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Abstract

Great Salt Lake (GSL), Utah, lost 1.89 +/- 0.04 meters of water during the 2012 to 2016 drought. During this timeframe,

data from the GRACE mission do not detect anomalous mass loss, but nearby Global Positioning System (GPS) stations show

significant shifts in position. We find that crustal deformation, from unloading the Earth’s crust with the observed GSL water

loss alone, does not explain the GPS displacements, suggesting contributions from additional water storage loss surrounding

GSL. This study applies a damped least squares inversion to the 3D GPS displacements to test a range of distributions of radial

mass load rings to fit the observations. When considering the horizontal and vertical displacements simultaneously, we find the

most realistic distribution of water loss while also resolving the observed water loss of the lake. Our preferred model identifies

radially decreasing mass loss up to 64 km from the lake. The contribution of exterior groundwater loss is substantial (10.9

+/- 2.8 kmˆ3 vs. 5.5 +/- 1.0 kmˆ3 on the lake), and greatly improves the fit to the observations. Nearby groundwater wells

exhibit significant water loss during the drought, which substantiates the presence of significant water loss outside of the lake,

but also highlights greater spatial variation than our model can resolve. We observe seismicity modulation within the inferred

load region, while the region outside the (un)loading reveals no significant modulation. Drier periods exhibit higher quantities

of events than wetter periods and changes in trend of the earthquake rate are correlated with regional mass trends.
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Key Points:

 3D time-series of local GPS stations are sensitive to mass loss in Great Salt Lake and 
additional groundwater contributions nearby.

 During the 2012 – 2016 drought, the Great Salt Lake basin lost 10.9 ± 2.8 km3 of 
groundwater while the lake itself lost 5.5 ± 1.0 km3.

 Seismicity near Great Salt Lake is modulated throughout the drought cycle with 
significantly more events occurring during drought periods.

This manuscript has been submitted for consideration to Journal of 
Geophysical Research – Solid Earth, on March 6, 2021. 
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Abstract

Great Salt Lake (GSL), Utah, lost 1.89 ± 0.04 meters of water during the 2012 to 2016 drought. 
During this timeframe, data from the GRACE mission do not detect anomalous mass loss, but 
nearby Global Positioning System (GPS) stations show significant shifts in position. We find that
crustal deformation, from unloading the Earth’s crust with the observed GSL water loss alone, 
does not explain the GPS displacements, suggesting contributions from additional water storage 
loss surrounding GSL. This study applies a damped least squares inversion to the 3D GPS 
displacements to test a range of distributions of radial mass load rings to fit the observations. 
When considering the horizontal and vertical displacements simultaneously, we find the most 
realistic distribution of water loss while also resolving the observed water loss of the lake. Our 
preferred model identifies radially decreasing mass loss up to 64 km from the lake. The 
contribution of exterior groundwater loss is substantial (10.9 ± 2.8 km3 vs.  5.5 ± 1.0 km3 on the 
lake), and greatly improves the fit to the observations. Nearby groundwater wells exhibit 
significant water loss during the drought, which substantiates the presence of significant water 
loss outside of the lake, but also highlights greater spatial variation than our model can resolve. 
We observe seismicity modulation within the inferred load region, while the region outside the 
(un)loading reveals no significant modulation. Drier periods exhibit higher quantities of events 
than wetter periods and changes in trend of the earthquake rate are correlated with regional mass 
trends.  

Plain Language Summary  

During the 2012 – 2016 drought, GPS stations near Great Salt Lake (GSL), UT, showed a 
distinct shift in position. The GSL lost nearly two meters of water. As water mass is lost from a 
lake, the crust uplifts and extends from the center of the source; however, the amount of water 
loss observed on the GSL is not enough to explain the displacements observed by nearby GPS 
stations. To address this, water loss in the form of additional rings of groundwater surrounding 
the GSL are estimated and we find the model that best fits the GPS displacements. We find that 
water loss up to 64 km from the edge of the lake contributes to the observed signal, at a volume 
substantially larger than lost on the lake itself. Our results show that GPS data can be used to 
infer localized water loss and discriminate between loss of surface water versus ground water. 
Furthermore, we see evidence that changes in mass in the region result in changes in the quantity
and rate of seismicity; significantly more events occur in the crust underneath the area with water
fluctuations when there is a reduced water load.
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1 Introduction

Decline in fresh water availability is one of many societal challenges resulting from the 
compounding effects of climate change and population growth (J. S. Famiglietti, 2014; Gleeson 
et al., 2012; Vörösmarty et al., 2000). Most groundwater loss can be attributed to the increase of 
pumping for irrigation and other anthropogenic use, particularly during times of drought (Castle 
et al., 2014; J. S. Famiglietti et al., 2011; Ojha et al., 2019; Matthew Rodell et al., 2009; Russo &
Lall, 2017; Scanlon et al., 2012; Tiwari et al., 2009), with depletion rates often highest in land-
locked basins within (semi-)arid regions (Wang, 2018). Commensurate with the groundwater 
loss, significant global surface water loss has also been recorded (Pekel et al., 2016), which is 
likewise most dramatic for (saline) lakes in (semi-)arid areas (Wurtsbaugh et al., 2017). Regional
water loss due to the recent drought in the Western United States has provided insight into the 
balance between surface (i.e., lakes and reservoirs) and groundwater loss. The ratio of ground to 
surface water loss has been reported to be 1.89 for the Upper Colorado River basin (Castle et al., 
2014), and 4.79 for California’s San Joaquin Valley (Ojha et al., 2019).

The Gravity Recovery and Climate Experiment (GRACE) satellite mission has brought 
invaluable insight into changes in terrestrial water storage (TWS) (e.g., James S. Famiglietti & 
Rodell, 2013; Rodell et al., 2018). GRACE’s wide spatial resolution of ~300 km (Wahr et al., 
2013), limits the observations of TWS changes to large regional scales. Even significant 
deviations localized on relatively small basins, such as Great Salt Lake (GSL), Utah, are virtually
undetectable (Rodell & Famiglietti, 1999). Many studies have found Global Positioning System 
(GPS) data sensitive to mass variation associated with extreme drought conditions (Amos et al., 
2014; Argus et al., 2017; Borsa et al., 2014). Changes in load result in an elastic response of the 
crust which is reflected in both the vertical and horizontal components. While many studies rely 
primarily on vertical GPS observations to identify and quantify TWS variation, some studies 
have shown that horizontal motion is a useful indicator of mass localization when regional trends
are well accounted for (Fu et al., 2013; Kreemer & Zaliapin, 2018; Wahr et al., 2013).

This study investigates a three-dimensional (3D) transient deformation signal observed at
GPS sites near GSL between 2012 and 2016. Onset of this signal correlates well with the 
beginning of severe drought conditions in the region. During this period, GSL surface elevation 
decreased by 1.89 ± 0.04 m. Concurrently, GRACE only observes 1.18 ± 0.08 m of equivalent 
water loss, if the full 300 km resolution is consolidated on the lake, corroborating the findings of 
Rodell & Famiglietti (1999). While GRACE is unable to quantify the load on the lake for this 
timeframe, a previous study showed that GPS sites near GSL exhibited load-induced 
deformation correlated with lake level variation between 1997 and 2003 (Elósegui et al., 2003). 
Only two long-running GPS sites were available at the time of that study, but results identified 
the signal in all three components and suggested the need for more complex load geometries. 
Currently, long-running GPS sites are well distributed around the lake and provide an 
opportunity to further investigate the sensitivity of 3D GPS near GSL to small spatial scale mass 
variation (Figure 1). During the recent drought, GPS timeseries reflect horizontal extension and 
vertical uplift at pairs of stations located in opposite sides of GSL, indicating the presence of an 
unloading signal (Figure 2). We find that the observed unloading of the lake (consistent with 
observed lake level drop) underestimates the observed GPS displacements, and that a load on 
GSL of -5.01 ± 0.26 meters is required to explain the signal (Figures S1 and S2). This is 
substantially larger than the -1.89 ± 0.04 meters observed on the surface of the lake and 
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unrealistic. Considering the observed ratios of groundwater to surface water shown in previous 
studies, as well as observed well water level changes during this drought, it is likely that 
additional groundwater unloading has contributed to the GPS transients. To address this, we 
estimate displacements due to GSL unloading combined with distributions of groundwater loss 
and identify the spatial distribution of mass loss in this region that best explains the 3D GPS 
signal.

2 Observations

Great Salt Lake sits in close proximity to the Wasatch fault to the east (Figure 1). For this
study, we only include data within the GSL basin and west of the Wasatch fault. GPS 
displacements and seismicity on opposing sides of the fault are expected to behave 
independently and reflect unique dynamics respectively.

2.1 Water Level Variation

Historically, GSL has experienced large fluctuations in lake surface elevation, and the 
lake level has been in decline since the 1850’s (Elósegui et al., 2003; Wurtsbaugh et al., 2017). 
To investigate the modern trends, we inspect two long running lake elevation gauges (USGS 
Water Resources, 2020). Deviations in lake elevation compare well with the Palmer Drought 
Severity Index (PDSI), which provides an index for the intensity of dryness in a region 
(Abatzoglou et al., 2017) (Figure 2a). In Figure 2, PDSI for the study area is reflected as the 
background shading and highlights the temporal correlation of dry and wet periods with lake 
level deviations. The period of 2004 – 2012 (henceforth referred to as our base period), reveals 
variable drought conditions and minor net change in lake elevation. Between 2012 and 2016 (i.e.,
the drought period), the PDSI indicates consistent drought conditions and GSL exhibits steady 
lake level decline, totaling 1.89 ± 0.04 m of surface elevation lost.

The increase in lake level observed at the end of 2016 reveals the combined effects of 
increased precipitation and anthropogenic modifications. GSL is split by a railroad causeway 
which separates the lake into northern and southern portions and was retrofitted to improve flow 
in December of 2016 (Hassibe & Keck, 1991). This has historically caused a difference in water 
level across the causeway. For the period of 2004 – 2015, the lake elevation in the northern 
portion showed a consistent ~20-cm lower level than that of the southern half. Between 2015 and
2016, the halves of the lake diverge slightly with the southern portion retaining more water than 
the northern half. This deviation is not readily distinguishable in the GPS data and is unlikely to 
influence loading results due to the magnitude and localization of the deviation. For the purpose 
of this study, we refer to the average of the two stations.

Groundwater well observations reveal a similar pattern of water level decline, with the 
majority of wells reflecting a distinct trend of water loss during the drought. Well data are 
obtained from the National Groundwater Monitoring Network, with sites distributed around the 
majority of GSL (Figure 1) (NGWMN, 2020). Since many wells have poor temporal resolution 
or inconsistent sampling, three interpretations of the groundwater variation during the drought 
are provided (Table S1).  First, we calculate the Theil-Sen slope and apply it to the duration of 
the drought (Sen, 1968; Theil, 1950). All wells exhibit water loss during this period and cover a 
range of water variation between -0.28 and -9.34 meters, and for 22 out 39 available wells, the 
decline is significant at the 2-standard deviation level, where the standard deviation is calculated 
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as 1.4826 times the median absolute deviation (Huber, 1981). Similar results are observed when 
applying the MIDAS algorithm to determine the trends while accounting for seasonality (Blewitt
et al., 2016). The MIDAS method provides robust estimates, however, only nine stations had 
enough data points required for this method. Many wells provide data near the start and end 
times of the drought and investigation of the net difference reveals similar observed ranges to 
MIDAS. These observations highlight substantial mass variation exterior to the bounds of GSL 
and exhibit the largest water level deviations at wells closest to the lake.

2.2 GRACE and NLDAS

GRACE data are able to identify spatio-temporal variation of TWS (e.g., Castle et al., 
2014; Ojha et al., 2019; Tiwari et al., 2009). Although our study area is below the spatial 
resolution of GRACE, we inspect the temporal variability of the GRACE signal. Here we use the
Release 06 version of GRACE data and select the mascons which span 300 km, centered on GSL
(Landerer & Swenson, 2012). Following Sakumura et al. (2014), an ensemble mean solution for 
the JPL, GFZ, and CSR solutions is calculated for each GRACE mascon. Minimal variation is 
observed at unique grid points, so we present the average of the timeseries in this study. Figure 
2b shows the GRACE data detrended relative to the base period. The data show a 4-year net loss 
of water mass of 41.1 mm, which is equivalent to only 3.48 ± 0.21 km3 of water loss. This 
volume is comparable to only -1.18 ± 0.08 m if the load was entirely constrained to the bounds 
of the lake. Although the timing of the deviation matches well with the onset of the drought, the 
volume is significantly smaller than the 5.58 ± 0.11 km3 implied from the observed lake level 
decline itself. This indicates that for the small spatial scale of this study, GRACE identifies the 
regional onset of water loss but does not accurately estimate the magnitude of the loss, 
supporting the findings of Rodell & Famiglietti (1999).

The North American Land Data Assimilation System Phase 2 (NLDAS-2), provides 
unique land surface parameters which distinguish surface process variation over time (Xia et al., 
2012). Here we use the NLDAS-2 monthly Noah model to observe variation in soil moisture 
content within the top two meters of soil near GSL (Mocko, 2012). These timeseries show no 
clear distinction between the base and drought periods (Figure 2c), and indicate that the source of
the deviation observed in both the GRACE data and GPS displacements, is not confined to the 
uppermost soil layers.

2.3 GPS Displacement Fields

The ability of GPS to resolve load variations is highly dependent on the removal of 
extraneous signals, particularly within the horizontal components (Wahr et al., 2013). To better 
distinguish the signal attributed to the drought period, contributions of local and regional signals 
must be taken into account. We address this issue by first identifying well-behaved, long-
running, GPS sites in the region. We analyzed GPS station coordinate time-series data that are 
publicly available at the Nevada Geodetic Laboratory in the IGS14 reference frame (Blewitt et 
al., 2018). Stations are limited to those which recorded data for the entirety of the drought period 
as well as four years of data spanning the base period. Three stations, SLCU, ZLC1, and P057, 
meet the time requirements but exhibit unmodeled transients associated with local aquifer 
deformation (Hu & Bürgmann, 2020), and/or questionable monumentation. Consequentially, we 
consider 17 stations in our study area (Figure 1), including stations CEDA and COON, which 
were investigated by Elósegui et al. (2003). The considered stations provide good spatial 
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coverage around the lake, except to the west of GSL where there are currently no stations 
installed.

Regional common mode variation in the GPS positions can alter the inferred 
displacement field and is a source of error for our study (Kreemer & Blewitt, 2021; Li et al., 
2020; Márquez Azúa & DeMets, 2003; Serpelloni et al., 2013)‐Azúa & DeMets, 2003; Serpelloni et al., 2013) . We are interested uniquely in 
how the GSL area affects the GPS positions and not how the positions may be affected by more 
large-scale signals. We therefore use nineteen long-running regional stations outside our study 
area with limited data gaps (see inset of Figure 1), to calculate the regional common mode 
component (CMC). Station timeseries are detrended, and the CMC is defined as the median 
position at each epoch and removed from our study timeseries. A comparison of GPS 
observations is shown in Figure 2d. These timeseries are detrended relative to the base period, 
with the common mode, annual, and semi-annual components removed. A consistent change in 
trend is present for the duration of the drought period in all three components. Each pair of 
stations are positioned on opposite sides of the lake, as identified in Figure 1, revealing east-west
and north-south extension with vertical uplift.

To distinguish the unique displacements attributed to the drought period, long term 
trends, due to both tectonic and non-tectonic sources, must be removed from each timeseries. 
Individual velocities of the cleaned timeseries, for both the base and drought periods, are 
calculated using MIDAS. This algorithm is robust to outliers, steps, and annual signals in the 
timeseries. The drought relative to base-period velocities are then multiplied by the duration of 
the drought period. Signals which are consistent across both periods (such as the long-term 
tectonic loading) are removed by this approach, identifying the net displacements attributed to 
the drought period.  

 The resulting GPS drought-specific displacement field shows motion consistent with an 
unloading signal centered on/near GSL (Figure 3). Horizontal displacements exhibit extension 
across the lake. All stations exhibit vertical uplift, with the largest displacements at stations 
located closest to the lake. We note that stations to the south of the GSL exhibit more scatter than
their counterparts to the north.

3 Groundwater Loading Model

3.1 Elastic Loading Model

To establish the relationship between observed GPS displacements and the signal 
attributed to load variations, we apply an elastic loading model. Homogeneous half-space models
are often used for this goal (Amos et al., 2014; D’Urso & Marmo, 2013); however, Argus et al. 
(2017) showed that these models overestimate the displacements in the vertical component by a 
factor of ~2.5. This also affects the horizontal distribution of the uplift signal. Accurately 
calculating the vertical displacement field is key to the inversion as it can lead to underestimation
of the net loading and poor interpretation of the distribution of mass. For this goal, we use the 
LoadDef software (Martens et al., 2019). LoadDef calculates displacements on a self-gravitating 
stratified sphere for a given Earth model and allows for complex geometries of the load 
distributions. This study uses the Preliminary Reference Earth Model (PREM) (Dziewonski & 
Anderson, 1981). While more detailed Earth models exist [e.g., CRUST 1.0 and CSEM (Fichtner
et al., 2018; Laske et al., 2013)], the resulting GPS displacements differ by only fractions of a 
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millimeter between the different Earth models, and estimated loads differ by only a few 
centimeters. We therefore retain PREM as our Earth model.

3.2 Groundwater Model Setup

Because the effect of the drought does not end at the edge of the lake, our goal is to 
determine whether additional water loss around GSL contributes to the observed GPS 
displacements during the drought period. For this purpose, we consider additional rings of loads 
surrounding the lake. Two constraints are applied to the distribution of loads within individual 
rings. First, contributions of load variation within bedrock units are assumed to be negligible, so 
loads are constrained to alluvial units, as identified by the Utah Geologic Unit Map (Hintze et al.,
2000). Second, since the basement footwall side of the Wasatch fault to the east sits adjacent to 
sedimentary layers on the GSL side to the west, it therefore acts as a natural barrier to 
groundwater. Thus, we prevent loads from crossing the fault to the east. Up to three parallel load 
rings are tested, each with varying widths between 10 and 45 km. For each unique distribution, 
Green’s functions are calculated with LoadDef for use in the inversion. The randomization of the
ring distributions results in 1,889 unique load models tested in this study.

Since we do not expect loads in adjacent rings to differ wildly and because some load 
rings may contain too many or too few GPS observations, we include a Tikhonov regularization 
term in our inversion (e.g., Aster et al., 2013). The regularized least squares equation is shown in
Equation 1 and our individual load solutions are shown in Equation 2.

 (1)

(2)

Here G is our matrix of Green’s functions, m contains the loads we are inferring (as 
equivalent water thickness), d contains our observed GPS displacements, W is the weighting 
matrix built from the GPS observation uncertainties, L is the roughening matrix for the 
regularization, and α is the regularization parameter. To find the optimal balance between the 
regularization and the fit to the data, a range of α values are tested. We choose the best solution 
from the L-curve for each load distribution, which identifies the regularization parameter which 
minimizes the solution and residual norms. 

3.3 Preferred Groundwater Model

Our primary goal is to minimize the misfit to the displacements, but this does not 
guarantee the most realistic model, so a few considerations are taken into account to identify the 
preferred model. First, we omit solutions which exhibit ring loads greater than the inferred load 
on the lake. The individual loads represent an average load, applied evenly across the surface of 
each region. Although the average decline in water levels in the wells is higher than the load on 
the lake, the GSL is likely to exhibit the highest average rate of load variation due to direct 
evaporation from the surface of GSL itself. Groundwater observations reveal spatial variability 
in the distribution of loads, indicating non-uniform load variation exterior to the lake. The 
average load across the surface of each ring is likely to be lower than localized well observations
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as well as lower than the uniform load change on the lake. Similarly, due to the intensity of the 
drought and well observations, we do not expect rings to exhibit average net positive loads. Non-
positivity is not enforced in the inversion, but solutions with positive loads are simply removed 
from these results. Of the remaining solutions, we identify those that best minimize the data 
misfit and also have a GSL load comparable to that observed during the drought.

 We find that our preferred model estimates a load of -1.85 ± 0.33 m on the GSL and 
provides a good fit to both the horizontal and vertical GPS displacements observed, with a 3D 
RMS misfit of 1.73 mm (Figure 4). This model exhibits two radial load rings. An inner ring of 
24 km width with a load of -1.16 ± 0.20 m, and an outer ring of 40 km width with a load of -0.32
± 0.14 m. The load inferred on the lake itself is very close to the observed -1.89 ± 0.04 m. 
Inclusion of the groundwater loads provide a more disperse vertical uplift signal and 
significantly improves the fit to the vertical displacements. This results in a net improvement in 
the 3D GPS misfit of 30.5%, compared to the model that fixed the observed lake level decline 
solely to the bounds of the lake. The regularization parameter for our preferred model is 1.75, 
with the solution sitting well on the corner of the trade-off curve. A comparison of the preferred 
ring model to the observed and inferred lake only models is shown in Table 1. While the volume 
inferred on the lake is comparable to that observed (i.e., 5.5 ± 1.0 km3 versus the observed 5.58 ±
0.11 km3), the combined volume attributed to groundwater loss surrounding the GSL is twice the
lake loss at 10.9 ± 2.8 km3, spread over an area nearly six times larger than GSL, resulting in a 
total model volume of -16.5 ± 3.8 km3. This is nearly five times the volume observed within the 
spatial resolution of GRACE. The volume we find is consistent across the full set of ring model 
solutions with a median volume of -15.92 ± 0.71 km3, at 95% confidence.

4 Regional Seismicity Modulation

We next assess whether the drought-modulated load variations on the Earth’s surface is 
reflected in spatio-temporal variations in seismicity in our study area. We use the Utah 
Authoritative Region earthquake catalog for 1981 – 2020. Prior to our analysis, the catalog was 
declustered following Zaliapin & Ben Zion (2020)‐Azúa & DeMets, 2003; Serpelloni et al., 2013) . Events are limited to only mainshocks that 
occur to the west of the Wasatch fault. While studies have identified strong correlations between 
seasonal water level variation and seismicity (Amos et al., 2014; Craig et al., 2017; Kreemer & 
Zaliapin, 2018), we find no evidence of annual seismicity modulation, in agreement with the 
findings of Hu & Bürgmann (2020), so we inspect the catalog for evidence of temporally 
variable, drought-cycle induced seismicity modulation. To allow for an equal assessment of 
seismicity during wet and dry periods, we cut the catalog to the period of 1987.1 – 2020, in 
which there are equal timeframes where the PDSI indicates either wet or dry periods. The 
distribution of earthquakes is shown in Figure 5. Earthquakes are primarily located to the 
northeast of the lake near the Hansel Valley, Hansel Mountain, and North Promontory faults, and
to the south of the lake along the Wasatch fault. Events occurring within the bounds of the lake 
occur near the ends of the Great Salt Lake fault zone, which runs NW–SE along the eastern edge 
of the lake and dips to the west.

The trimmed catalog is separated into two sets. The first are those events which occur 
within the load of the preferred model, shown in light blue. The second reflects the events 
occurring outside the load region. For an objective comparison of earthquakes occurring inside 
and outside of the load, the area of the outside region is constrained to be equivalent to that of the
load region. Due to the sparsity of events to the west of GSL, the outside region is mostly limited
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to the area north of the GSL (i.e., up to 42.5°) and south of the GSL. Finally, we set a 
conservative magnitude cutoff of 1.3, inferred from an inspection of the cumulative and non-
cumulative distribution of events within our region. This cutoff magnitude is comparable the 
findings of Pankow (2004), who found a cutoff magnitude of 1.2 for the GSL basin for the 
period of 2000 – 2003. 

Following these criteria, the cumulative number of events in the study area (i.e., the 
defined inside and outside areas) between 1987.1 and 2020 is 1,345. We then separate these 
events depending on whether they occurred during dry and wet periods and whether they are in 
the area inside or outside the load. This reveals that inside the load area, earthquakes occur ~20%
more frequently when the region is experiencing drier conditions, while outside the load area 
there only being ~2% more events during drier periods (Table 2). While the number of events in 
this catalog is fairly small, we find that the observed ratio of events during dry over wet periods 
for the load region is well above the 95%, 1-sided confidence level, following 100,000 temporal 
randomizations of the catalog. The same ratio outside of the load is not statistically significant. 
The prevalence of earthquakes during dry time periods identifies modulation of seismicity likely 
associated with fault unloading due to the reduced mass on the Earth’s surface within the load 
region during dry periods.

To further investigate the temporal aspect of the seismicity near the GSL, we compare the
relationship between the surface elevation rate of the lake and the seismicity rate, shown in 
Figure 6. Each dataset is smoothed with a 3-year moving window to identify long term trends. 
Regional PDSI is shown in the background, indicating periods of relative dryness and wetness in 
the study area. Periods which exhibit drier conditions see an increase in seismicity rate as the 
lake level recedes, and the inverse occurs as the lake fills. Notably, the earthquake rate exhibits 
periods of distinct trends which are consistent and unique for each individual period. The 
relationship between the timing of these rate changes is illuminated when compared to the rate of
GSL surface elevation change. We see a temporal relationship between changes in the trend of 
seismicity rate and the inflection of the GSL surface elevation rate. As the surface elevation rate 
changes sign, a change in the trend of the rate of earthquakes is closely observed. Increasing 
seismicity trend changes are tied to periods when the lake exhibits negative rates and decreasing 
seismicity trends relate to periods when the lake is filling. These results further indicate a close 
relationship between the trends of mass fluctuation within the GSL basin and seismicity.

5 Discussion  

We find that the observed drought-induced GPS displacements can best be described by 
the presence of additional groundwater mass loss surrounding the GSL. When we invert only for 
the load on GSL itself, we find an unrealistic load on the GSL that is 2.65 times higher than what
is observed from the lake level decline. In our preferred model, which includes mass loss outside 
the GSL, we resolve the observed unloading of GSL between 2012 and 2016. It is possible to 
produce a model which estimates the load on the lake from the vertical component only, but the 
3D inversion produces more consistent estimates. The median GSL load estimate is -1.87 ± 0.15 
m compared to -1.75 ± 0.22 m for the vertical only models. Furthermore, the vertical-only 
inversion produces higher ring estimates. The balance between reduced GSL load estimates and 
increased ring load estimates, indicates a bias due to the distribution of GPS sites, which is 
addressed by the inclusion of the horizontal components. We see that the full 3D inversion better
localizes the mass to the lake and produces more consistent results.
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The estimated volume of water loss is substantial, at 16.4 ± 3.8 km3, with a ratio of 
groundwater to surface water volume of 2:1. Differences between the GRACE estimated volume 
of 3.48 ± 0.21 km3 and the observed lake volume loss of 5.58 ± 0.11 km3 can be explained by the
spatial resolution of GRACE; however, this leaves significant water level variation observed at 
nearby wells unaccounted for. Wells within the two inferred load rings reveal a relationship 
between the ratio of the inferred loads and the observed mean water level change. Table 3 shows 
the average water level change and range (using three interpretations of the well data during the 
drought period, see section 2.1) for wells located in each ring. The Theil-Sen approach allows for
more well solutions than MIDAS and the results are plotted on Figure 4. All three methods find 
an average water level change within Ring 1 near -3 m and less water loss in Ring 2. 
Additionally, the ratio of water loss between the two rings is comparable to the ratio inferred by 
our model (with 3 – 4 times higher change in water level within the inner ring compared to the 
outer ring) when the well change is estimated by MIDAS or net difference approaches. While the
well observations show that some localized areas exhibit large changes in groundwater levels, 
they also show a wide range of observed water displacement. Considering that wells are 
primarily located where water levels are most observable or intriguing, it is likely that water 
levels in wells reflect above average loss of water compared to the entire surface area of the 
inferred rings. Furthermore, our inferred rings reflect area averaged loads, which provides insight
into the net magnitude of water loss required to explain the GPS displacements, but 
underestimates the complexity of the real mass distribution. We note that GPS uplift is 
significantly less to the west of the GSL than east of the GSL (Figure 3), which may reflect 
greater water loss closer to the Wasatch fault and our inferred load rings provide a more 
regionally averaged estimate. To better infer the complexity of the real load distribution in future
studies, a significantly higher density of long running GPS stations is required than are currently 
installed such that more complex load distributions can be considered. 

Vertical displacements associated with loading signals are largest near the center of the 
load, while horizontal displacements reach their maximum at the edges of the load (e.g., Becker 
& Bevis, 2004). Consequently, extension or contraction is expected within the load bounds, 
depending on the sign of the signal, with the largest change in vertical stresses directly under the 
load. In the presence of listric normal faults [e.g., the Wasatch fault zone as suggested by Pang et
al. (2020) and Savage et al. (1992)], the role of vertical stresses on faults is increased at depth 
when the fault dip becomes shallower (i.e., less than 45°). Since the majority of events within the
catalog do not occur near the surface, we expect higher quantities of events during drier periods, 
due to the reduction of vertical stresses on the faults cutting underneath the load at depth. This 
matches well with our findings (Table 2), and we find the strongest distinction between the 
inside and outside regions with this load distribution. If the actual load were constrained closer to
the bounds of the lake, or to a much wider region around GSL, such a distinction between dry 
and wet events would not be clear at this specific radial distance. The observed seismicity 
modulation may therefore corroborate the spatial extent of the load implied by our model. While 
a cutoff magnitude of 1.3 is used in this study, observed seismicity trends are also found when 
using magnitudes above 0.8, but they are only significant (at the 95% confidence level) when 
considering events with magnitudes above 1.2 (Figure S3). In fact, the higher the cutoff 
magnitudes we consider, the higher the difference between dry and wet events within the load 
region, while the events outside the load continue to reflect no significant trends.

The temporal relationship between seismicity and mass variation is highlighted in Table 4
with correlations between seismicity rates and PDSI, GRACE, and GSL surface elevation rate. A
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clear distinction exists between inside and outside load events, with those inside exhibiting anti-
correlation and those outside showing no relationship. Further comparison of the earthquake 
rates to lake elevation rates highlights the long-term seismicity modulation in the region (Figure 
6). Changes in the trend of earthquake rate in the region alter when the rate of GSL surface 
elevation changes sign. That is, that as the lake shifts from losing water to gaining water, the 
seismicity rate changes from negative to positive. These trends are consistent between inversions
of the lake elevation rate and are unique for each time period, supporting an inverse relationship 
between load variation and seismicity.

This study advances the findings of Elósegui et al., 2003, and further distinguishes the 
contribution the GSL and surrounding groundwater make to regional water loss during droughts. 
As noted in their study, load geometry plays a significant role in best explaining the GPS 
observations and the placement of loads determines which signals will be constructive or 
deconstructive at each site. Significantly higher complexity of load distribution is applied in this 
study than their two disk model; however, the real distribution of groundwater loads is 
undoubtedly still more complex. This likely explains some of the residuals exhibited at GPS sites
to the south of the GSL where wells exhibit increased spatial variability of water level change 
and localized aquifers have been shown to alter the deformation field (Hu & Bürgmann, 2020). 
Nevertheless, the simple distribution of surface averaged groundwater loss in addition to the 
unloading of the GSL, provides significant improvement to the interpretation of GPS data near 
the GSL. The results of this study highlight that mass variability on local scales have a 
significant impact on GPS timeseries and must be accounted for when, for example, using those 
data to infer secular loading rates on nearby faults.

6 Conclusions

The results presented in this study find that GPS data are able to observe and localize 
mass loss within the GSL basin and that the regional extent of inferred water loss during the 
drought period is supported by both regional seismicity variations and well observations. 
Inclusion of two surface averaged groundwater rings in the inversion, covering a radial distance 
of 64 km from the lake, significantly improve the fit to the GPS observations. We find the 
inferred groundwater loss to be substantial (10.9 ± 2.8 km3), at twice the volume observed on the
lake (5.58 ± 0.11 km3 ), and are able to recover the lake observation with an inferred lake volume
loss of 5.5 ± 1.0 km3. The modeled ratio of groundwater to surface water estimates is comparable
to the findings of Castle et al. (2014) and Ojha et al. (2019) where groundwater loss exceeded 
surface water loss at a rate 1.89 – 4.79 times higher, during the same drought. Additionally, wells
within our inferred load region corroborate the presence of significant water level decline, and 
the ratio between average well water levels and inferred loads, between the inner and outer rings,
are comparable. 

We find that earthquakes within the load region occur during dry versus wet periods 
~20% more frequently and that the earthquake rate is anti-correlated with the PDSI, GRACE, 
and lake elevation rate, with coefficients of -0.45, -0.55, and -0.52 respectively. Events outside 
the load show no significant relationships. These results reveal a long-term relationship between 
the distribution and variation of loads with stresses on faults, resulting in drought-cycle 
influenced seismicity modulation within the loaded region.
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 Our study benefits greatly from the distribution of long running GPS stations near the 
GSL, which directly improved the performance of the inversion and advances the finding of 
Elósegui et al., 2003. Future modeling of load variation on and near GSL will be greatly 
improved by the quantity of GPS stations which have been installed in the past 10 years, 
although there remains no nearby GPS sites to the west of the lake. Additionally, the expansion 
of the GPS network will reduce uncertainty in load estimates and allow for more complex load 
geometries. Our case study for the GSL, highlights how regional GPS networks are particularly 
well suited to identify water loss in similarly sized lakes and reservoirs during drought periods. 
Continued expansion of GPS networks will further allow water management authorities to 
identify and quantify regional variation in water storage and its redistribution.

442

443

444

445

446

447

448

449

450

451

452



Manuscript submitted to Journal of Geophysical Research: Solid Earth

Acknowledgments

We thank H. Martens for her help with the LoadDef software and I. Zaliapin for 
declustering the earthquake catalog. We are grateful for UNAVCO for the maintenance of the 
NOTA GPS stations and making the data freely available. This work was supported by NSF 
grant EAR1615253 and NASA Earth Surface and Interior grant 80NSSC19K1044 to CK and 
GB. All figures were produced using Generic Mapping Tools (Wessel et al., 2013).

Data Availability Statement

GPS timeseries are available from the Nevada Geodetic Laboratory at 
geodesy.unr.edu/gps_timeseries/ (Blewitt et al., 2018). GSL surface elevation data can be found 
courtesy of the USGS at https://waterdata.usgs.gov/nwis/sw, and groundwater well data from the
National Ground-Water Monitoring Network through the data portal at 
https://cida.usgs.gov/ngwmn/. NLDAS solutions are available through the GES DISC at 
https://disc.gsfc.nasa.gov/datasets/NLDAS_NOAH0125_M_002/summary. PDSI data from the 
West Wide Drought Tracker can be downloaded at 
https://wrcc.dri.edu/wwdt/batchdownload.php. CSR, GFZ, and JPL GRACE RL06 solutions are 
available through the PODAAC archive (NASA Jet Propulsion Laboratory (JPL), 2019a, 2019b, 
2019c). The earthquake catalog can be found through the University of Utah at 
https://quake.utah.edu/earthquake-information-products/earthquake-catalogs. MIDAS software is
available at http://geodesy.unr.edu/ (Blewitt et al., 2016), and the LoadDef software is available 
at https://github.com/hrmartens/LoadDef (Martens et al., 2019).

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474



Manuscript submitted to Journal of Geophysical Research: Solid Earth

References

Abatzoglou, J. T., McEvoy, D. J., & Redmond, K. T. (2017). The West Wide Drought Tracker: Drought Monitoring 

at Fine Spatial Scales. Bulletin of the American Meteorological Society, 98(9), 1815–1820. 

https://doi.org/10.1175/BAMS-D-16-0193.1

Amos, C. B., Audet, P., Hammond, W. C., Bürgmann, R., Johanson, I. A., & Blewitt, G. (2014). Uplift and 

seismicity driven by groundwater depletion in central California. Nature, 509(7501), 483–486. 

https://doi.org/10.1038/nature13275

Argus, D. F., Landerer, F. W., Wiese, D. N., Martens, H. R., Fu, Y., Famiglietti, J. S., et al. (2017). Sustained Water 

Loss in California’s Mountain Ranges During Severe Drought From 2012 to 2015 Inferred From GPS. 

Journal of Geophysical Research: Solid Earth, 122(12), 10,559-10,585. 

https://doi.org/10.1002/2017JB014424

Aster, R., Borchers, B., & Thurber, C. (2013). Chapter Four - Tikhonov Regularization. In Parameter Estimation 

and Inverse Problems (Second Edition, p. Pages 93-127). Academic Press.

Becker, J. M., & Bevis, M. (2004). Love’s problem. Geophysical Journal International, 156(2), 171–178. 

https://doi.org/10.1111/j.1365-246X.2003.02150.x

Blewitt, G., Kreemer, C., Hammond, W. C., & Gazeaux, J. (2016). MIDAS robust trend estimator for accurate GPS 

station velocities without step detection. Journal of Geophysical Research: Solid Earth, 121(3), 2054–

2068. https://doi.org/10.1002/2015JB012552

Blewitt, G., Hammond, W., & Kreemer, C. (2018). Harnessing the GPS Data Explosion for Interdisciplinary 

Science. Eos, 99. https://doi.org/10.1029/2018EO104623

Borsa, A. A., Agnew, D. C., & Cayan, D. R. (2014). Ongoing drought-induced uplift in the western United States. 

Science, 345(6204), 1587–1590. https://doi.org/10.1126/science.1260279

Castle, S. L., Thomas, B. F., Reager, J. T., Rodell, M., Swenson, S. C., & Famiglietti, J. S. (2014). Groundwater 

depletion during drought threatens future water security of the Colorado River Basin. Geophysical 

Research Letters, 41(16), 5904–5911. https://doi.org/10.1002/2014GL061055

475



Manuscript submitted to Journal of Geophysical Research: Solid Earth

Craig, T. J., Chanard, K., & Calais, E. (2017). Hydrologically-driven crustal stresses and seismicity in the New 

Madrid Seismic Zone. Nature Communications, 8(1), 2143. https://doi.org/10.1038/s41467-017-01696-w

D’Urso, M. G., & Marmo, F. (2013). On a generalized Love’s problem. Computers & Geosciences, 61, 144–151. 

https://doi.org/10.1016/j.cageo.2013.09.002

Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and 

Planetary Interiors, 25(4), 297–356. https://doi.org/10.1016/0031-9201(81)90046-7

Elósegui, P., Davis, J. L., Mitrovica, J. X., Bennett, R. A., & Wernicke, B. P. (2003). Crustal loading near Great Salt

Lake, Utah. Geophysical Research Letters, 30(3). https://doi.org/10.1029/2002GL016579

Famiglietti, J. S. (2014). The global groundwater crisis. Nature Climate Change, 4(11), 945–948. 

https://doi.org/10.1038/nclimate2425

Famiglietti, J. S., Lo, M., Ho, S. L., Bethune, J., Anderson, K. J., Syed, T. H., et al. (2011). Satellites measure recent

rates of groundwater depletion in California’s Central Valley. Geophysical Research Letters, 38(3). https://

doi.org/10.1029/2010GL046442

Famiglietti, James S., & Rodell, M. (2013). Water in the Balance. Science, 340(6138), 1300–1301. 

https://doi.org/10.1126/science.1236460

Fichtner, A., van Herwaarden, D.-P., Afanasiev, M., Simutė, S., Krischer, L., Çubuk Sabuncu, Y., et al. (2018). The ‐Azúa & DeMets, 2003; Serpelloni et al., 2013)

Collaborative Seismic Earth Model: Generation 1. Geophysical Research Letters, 45(9), 4007–4016. 

https://doi.org/10.1029/2018GL077338

Fu, Y., Argus, D. F., Freymueller, J. T., & Heflin, M. B. (2013). Horizontal motion in elastic response to seasonal 

loading of rain water in the Amazon Basin and monsoon water in Southeast Asia observed by GPS and 

inferred from GRACE: HORIZONTAL SEASONAL MOTIONS BY GPS/GRACE. Geophysical 

Research Letters, 40(23), 6048–6053. https://doi.org/10.1002/2013GL058093

Gleeson, T., Wada, Y., Bierkens, M. F. P., & van Beek, L. P. H. (2012). Water balance of global aquifers revealed 

by groundwater footprint. Nature, 488(7410), 197–200. https://doi.org/10.1038/nature11295

Hassibe, W. R., & Keck, W. G. (1991). The Great Salt Lake. U.S Department of the Interior, U.S. Geological 

Survey. Retrieved from https://books.google.com/books?id=F13LpLqW-EwC



Manuscript submitted to Journal of Geophysical Research: Solid Earth

Hintze, L., Willis, G., Laes, D., Sprinkel, D., & Brown, K. (2000). DIGITAL GEOLOGIC MAP OF UTAH 

Compiled by.

Hu, X., & Bürgmann, R. (2020). Aquifer deformation and active faulting in Salt Lake Valley, Utah, USA. Earth and

Planetary Science Letters, 547, 116471. https://doi.org/10.1016/j.epsl.2020.116471

Huber, P. (1981). Robust statistics. Wiley, New York.

Kreemer, C., & Blewitt, G. (2021). Robust estimation of spatially varying common-mode components in GPS time-

series. Journal of Geodesy, 95(1), 13. https://doi.org/10.1007/s00190-020-01466-5

Kreemer, C., & Zaliapin, I. (2018). Spatiotemporal Correlation Between Seasonal Variations in Seismicity and 

Horizontal Dilatational Strain in California. Geophysical Research Letters, 45(18), 9559–9568. 

https://doi.org/10.1029/2018GL079536

Landerer, F. W., & Swenson, S. C. (2012). Accuracy of scaled GRACE terrestrial water storage estimates. Water 

Resources Research, 48(4). https://doi.org/10.1029/2011WR011453

Laske, G., Masters, G., Ma, Z., & Pasyanos, M. (2013). Update on CRUST1.0 - A 1-degree global model of Earth’s 

crust. Abstract EGU2013-2658 Presented at 2013 Geophys. Res. Abstracts 15, 15, 2658.

Li, W., Jiang, W., Li, Z., Chen, H., Chen, Q., Wang, J., & Zhu, G. (2020). Extracting Common Mode Errors of 

Regional GNSS Position Time Series in the Presence of Missing Data by Variational Bayesian Principal 

Component Analysis. Sensors, 20(8), 2298. https://doi.org/10.3390/s20082298

Márquez Azúa, B., & DeMets, C. (2003). Crustal velocity field of Mexico from continuous GPS measurements, ‐Azúa & DeMets, 2003; Serpelloni et al., 2013)

1993 to June 2001: Implications for the neotectonics of Mexico. Journal of Geophysical Research: Solid 

Earth, 108(B9). https://doi.org/10.1029/2002JB002241

Martens, H. R., Rivera, L., & Simons, M. (2019). LoadDef: A Python-Based Toolkit to Model Elastic Deformation 

Caused by Surface Mass Loading on Spherically Symmetric Bodies. Earth and Space Science, 6(2), 311–

323. https://doi.org/10.1029/2018EA000462

Mocko, D. (2012). NLDAS Noah Land Surface Model L4 Monthly 0.125 x 0.125 degree, Version 002 [Data set]. 

NASA Goddard Earth Sciences Data and Information Services Center. 

https://doi.org/10.5067/NOXZSD0Z6JGD



Manuscript submitted to Journal of Geophysical Research: Solid Earth

NASA Jet Propulsion Laboratory (JPL). (2019a). CSR TELLUS GRACE Level-3 Monthly LAND Water-

Equivalent-Thickness Surface-Mass Anomaly Release 6.0 in netCDF/ASCII/Geotiff Formats [Data set]. 

NASA Physical Oceanography DAAC. https://doi.org/10.5067/TELND-3AC06

NASA Jet Propulsion Laboratory (JPL). (2019b). GFZ TELLUS GRACE Level-3 Monthly LAND Water-

Equivalent-Thickness Surface-Mass Anomaly Release 6.0 in netCDF/ASCII/Geotiff Formats [Data set]. 

NASA Physical Oceanography DAAC. https://doi.org/10.5067/TELND-3AG06

NASA Jet Propulsion Laboratory (JPL). (2019c). JPL TELLUS GRACE Level-3 Monthly LAND Water-

Equivalent-Thickness Surface-Mass Anomaly Release 6.0 in netCDF/ASCII/Geotiff Formats [Data set]. 

NASA Physical Oceanography DAAC. https://doi.org/10.5067/TELND-3AJ06

NGWMN. (2020). National Ground-Water Monitoring Network. Retrieved January 19, 2021, from 

https://cida.usgs.gov/ngwmn/

Ojha, C., Werth, S., & Shirzaei, M. (2019). Groundwater Loss and Aquifer System Compaction in San Joaquin 

Valley During 2012–2015 Drought. Journal of Geophysical Research: Solid Earth, 124(3), 3127–3143. 

https://doi.org/10.1029/2018JB016083

Pang, G., Koper, K. D., Mesimeri, M., Pankow, K. L., Baker, B., Farrell, J., et al. (2020). Seismic Analysis of the 

2020 Magna, Utah, Earthquake Sequence: Evidence for a Listric Wasatch Fault. Geophysical Research 

Letters, 47(18), e2020GL089798. https://doi.org/10.1029/2020GL089798

Pankow, K. L. (2004). Triggered Seismicity in Utah from the 3 November 2002 Denali Fault Earthquake. Bulletin 

of the Seismological Society of America, 94(6B), S332–S347. https://doi.org/10.1785/0120040609

Pekel, J.-F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water 

and its long-term changes. Nature, 540(7633), 418–422. https://doi.org/10.1038/nature20584

Rodell, M., & Famiglietti, J. S. (1999). Detectability of variations in continental water storage from satellite 

observations of the time dependent gravity field. Water Resources Research, 35(9), 2705–2723. 

https://doi.org/10.1029/1999WR900141

Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, F. W., & Lo, M.-H. (2018). 

Emerging trends in global freshwater availability. Nature, 557(7707), 651–659. 

https://doi.org/10.1038/s41586-018-0123-1



Manuscript submitted to Journal of Geophysical Research: Solid Earth

Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. 

Nature, 460(7258), 999–1002. https://doi.org/10.1038/nature08238

Russo, T. A., & Lall, U. (2017). Depletion and response of deep groundwater to climate-induced pumping 

variability. Nature Geoscience, 10(2), 105–108. https://doi.org/10.1038/ngeo2883

Sakumura, C., Bettadpur, S., & Bruinsma, S. (2014). Ensemble prediction and intercomparison analysis of GRACE 

time-variable gravity field models. Geophysical Research Letters, 41(5), 1389–1397. 

https://doi.org/10.1002/2013GL058632

Savage, J. C., Lisowski, M., & Prescott, W. H. (1992). Strain accumulation across the Wasatch Fault near Ogden, 

Utah. Journal of Geophysical Research: Solid Earth, 97(B2), 2071–2083. 

https://doi.org/10.1029/91JB02798

Scanlon, B. R., Faunt, C. C., Longuevergne, L., Reedy, R. C., Alley, W. M., McGuire, V. L., & McMahon, P. B. 

(2012). Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. 

Proceedings of the National Academy of Sciences, 109(24), 9320–9325. 

https://doi.org/10.1073/pnas.1200311109

Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American 

Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934

Serpelloni, E., Faccenna, C., Spada, G., Dong, D., & Williams, S. D. P. (2013). Vertical GPS ground motion rates in

the Euro-Mediterranean region: New evidence of velocity gradients at different spatial scales along the 

Nubia-Eurasia plate boundary. Journal of Geophysical Research: Solid Earth, 118(11), 6003–6024. https://

doi.org/10.1002/2013JB010102

Theil, H. (1950). A rank-invariant method of linear and polynomial regression analysis, 1-2; confidence regions for 

the parameters of linear regression equations in two, three and more variables. Indagationes Mathematicae,

1(2). Retrieved from https://ir.cwi.nl/pub/18446

Tiwari, V. M., Wahr, J., & Swenson, S. (2009). Dwindling groundwater resources in northern India, from satellite 

gravity observations. Geophysical Research Letters, 36(18). https://doi.org/10.1029/2009GL039401

USGS Water Resources. (2020). USGS Surface-Water Daily Data for the Nation. Retrieved January 25, 2021, from 

https://waterdata.usgs.gov/nwis/dv/?referred_module=sw



Manuscript submitted to Journal of Geophysical Research: Solid Earth

Vörösmarty, C. J., Green, P., Salisbury, J., & Lammers, R. B. (2000). Global Water Resources: Vulnerability from 

Climate Change and Population Growth. Science, 289(5477), 284–288. 

https://doi.org/10.1126/science.289.5477.284

Wahr, J., Khan, S. A., Dam, T. van, Liu, L., Angelen, J. H. van, Broeke, M. R. van den, & Meertens, C. M. (2013). 

The use of GPS horizontals for loading studies, with applications to northern California and southeast 

Greenland. Journal of Geophysical Research: Solid Earth, 118(4), 1795–1806. 

https://doi.org/10.1002/jgrb.50104

Wang, J. (2018). Recent global decline in endorheic basin water storages. Nature Geoscience, 11, 10.

Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., & Wobbe, F. (2013). Generic Mapping Tools: Improved Version 

Released. Eos, Transactions American Geophysical Union, 94(45), 409–410. 

https://doi.org/10.1002/2013EO450001

Wurtsbaugh, W. A., Miller, C., Null, S. E., DeRose, R. J., Wilcock, P., Hahnenberger, M., et al. (2017). Decline of 

the world’s saline lakes. Nature Geoscience, 10(11), 816–821. https://doi.org/10.1038/ngeo3052

Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., et al. (2012). Continental-scale water and 

energy flux analysis and validation for the North American Land Data Assimilation System project phase 2

(NLDAS-2): 1. Intercomparison and application of model products. Journal of Geophysical Research: 

Atmospheres, 117(D3). https://doi.org/10.1029/2011JD016048

Zaliapin, I., & Ben Zion, Y. (2020). Earthquake Declustering Using the Nearest-Neighbor Approach in Space-Time-‐Azúa & DeMets, 2003; Serpelloni et al., 2013)

Magnitude Domain. Journal of Geophysical Research: Solid Earth, 125(4), e2018JB017120. 

https://doi.org/10.1029/2018JB017120

476



Manuscript submitted to Journal of Geophysical Research: Solid Earth

Tables

Model Region Load (m) Volume (km3) 3D RMS (mm)

Observed GSL GSL -1.89  ± 0.04 -5.58  ± 0.11 2.49

Solved GSL GSL -5.01 ± 0.26 -14.8  ± 0.8 1.85

Preferred Ring
Model

GSL -1.85  ± 0.33 -5.5 ± 1.0

1.73Ring 1 – 24 km -1.16  ± 0.20 -7.5 ± 1.3

Ring 2 – 40 km -0.32  ± 0.14 -3.5 ± 1.5

Total Volume -16.5 ± 3.8

 

Table 1: Comparisons between the observed GSL load model (fixed to -1.89 m), the solved GSL
load model (inferred at -5.01 m), and the preferred ring model.

Earthquake Counts by
Region

Dry Periods Wet Periods Expected
Median

Observed
Ratio

95% Confid. in
expected Ratio

Inside Load 444 369 406 1.20 1.15

Outside Load 269 263 266 1.02 1.19

Combined 713 632 672 1.13 1.12

Table 2: Regional earthquakes for the timeframe of 1987.1 – 2020. Dry and wet periods are 
defined by the PDSI value at the time of the events. Expected median and confidence ratio are 
calculated from 100,000 randomizations of the catalog. The inside load exhibits significantly 
more events during dry periods than during wet periods.
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Method Location Number
of Wells

Mean Water Level
Change (m)

Median Water Level
Change (m)

Water Level
Range (m)

Theil-Sen
Ring 1 9 -3.25 -2.98 -6.21 -0.28

Ring 2 13 -2.39 -1.77 -9.34 -0.45

MIDAS
Ring 1 4 -3.04 -3.78 -4.37 -0.25

Ring 2 5 -0.77 -0.11 -3.16 0.32

Net Difference
2012 - 2016

Ring 1 9 -2.98 -2.47 -7.34 -0.24

Ring 2 13 -1.00 -1.00 -3.87 0.61

Table 3:  Comparison of observed groundwater level changes with respect to location within the 
inferred load rings. Three methods are tested to quantify the observed water deviation during the 
drought: the Theil-Sen slope estimate, the MIDAS algorithm, and a net difference between the 
start and end of the drought. For the Theil-Sen and MIDAS solutions, only wells with water level
differences greater than two sigma are presented. The net difference solutions take the difference
in the average position of 2012 ± 0.1 and 2016 ± 0.1. Each method finds a higher average water 
loss within the bounds of Ring 1 compared to Ring 2. The ring ratios for both MIDAS and net 
difference approaches is comparable to the ratio of the ring loads inferred in our model.

Correlation Coefficient

Earthquake Rate by
Region

PDSI GRACE Lake Elevation Rate

Inside Load -0.45 -0.55 -0.52

Outside Load -0.01 -0.18 -0.19

Combined -0.34 -0.51 -0.45

Table 4:  Correlation coefficients between PDSI, GRACE, and lake elevation rate with the rate 
of earthquakes in each region. The distribution of the inside load and outside load regions are 
shown in Figure 5, and the total represents the combination of these regions.
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Figures

Figure 1: Location map of the study area. Green triangles represent GPS stations included in this 
study. Red triangles represent GPS stations not included. Turquoise rectangles represent USGS 
water surface elevation gauges and grey circles represent USGS groundwater well locations. The
red box in the inset identifies the bounds of the figure with yellow stars showing the location of 
stations used to calculate the common mode in the GPS time-series. Labeled stations identify 
locations of GPS timeseries shown in Figure 2. Black lines represent significant faults in the 
region, including the Wasatch fault. No data east of the Wasatch fault are included in this study.
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Figure 2: Comparison of GPS, GRACE,
PDSI, and GSL surface elevation data.
Background shading indicates the Palmer
Drought Severity Index averaged over the
study area. Green data represent the base
period of 2004 – 2012, red data represent
the drought period of 2012 – 2016, and
black data represents later data not included
in this study. a) Averaged GRACE data
covering a range of 300 km centered on
GSL, detrended relative to the base period. 
b) Average of the two GSL water surface
elevation stations. c) Average NLDAS soil
moisture content within the study area. d)
GPS timeseries detrended relative to the
base period. Regional common mode and
annual/semi-annual signals have been
removed. Station pairs in each component
are located on opposite sides of the lake.
Black lines represent the trends during the
drought period calculated with MIDAS.
Stations P122 and P100 show East – West
extension, while stations P100 and P115
show North – South extension during the
test period. Stations P122 and P115 both
show vertical uplift. Station locations are
shown in Figure 1.
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Figure 3:  Observed GPS displacements for the drought period (2012 – 2016) relative to the base 
period (2004 – 2012). Blue arrows represent horizontal displacements with 95% confidence 
ellipses. Circles represent vertical displacements. Note that horizontal displacements exhibit 
extension centered on/near GSL, while the largest vertical displacements are located at stations 
nearest the lake.
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Figure 4: Displacements and distribution of the preferred load model. This model includes the 
load on GSL and two rings of groundwater at widths of 24 km (inner ring) and 40 km (outer 
ring). a) Comparison of observed and modeled displacements at GPS stations. Blue arrows 
represent observed horizontal displacements with 95% confidence ellipses. Red arrows represent 
modeled horizontal displacements. Inner circles represent the observed GPS displacements, 
while outer circles represent modeled displacements. Faults are represented as thin black lines. 
The data misfit for this model is 1.73 mm.  b) Inferred load distribution. Polygon shading 
represents the load inferred for GSL and two additional rings. GSL load is inferred at -1.85 ± 
0.33 m, the inner ring at -1.16 ± 0.20 m, and the outer ring at -0.32 ± 0.14 m. Circles represent 
changes in groundwater levels observed at wells, with the same color scale as the ring loads. c) 
Modeled displacement field on a grid. Black arrows show horizontal displacements while the 
background shading shows vertical displacements. The bounds of GSL are shown as the thick 
black line.
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Figure 5: Distribution of regional
earthquakes for 1987.1 – 2020. Light blue
polygon shows the preferred model load
distribution. Light yellow polygon defines
the region used to identify earthquakes
outside of the load region. The area of this
region is equivalent to the area of the
modeled load and the northern section ends
at 42.5° N. All regional earthquakes are
shown as grey circles, those inside of the
load and greater than Mw 1.3 are shown as

green circles, and those chosen outside of
the load and greater than Mw 1.3 are shown

as brown circles.
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Figure 6: Comparison of earthquake rates for the inside (green) and outside (brown) load regions 
with the rate of lake elevation change over time (white). Each dataset has been smoothed with a 
3-year moving window. Background shading shows PDSI values, scale as shown in Figure 2. 
Black dashed line represents the neutral line of the GSL elevation rate. Vertical black lines 
indicate breakpoints for periods of unique trends in the earthquake rate in the inside load area. 
Note that the timing of the GSL elevation rate inflection often closely matches the timing of 
changes in the trends of the earthquake rate for the inside load region. Those periods which do 
not match the inflection better match switches in the PDSI. The outside load region shows 
minimal variation with the exception of the 1999 – 2004 period.  
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Figure S1.  

Modeled displacements for a load equivalent to the observed lake level change between 
2012 and 2016 (-1.89 m). Displacements are calculated with LoadDef. Applied load is 
constrained to the bounds of GSL. a) Comparison of observed and modeled 
displacements at GPS stations. Blue arrows represent observed horizontal displacements 
with 95% confidence ellipses. Red arrows represent modeled horizontal displacements. 
Inner circles represent the observed GPS displacements while outer circles represent 
modeled displacements. Faults are represented as thin black lines. The 3D data misfit for 
this model is 2.49 mm. b) Modeled displacement field on a grid. Black arrows show 
horizontal displacements, while the background shading shows vertical displacements. 
The bounds of the region where the load is applied is shown by the thick black line. Note 
the poor fit to the vertical component. 
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Figure S2.  

Modeled displacements for the inferred load on GSL. The distribution of load is 
constrained to the bounds of GSL and applied equally. Key as described in Figure S1. 
The inferred load is 5.01 ± 0.26 m with a data misfit of 1.85 mm. Note that the fit 
improves but the load is significantly higher than the observed GSL water loss and 
unrealistic.
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Figure S3.  

Confidence level plot comparing dry and wet period events, for the inside and outside 
load regions, across a range of cutoff magnitudes of the earthquake catalog. Reds indicate
events which occur during dry periods as identified by the PDSI. Blues indicate events 
which occur during wet periods. Solid colored lines reflect events within the inside load 
region. Dashed colored lines reflect events within the outside load region. Black lines 
show two sigma confidence bounds for the inside region (solid) and outside region 
(dashed) following 100,000 randomizations of the catalog at each magnitude. Grey 
vertical bar reflects the chosen cutoff magnitude of 1.3. Note that for the inside load 
region, the number of dry events is above the significance level for all magnitudes above 
1.2. 
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Drought Displacement Calculation Method

Theil-Sen MIDAS Net Diff.

Well ID Location Longitude Latitude
Water
Level

Disp. (m)
σ (m)m))

Water
Level

Disp. (m)
σ (m)m))

Water
Level

Disp. (m)

403339112152501 Ring 1 -112.2588 40.5619 -3.79 0.452 -4.37 1.06 -3.27
403355112173601 Ring 1 -112.2947 40.5647 -2.14 0.112 ~ ~ ~
403400112144001 Ring 1 -112.2461 40.5647 -4.95 0.613 -4.25 0.323 -7.34
403555112230303 Ring 1 -112.3850 40.5986 -0.84 0.102 ~ ~ ~
403949112043301 Ring 1 -112.0766 40.6636 0.28 0.294 ~ ~ -0.61
405412111525701 Ring 1 -111.8833 40.9019 -6.21 0.707 ~ ~ -6.40
410523112053301 Ring 1 -112.0933 41.0897 -2.91 0.404 ~ ~ -2.47
410852111580501 Ring 1 -111.9688 41.1477 -5.16 0.699 ~ ~ -3.46
411035111594501 Ring 1 -111.9966 41.1763 -0.22 1.147 ~ ~ -0.77
411348112013601 Ring 1 -112.0274 41.2299 -2.98 0.931 -3.30 0.130 -2.24
414411112543701 Ring 1 -112.9111 41.7363 -0.29 0.094 -0.26 0.002 -0.24
401818112014501 Ring 2 -112.0299 40.3049 0.01 0.065 0.02 0.004 0.02
401818112034201 Ring 2 -112.0624 40.3049 -0.51 0.174 ~ ~ ~
402317111554401 Ring 2 -111.9292 40.3881 -1.54 0.135 ~ ~ ~
402333111513401 Ring 2 -111.8579 40.3930 -3.27 1.546 -3.16 0.075 -3.87
403126112444501 Ring 2 -112.7480 40.5236 -2.14 0.233 ~ ~ ~
403511111541501 Ring 2 -111.9049 40.5863 -0.45 0.127 ~ ~ 0.14
403916111575901 Ring 2 -111.9672 40.6544 0.08 0.162 0.32 0.021 0.13
404152111525101 Ring 2 -111.8816 40.6977 -2.18 0.220 ~ ~ -1.25
404531111510101 Ring 2 -111.8510 40.7586 -2.01 0.248 ~ ~ -1.59
405735112593001 Ring 2 -112.9925 40.9597 -0.06 0.046 ~ ~ ~
411928111581001 Ring 2 -111.9702 41.3244 -0.80 0.548 ~ ~ 0.61
414236112101201 Ring 2 -112.1708 41.7099 -0.90 0.202 -0.93 0.018 -0.85
414406112163601 Ring 2 -112.2775 41.7349 -1.77 0.060 ~ ~ -1.55
414406112173601 Ring 2 -112.2941 41.7349 -1.16 0.159 ~ ~ -1.29
414418112154801 Ring 2 -112.2641 41.7383 -1.27 0.269 ~ ~ -1.00
414813113075401 Ring 2 -113.1325 41.8035 -4.55 1.072 ~ ~ ~
415703112514501 Ring 2 -112.8633 41.9508 -0.39 2.343 -0.11 0.022 -0.17
415754112551301 Ring 2 -112.9211 41.9649 -9.34 4.196 ~ ~ -2.36

Table S1.   

Observed groundwater level change for wells within the inferred load rings by three 
methods. Water level trends are calculated with Theil-Sen slope estimation method and 
the MIDAS algorithm and applied to the duration of the drought. The net difference 
results indicate the difference in the average well water level positions at the start (2012 ±
0.1 yr) and end (2016 ± 0.1 yr) of the drought. Bold Theil-Sen data reflect accepted wells 
which exhibit water level changes greater than two sigma. All MIDAS values are greater 
than two sigma.
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Station Longitude Latitude
AHID -111.0637 42.2731
BBID -111.5261 43.6850
BLW2 -109.5578 42.2671
CASP -106.3841 42.3192
CAST -110.6773 38.6910
ELKO -115.8172 40.4147
FOOT -113.8054 38.8694
GOSH -114.1797 40.1402
HLID -114.4140 43.0626
MYT5 -110.0482 39.6027
P007 -114.8197 41.2242
P012 -109.3338 37.5974
P032 -107.2559 41.2417
P684 -111.4505 43.4191

RUBY -115.1228 40.1172
SMEL -112.8449 38.9256
SPIC -112.1275 38.8062
TCSG -113.4782 43.1192
TSWY -110.5975 43.1741

 

Table S2.   

GPS stations included in the regional common mode calculation. 
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Drought Disp. (mm) Uncertainty (mm)

Station Longitude Latitude E N U σE σN σU 
CEDA -112.8605 40.6807 0.86 -1.79 0.47 0.21 0.17 0.64
COON -112.1210 40.6526 -1.42 -2.50 10.34 0.31 0.31 1.25
EOUT -111.9289 41.2532 2.38 1.42 6.78 0.36 0.38 1.28
LTUT -112.2468 41.5921 1.01 0.66 5.17 0.18 0.17 0.78
NAIU -112.2296 41.0157 1.98 -2.04 9.67 0.27 0.26 1.18
P016 -112.3614 40.0781 0.31 -0.63 0.30 0.17 0.19 0.67
P057 -112.6231 41.7566 1.15 0.03 4.88 0.16 0.19 0.68
P084 -113.0540 40.4940 -0.35 -0.34 1.90 0.13 0.15 0.61
P086 -112.2821 40.6488 1.17 -0.85 4.30 0.17 0.18 0.79
P100 -113.2942 41.8568 -0.70 1.31 0.47 0.22 0.29 0.96
P111 -113.0122 41.8173 -0.06 0.37 2.69 0.16 0.16 0.73
P113 -113.2780 40.6713 -0.23 -0.31 1.80 0.13 0.14 0.57
P114 -112.5276 40.6340 -0.43 -1.37 4.00 0.22 0.19 0.78
P115 -112.4280 40.4744 0.55 -1.74 3.59 0.21 0.27 0.89
P116 -112.0142 40.4340 0.04 -0.31 4.84 0.19 0.21 0.73
P117 -111.7514 40.4352 1.74 0.77 10.12 0.31 0.27 1.09
P121 -112.6983 41.8034 0.05 0.38 5.36 0.15 0.16 0.60
P122 -112.3319 41.6354 0.40 0.40 3.99 0.19 0.18 0.79
SLCU -111.9550 40.7722 4.77 0.93 3.84 0.49 0.33 1.47
ZLC1 -111.9522 40.7860 8.33 -0.78 11.79 0.38 0.25 1.02

Table S3.   

Observed GPS relative displacements during the drought period. Values are calculated 
from the difference of the MIDAS velocities for the drought and base periods then 
applied to the duration of the drought (four years).
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Modeled Displacements at GPS Stations
Preferred Ring Observed GSL

Only  (-1.89 m)
Solve For GSL
Only (-5.01m)

Station Longitude Latitude E N U E N U E N U
CEDA -112.8605 40.6807 -0.69 -0.87 4.66 -0.27 -0.39 1.33 -0.70 -1.03 3.52
COON -112.1210 40.6526 0.55 -0.99 6.24 0.36 -0.52 1.68 0.95 -1.39 4.44
EOUT -111.9289 41.2532 1.36 0.48 4.84 0.50 0.18 1.51 1.31 0.48 4.01
LTUT -112.2468 41.5921 0.68 0.87 4.73 0.27 0.40 1.40 0.70 1.07 3.71
NAIU -112.2296 41.0157 0.89 -0.27 8.82 0.88 -0.22 5.01 2.34 -0.59 13.29
P016 -112.3614 40.0781 0.07 -0.90 2.32 0.02 -0.27 0.63 0.06 -0.72 1.67
P084 -113.0540 40.4940 -0.62 -0.83 3.00 -0.20 -0.30 0.89 -0.54 -0.79 2.36
P086 -112.2821 40.6488 0.54 -1.11 7.25 0.20 -0.79 2.20 0.53 -2.11 5.84
P100 -113.2942 41.8568 -0.70 0.79 3.36 -0.22 0.27 0.83 -0.59 0.71 2.21
P111 -113.0122 41.8173 -0.64 1.13 5.26 -0.19 0.39 1.09 -0.50 1.03 2.88
P113 -113.2780 40.6713 -0.82 -0.63 2.94 -0.28 -0.23 0.91 -0.74 -0.62 2.41
P114 -112.5276 40.6340 -0.46 -1.08 6.75 -0.15 -0.56 1.67 -0.39 -1.49 4.42
P115 -112.4280 40.4744 -0.02 -1.33 5.11 0.00 -0.45 1.16 0.00 -1.19 3.09
P116 -112.0142 40.4340 0.53 -0.85 3.45 0.18 -0.34 0.94 0.48 -0.89 2.49
P117 -111.7514 40.4352 0.75 -0.62 2.79 0.22 -0.25 0.79 0.57 -0.67 2.09
P121 -112.6983 41.8034 0.18 1.17 6.10 -0.01 0.47 1.24 -0.02 1.24 3.29
P122 -112.3319 41.6354 0.58 0.94 4.80 0.22 0.43 1.40 0.58 1.14 3.71

 

Table S4.   

Displacements at GPS sites, calculated with LoadDef, for the preferred ring load model, 
the observed fixed GSL load model, and the solved (inferred) GSL load model. The fixed
load model only applies the observed load of -1.89 m to the bounds of the lake while the 
solved GSL model applies the inferred load of -5.01 m. The preferred ring model has a 
GSL load of -1.85 m, a 24 km inner ring at -1.16 m, and a 40 km outer ring at -0.32 m. 
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