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Abstract

We present an integrated analysis of measurements from ozonesonde, ozone (O3) Differential Absorption Lidar (DIAL), ceilome-

ter, surface monitors, and space-borne observations in conjunction with the regional chemical transport model Weather Research

and Forecast Model with Chemistry (WRF-Chem) to investigate the effect of biomass burning emissions on the vertical dis-

tribution of ozone and aerosols during an episode of the 2016 Southeastern United States wildfires. The ceilometer and DIAL

measurements capture the vertical extent of the smoke plumes affecting the surface and upper air over Huntsville, AL. The

model evaluation results suggest a scaling factor of 3-4 for the wildfire aerosol emissions to better match observed aerosol

optical depth (AOD), fine particulate matter (PM2.5), and DIAL aerosol extinction. We use the scaled emissions together

with WRF-Chem tendency diagnostics to quantify the fire impacts and characterize the processes affecting the vertical ozone

budget downstream of the wildfires. During the daytime at Huntsville on 12 and 13 November, we estimate that fire emissions

contribute 12-32 μg/m3 (44-70%) to hourly surface PM2.5 and 7-8 ppb/10 hrs (30-37%) to the surface ozone increase ([?]O3),

respectively. Net chemical ozone production (PO3) is the main contributor to upper-air ozone, which reaches 17-19 ppb/10 hrs

with 14-25% contribution from fire sources. Vertical mixing and advection are the major drivers of changes in surface ozone.

Model analysis indicates that advection dominates fire-related [?]O3 below 1 km on 12 November, while local photochemistry

dominates on 13 November. These results quantify the different mechanisms through which fires can influence the vertical

ozone budget and point out uncertainties in fire inventories that need to be addressed in light of the increasing role of wildfires

on air quality.
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Key Points:12

• Fires contribute 12–32 µg/m3/hr (44–70%) to surface PM2.5 and 7–8 ppb/10 hrs13

(30–37%) to daytime ozone at Huntsville.14

• Fire-impacted ozone below 1 km is dominated by advection on 12 November and15

by local photochemistry on 13 November.16

• Increasing aerosol fire emissions by a factor of 3–4 better matches observed AOD,17

PM2.5 and DIAL aerosol extinction.18
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Abstract19

We present an integrated analysis of measurements from ozonesonde, ozone (O3)20

Differential Absorption Lidar (DIAL), ceilometer, surface monitors, and space-borne ob-21

servations in conjunction with the regional chemical transport model Weather Research22

and Forecast Model with Chemistry (WRF-Chem) to investigate the effect of biomass23

burning emissions on the vertical distribution of ozone and aerosols during an episode24

of the 2016 Southeastern United States wildfires. The ceilometer and DIAL measure-25

ments capture the vertical extent of the smoke plumes affecting the surface and upper26

air over Huntsville, AL. The model evaluation results suggest a scaling factor of 3–4 for27

the wildfire aerosol emissions in order to better match observed aerosol optical depth (AOD),28

fine particulate matter (PM2.5), and DIAL aerosol extinction. We use the scaled emis-29

sions together with WRF-Chem tendency diagnostics to quantify the fire impacts and30

characterize the processes affecting the vertical ozone budget downstream of the wild-31

fires. During the daytime at Huntsville on 12 and 13 November, we estimate that fire32

emissions contribute 12–32 µg/m3 (44–70%) to hourly surface PM2.5 and 7–8 ppb/1033

hrs (30–37%) to the surface ozone increase (∆O3), respectively. Net chemical ozone pro-34

duction (PO3) is the main contributor to upper-air ozone, which reaches 17–19 ppb/1035

hrs with an estimated 14–25% contribution from fire sources. Vertical mixing and ad-36

vection are the major drivers of changes in surface ozone. Model analysis indicates that37

advection dominates ∆O3 due to fire emissions below 1 km on 12 November, while lo-38

cal photochemistry dominates on 13 November. These results quantify the different mech-39

anisms through which fires can influence the vertical ozone budget and point out uncer-40

tainties in fire inventories that need to be addressed in light of the increasing role of wild-41

fires on air quality.42

1 Introduction43

Biomass burning (BB) releases substantial amounts of aerosol and ozone precur-44

sors that can affect climate and air quality (Crutzen et al., 1979; Crutzen & Andreae,45

1990; Andreae & Merlet, 2001; Akagi et al., 2011). Previous observation and modeling46

studies have indicated that BB emissions contribute to local and regional air-quality prob-47

lems (Hodzic et al., 2007; Pfister et al., 2008; Jaffe et al., 2013; Wigder et al., 2013; Baker48

et al., 2016), as well as to downwind pollution via long-range transport (McKeen et al.,49

2002; Colarco et al., 2004; Jaffe et al., 2004; Sapkota et al., 2005; Morris et al., 2006; Mar-50

tin et al., 2006; Lapina et al., 2006; Cook et al., 2007; Oltmans et al., 2010; Lindaas et51

al., 2017; Rogers et al., 2020). These studies demonstrate that the impacts of biomass52

burning on air quality can vary dramatically over time and space. Models can be used53

to investigate the mechanisms through which BB influences air quality. However, more54

efforts are required to assess how current models capture the variability of BB impacts,55

especially at higher spatial and temporal resolution.56

Chemical transport models (CTMs) have been widely used to estimate fire impacts.57

CTMs can provide good spatio-temporal coverage, differentiate the impacts of specific58

sources, and support mechanistic understanding of chemical and dynamical processes (Baker59

et al., 2018); however, amongst other issues, large uncertainties in fire-emission estimates60

present challenges for estimating the variability of fire impacts. These uncertainties can61

arise from limitations of satellite detection and inherent uncertainties of the empirical62

approaches used for emission estimations (Justice et al., 2002; van der Werf et al., 2017;63

Wang et al., 2018; Liu et al., 2020; Carter et al., 2020). The emission factors (EFs, the64

mass of a pollutant emitted per unit mass of biomass burned) are critical inputs for fire-65

emission models, but they vary by fuel type and fire conditions. While knowledge of EFs66

has increased substantially over the past decade, the uncertainty and natural variation67

in EFs remained a large source of uncertainties in BB emission estimates (Andreae &68

Merlet, 2001; Akagi et al., 2011). Furthermore, a large discrepancy of emission estimates69

–2–



manuscript submitted to JGR-Atmospheres

could exist between the bottom-up and top-down approaches. For instance, top-down70

constraints are applied on aerosol emissions to match smoke aerosol optical depth (Kaiser71

et al., 2012; Darmenov & da Silva, 2013). However, these global constraints are not ap-72

plied in all fire inventories and may bias smoke estimates at regional to local scales. Re-73

cent studies show that temperate North America has much larger discrepancies in car-74

bonaceous aerosols estimates than many other regions (Carter et al., 2020; Liu et al., 2020).75

These studies highlight the importance of further investigation and require observations76

at all scales (surface, aloft, and satellite).77

Although satellites and surface monitors make routine measurements of atmospheric78

O3 concentration, balloon soundings and lidar techniques can provide precise vertically79

resolved O3 observations throughout the troposphere and lower stratosphere (Thompson80

et al., 2011). This vertical information significantly benefits air-quality management and81

modeling improvement (Cooper et al., 2015). We take advantage of both ozonesonde (Newchurch82

et al., 2003) and ozone lidar (Kuang et al., 2011) techniques at the University of Alabama83

in Huntsville (UAH) to measure the vertical distribution of key atmospheric parameters.84

The UAH ozone lidar is affiliated with the Tropospheric Ozone Lidar Network (TOL-85

Net, https://www-air.larc.nasa.gov/missions/TOLNet/). Under a collaborative proto-86

col, the TOLNet lidars have demonstrated their feasibility and capability in fire stud-87

ies (Langford et al., 2015; M. Johnson et al., 2016; Kuang et al., 2017; Reid et al., 2017;88

Strawbridge et al., 2018; M. Johnson et al., 2021) and scientific projects (Leblanc et al.,89

2018; Sullivan et al., 2019; Gronoff et al., 2019). The continuous profiling of ozone and90

aerosols provides details missed by isolated measurements and is an asset for model eval-91

uation by coordinating measurements (Langford et al., 2018, 2019). In addition, the ul-92

traviolet (UV) backscatter (or extinction) profiles retrieved from ozone lidar can quan-93

tify the aerosol variability at high spatio-temporal resolution, and these measurements94

serve as a tracer for fire smoke (Kuang et al., 2020; Langford et al., 2020). To our best95

knowledge, there has been little or no attempt to evaluate CTMs using this range-resolved96

UV aerosol optical product.97

Coordinating vertical observations and simulations can also improve our understand-98

ing of the fire impacts on vertical profiles. Due to multiple O3 sources in the troposphere99

and a lack of coincident measurements at sufficient spatial resolution, combining obser-100

vations and modeling is crucial for understanding the O3 production from fire emissions (Fiore101

et al., 2014). The diagnostics of trace-gas tendencies in CTMs output are widely used102

to identify the drivers for ozone production due to varied anthropogenic and natural sources (Barth103

et al., 2012; Lu et al., 2018; Hu et al., 2019; Pfister et al., 2019), while fewer studies for104

biomass burning sources have been completed. In this study, the O3-tendency diagnos-105

tics, together with sensitivity simulations both with and without fire emissions, allow ex-106

ploration of the roles of chemical and dynamical processes affecting the vertical O3 ac-107

cumulation downstream of fires. The enhancement of the local vertical O3 distribution108

due to fire emissions is expected to arise from multiple processes, including local pho-109

tochemistry (e.g., photochemical reaction of the O3 precursors from fire emissions), trans-110

port of ozone by upwind smoke plumes, and the vertical exchange (e.g., redistribution111

of O3 by interactions between surface and upper air). In this study, we coordinate a range112

of different data sets and methods to understand the impact of these different processes113

on the vertical O3 variability in fire smoke.114

With a relatively flat topography in the Southeastern United States (SEUS) region,115

the region around Huntsville, AL was usually dominated by local anthropogenic, biogenic,116

and agricultural burning emissions at the surface, while wildfire plumes typically pre-117

vail in the free troposphere (FT) (Reid et al., 2017). Our case study of an episode when118

Huntsville was affected by the 2016 SEUS wildfires shows that smoke can affect ozone119

and aerosol loadings at the station both at the surface and in the upper air. Using com-120

prehensive observations (Huntsville ground-based lidars, in-situ measurements, space-121

borne observations) to evaluate the performance of regional model simulations results122

–3–



manuscript submitted to JGR-Atmospheres

in a framework to estimate the vertical variability of these fire impacts. Coordinating123

vertical observations and modeling provides additional value in assessing model perfor-124

mance and enhances the scientific understanding. The following objectives comprise this125

study: (1) Evaluate the model performance against regional and local observations, es-126

pecially vertical ozone and UV aerosol extinction profiles, to understand the model ca-127

pabilities and limitations in reproducing the observations. (2) Characterize the chem-128

ical and dynamical processes affecting the vertical ozone accumulation in smoke plumes129

and understand the roles of local chemical reactions, transportation, and vertical exchange.130

(3) Vertically quantify the contribution from fire emissions to net chemical ozone pro-131

duction and particulate matter.132

2 Data and Methods133

2.1 Wildfires Episode and Study Area134

The 2016 Southeastern United States (SEUS) wildfires series occurred along the135

Southern Appalachians throughout October and November 2016 and burned over 158,000136

acres across six Southern states (see Table S1 in the supporting information). Multiple137

factors contributed to the extraordinary wildfire outbreak and spread, including an ex-138

ceptional drought, deep leaf litter and duff layers, many human ignitions with relatively139

few lightning strikes, episodic strong winds by frontal systems, and complex mountain140

landscapes (Konrad & Knox, 2017; Williams et al., 2017). We focus on a high-pollution141

episode when smoke influenced the Huntsville station and the SEUS region during 12–142

14 November 2016. Figure 1a shows the locations and names of the 14 largest active wild-143

fires during this study period. Figure 1b shows the study domain with surface PM2.5 and144

O3 monitoring sites indicated. The Huntsville station is located in North Alabama on145

the UAH campus.146

2.2 Huntsville Station Facilities147

Both the ceilometer and the ground-based O3 DIfferential Absorption Lidar at the148

UAH campus (34.725◦ N, 86.645◦ W) detect the vertical aerosol structure. Balloon-borne149

Electrochemical Concentration Cell (ECC) ozonesondes launched from the UAH cam-150

pus allow the measurement of the vertical O3 concentration in smoke plumes. Both DIAL151

(aerosol extinction and O3) and ozonesonde data are used to assess how well the model152

captures the vertical distribution of O3 and aerosol loadings.153

Although primarily designed to detect cloud heights, ceilometers have the capa-154

bility for a quantitative retrieval of the aerosol backscatter coefficient (Wiegner et al.,155

2014). The Vaisala CL51 ceilometer used in this study is a pulsed diode-laser lidar (905156

nm) in the UAH Mobile Integrated Profiling System (MIPS) (Wingo & Knupp, 2015).157

The ceilometer, located on the UAH campus, measures backscatter profiles up to 15 km158

above ground level (AGL) with high spatial and temporal resolution at 30 m and 15 s,159

respectively. Because the backscatter signal is dominated by the aerosol component at160

905 nm, the total backscatter intensity serves as an indicator of relative aerosol loading161

during 12–14 November 2016.162

The UAH campus also houses one of the TOLNet O3 DIAL systems, named the163

Rocket-city O3 Quality Evaluation in the Troposphere (RO3QET) lidar. RO3QET mea-164

sures vertical O3 profiles from 0.1 km up to 10 km above the ground using 289 and 299-165

nm lasers with an uncertainty of about ±10% (Kuang et al., 2011). The temporal res-166

olution of the lidar sampling is adjustable and is typically set at 10 minutes. The ver-167

tical resolution varies with altitude to obtain sufficient lidar signal-to-noise ratio and is168

between 150 and 300 m in the planetary boundary layer (PBL). Aerosol extinction co-169

efficients at the non-absorption line (299 nm) are retrieved by assuming a constant aerosol170

extinction-to-backscatter ratio, which is 60 steradians (sr) for this study. Validation ex-171
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periments through comparing with co-located high spectral resolution lidar (HSRL) ob-172

servations suggest that the RO3QET lidar is capable of capturing aerosol variability up173

to 6 km altitude at high spatio-temporal resolution (Kuang et al., 2020).174

The Huntsville ECC ozonesonde attached with a radiosonde provides vertical pro-175

files of ozone, temperature, relative humidity (RH), and wind. In this study, the data176

are derived from one of the weekly flights at the Huntsville ozonesonde station, which177

makes observations from the surface up to 35 km with a vertical resolution of 100 m (Newchurch178

et al., 2003). The ozone measurements have a precision better than ±5% and an accu-179

racy better than ±10% (B. Johnson et al., 2002).180

2.3 Surface Data and Satellite Products181

Hourly PM2.5 and O3 measurements retrieved from the Environmental Protection182

Agency (EPA) (https://www.epa.gov/outdoor-air-quality-data) are used to evaluate the183

model performance for the surface air quality within the smoke-impacted region. Mod-184

erate Resolution Imaging Spectroradiometer (MODIS) Collection 6 Level 2 10 km merged185

Dark Target/Deep Blue aerosol optical depth data onboard Terra and Aqua (MOD04 L2186

and MYD04 L2) (Levy et al., 2015) acquired from the NASA Earth Data Level-1 and187

Atmospheric Archive & Distribution System Distributed Active Archive Center (LAADS188

DAAC) website (https://ladsweb.modaps.eosdis.nasa.gov/) is used to evaluate the model189

performance for the horizontal plume extent. To compare MODIS AOD at 10-km res-190

olution with WRF-Chem AOD at 4-km resolution, we regrid both MODIS and modeled191

AOD to a 0.1◦×0.1◦ grid. For each grid box, MODIS AOD at 550 nm is calculated as192

the mean of Aqua AOD at 19 UTC and Terra AOD at 17 UTC (or 16 UTC on 13 Novem-193

ber), WRF-Chem AOD at 550 nm is calculated as the mean of modeled AOD at 19 UTC194

and modeled AOD at 17 UTC (or 16 UTC on 13 November). Because WRF-Chem can195

directly output the variable “EXTCOF55”, which represents layer aerosol extinction co-196

efficients for 550 nm, we define modeled AOD at 550 nm as the vertical sum of each the197

“EXTCOF55” field multiplied by the layer depth. Visual images from MODIS and the198

Visible Infrared Imaging Radiometer Suite (VIIRS), available via the NASA Worldview199

website (https://worldview.earthdata.nasa.gov/), are used to qualitatively assess smoke200

plume coverage and fire detection from thermal anomalies. The sensor resolutions of MODIS201

and VIIRS hotspot detections are 1 km and 375 m, respectively.202

2.4 Model Description and Experiment Design203

A fully coupled meteorology-chemistry model, the Weather Research and Forecast-204

ing with Chemistry model WRF-Chem (Grell et al., 2005; Fast et al., 2006) version 3.9.1205

is applied in this study. The model configurations are listed in Table 1. For this study206

we selected the Model for Ozone and Related chemical Tracers (MOZART) gas phase207

chemical scheme (Emmons et al., 2010) coupled with the Georgia Institute of Technology–208

Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) aerosol209

scheme (Chin et al., 2000), referred to as MOZCART (Pfister et al., 2011). Other pa-210

rameterizations include the Morrison’s microphysics scheme, the Rapid Radiative Trans-211

fer Model (RRTM) longwave and Goddard shortwave radiation schemes, the Monin-Obukhov212

surface layer, the Noah Land Surface Model, the Yonsei University (YSU) PBL, the New213

Grell cumulus scheme (G3), and the simplified Tropospheric Ultraviolet-Visible photol-214

ysis scheme (F-TUV). National Centers for Environmental Prediction (NCEP) North215

American Mesoscale (NAM) 12 km Analysis data (https://rda.ucar.edu/datasets/ds609.0/,216

accessed 7 February 2018) provide initial and lateral boundary meteorological conditions.217

MOZART-4 global model outputs provide the initial and lateral chemical conditions. Biomass218

burning emissions are calculated using the Fire Inventory from NCAR (FINNv1.5) (Wiedinmyer219

et al., 2011) and the online plume-rise model (Freitas et al., 2007). FINNv1.5 is based220

on fire counts derived from the Moderate Resolution Imaging Spectroradiometer (MODIS).221

The hourly emissions are allocated using the standard WRAP diurnal profile (WRAP,222
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2005). For the MOZCART scheme, the aerosol emissions are speciated from FINNv1.5223

particulate matter (PM). The speciation as provided in the emission preprocessor is listed224

in Table S2. Anthropogenic emissions for both area and point sources are obtained from225

the 2011 U.S. EPA national emissions inventory (NEI 2011 v2). Biogenic emissions are226

calculated online using the Model of Emissions of Gases and Aerosols from Nature (MEGAN)227

module (Guenther et al., 2006).228

Two nested domains cover CONUS and SEUS with 16 km and 4 km horizontal res-229

olutions, respectively. The vertical coordinate comprises 60 unequally spaced layers be-230

low 50 hPa, with 12 layers below 2 km altitude and a center height of 28 m for the low-231

est layer (see vertical grids structure in Figure S1). The simulation time period ranges232

from 8 to 14 November 2016 with the first four days used as model spinup. To ensure233

that the model represents accurate meteorology, we use nudged meteorological fields and234

in addition conduct a meteorology reinitialization every 24-hour, but recycle the initial235

chemical fields from the end of the previous day. The evaluation of the surface temper-236

ature is shown in Figure S11 and demonstrates the continuity of simulated meteorolog-237

ical fields despite the 24-hour reinitialization. Three simulations are performed to esti-238

mate the wildfire impacts (Table 1): the CTRL simulation contains no fire emissions;239

the FIREorig simulation contains the original fire emissions (speciated from FINNv1.5240

PM2.5 and PM10) without emissions correction; the FIREcorr simulation contains the241

fire emissions with emissions adjustment (description in Section 3.2). In order to gen-242

erate identical meteorology for the sensitivity analysis on fire-impacted O3, the aerosol-243

radiation feedback is disabled.244

2.5 Fire Inventories and Burn Area Products245

The Monitoring Trends in the Burned Severity database (MTBS; https://www.mtbs.gov)246

provides information on the total number of acres burned since ignition and is used to247

indicate large wildfires (Table S1). To investigate the emission inputs, we estimate the248

daily burn area for each wildfire (Figure 2) by aggregating the FINNv1.5 burn area in249

the geospatial bounding box from the MTBS wildfire database. The fire emission inputs250

for this work (FIREorig and FIREcorr simulations) are compared with four MODIS-based251

fire inventories: FINNv1.5, the Global Fire Emissions Database (GFEDv4s) (van der Werf252

et al., 2017), the Global Fire Assimilation System version 1.2 (GFASv1.2) (Kaiser et al.,253

2012), and the Quick Fire Emissions Database version 2.5 r1 (QFEDv2.5 r1) (Darmenov254

& da Silva, 2013).255

3 Results256

3.1 Horizontal and Vertical Plume Transport257

In this section, we discuss the horizontal and vertical plume transport using satel-258

lite and ground-based lidars and identify the smoke-impacted period, which is used later259

for model evaluation and diagnostic analysis. Our analysis reveals that the daily and di-260

urnal variations of smoke transport are mediated by synoptic weather conditions and the261

PBL evolution.262

In Figure 3, MODIS AOD and MODIS imagery show that the wildfires along the263

Southern Appalachians continued to burn and emitted a significant amount of smoke over264

the SEUS region during 12–14 November 2016. This time period is chosen for later model265

evaluation and analysis. NOAA WPC surface analysis (Figure S2) shows that a cold front266

passed over the wildfire region during 12-18 LT on 11 November. After the frontal pas-267

sage, smoke stretched across portions of the SEUS region driven by northeasterly winds268

on 12 November. As a high-pressure circulation dominated the following two days, AOD269

shows less spreading pattern, with a more concentrated distribution around the location270

of the wildfires.271
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The UAH ceilometer captured the aerosol plumes downwind of the fires, as shown272

in Figure 4. The time-height curtain of backscatter intensity shows that several plumes273

passed over Huntsville in the nighttime residual layer (RL) (Figure 4a). Some plumes274

subsided toward the surface before sunrise; others were entrained by a developing PBL275

in the morning and then mixed vertically throughout the PBL. This mixing provides a276

mechanism for fire emissions to contribute to the downwind air quality over night. In277

addition, an elevated aerosol plume stayed at ∼2 km AGL from 12 UTC (6 LT) on 12278

November to 12 UTC (6 LT) on 13 November. This plume is likely fire smoke as MODIS279

shows obvious smoke spreading over Huntsville (Figure 3).280

The most severe surface particulate air pollution at Huntsville occurred on 13 Novem-281

ber, when an air-quality alert was issued for Madison and Morgan counties in the after-282

noon instigating DIAL measurement from 19:37 to 22:17 LT on 13 November under this283

high aerosol loading condition. The time-height curtain of the aerosol extinction coef-284

ficient at 299 nm (Figure 4b) shows heavy background aerosols and relatively dense plumes285

within that domain. The background aerosols below the capping inversion layer (∼0.5/km286

below 1.5 km AGL) results from sufficient daytime mixing in the well-developed PBL.287

A relatively dense plume (>1.0/km) features about four times higher extinction (>1.0/km)288

compared to typical aerosol loading conditions. At 22 LT, the dense plume extended across289

the whole RL column and evolved to be a thicker layer (∼0.7 km thickness) between two290

finer layers. The specified fine structure is highly consistent with the ceilometer backscat-291

ter observation (Figure 4c). Ozonesonde and DIAL measurements are used to assess the292

model performance on 12 and 13 November, respectively.293

3.2 Model Performance for AOD and Emissions Adjustment294

In this section, the modeled spatial pattern of smoke plumes is assessed against satel-295

lite observations. Results uncover limitations that lead to an adjustment of the emission296

inputs, which is further justified by comparing our emission inputs with four fire inven-297

tories.298

Comparing WRF-Chem AOD to MODIS AOD for 12–14 November (Figure 3 and299

Figure S3) suggests that the simulation “FIREorig” is able to reproduce the overall spa-300

tial pattern of smoke plumes over the SEUS, with a spatial correlation coefficient between301

modeled and observed AOD of 0.6 on average (0.4 on 12 November, 0.7 on 13 and 14302

November). The lower correlation on 12 November is associated with the prediction bias303

of the frontal passage during 00–18 UTC on 12 November, indicated by the front loca-304

tions in surface analysis and modeled result (Figure S2). Despite the general agreement305

in AOD distribution, there is an underestimation of the model in the AOD magnitude.306

We calculate an averaged scaling ratio r by averaging the three different slopes for 12–307

14 November (MODIS AOD/FIREorig Modeled AOD = 3.6). Thus, the domain-averaged308

observed AOD is about 3.6 times the simulated AOD. The reasons for this could be un-309

certainties in emission estimations (Zhang et al., 2014; Pereira et al., 2016), inadequate310

assumptions of aerosol optical properties (Curci et al., 2015), the use of simplified aerosol311

chemistry modules without representation of secondary organic aerosol (Fast et al., 2006),312

or misrepresentation of transport processes (Aouizerats et al., 2015; Wu et al., 2017). Quan-313

tifying each bias is a challenge beyond our scope. In this case study, we focus on explor-314

ing the uncertainties of emissions only and increase the original fire aerosol emissions by315

a factor of 3.6, without changing the fire gas-phase emissions. Specifically, we multiply316

all aerosol components (unspeciated PM2.5, PM10, organic carbon, black carbon, and317

sulfate) in the original gridded fire emissions by 3.6. This adjustment improves the model318

performance of the domain-averaged AOD and changes the average slope from 3.6 (MODIS319

Vs. FIREorig Modeled AOD) to 1.1 (MODIS Vs. FIREcorr Modeled AOD), as shown320

in Figure S3. Although this approach does not rectify all the uncertainties in the emis-321

sion estimates and may not reflect the temporal-spatial variations of smoke behavior, our322
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sensitivity study can help constrain the emission estimates based on satellite observa-323

tions.324

To justify the scaling of the fire aerosol emissions, we compare emissions from the325

original simulation (FIREorig) and the simulation with scaled aerosol emissions (FIREcorr)326

to the inter-inventory differences. Figure 5 shows the ratio of carbonaceous aerosols (both327

organic carbon OC and black carbon BC) to carbon monoxide CO in different fire in-328

ventories and our simulations. Each data point indicates daily fire emission summed over329

the wildfire region of interest defined in 33.46–38.17◦ N and 78.75–86.25◦ W (see the se-330

lected region in Figure S4). The four inventories show considerable discrepancies in the331

emissions ratios for November 2016 over the wildfire area. The (OC+BC)/CO ratio is332

about 0.07, 0.09, 0.11 and 0.4 in Gg/Gg for FINNv1.5, GFASv1.2, GFEDv4s and QFEDv2.5 r1,333

respectively. Such a broad range of emission ratios justifies our choice to scale the emis-334

sion input from 0.08 Gg/Gg to 0.3 Gg/Gg.335

Emission differences may arise from inventory-specific methods for estimating the336

amount of burned vegetation, the vegetation type, and the emission factors. Although337

all of the four inventories are based on MODIS fire detections, FINNv1.5 converts the338

MODIS active fire product into burned area generally by assuming an upper limit of area339

burned and further scaling it by the percent of bare cover (Wiedinmyer et al., 2011); GFEDv4s340

primarily uses the MODIS burn area product retrieved from pre-burn and post-burn im-341

ages and ingests active fire locations for its small fire boost (Randerson et al., 2012; Giglio342

et al., 2013; van der Werf et al., 2017); GFASv1.5 assimilates MODIS Fire Radiative Power343

(FRP) (Kaiser et al., 2012); QFEDv2.5 r1 uses MODIS FRP directly combined with a344

scaling factor derived by a top-down constraint for different biomes (Darmenov & da Silva,345

2013). All four inventories also differ in the vegetation types used, and while they gen-346

erally use emission factors from Andreae and Merlet (2001) and Akagi et al. (2011), they347

use different updates and also aggregate these emission factors differently. Consequently,348

the (OC+BC)/CO ratios over the SEUS wildfire region differ by a factor of 5.7 (Figure 5).349

Our analysis is consistent with previous assessment about the uncertainties in fire aerosol350

emissions. Carter et al. (2020) showed that fire aerosol emissions from different inven-351

tories differ by a factor of 4 to 7 over North America. Liu et al. (2020) showed that tem-352

perate North America has a coefficient of variation as high as 102% for mean annual OC+BC353

emissions among fire inventories. Our choice of a scaling factor of 3.6 sets our emissions354

within this discrepancy envelope. The scaling of fire aerosol emissions is also supported355

by previous studies (Wiedinmyer et al., 2011; Kaiser et al., 2012; Darmenov & da Silva,356

2013), which addressed the need for observation constraints on the bottom-up estimates357

of fire aerosol emissions, especially for a given fire event.358

3.3 Model Performance for Surface PM2.5 and Vertical Extinction359

Using the adjusted emission inventory, we assess how well the model simulates sur-360

face PM2.5 and the vertical aerosol loading by comparing the model results with obser-361

vations from surface monitors, lidar, and satellite.362

Figure 6 shows the time series of U.S. EPA PM2.5 observed and modeled PM2.5363

from three sensitivity simulations. The FIREorig simulation shows an obvious under-364

estimation of observed PM2.5 with a domain-wide mean bias of −21.6 µg/m3 against hourly365

observations from all 8 sites. The standard deviations normalized with respect to obser-366

vations are much lower than 1.0 (see pattern statistics in Figure S5), with a domain-averaged367

value of 0.3 among all 8 sites. After the emission adjustment, the FIREcorr simulation368

is able to capture the domain-averaged magnitude (as the mean bias reaches −0.4 µg/m3
369

and the normalized standard deviation reaches 1.0) and reproduce the maximum hourly370

PM2.5 (∼200 µg/m3 on 12 November at Site 1). Additionally, the FIREcorr simulation371

reveals dominant fire contributions to the observed PM2.5 exceedance of the air qual-372
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ity standard (35 µg/m3 for 24-hour limit), especially at the rural sites nearby the wild-373

fires.374

Despite the improvement in magnitude, the domain-averaged correlation coefficient375

just slightly increases from 0.5 to 0.6, as a domain-averaged scaling factor cannot im-376

prove the model performance for the diurnal variations. Both FIREorig and FIREcorr377

simulations perform well in reproducing the diurnal cycle at Sites 3–7 but perform poorly378

at Sites 1, 2, and 8. Statistically, modeled and observed PM2.5 have a strong to mod-379

erate correlation at Sites 3–7 and weak correlation at Sites 1, 2, and 8. This model bias380

in the diurnal fire behavior can be partly explained by satellites providing information381

at the overpass time only (Wang et al., 2006), biases in wind field, and the domain-averaged382

scaling factor adopted here. Other potential error sources are discussed later.383

Figure 7 shows the comparison between the DIAL-retrieved aerosol extinction (at384

299 nm) and the simulated vertical aerosol extinction (at 300 nm) for 19–23 LT on 13385

November. The FIREcorr simulation is able to capture the nocturnal boundary layer aerosol386

extinction (∼0.5/km below 1.5 km AGL), while the FIREorig simulation underestimated387

the magnitude. This comparison indicates that the improved simulation can reproduce388

the well-mixed smoke during the daytime PBL development. However, the FIREcorr sim-389

ulation misses the densest plume (>1.0/km after 20 LT on 13 November) observed by390

DIAL, underestimates the highest MODIS AOD nearby wildfires (observed at noon on391

13 November in Figure 3) and underestimates PM2.5 at one site nearby the wildfire (e.g.,392

Site 2). A likely reason for the underestimate is missing fire sources.393

To confirm this hypothesis, we examine both MODIS and NPP/VIIRS reflectance394

images with the fires and thermal anomalies product (Figure S9), compared to the FINNv1.5395

daily burn area grouped by each wildfire (Figure 2). It was cloudy and hazy over the wild-396

fires region on 13 November, conditions that obscure satellite detection. Although some397

wildfires emitted visible dense smoke plumes (e.g., the Rough Bridge Fire in north Geor-398

gia) and were counted in the NPP/VIIRS night detection, the fires were not counted by399

the MODIS thermal anomalies product. Consequently, the burn areas for many wild-400

fires are zero on 13 November in the FINNv1.5 inventory. Two other MODIS-based in-401

ventories (GFASv1.2 and QFEDv2.5 r1) also report small aerosol and gas emissions on402

13 November (Figure S7). These differences imply that the clouds and thick haze prob-403

ably obscured the MODIS fire detection on 13 November. The detection limitation is404

likely associated with attenuated fire signal and solar heating during the day and the po-405

tential cloud/smoke classification issues (Justice et al., 2002; Polivka et al., 2016). As406

a result, the model using the MODIS-based fire inventories could not reproduce some407

freshly-emitted smoke plumes.408

3.4 Model Performance for Surface Ozone and Vertical Ozone409

This section reports the comparison of modeled O3 with surface monitors, ozonesonde,410

and DIAL measurements. Because aerosol-radiation feedback has been turned off in the411

simulations to generate identical meteorology, and heterogenous or aqueous chemistry412

is not considered in the MOZCART mechanism, the modeled O3 is identical in the FIRE-413

orig and FIREcorr simulations.414

Figure 8 shows the time series of observed and modeled O3 in sensitivity simula-415

tions. The model generally reproduces the observed surface O3 level (below 60 ppb) dur-416

ing 12–14 November at most sites with a domain-wide mean bias of +4.7 ppb against417

hourly observations from all 6 sites. The results show consistent diurnal variations be-418

tween simulated and observed O3 at both rural and urban sites, with strong to moder-419

ate correlation coefficients (see pattern statistics in Figure S6). Among all the sites, the420

normalized standard deviation and correlation coefficient of domain-averaged O3 are 1.0421

and 0.6, respectively. As for individual sites, the model performance at Sites 3 and 5 is422

weaker, indicated by a low correlation coefficient and high normalized root-mean-square423
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(NRMS) error. Interpreting uncertainties in modeled O3 is complicated because of im-424

pacts from meteorology, emissions, and model parameterizations. The uncertainty in fire425

emissions is only one of many possible sources for the uncertainties in modeled O3. Other426

factors, such as the transport bias during the frontal passage, the model’s capability in427

reproducing the nocturnal stable layer, and the accuracy of anthropogenic and biogenic428

gaseous emissions, might induce larger model uncertainties. The difference between FIREcorr429

and CTRL simulations suggests that the total fire impact on surface O3 concentration430

was less than 10 ppb at most sites.431

An ozonesonde was launched from the UAH campus at 13 LT on 12 November. Fig-432

ure 9 compares modeled results with the observed vertical profiles, including ozone vol-433

ume mixing ratio, relative humidity, potential temperature (θ), horizontal wind speed,434

and horizontal wind direction. The ozonesonde reveals an enhanced O3 lamina between435

two θ inversion layers between 1.4–2.3 km. It peaks at 1.8 km AGL with 56 ppb, ∼12436

ppb larger than concentrations in the PBL. This thick lamina co-existed with the ele-437

vated aerosol plume observed in ceilometer under a light northeasterly wind. The coex-438

istence of a fire-impacted aerosol plume and enhanced O3 suggests that wildfires con-439

tributed to the ozone lamina above the PBL. The difference between the CTRL and FIREcorr440

simulations indicates a slight ozone enhancement due to fire emissions at 13 LT over Huntsville,441

which is further analyzed at a regional scale in Section 3.5.1. Overall, WRF-Chem is able442

to reproduce vertical ozone and meteorological profiles in smoke plumes below 3 km. In443

particular, the model reproduces the wet and ozone-rich lamina, and simulates temper-444

ature and wind field consistent with observations; however, it is limited in simulating the445

finer inversion layers. The model predicts a slightly lower PBL height (1.2 km compared446

to 1.4 km), and it does not resolve the upper θ inversion at 2.3 km well. This limitation447

is likely due to the relatively coarse vertical resolution at ∼2 km and the bias in predict-448

ing wind shear when the wind turned sharply above the lamina, as observed by sonde.449

The underestimat in O3 in the PBL is consistent with an underestimat in surface O3 at450

the nearby site. This underestimate can be due partly to the model bias in wind direc-451

tion and relative humidity in the PBL, as well as other factors discussed earlier. The model452

also reproduces the O3 laminae observed by DIAL during 19–23 LT on 13 November (Fig-453

ure 7), but it underestimates the O3 magnitude in the nocturnal boundary layer, which454

underestimate might be caused by the uncertainties in emission inputs as discussed in455

the previous section.456

3.5 Diagnosing Fire Impacts on Vertical O3 and PM2.5 Distribution457

Because the model performs well in simulating the vertical and surface ozone dis-458

tributions and reproduces the well-mixed aerosol during the daytime, we use the model459

to further analyze the vertical ozone accumulation in fire smoke during the daytime on460

12 and 13 November 2016. We begin with a regional sensitivity analysis to show the over-461

all fire impacts and the possible smoke sources, and then apply the model’s tendency di-462

agnostics to examine the processes contributing to the ozone accumulation over Huntsville.463

3.5.1 Regional Sensitivity Analysis of Vertical Fire Impacts and Pos-464

sible Smoke Sources465

Figure 10 shows the modeled longitude-altitude curtain plots of O3, fire-impacted466

O3, and fire-impacted PM2.5 at 13 LT (19 UTC) on 12 and 13 November over the SEUS467

region. On 12 November, the curtain (Figure 10a) shows that an enhanced O3 lamina468

at 2 km ASL spreads widely from 78◦ W to 88◦ W and passes over the Huntsville sta-469

tion. This thick layer is spreading above the PBL and is capped below 3 km by a strong470

wind shear when the wind turns strongly westerly above ∼ 3 km. Figure 10b and 10c471

show the modeled fire impacts (FIREcorr minus CTRL) on O3 and PM2.5, respectively.472

The simulations show enhanced O3 concentrations within the elevated smoke plume, con-473

sistent with our observation analysis. Quantitatively, the fires result in an O3 enhance-474
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ment range of 2–5 ppb and a PM2.5 enhancement range of 10–20 µg/m3 at 13 LT along475

the west to east cross section. At 85–86◦ W, the enhancements estimated in O3 and PM2.5476

can exceed 5 ppb and 20 µg/m3, respectively. Using the modeled hourly PM2.5 and AOD477

(not shown here), we estimate that the smoke plume is transported to Huntsville from478

multiple wildfires that occurred during the frontal passage on 11 November (see the large479

active wildfires in Figure 2 and wildfire map in Figure 1a). The wind-shear structure caps480

the mixed smoke plume with enhanced O3 in the lowest level of FT. Below the elevated481

plume, there is slightly lower PBL O3 enhancement (1–2 ppb) and PM2.5 enhancement482

(5–15 µg/m3) at 86–88◦ W. The smoke in the PBL is relatively fresh with < 6 hrs trans-483

port time and is likely emitted from nearby small fires on 12 November.484

As the weather conditions turn to a high-pressure circulation on 13 November, a485

new pattern emerges with concentrated fire impacts from the surface up to 2 km ASL486

on a regional scale (Figure 10d–f). PBL O3 increases in the stagnant air (Figure 10d),487

and the contribution of fires to O3 and PM2.5 increases (Figure 10e and 10f). Quanti-488

tatively, the fires result in a dominant O3 enhancement range of 4–10 ppb or higher and489

a PM2.5 enhancement range of 40–80 µg/m3 or higher at 13 LT along the west to east490

cross section. A large portion of the well-mixed PBL smoke is emitted on 12 November,491

when the wildfires were most active during our study period (Figure 2). As illustrated492

in the observation analysis, the smoke remains in the residual layer overnight and can493

effectively be transported to affect other locations on the next day.494

3.5.2 Local Process Analysis of Daytime-integrated and Diurnal Ver-495

tical Ozone Budget in Fire Smoke496

Our sensitivity simulations confirm that fire emissions impacted the vertical ozone497

contribution over Huntsville on 12 and 13 November. This local enhancement could be498

caused by the transport of fire-related ozone and/or ozone precursors which increased499

local ozone production. The modeled results in Section 3.4 also imply that fires were not500

the only source contributing to the observed ozone laminae. This result brings up two501

questions: (1) What are the relative roles of chemical and dynamical processes on the502

vertical ozone accumulation? (2) What is the relative contribution of fire emissions to503

the total net photochemical ozone production? To address these questions, we analyze504

the processes affecting the vertical ozone distribution using the WRF-Chem tendency505

diagnostics, including net chemical ozone production PO3 (Chem), horizontal and ver-506

tical advection of ozone (AdvH+AdvZ), vertical mixing of ozone (Vmix), and the sum507

of all process tendencies (SumTend). The daytime ozone tendency output from the sen-508

sitivity simulations with fire emissions (FIREcorr) and without fire emissions (CTRL)509

is used to explore the fire contribution. The following model results are averaged over510

5×5 horizontal grids (20 km×20 km) over Huntsville for better representativeness.511

Figure 11a and 11b show daytime-integrated (7–17 LT) O3 process tendencies and512

PM2.5 concentrations over Huntsville for the FIREcorr and CTRL simulations on 12 and513

13 November, respectively. Here the FIREcorr and CTRL SumTend indicate the daytime-514

integrated change of ozone concentration (∆O3) in simulations with and without fire emis-515

sions, respectively. The absolute O3 process tendencies show similar patterns on both516

days. In the upper air (0.2–2.0 km AGL), the positive PO3 dominates the daytime ozone517

accumulation on both days. The total PO3 peaks by 17 ppb/10 hrs at 1.6 km on 12 Novem-518

ber and by 19 ppb/10 hrs at 0.5 km on 13 November. In the surface layer below 0.2 km,519

pronounced negative PO3 is caused by the quick NOx titration near the surface (mod-520

eled NOx ∼15 ppb). However, ∆O3 peaks near the surface by 18 ppb/10 hrs on 12 Novem-521

ber and by 25 ppb/10 hrs on 13 November. The negative PO3 near the surface is off-522

set by positive O3 contributions from vertical mixing and advection processes. Vertical523

mixing contributes positively near the surface yet negatively in the upper air, because524

it tends to disperse the enhanced O3 from the upper air to the surface (Hu et al., 2019).525

The results imply that local chemical processes dominate the upper air ozone accumu-526
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lation while dynamical processes directly contribute to the ground-level ozone build-up527

over Huntsville.528

Figure 11c and 11d extract the relative O3 tendencies and PM2.5 concentrations529

attributable to fires (FIREcorr minus CTRL) for 12 and 13 November, respectively. Here530

FIREcorr-CTRL SumTend indicates the daytime-integrated ∆O3 due to fire emissions531

(Figure S8). During 12–13 November, fire emissions increase the vertical O3 concentra-532

tions by affecting local chemical reactions, transportation, and the vertical airmass ex-533

change. The daytime ∆O3 due to fire emissions is similar on both days, which peaks near534

the surface at 7 ppb/10 hrs on 12 November and at 8 ppb/10 hrs on 13 November. How-535

ever, the dominant processes contributing to the total signals show daily and vertical vari-536

ability. On 12 November, an increase of positive PO3 dominates the upper-level (above537

1.2 km) fire-impacted O3 accumulation, while the transport process dominates at the538

lower level. In contrast, on 13 November, an increase in PO3 (either through increased539

ozone chemical production or a decrease in ozone chemical loss) dominates the lower level540

(below 1.0 km), while transport processes dominate at the upper level. The decrease of541

negative PO3 in the surface layer (i.e., PO3 is more negative in CTRL compared to FIREcorr542

below 0.2 km) is affected by additional NOx and VOCs from the fires.543

Quantitatively, the percentage contribution from fire emissions is calculated by (FIREcorr-544

CTRL)/FIREcorr during daytime over Huntsville. Fire emissions contribute 14% to the545

highest daytime PO3 on 12 November (2 ppb out of 17 ppb at 1.6 km) and 25% on 13546

November (5 ppb out of 19 ppb at 0.5 km). This different photochemical production is547

associated with variable fire emissions and different smoke transport patterns and me-548

teorological conditions. At the surface, fire emissions contribute to the daytime ∆O3 with549

37% (7 ppb/10 hrs out of 18 ppb/10 hrs) on 12 November and with 30% (8 ppb/10 hrs550

out of 25 ppb/10 hrs) on 13 November, respectively. In the upper air, the relative con-551

tribution increases up to 44–58%. The smoke strength is indicated here by the fire-impacted552

PM2.5. At the surface, fire emissions contribute to hourly PM2.5 with 44% (12 µg/m3
553

out of 27 µg/m3) on 12 November and with 70% (32 µg/m3 out of 47 µg/m3) on 13 Novem-554

ber. In the upper air, the relative contribution increases up to 51–77%. The results sug-555

gest an increased fire contribution to the enhancement of ozone and particulate matter556

from the surface to the upper air and from one day to the next.557

Diurnal variability of process tendencies can be affected by the boundary layer evo-558

lution, transport changes over the course of the day, and photochemistry. To examine559

how the different processes vary over the day, we analyze the total and fire-impacted pro-560

cess tendencies for 7–9 LT, 11–13 LT, and 15–17 LT in Figure 12. The total PO3 clearly561

peaks in the mid-day. The total advection term dominates in the late afternoon on 12562

November and the middle of the day on 13 November when the largest inflow of ozone563

occurred. The total vertical mixing process is strongest when the PBL is built up in the564

middle of the day, and it dominates the surface ozone accumulation by dispersing up-565

per air ozone downward.566

The diurnal variability of the total tendency terms can help explain what processes567

drive the fire-related ozone increase during different times of the day. On 12 November,568

the transport process in the late afternoon drives the largest fire impacts on O3 accu-569

mulation (∼4 ppb/2 hrs near the surface), which is associated with the freshly emitted570

smoke plume discussed. Fire-impacted PO3 from morning to mid-day is small, yet lo-571

cal net chemical production dominates the ozone increase in the elevated smoke plume.572

On 13 November, the largest ozone increase (> 4 ppb/2 hrs) in the mid-day is dominated573

by local photochemistry, followed by stong vertical mixing as well as inflow of O3 from574

fire emissions. This combined effect of net chemical production, transport, and vertical575

mixing on O3 accumulation is most pronounced in mid-day when fire smoke impacted576

the boundary layer.577
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3.6 Uncertainties and Limitations578

In this study, turning off the aerosol-radiation feedback in WRF-Chem ensures iden-579

tical meteorology between the sensitivity simulations. We acknowledge that excluding580

the feedback may influence modeled ozone photochemistry. To address uncertainties in-581

duced by excluding the direct radiative effect, three additional sensitivity simulations582

(CTRL’, FIREorig’, and FIREcorr’) are performed with the aerosol-radiation feedback583

turned on. Figure S10 shows results for photolysis rates for NO2 (J(NO2)) during the584

daytime on 12 and 13 November 2016. J(NO2) is shown as an indicator for the rate-limiting585

step in the photochemical formation of ozone (Baylon et al., 2018). In addition, fire-impacted586

PM2.5 is used as an indicator for smoke altitude and magnitude. The daytime mean J(NO2)587

in the three different simulations (yellow lines) shows that increasing aerosol emissions588

tends to slightly increase J(NO2) at the top and above the smoke plumes, while decrease589

J(NO2) in the middle to the bottom parts of the plumes. The strongest suppression of590

J(NO2) appears at the bottom part of the plume. These results suggest that the addi-591

tional smoke aerosols lead to a change in the vertical structure of the photochemical ozone592

formation, consistent with previous studies (Alvarado et al., 2015). Quantitatively, in-593

creasing fire aerosol emissions from the fires reduces surface J(NO2) by as much as −4%594

and −13% on 12 and 13 November (red lines in Figure S10), respectively. This change595

in actinic flux suggests that underestimation or overestimation of photochemical ozone596

production largely depends on the altitude with respect to smoke plumes for a given fire597

event. Our sensitivity simulation suggests that, by excluding the aerosol-radiation feed-598

back, daytime ozone at the surface might be overestimated by 4% and 13% on 12 and599

13 November, respectively. A slight overestimation in the plume center and a slight un-600

derestimation above the plume may result from excluding the feedback. Jiang et al. (2012)601

examined the direct radiative effects on ozone production for large-scale fires. Their re-602

sults show that the reduction in both downward shortwave radiation and surface tem-603

perature can decrease both J(NO2) as well as biogenic isoprene emissions, resulting in604

reductions in surface ozone concentrations by as much as 15%.605

Our analysis has limitations due to excluding secondary organic aerosol (SOA) and606

heterogeneous/aqueous chemistry in the MOZCART scheme. The formation of SOA in607

smoke plumes is highly variable; SOA can increase as the plume ages while in other cases608

can stay constant or even decrease (Akagi et al., 2012; Wigder et al., 2013; Alvarado et609

al., 2015). In a recent model study for the 2016 SEUS wildfires, Guan et al. (2020) have610

shown that SOA from fires accounts for 9% and 12% of PM2.5 components for 6–9 Novem-611

ber and 13–16 November, respectively. Therefore, considering SOA, our adjustment fac-612

tor of aerosol emissions might be reduced from 3.6 to ∼3.2. Future studies are needed613

to estimate the additional uncertainties to the simulated AOD but are not expected to614

significantly alter our conclusions, namely that a factor of 3–4 is needed to scale the FINNv1.5615

aerosol emissions for this fire event. Heterogeneous chemistry in aerosols and clouds may616

also affect the ozone budget in different ways. Although there is little evidence for sig-617

nificant heterogeneous ozone loss, the uptake of HO2 and N2O5 by aqueous aerosols rep-618

resents a potential sink (Jacob, 2000). A comparison between the most recently added619

T1 MOZCART and the MOZCART scheme used here shows that T1 MOZCART gen-620

erally simulates somewhat lower surface ozone than MOZCART (https://www2.acom.ucar.edu/wrf-621

chem), and this change is mostly attributed to the inclusion of heterogeneous reactions622

on aerosols in T1 (Emmons et al., 2020). Although the results may differ when simu-623

lating other regions or times, we do not expect that the omission of heterogeneous chem-624

istry will significantly alter our results. In addition, ceilometer measurement and satel-625

lite images show that the sky over Huntsville during our study period is mostly clear ex-626

cept for a short-time cloudy condition on the morning of 13 November. Therefore, we627

expect small impact on local ozone results from cloud chemistry for this specific case study.628
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4 Conclusions629

Analyzing measurements from ozonesonde, O3 DIAL, ceilometer, surface monitors,630

and space-borne observations together with the regional chemical transport model WRF-631

Chem provides evidence of wildfire impacts on the vertical distribution of ozone and aerosols632

over Huntsville, AL. Diagnostic analysis characterizes the relative roles of chemical and633

dynamical processes in the vertical ozone budget in fire smoke. Multi-platform obser-634

vations are shown to be essential to evaluate the model performance from regional to lo-635

cal scale. This study uniquely combines the TOLNet/RO3QET UV O3 DIAL aerosol636

extinction product with MODIS AOD and EPA PM2.5 concentrations to compare with637

the modeled smoke during a high particulate pollution episode of the 2016 SEUS wild-638

fires.639

During the daytime on 12 and 13 November 2016, fire emissions contribute 12–32640

µg/m3 (40–70%) to hourly surface PM2.5 at Huntsville and dominate the local partic-641

ulate air pollution on 13 November. Besides the freshly emitted smoke plumes, relatively642

aged plumes emitted from previous days contribute considerably to the entire PBL PM2.5643

accumulation. Fire emissions contribute 7–8 ppb/10 hrs (30–37%) to the daytime sur-644

face ozone increase at Huntsville. Although O3 is of less concern for air quality during645

this fire episode because concentrations remained below national health standards, in-646

vestigating the fire influence mechanism on the vertical ozone budget provides insights647

into the variability of the ozone distribution downstream of wildfires. In particular, the648

main sources of fire-impacted ∆O3 are demonstrated by sensitivity simulations and ten-649

dency diagnostics: (1) Fire emissions increase the vertical ozone concentrations down-650

stream of the fires by affecting the local net chemical ozone production, inflow and out-651

flow of ozone, and the vertical ozone exchange. These processes vary in importance on652

daily, diurnal, and vertical scales. On 12 November, local net photochemical ozone pro-653

duction over Huntsville dominates the fire-impacted ozone enhancement in the elevated654

plume while transport processes dominate the boundary layer ozone accumulation in the655

late afternoon. On 13 November, local net photochemical ozone production dominates656

the fire-impacted ozone enhancement below 1 km. (2) Local net chemical production of657

ozone from biomass burning was not the dominant source of surface ozone these days.658

However, the vertical mixing and advection of ozone produced elsewhere from biomass659

burning emissions enhanced the overall impacts of biomass burning on local ozone. The660

combined effect of chemical and dynamical processes leads to a percentage contribution661

to ∆O3 of 30–37% at the surface and up to 44–58% in the upper air.662

For the considered case studies, WRF-Chem captures the general day-to-day AOD663

pattern, air-quality variations, vertical structure of aged plumes, and enhanced ozone lam-664

ina. Three main avenues for future work follow from our work: (1) Discrepancies in fire665

emission estimations need to be considered for model inputs. The (OC+BC)/CO emis-666

sion ratios in FINNv1.5, GFEDv4s, GFASv1.2, and QFEDv2.5 r1 fire inventories differ667

by a factor of 5.7 (in Gg per Gg) over the 2016 SEUS wildfire region. A scaling ratio of668

3–4 on aerosol emissions (derived from FINNv1.5 PM2.5 and PM10), within the spanned669

range of the emission ratios in different inventories, was needed in our case to improve670

the modeled magnitude of surface PM2.5, vertical aerosol extinction, and AOD. (2) Af-671

ter the emission adjustment, the underestimation of the densest plume in DIAL and high-672

est AOD in MODIS is partly due to missing fire detections under clouds on 13 Novem-673

ber. Adding extra satellite detections (e.g., FINNv2.2 includes VIIRS information) or674

filling in the gap of missing fire counts in emission estimation algorithms should be con-675

sidered; (3) The density, continuity, and species of vertical measurements are relatively676

limited for modeling evaluation. Available larger samples of vertical measurements (ground-677

based and airborne) with ambient data will benefit regional-model evaluation in future678

fire studies.679

In summary, our results reveal the different mechanisms by which fires can influ-680

ence the vertical ozone budget downstream of the wildfires and point out large uncer-681
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tainties in fire emissions. Our case study reveals the benefits of combining observations682

from multiple platforms for characterizing fire impacts on surface and upper air chem-683

ical composition and for the in-depth evaluation of models. Albeit ozone concentrations684

during the considered fire episode were of less concern for air quality management, our685

analysis of the ozone budget in fire smoke provides valuable insight into the complex in-686

terplay of chemical and dynamical processes. Future work combining modeling diagnos-687

tic tools with a larger sample of ground-based and airborne measurements for a multi-688

tude of fire episodes is needed to gain a more generalized understanding of the ozone evo-689

lution in wildfire plumes and subsequent air-quality and policy implications.690
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Table 1. Key Configurations for the WRF-Chem v3.9.1 Simulations

Simulations 1. CTRL (fire off) 2. FIREorig (fire on) 3. FIREcorr (fire on, correction)

Vertical 60 vertical levels from the surface to 50 hPa (vertical grids in Figure S1)

Horizontal D01: 16 km×16 km, D02: 4 km×4 km

Emissions Fire: FINNv1.5, Anthropogenic: NEI 2011 v2, Biogenic: MEGAN

IC&BC Met: NAM 12 km, Chemical: MOZART global

Chemistry MOZART gas, GOCART aerosol

Physics Goddard, RRTM, Morrison’s, Monin-Obukhov, Noah, YSU, G3, F-TUV
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Figure 1. (a) Map of 14 active wildfires (red triangles) during 11–14 November, 2016 (see

Table S1 for details). Here the names of wildfires are defined by the Monitoring Trends in Burn

Severity project (MTBS; www.mtbs.gov). (b) WRF-Chem inner domain (D02) and terrain height

(m). Black dots, blue dots, and magenta dot represent the 8 EPA PM2.5 sites, 6 EPA O3 sites,

and Huntsville station, respectively. The magenta line in the inner model domain (D02) indicates

the route of the vertical section in Figure 10.
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Figure 2. FINNv1.5 daily burn area (acres) group by individual wildfire during 11–14 Novem-

ber 2016. The daily burn area is aggregated in the geospatial boundary box of each wildfire that

defined by MTBS database.
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Figure 3. MODIS Vs. WRF-Chem AOD at 550 nm in SEUS region in 12–14 (Row 1–3)

November 2016. Column 1 to 4 shows MODIS AOD, FIREorig AOD (before adjustment),

FIREcorr AOD (after adjustment), and MODIS reflectance, respectively. Cross marker indi-

cates Huntsville location. In the MODIS reflectance images, the red dots represent the fires and

thermal anomalies product.
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Figure 4. (a) Time-height curtain of UAH CT25K ceilometer backscatter intensity in 12–14

November 2016 (courtesy of Kevin Knupp). Here UTC time minus 6 hours is local time. The

black triangle indicates the launch time of an ozonesonde. The black rectangle indicates the mea-

surement time of DIAL. (b) Time-height curtain of DIAL aerosol extinction coefficient at 299 nm

in 1:37–4:17 UTC on 14 November (19:37 to 22:17 LT 13 November). (c) Same time period with

(b), but for ceilometer backscatter intensity at 905 nm.
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Figure 5. Comparison of fire emission ratios for (OC+BC) versus CO between this work and

the different inventories. Daily emissions in the wildfire region are summed up within the lati-

tude and longitude boundary 33.46–38.17◦ N and 78.75–86.25◦ W (Figure S4). The black, pink,

red, and blue dots represent daily emissions in 1–30 November 2016 from FINNv1.5, GFEDv4s,

GFASv1.2, and QFEDv2.5 r1 inventories, respectively. Unfilled aqua and orange squares rep-

resent daily emissions in 8–14 November 2016 from FIREorig and FIREcorr runs, respectively.

The gray dots denote a scaling by 3.6 on the original FINNv1.5 aerosols for a reference. Note

the recommended scaling factor 3.4 on GFASv1.2 aerosol emissions by Kaiser et al. (2012) is not

shown in this plot.
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Figure 6. Comparison between 8 EPA sites (black line) and WRF-Chem hourly PM2.5PM2.5

in 12–14 November 2016 for control run CTRL (aqua), before the emissions adjustment FIREorig

(red), and after the emissions adjustment FIREcorr (brown). The control run is performed to

show the modeled PM2.5 without fire impacts. Pattern statistic can be seen in Figure S5. 8 EPA

PM2.5 sites include: 1. Asheville, NC, 2. Mitchell, NC, 3. Swain, NC, 4. Greenville-Anderson-

Mauldin, SC, 5. Chattanooga, TN-GA, 6. Nashville-Davidson-Murfreesboro-Franklin, TN, 7.

Macon, GA, 8. Decatur, AL.
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Figure 7. Modeled time-height curtain of aerosol extinction coefficient (at 300 nm) and ozone

before (FIREorig) and after (FIREcorr) the emissions adjustment in 1–5 UTC on November 14

(19–23 LT on 13 November), compared with DIAL aerosol extinction (at 299 nm) and ozone.
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Figure 8. Comparison between EPA (black line) and WRF-Chem ozone in 12–14 November

2016 for control run (light blue), before correction (red), and after correction (brown). Pattern

statistic can be seen in Figure S6. 6 EPA O3 sites include: 1. Great Smoky Mountains NP-Look

Rock, TN, 2. Cranberry, NC, 3. Sand Mountain, AL, 4. St.Andrews State Park, Panama City

Beach, FL, 5. Coweeta, NC, 6. South DeKalb, GA.
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Figure 9. Comparison between ozonesonde (black color) and WRF-Chem simulations

(FIREcorr in red color, CTRL in gray color) at 19 UTC (13 LT) on 12 November 2016. Ozone

volume mixing ratio (O3), relative humidity (RH), potential temperature (θ), horizontal wind

speed (WS), and horizontal wind direction (WD) are displayed respectively. The aqua lines rep-

resent the PBL heights from sonde (solid line) and model (dashed line). Meteorological profiles

and PBL height between FIREcorr and CTRL simulations are identical because the aerosol-

radiation feedback is turned off.

–31–



manuscript submitted to JGR-Atmospheres

Figure 10. (a) Modeled (FIREcorr) vertical sections of O3 mixing ratio (ppb) along an east-

west transect (the magenta line shown in Figure 1) across Huntsville latitude (34.72◦ N) at 19

UTC (13 LT) on 12 November 2016 at 0–4 km ASL altitude. Solid red line denotes the longi-

tude of Huntsville. Arrows indicate modeled direction and speed of horizontal wind. (b) Same

as Figure a, but for fire-impacted (FIREcorr minus CTRL) O3 mixing ratio. Note the colorbar

range is different from Figure a. (c) Same as Figure b, but for fire-impacted PM2.5 concentration

(µg/m3). (d–f) Same as Figure a–c, respectively, but for 19 UTC (13 LT) on 13 November 2016.
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Figure 11. (a) and (b) Process analysis of daytime-integrated vertical ozone tendencies and

daytime-averaged PM2.5 over Huntsville in simulations with (FIREcorr, solid lines) and without

(CTRL, dashed lines) fire emissions during 7–17 LT on 12 and 13 November, respectively. Pro-

cesses include chemical reactions (Chem, red), horizontal and vertical advections (AdvH+AdvZ,

blue), vertical mixing (Vmix, gray), and summed tendencies of all processes (SumTend, black).

PM2.5 is represented by green lines. (c) and (d) are same as Figure (a) and (b) but for fire-

impacted values, calculated by the difference between FIREcorr and CTRL simulations.
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Figure 12. Same as Figure 11, but present diurnal variability by integrating 2 hours in 7–9,

11–13, and 15–17 LT on 12 November (row 1, 3) and 13 November (row 2, 4), respectively.
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