suitable to average vorticity values along a path-
line over time. This way, long-living vortex structures are revealed and short-lived noise
is removed. Vorticity ω is only Galilean invariant–i.e. invariant only in an inertial non-
accelerating reference frame–because the rotation of an observer adds to the vorticity
scalar, which is undesirable since ideally all observers should observe the feature in the
same way. Fortunately, the difference between two spatially-neighboring vorticity val-
ues cancels the added observer rotation, making not only vorticity extrema, but also the
deviation of relative vorticity–i.e., the difference to the local average vorticity–objective.
Haller et al. (2016) proposed the Lagrangian-averaged vorticity deviation, which aver-
ages the vorticity deviations along pathlines:

LAVD(x, t; τ) =

∫ t+τ

t

|ω(Φs−t
t (x), s)− ωavg(Φs−t

t (x), s)| ds (11)

where ωavg(x, t) = 1
|U(x)|

∫
U(x)

ω(x, t)dV is the average vorticity in a local neighbor-444

hood U . LAVD is objective and locates temporally-coherent structures. For the Cylin-445

der2D flow in Fig. 5(a), LAVD (bottom) emphasizes locations that remain for a long446

time inside a vortex. Thus, the vortices in the immediate wake of the cylinder become447

more circular than with vorticity (top).448

In the Guadalupe flow, we not only see that LAVD removed the noise success-449

fully, but the vortex locations are also well aligned with the circular cloud patterns. More-450

over, the captured vortex decay is asymmetric: anticyclonic vorticity decreases signif-451

icantly faster than cyclonic vorticity. Such contrast is detectable in the visual appear-452

ance of the vortices too, because anticyclonic eddies have less well-preserved spiral pat-453

terns than cyclonic eddies at the same downstream location. As discussed in Horváth454

et al. (2020), an asymmetric island wake is the expected behavior, predicted by both lab-455

oratory experiments and numerical simulations, which arises from the combined effects456

of Earth’s rotation and Guadalupe’s nonaxisymmetric shape resembling an inclined flat457

plate at low angle of attack. The good correspondence between the asymmetric LAVD458

field and the observed cloud structures indirectly confirms the fidelity of the fluid dy-459

namics embedded in the measured wind field.460

6.3 Material Boundaries461

When releasing a small group of particles inside a finite-sized sphere, the small sphere
is likely to deform under the action of advection over time. Locations at which a sphere
elongates locally the strongest are part of a repelling hyperbolic LCS. The opposite at-
tracting hyperbolic LCS are found by observing the transport behavior in backward time.
In continuum mechanics, this local deformation is linearly approximated by the right Cauchy-
Green deformation tensor:

C(x, t; τ) =
∂Φτ

t (x)

∂x

T
∂Φτ

t (x)

∂x
(12)

The gradient of the flow map, which is numerically calculated by central differences, is
multiplied with its transpose to make this deformation measure invariant under rotations
of the observer. The largest eigenvalues of this tensor (λmax) encode the strongest lin-
ear elongation. Introducing normalizations to account for the squaring of the gradient
in Eq. (12), the exponentional separation rate, and the continued growth over the du-
ration τ , leads to the finite-time Lyapunov exponent (FTLE) (Shadden et al., 2005; Haller,
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Figure 6: The finite-time Lyapunov exponent reveals attracting (backward FTLE, blue)
and repelling (forward FTLE, red) material lines in the domain that strongly influence
the passive transport of particles. In the Cylinder2D, slice t0 = 10 is shown with FTLE
integration duration τ = 1.5. The Guadalupe flow is displayed at time t0 = 18:22 UTC
with an FTLE integration duration of τ = 02:46:40 both forward and backward.

2001):

FTLE(x, t; τ) =
1

|τ |
ln
√
λmax(C(x, t; τ)) (13)

Ridges in this scalar field are frequently used as approximations to hyperbolic LCS. Fig. 6462

depicts forward FTLE (repelling behavior) and backward FTLE (attracting behavior)463

in the Cylinder2D and the Guadalupe flows. Attracting FTLE ridges are computed464

by backward integration within a time span [t − τ, t], i.e., they reveal structures that465

have formed in the past up until the current time t. The alignment of the attracting FTLE466

ridges in the Guadalupe flow with the cloud patterns shows that the transport dynam-467

ics of the satellite-measured wind field are in agreement with the observed organization468

of clouds. Repelling FTLE ridges are computed by forward integration within a time span469

[t, t + τ ], i.e., they indicate regions that will show repelling behavior in the future. In470

a von-Kármán vortex street, the strongest repelling ridges (red) arise from particles that471

attract onto (or towards) an attracting FTLE ridge (blue), but will then separate in op-472

posite directions along the blue FTLE ridge, as the separating particles get curled up473

in different vortices. The red ridge line and the blue ridge line thereby separate vortex474

regions. In topological terms, the intersection of those red and blue ridge lines results475

in a bifurcation point.476
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(a)

(b)

Figure 7: Feature-based quality assessment of the Guadalupe velocity field obtained
by cloud tracking. In (a), overlaying vortices (LAVD in red/blue) and attracting trans-
port barriers (backward FTLE in yellow) on visible imagery shows the agreement of the
retrieved fluid dynamical processes with the observed cloud patterns. Here, at t0 = 18:22
UTC for an FTLE and LAVD integration duration of τ = 02:46:40. In (b), a space-time
mapping of the flow reveals temporally coherent vortex paths with FTLE time slices from
bottom to top at 14:32, 19:22, and at 22:37 UTC.
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6.4 Space-Time Mapping477

Time-dependent 2D flows have three dependent variables: the position coordinates
x and y, and the time t. A rather natural form to visualize a time-dependent flow is to
visualize each time slice independently and play the time series as a video. This form
of animation is suitable to show the instantaneous changes around the currently observed
time slices, but is not very effective in communicating motions that occurred across larger
time spans, such as the path of a vortex in our vortex street. For such a 2D time-dependent
flow, we can lift the domain one dimension up by mapping the time to the third spatial
dimension, which leads to a so-called space-time visualization. We will denote a coor-
dinate in space-time with x = (x, t), which incidentally also describes a coordinate in
the phase space of a particle, thus making this a space that captures all dimensions of
the dynamical system. There are two common space-time velocity fields that can be de-
rived from the unsteady vector field, see Theisel et al. (2004):

s(x) =
d

dt

xy
t

 =

u(x, y, t)
v(x, y, t)

0

 p(x) =
d

dt

xy
t

 =

u(x, y, t)
v(x, y, t)

1

 (14)

which differ in the rate of change of the last dimension, i.e., the time. The tangent curves478

in the field s(x) are streamlines, whereas the tangent curves of p(x) are pathlines. A di-479

rect visualization of the flow features in these two fields immediately shows streamline-480

oriented and pathline-oriented vector field topology. For fluid flows, we are primarily in-481

terested in p(x). Due to the mapping of the time axis to the third spatial dimension,482

the paths of vortices, later extracted as extremal lines of the LAVD field, become quickly483

apparent. For an introduction to the rendering and extraction of extremal features, we484

refer to Kindlmann et al. (2018).485

In Fig. 7, the previously introduced feature extraction methods are used to assess486

the quality of the vector field that was reconstructed from measured cloud motion. In487

Fig. 7a, the visible band satellite image of the vortex street is overlayed with the ellip-488

tic LCS (in terms of LAVD) and attracting hyperbolic LCS (in terms of backward FTLE).489

We can clearly see that the emergence of patterns in the cloud field is constrained by and490

organized around the LCS, which provides strong evidence that the retrieved vector field491

exhibits the same fluid dynamical processes that the real-world clouds actually experi-492

enced. The space-time visualization in Fig. 7b further sheds light onto the temporal evo-493

lution of the vortices, with the blue axis denoting time. Not only can we see how the vor-494

tices interacted with each other, but we can also observe the temporal stability of the495

extracted paths, which can likewise be considered as a quality indicator.496

6.5 Discussion497

Derived features, such as region-based vortex measures or the finite-time Lyapunov498

exponent field as indicator for hyperbolic Lagrangian coherent structures, are not only499

useful for a qualitative visual comparison, but can also be useful for a feature-centered500

quantitative evaluation. In both flow visualization and fluid dynamics, two important501

properties have been recognized as essential characteristics that flow features should pos-502

sess. First, the features should be seen by all rotating and translating observers in an503

equal manner, their motion notwithstanding, which is referred to as objectivity. Both504

LAVD and FTLE fulfill this property. Second, a Lagrangian coherent feature should–505

as the name suggests–be coherent when observed along pathlines over time. Thus, both506

LAVD and FTLE measure the fluid behavior over a certain time window. The length507

of this time window, thereby remains a crucial user parameter. A limitation of both LAVD508

and FTLE is that it is unclear where along the pathline the characteristic feature be-509

havior was observed. For example, consider pathlines that stay close together most of510

the time and only separate strongly towards the end of the set time interval. This de-511

layed separation is not immediately visible from the scalar field alone and is only revealed512
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when the parameter-dependence of the features is explored, cf. Sagristà et al. (2020) for513

parameter analysis tools. Alternatively, features could be extracted locally per time slice514

and joined afterwards in time to precisely determine the beginning and end of a feature’s515

life time. The latter motivates ongoing research on the temporally-local analysis of time-516

dependent vector field topology (Baeza Rojo & Günther, 2020), which could deliver an-517

other set of features useful for a comparative analysis of scalar and vector fields. This518

direction of research is left for future work.519

7 Conclusions520

With the advent of the latest generation geostationary imagers, such as ABI on GOES-521

R, satellite wind retrievals on the km and minute scale have become a reality. These high522

spatiotemporal-resolution winds enable the study of mescoscale geophysical flows and523

are also in increasing demand as input data for the ever-finer resolution operational fore-524

cast models. However, the visualization and validation–or at least consistency test–of525

these data sets is challenging and progress on these fronts will require moving beyond526

traditional techniques, such as gridpoint-based comparisons to radiosonde, aircraft, or527

reanalysis winds. To this end, we demonstrated advanced visualization and dynamical528

system analysis tools through the example of a high-resolution GOES-16 wind data set529

that captures an atmospheric Kármán vortex street in the lee of Guadalupe.530

The fluid dynamics of the reconstructed vector field should give rise to flow fea-531

tures that correlate with the observed mesoscale cloud patterns, since those patterns are532

the result of a fluid dynamical evolution. We discussed the advantages and disadvantages533

of various visualization approaches. Direct methods such as arrow plots are able to show534

noise in the data, but are obscured by the ambient motion of features in time-dependent535

flow. Geometry-based methods (integral curves) require careful seeding and are primar-536

ily useful for qualitative analysis, and when shown in combination with an underlying537

scalar field that makes use of the non-occluded spaces. Texture-based techniques such538

as texture advection and line integral convolution convey information more densely, but539

especially LIC must be used with care, since it displays streamlines, which are non-physical540

unless observed in a suitable unsteadiness-minimizing reference frame. Feature-based meth-541

ods such as LAVD and FTLE, however, reveal Lagrangian Coherent Structures that drive542

the fluid dynamical processes. Both of the latter approaches are objective and incorpo-543

rate the desirable temporal coherence of the features in question.544

The LAVD and FTLE fields computed from the GOES-16 winds align well with545

the observed mushroom cloud patterns of the vortex street, indirectly validating the satel-546

lite retrievals. In the current study, the comparison of observed and derived structures547

was qualitative (visual) only, but it is not difficult to put the comparison on a quanti-548

tative basis by applying feature-based spatial forecast verification methods. These meth-549

ods operate precisely on the type of coherent objects that are represented by the Lagrangian550

Coherent Structures of the flow. The FTLE ridges can be extracted from both observed551

and simulated wind fields and then quantitatively compared by for instance the SAL tech-552

nique (Wernli et al. (2008)), which assesses the structure (size and shape), amplitude,553

and location of the identified objects. Other quantitative metrics could also be derived554

based on the presence and distance of vortices and transport barriers. In the next step,555

we plan to evaluate the performance of numerical simulations of the Guadalupe vortex556

street and their sensitivity to the used boundary layer scheme based on such feature-centered557

quality metrics. In principle, Lagrangian coherent structures reveal the fluid dynamical558

processes not only in 2D, but also in 3D flow. While it is a challenging problem to re-559

cover 3D wind vectors from observations, for example from multi-layered clouds, the fluid560

dynamical processes of model data could similarly be studied by the methods discussed561

in this paper, for example for air quality forecasting such as volcanic ash plumes or smoke562

plumes from wild fires.563
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