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Abstract

To improve EI Niño-Southern Oscillation (ENSO) amplitude and type forecast, we pro-pose a model based on a deep residual

convolutional neural network with few parame-ters. We leverage dropout and transfer learning to overcome the challenge of

insufficient data in model training process. By applying the dropout technique, the model effectively predicts the Niño3.4 Index

at a lead time of 20 months during the 1984-2017 evaluation period, which is three more months than that by the existing

optimal model. Moreover, with homogeneous transfer learning this model precisely predicts the Oceanic Niño Index up to 18

months in advance. Using heterogeneous transfer learning this model achieved 83.3% accuracy for forecasting the 12-month-lead

EI Niño type. These results suggest that our proposed model can enhance the ENSO prediction performance.
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Abstract19

To improve EI Niño-Southern Oscillation (ENSO) amplitude and type forecast, we pro-20

pose a model based on a deep residual convolutional neural network with few parame-21

ters. We leverage dropout and transfer learning to overcome the challenge of insufficient22

data in model training process. By applying the dropout technique, the model effectively23

predicts the Niño3.4 Index at a lead time of 20 months during the 1984-2017 evaluation24

period, which is three more months than that by the existing optimal model. Moreover,25

with homogeneous transfer learning this model precisely predicts the Oceanic Niño In-26

dex up to 18 months in advance. Using heterogeneous transfer learning this model achieved27

83.3% accuracy for forecasting the 12-month-lead EI Niño type. These results suggest28

that our proposed model can enhance the ENSO prediction performance.29

Plain Language Summary30

El Niño-Southern Oscillation (ENSO) is an irregular periodic variation along with31

complex tropical atmosphere-ocean interaction. It impacts interannually human lives glob-32

ally and locally. Hence, we contribute, the first time as we know, a deep learning model33

that can effectively predict EI Niño strength and type. The model can transfer the knowl-34

edge learned from Niño3.4 Index prediction to Oceanic Niño Index and type prediction,35

respectively. We find that our proposed model has a high correlation skill and a good36

precision for predicting strength and type respectively in relation to an evaluation be-37

tween 1984-2017. Moreover, our model requires smaller-sized storage against the exist-38

ing deep learning model.39

1 Introduction40

The EI Niño-Southern Oscillation (ENSO) is one of the main drivers of inter-annual41

climate variability on Earth, impacting global climate (Yang et al., 2018), agriculture42

(Henson et al., 2017), ecosystems (Lehodey et al., 2020), health (Heaney et al., 2019),43

and society (Hsiang et al., 2011). Therefore, it is valuable to predict ENSO early and44

accurately to minimize these effects. However, predicting the strength of ENSO remains45

a challenge due to its complexity (Timmermann et al., 2018; Sun et al., 2016). Also, the46

increasing diversity of ENSO behavior since 2000 has led to a growing interest in the type47

of ENSO events (Geng et al., 2020). ENSO can be mainly divided into Eastern Pacific48

(EP) and Central Pacific (CP) types (Yeh et al., 2009), based on the distribution of the49

Sea Surface Temperature Anomaly (SSTA) during its maturation phase. However, some50

events that the SSTA is relatively high over the central and eastern Pacific Ocean can-51

not be classified as CP or EP types. Zhang et al. (2019) classified ENSO into EP, CP,52

and a mixture of the two (MIX) types of EI Niño (La Niña).To the best of our knowl-53

edge, the definition of ENSO type has not come to an agreement. Because the effects54

of different ENSO types vary greatly, e.g., different EI Niño events have a different im-55

pact on US winter temperatures (Yu et al., 2012) and the East Asian climate (Yuan &56

Yang, 2012). Hence, the prediction of ENSO type is important for improving the qual-57

ity of climate forecasts.58

Currently, both statistical (Petrova et al., 2020; Ren, Zuo, & Deng, 2018; Wang et59

al., 2020) and dynamical (Saha et al., 2014; Ren, Scaife, et al., 2018) methods can gen-60

erate skillful predictions 6-12 months in advance. Many deep learning-based methods61

have emerged in recent years, e.g. using Artificial Neural Networks (ANNs) (Petersik &62

Dijkstra, 2020; Feng et al., 2016), Recurrent Neural Networks (RNNs) (Mahesh et al.,63

2019), Long Short-Term Memory (LSTM) neural networks (Broni-Bedaiko et al., 2019),64

Convolutional Long Short-Term Memory (ConvLSTM) (Mu et al., 2019; Gupta et al.,65

2020; D. He et al., 2019), Convolutional Neural Networks (CNNs) (Ham et al., 2019; Yan66

et al., 2020), and Graph Neural Networks (GNNs) (Cachay et al., 2020). The most re-67

markable work is the CNN-based model that can make effective forecasts 17 months in68
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advance (Ham et al., 2019), outperforming most existing methods. This model is trained69

on Coupled Model Intercomparison Project phase5 (CMIP5) and reanalysis data to pre-70

dict the Niño3.4 index. However, the model has few layers, only convolutional and pool-71

ing layers, does not use residual structures, and does not use some techniques to improve72

the predictability except for the use of transfer learning on CMIP5. Recent studies have73

shown that the dropout technology can improve the performance of shallow neural net-74

works applied to temperature simulation problems (Piotrowski et al., 2020). Through75

extensive experiments they show that improving model performance and stability requires76

nodes to be discarded with much lower probability than common deep neural networks77

(about 1%, instead of 10-50% for deep learning). Due to a number of layers applied in78

our model, we consider using the dropout in more detail to further improve the predic-79

tion ability. Additionally, comparing to the existing research on ENSO prediction which80

only performs transfer learning on simulated data, we also consider transferring the knowl-81

edge learned from the task of predicting the Niño3.4 index to the tasks of predicting Oceanic82

Niño Index (ONI), so-called homogeneous transfer learning.83

There are various methods of predicting ENSO types, e.g. based on the random84

forest (Santos et al., 2020), multi-model ensemble (Ren, Scaife, et al., 2018), and CNN85

(Ham et al., 2019). In this work, we focus on the CNN method trained on CMIP5 data86

to predict EI Niño types. The accuracy remains 66.7% at lead times of 12 months. How-87

ever, they have only expected the types of EI Niño, not yet the types of La Niña and the88

normal events. Besides, using transfer learning in the index prediction leads to a slight89

performance improvement, while in the type prediction, no transfer learning is used. Nev-90

ertheless, we can transfer the knowledge learned from the task of index prediction to type91

prediction. This method is called heterogeneous transfer learning, thereby further im-92

proving the prediction ability.93

In this work, the main contributions are summarized as follows:94

1. We propose a deep Residual Convolutional Neural Network (Res-CNN) model for95

ENSO predictions, including the Niño3.4 index, ONI, and types. It is worth not-96

ing that our model requires only a few changes for different tasks. We find that97

the Res-CNN model can effectively predict the Niño3.4 index for up to 20 months98

in advance, three months more than the previous CNN-based model.99

2. Keeping the network structure intact, we show the ONI can be skillfully predicted100

18 (12) months in advance with (without) homogeneous transfer learning, which101

provides us a new strategy for further enhancing the predictive ability of ENSO.102

3. We apply heterogeneous transfer learning to enhance the type prediction. We show103

that the knowledge learned from the index prediction task can be transferred to104

the type prediction task by changing only the output layer of the model trained105

for the index prediction task and retraining on the type prediction task. The ac-106

curacy of EI Niño type prediction can reach 83.3% 12 months in advance, while107

the current best is 66.7%.108

2 Data and Methods109

2.1 Data110

The predictors are three consecutive months SSTA and Heat Content Anomaly (ver-111

tically averaged oceanic temperature anomaly in the upper 300 m) over 0◦-360◦E, 55◦S-112

60◦N at a resolution of 5◦×5◦. The simulated dataset is CMIP5 3.2 (core) (1861-2004)113

(Bellenger et al., 2014). The reanalysis dataset is simple ocean data assimilation version114

2.2.4 (SODA) (1871-1973) (Giese & Ray, 2011) and Global Ocean Data Assimilation Sys-115

tem (GODAS) (1982-2017) (Behringer & Xue, 2004).116
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Figure 1. The architecture of the Res-CNN model. The variables of the input layer corre-

spond to the sea surface temperature (in units of ◦C) anomaly and the oceanic heat content (in

units of ◦C) anomaly from time t - 2 months to t months, between 0◦–360◦E and 55◦S–60◦N.

The three-month-averaged Niño3.4 index, ONI and ENSO type from time t + 1 months to t + 23

months is used as a variable for the output layer.

2.2 Res-CNN model117

The input data for three consecutive months are recorded as xt−2, xt−1, xt, the out-
put data of the Niño3.4 index, ONI or type all referred to as y, and the forecast result
can be described by

yt+l = Fl (xt−2, xt−1, xt) (1)

where F denotes the Res-CNN model, and l is the forecast lead months from 1 to 23.
Res-CNN shown in Figure 1 uses a 7-layer convolutional neural network, a 3-layer max-
pooling to extract features, 2-layer skip connections, and 1-layer fully connected layer
to generate the final result. In index predicting task, the output is a single value; while
in type predicting task, the output is the probability of various categories. The convo-
lution process of Res-CNN is the most efficient computational tool for extracting fea-
tures as follows:

vx,yl,f =

Ml−1∑
m=1

Pl∑
p=1

Ql∑
q=1

wp,q
l,f,mv

(x+p−Pl/2,y+q−Ql/2)
(l−1),m + bl,f (2)

Where (x, y) is the dimensions of the feature map, l denotes the l-th convolution layer,118

and f is for the f -th feature map. M means the number of feature maps, and (Pl, Ql)119

is the dimensions of the l-th filter. b is the bias units, w is the weight at grid point (p, q)120

in the convolution kernel and vl,f denotes one value of the l-th filter and the f -th fea-121

ture map.122

The parameters of our model are learned through multiple iterations of the min-
imization loss function of Mean Square Error in predicting index or Cross Entropy in
predicting type. In our model, the residual structure can be defined as follows

y = R(x, {W}) + x (3)
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where x and y are the input and output vectors of the considered layer, and the func-123

tion R denotes the residual mapping to be learned. The operation R+x is performed124

by a shortcut connection and element-wise addition. The other details are same as those125

in K. He et al. (2016), except that we use the Tanh activation function instead of the126

rectified linear unit and do not use the batch normalization (Ioffe & Szegedy, 2015). Be-127

cause our network is shallow compared to a standard residual network, small changes128

in network parameters have little effect when the network is not deep. Also, because our129

data is insufficient and complex, if the input of each layer of the network is kept the same130

distribution, the model cannot be trained well. Setting the number of residual connec-131

tions to 0, 1, 2, and 3, our model has various structures. In order to further improve per-132

formance, 11 different dropout rates are token, namely 0, 0.01, 0.03, 0.05, 0.07, 0.1, 0.3,133

0.5, 0.7, 0.9, 0.99. Thus, for each advance month, there are 44 models (Figure S1). The134

final model would be the best result from the model that determines the number of resid-135

ual connections. See Text S1 for details on dropout and transfer learning techniques.136

2.3 Indexes forecast137

In predicting index includes the Niño3.4 index and ONI. The number of the unit
in fully connected layer is one, and the Adam (Kingma & Ba, 2014) optimization algo-
rithm is used. The specific parameter settings can be found in the Text S2. We use the
correlation coefficient function I as a measure of the ENSO index prediction:

Il =

12∑
t=1

∑e
y=s

(
Oy,t − Ōt

) (
Fy,t,l − F̄t,l

)√∑e
y=s

(
Oy,t − Ōm

)2∑e
y=s

(
Fy,t,l − F̄t,l

)2 (4)

where, O and F denote the observed and the predicted values, respectively. Ōt,l and F̄t,l138

denote the temporal climatology concerning the calendar month m (from 1 to 12) and139

the forecast lead months l (from 1 to 23). The label y means the forecast target year.140

Finally, s and e denote the earliest and latest validation or test year.141

2.4 Types forecast142

We conduct two kinds of experiments: one is to predict three types, i.e. EP, CP,143

and MIX of EI Niño; and the other is with seven types, i.e. EP, CP, MIX of EI Niño (La144

Niña), and Normal Year (NY). See the Text S3 for more details.145

3 Results146

The All-season Correlation Skill (ACS) is shown in Figure 2 for the CNN (b) and147

the Res-CNN (c). The ACS of the three-month-moving-averaged Niño3.4 index between148

1984 and 2017 in the Res-CNN model is higher than almost all state-of-the-art dynamic149

models and the CNN model (Figure 2a). It is worth noting that, except for the Res-CNN150

model, the CNN model fails to perform optimally when the lead time is less than 6 months.151

The correlation coefficient of the CNN model exceeds 0.5 only 17 months in advance, and152

worse than the Scale Interaction Experiment-Frontier (SINTEX-F) dynamic prediction153

model [40] for a lead of 23 months, while the Res-CNN model reaches 20 months in ad-154

vance and outperforms the SINTEX-F dynamic prediction model in all advance months.155

Thus, we conclude that the Res-CNN model can skillfully predict ENSO 20 months in156

advance, which is better than all the compared models. The Res-CNN model exhibits157

a higher correlation coefficient than the CNN model in almost all target seasons, espe-158

cially in spring and autumn seasons. For example, when the target season is MJJ (May-159

June-July), the SINTEX-F model predicts a correlation coefficient above 0.5 for only four160

months (Table S3), the CNN model for 11 months (Figure 2b), and the Res-CNN model161

for 17 months (Figure 2c), suggesting that our model is less affected by the spring pre-162

diction barrier (SPB) than the CNN and SINTEX-F model. Typically, the SPB phenomenon163
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Figure 2. Correlation skill for various lead times and methods. All season correlation skill

of the three-month-moving-averaged Niño3.4 index for multiple lead times from 1984 to 2017 in

the Res-CNN model (red), CNN model (Ham et al., 2019) (dodger blue), SINTEX-F (Luo et al.,

2008) dynamical forecast system (sky blue), and other dynamical forecast systems (Kirtman et

al., 2014) included in the North American Multi-Model Ensemble (NMME) project (the other

colors). The correlation skill of the Niño3.4 index for each season in the CNN model (b) and the

Res-CNN model (c). The black dashed line indicates that the correlation coefficient is equal to

0.5.
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is more severe in statistical models than in dynamic models (Jan van Oldenborgh et al.,164

2005). The Res-CNN model is less affected than other statistical methods because it is165

likely to make fuller use of the heat content information than other statistical methods,166

and accurate initialization of heat content can improve spring forecasting (McPhaden,167

2003). Nevertheless, the skills are much lower for summer time than winter, which may168

be related to the predictability. And the ”spring barrier” (western pacific ocean) may169

be a main factor to impact the summer predictability.170

The ACS of the three-month-moving-averaged Niño3.4 index from 1982 to 2001 and171

from 2002 to 2017 is shown in Figure S2. Whether it is 82-01 or 02-17, the prediction172

skill in the Res-CNN model is higher than the CNN model in all months ahead. How-173

ever, compared with the skill between 1982 and 2001, 2002-2017 declines sharply, with174

its effective prediction only 12 months. Similarly, the CNN model drops to only ten months,175

which is inseparable because the behavior of ENSO becomes more diverse after 2000 (Barnston176

et al., 2012). To assess the effect of the actual prediction more clearly in the Res-CNN177

model, we generated curves of the Niño3.4 index predicting the DJF season 18 months178

in advance for the years 1982 to 2017 (Figure S3). Compared to the SINTEX-F model,179

the Res-CNN correlation coefficient is over 0.2 higher. Besides, the Res-CNN also has180

correlation coefficient of 0.2 higher than the CNN model 20 months in advance (Figure181

S4), better predicting years with higher Niño3.4 index, such as 1982/1983, 1997/1998.182

The ACS of the ONI is shown in Figure 3 for the Gaussian Density Neural Net-183

work (GDNN) (a), the Quantile Regression Neural Network (QRNN) (b), and the Res-184

CNN (c). Compared to the GDNN and QRNN methods (Petersik & Dijkstra, 2020), the185

ACS of the ONI between 1984 and 2017 in the Res-CNN model using homogeneous trans-186

fer learning is highest (Figure 3d). Notably, the correlation coefficients of GDNN and187

QRNN in predicting ONI from 2002 to 2011 drop below 0.5 at 7 months ahead, while188

our method still has 0.6 at 10 months ahead, which is almost consistent with Niño 3.4189

in predicting 2002 to 2017. Besides, comparing the results of predicting Niño3.4 index190

and ONI from 1982 to 2017, ONI gives better results until the advance month is 12, while191

Niño3.4 index gives better results after that, suggesting that for index prediction with192

greater than one year, the amount of data has an impact on the model.193

The results of 3, 6, 9, 12, 18, 23 months ahead forecasts of El Niño types from 1982194

to 2017 are shown in Table 1. We found that compared to using one-step, using two-step195

achieves better results in all five scenarios of A-E; comparing A-two with B-two and C-196

two with E-two, the results of A are not as good as those of B and C’s are not as good197

as E’s. This indicates that the pre-training and soda training methods are not as good198

as just using the pre-training method in type prediction, in the meantime, the distribu-199

tion of SODA and GODAS data is very inconsistent, possibly due to the significant dif-200

ference in the frequency of occurrence of various types in the SODA dataset (Yeh et al.,201

2009) and the diversity after 2000 (Barnston et al., 2012). Compared with A-two and202

C-two, our model can still achieve 67% accuracy under 12 months ahead using hetero-203

geneous transfer learning. Also, it can predict all super ENSO 12 months in advance,204

especially the 2015/2016 EI Niño, the strongest events in history, which can still be pre-205

dicted at a lead time of 18 months. At present, almost all models cannot predict the event206

one year in advance (Tang et al., 2018). By comparing the results of A-two and D-two,207

the accuracy of A-two is lower than that of D-two, indicating that transfer training on208

SODA instead reduces the accuracy of most of the models initially trained on CMIP5.209

This suggests that fine-tuning on SODA does not yield better results, probably because210

heterogeneous transfer learning has been able to resolve, to some extent, the problem211

of unbalanced data distribution between CMIP5 and SODA.212

Finally, to evaluate the performance of our model, we compare it with the CNN213

model. Figure S5 shows our model achieves 83.3% accuracy 12 months earlier on the pe-214

riod from 1984 to 2017 compared to the CNN model (66.7% accuracy). These results215
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learning for various lead times. (d) The all-season correlation skill of the ONI between 1982 and

2017 using GDNN, QRNN, and Res-CNN at various lead times, Niño3.4 index using Res-CNN

(red). The black dashed line indicates that the correlation coefficient is equal to 0.5.
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Table 1. Prediction of ENSO types

Lead months
Methods 3 6 9 12 18

A-one 27 22 21 19 14
A-two 32 26 22 22 17
B-one 25 20 17 15 13
B-two 30 24 18 18 16
C-one 29 22 19 19 15
C-two 32 27 24 24 20
D-one 28 23 18 18 16
D-two 29 26 24 21 17
E-one 26 24 16 14 13
E-two 28 26 19 17 17

Super ENSO 3/3 2/3 2/3 2/3 2/2
Accuracy (%) 89/89 72/75 61/67 61/67 47/56
Results of forecasting the types of ENSO 3, 6, 9, 12, 18 months in advance from 1982
to 2017. There are 36 events in total, A-E in the table represents the number of
correct predictions. H and N denote the use and non-use of heterogeneous transfer
learning, respectively. one means one-step seven classes prediction, two means
two-step seven classes prediction, that first predicts El Niño, La Niña, and
normal year events, and then predicts whether El Niño or La Niña will be EP, CP,
or MIX. Super ENSO means that A-two/C-two correctly predicted the number of
1982/1983, 1997/1998, 2015/2016 EI Niño.
Accuracy indicates that the accuracy of A-two/C-two.
A: Train in CMIP5. B: Train in CMIP5 and then train in SODA.
C: Heterogeneous transfer learning the index model to CMIP5.
D: Homogeneous transfer learning the C to SODA.
E: Heterogeneous transfer learning the index model to CMIP5 and then training in
SODA. The model of using heterogeneous transfer is the optimal model for
predicting the respective lead and target of the Niño3.4 index.
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indicate that the Res-CNN model predicts the ENSO index and type better than the CNN216

model.217

4 Discussions218

Through various dropout experiments, we found that we got better and more sta-219

ble results at a lower dropout rate (0-0.3) than those at a higher dropout rate (0.5-0.9)220

(Figure S6). The finding differs from the conventional deep learning approach usually221

set with 0.4-0.6 of the dropout rate. The achievement is due to fewer parameters of the222

network. Therefore, too large dropout rate will lead to significant reduction of the learn-223

able parameters of the network during each round of iterations. Hence such training pro-224

cess would not produce suitable results. To find the appropriate number of residual con-225

nections, we conducted ablation experiments. The obtained results (Figure S7) show that226

the effective prediction months were about 17, 18, 20, and 16 when the number of resid-227

ual connections was 0, 1, 2, and 3, respectively. It was selected as our optimal model since228

the model with residual connections of 2 predicted best. Furthermore, Figure S8 shows229

that using un-normalized 2 residual connections achieved significantly better prediction230

results in comparison to using normalization, indicating that data normalization does231

not improve the model performance in deep learning-based ENSO prediction. Addition-232

ally, the model with a residual number of 3 can only predict the effective forecast for 17233

months, indicating no further improvement of a higher residual connection number.234

5 Conclusions235

Although this study showed remarkable results, there are still some limitations. In236

predicting the Niño3.4 index, the predictive ability of Res-CNN is notably improved in237

all seasons. However, by comparing the correlation coefficient for lead months from 1 to238

23 months, we found that they were nearly the lowest from late spring to fall (Table S1),239

the same as CNN (Table S2) and SINTEX-F (Table S3). This suggested that the SPB240

is still prevalent (Levine & McPhaden, 2015) and requires further study. Moreover, there241

is a large negative anomaly of the predicted SST for the first 10 years for both CNN and242

our model, whether this implies a change in climate or for other reasons we also need243

to investigate further. Holding the model structure constant to predict ONI, surprisingly,244

Res-CNN can effectively predict for 12 months (Figure S9) despite using only a small245

amount of data. However, the correlation coefficients were unstable at times high and246

low under different months of advance, and did not show a stable downward trend. To247

alleviate the problem, we predicted ONI using homogeneous transfer learning, and the248

skill was significantly enhanced. Since our model initially predicted the Niño3.4 index249

well, we assume that our model could learn to predict it. The ONI definition is closer250

to the Niño3.4 index, so the model is able to learn lots of knowledge and only needs less251

training to predict the ONI well. By varying only the number of the unit in the output252

layer of our model to predict the EI Niño type, the result in Table 1 is still almost 20253

percentage points higher than the CNN. Moreover, two-step and heterogeneous trans-254

fer learning were used in this work to predict ENSO types, with some predictive perfor-255

mance improvement.256

In summary, this study showed that the Res-CNN-based model can improve the257

long-term prediction of ENSO. Also, we found that the predictive ability can be better258

improved by using transfer learning and dropout techniques. The future extensions would259

be using different numbers of predictors and input months under different prediction months,260

e.g., intuitively, trying fewer predictors and input months under shorter advance months.261
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4. Figures S1 to S9

5. Table S1 to S3

Text S1. Dropout and Transfer Learning

The dropout technique is used to alleviate the overfitting issue. In this work we use the

base version (Srivastava et al., 2014), i.e., in each iteration, each node may be dropped

out with probability p according to the Bernoulli distribution. The p is the probability

that the node is set to zero, it’s then scaled by a factor of 1/(1 − p). This method can

facilitate the interaction between feature detectors (hidden layer nodes). Detector inter-

action means that some detectors rely on other detectors to function. In other words, it

lets the activation value of a neuron stop working with a certain probability as forwarding

propagation. This can make the model more general because it does not rely too much

on some local characteristics.

For transfer learning (Zhuang et al., 2020), the feature space of the data is represented

by attributes (Xs = Xt) and labels (Ys, Yt), with s representing the source object and t

representing the target object. Ys and Yt are equal for homogeneous transfer learning and

unequal for heterogeneous transfer learning. The most straightforward method is applying

the source domain model directly to the target domain before training. For example, the

ONI (type) is predicted by using homogeneous (heterogeneous) transfer learning, which

uses the model parameters of predicting the Niño3.4 index as the initialization parameters

before training.

Text S2. Indexes forecast

March 26, 2021, 11:30am
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The batch size is 400 (20) and epoch is 100 (50) during transfer learning (training).

The learning rate is set to 0.001 and a learning rate scheduler is used. To compare the

prediction performance of Res-CNN, the North American Multi-model Ensemble phase

1 (Kirtman et al., 2014), Scale Interaction Experiment-Frontier (SINTEX-F) (Luo et al.,

2008), and CNN are used during the valid period from 1984 to 2017. To predict ONI,

we divide the valid data into four-time slices, 1982-1991, 1992-2001, 2002-2011, and 2012-

2017. First, one slice data is randomly taken as a test set, then the first 20 years of

the remaining slice data are considered as a training set, while the remaining time slice

data as a validation set. Since the test sets are independent, there is no overlap between

training data, validation data, and test data. The batch size is 100, the epoch is 100, and

the learning rate is 0.0005.

Text S3. Types forecast

We measure the performance using accuracy, which is the number of correct predictions

divided by the total number of predictions. All types are defined by the Niño3 index

(SSTA averaged over 150◦- 90◦W, 5◦S-5◦N), denoted as N3, and the Niño4 index (SSTA

averaged over 160◦E-150◦W, 5◦S-5◦N), denoted as N4. The calculation of classification is

as follows:
r =

√
(N3 +N4)2 + (N3 −N4)2 =

√
2 (N2

3 +N2
4 )

θ =

{
arctan (N3−N4)

(N3+N4)
N3 +N4 > 0

arctan (N3−N4)
(N3+N4)

− 180 N3 +N4 < 0

θ ∈



(15◦, 90◦) EP EI Niño
(−15◦, 15◦) MIX EI Niño
(−90◦,−15◦) CP EI Niño
(−165◦,−90◦) EP La Niña
(−195◦,−165◦) MIX La Niña
(−270◦,−195◦) CP La Niña
other NY

(1)

March 26, 2021, 11:30am



X - 4 :

Finally, the ENSO events occur when r in the December-January-February (DJF) season

is greater than their standard deviation (Ham et al., 2019).
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Figure S1. Model selection. The optimal model for a given lead month is selected from many

different dropout rates and the number of residuals connected. Here only the advance months

are shown as 3, 6, 9, 12, 18, 23, and the corresponding is a-f. The best number of residual blocks

is 2, and the best dropout rate is between 0.05 and 0.5.
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Figure S2. Correlation skill of the CNN and the Res-CNN for various lead times and decades.

The all-season correlation skill of the three-month-moving-averaged Niño3.4 index from 1982 to

2001 (deep) and from 2002 to 2017 (shallow) as a function of the prediction lead month using

the CNN model (dodger blue) and the Res-CNN model (red). The black dashed line indicates

that the correlation coefficient is equal to 0.5.
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Figure S3. Time series 18 months in advance. Time series of DJF season Niño3.4 indexes

for 18-month-lead prediction using the CNN model (dodger blue) and the Res-CNN model(red).

Cor means correlation skill for DJF season from 1982 to 2017.
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Figure S4. Niño3.4 prediction 20-month in advance. Time-series of DJF season Niño3.4

indexes for 20-month-lead prediction using the CNN model (dodger blue), and the Res-CNN

model(red). Cor means correlation skill for DJF season from 1982 to 2017.
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Figure S5. Prediction of EI Niño type. The prediction accuracy of EI Niño types (EP, CP,

MIX) 12 months in advance using Res-CNN (red), CNN (dodger blue), and other models from

1982 to 2017.
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Figure S6. The impact of the dropout. The effect of the dropout rate under different skip

connection conditions. Here the skip connections of 0-3 are shown as a-d, respectively. The black

dashed line indicates that the correlation coefficient is equal to 0.5. Notice that the dropout rate

of 0.99 is better than the dropout rate of 0.9 for c and d, probably because the number of skip

connections is higher, and its effect is greater than the dropout.
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Figure S7. The impact of skip connection. The effect of the skip connection under different

dropout rate conditions. Here the dropout rates are 0, 0.01, 0.03, 0.05, 0.07, 0.1, 0.3, 0.5, 0.7, 0.9,

0.99, shown in a-k, respectively. The black dashed line indicates that the correlation coefficient

is equal to 0.5.
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Figure S8. Compares the skill between un-normalized 3 residual connections (blue), un-

normalized 2 residual connections (red), and normalized 2 residual connections (dodger blue).

The black dashed line indicates that the correlation coefficient is equal to 0.5.
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Figure S9. All-season correlation skill of the ONI and Niño3.4 index. The all-season correlation

skill of the three-month-moving-averaged ONI from 1982 to 1991(black), ONI from 1992 to

2001(dodger blue), ONI from 2002 to 2011(khaki), ONI from 2012 to 2017(pink), ONI from 1982

to 2017(blue), Niño3.4 from 1982 to 2017(red) using the Res-CNN without transfer learning for

various lead times. The black dashed line indicates that the correlation coefficient is equal to

0.5.
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Table S1. Correlation skill - Res-CNN

Target season
Forecast lead JFM FMA MAM AMJ MJJ JJA JAS ASO SON OND NDJ DJF

1 0.98 0.97 0.99 0.96 0.95 0.97 0.97 0.98 0.97 0.97 0.99 0.99
2 0.95 0.96 0.93 0.89 0.89 0.90 0.95 0.94 0.97 0.97 0.97 0.97
3 0.94 0.92 0.88 0.84 0.85 0.83 0.88 0.92 0.93 0.97 0.97 0.95
4 0.93 0.90 0.86 0.80 0.78 0.82 0.83 0.87 0.91 0.92 0.95 0.93
5 0.92 0.88 0.82 0.79 0.76 0.80 0.75 0.79 0.86 0.90 0.91 0.90
6 0.89 0.87 0.82 0.71 0.69 0.79 0.77 0.74 0.79 0.83 0.89 0.93
7 0.89 0.87 0.81 0.68 0.64 0.73 0.72 0.77 0.69 0.75 0.83 0.89
8 0.88 0.86 0.83 0.74 0.69 0.71 0.74 0.68 0.74 0.70 0.77 0.80
9 0.85 0.85 0.84 0.70 0.59 0.70 0.72 0.69 0.76 0.72 0.70 0.78
10 0.81 0.81 0.79 0.68 0.66 0.66 0.71 0.72 0.74 0.71 0.74 0.69
11 0.79 0.81 0.82 0.59 0.52 0.62 0.69 0.70 0.74 0.72 0.71 0.74
12 0.80 0.79 0.84 0.64 0.55 0.56 0.63 0.62 0.71 0.71 0.73 0.69
13 0.68 0.76 0.77 0.69 0.55 0.50 0.60 0.67 0.68 0.67 0.68 0.68
14 0.68 0.74 0.80 0.69 0.58 0.50 0.53 0.59 0.64 0.63 0.73 0.65
15 0.66 0.67 0.80 0.60 0.53 0.63 0.55 0.57 0.63 0.63 0.64 0.64
16 0.66 0.67 0.67 0.62 0.60 0.52 0.53 0.53 0.57 0.65 0.65 0.61
17 0.64 0.69 0.67 0.74 0.63 0.37 0.39 0.54 0.59 0.65 0.66 0.70
18 0.68 0.66 0.66 0.66 0.56 0.40 0.35 0.41 0.56 0.61 0.58 0.70
19 0.65 0.67 0.63 0.61 0.53 0.52 0.39 0.36 0.42 0.60 0.58 0.61
20 0.73 0.68 0.67 0.60 0.61 0.40 0.34 0.30 0.34 0.36 0.58 0.61
21 0.64 0.57 0.56 0.56 0.46 0.49 0.33 0.34 0.34 0.33 0.35 0.57
22 0.53 0.58 0.54 0.51 0.46 0.40 0.36 0.30 0.32 0.30 0.34 0.36
23 0.43 0.53 0.58 0.48 0.38 0.38 0.39 0.32 0.37 0.36 0.35 0.29
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Table S2. Correlation skill - CNN
Target season

Forecast lead JFM FMA MAM AMJ MJJ JJA JAS ASO SON OND NDJ DJF
1 0.96 0.95 0.91 0.89 0.92 0.88 0.93 0.94 0.97 0.96 0.96 0.96
2 0.94 0.94 0.90 0.85 0.84 0.84 0.91 0.93 0.97 0.96 0.95 0.95
3 0.92 0.91 0.89 0.79 0.75 0.77 0.83 0.90 0.93 0.95 0.95 0.94
4 0.90 0.89 0.83 0.75 0.68 0.68 0.75 0.81 0.90 0.92 0.95 0.93
5 0.91 0.86 0.82 0.71 0.63 0.66 0.68 0.74 0.81 0.91 0.92 0.92
6 0.90 0.88 0.83 0.69 0.55 0.60 0.68 0.65 0.74 0.83 0.90 0.90
7 0.93 0.88 0.84 0.73 0.56 0.58 0.59 0.65 0.65 0.76 0.82 0.87
8 0.88 0.90 0.86 0.72 0.60 0.61 0.65 0.66 0.69 0.66 0.73 0.80
9 0.82 0.85 0.84 0.73 0.60 0.66 0.63 0.71 0.65 0.68 0.66 0.74
10 0.80 0.80 0.80 0.65 0.60 0.60 0.66 0.68 0.72 0.67 0.67 0.68
11 0.73 0.76 0.79 0.62 0.50 0.59 0.59 0.64 0.70 0.69 0.68 0.70
12 0.77 0.79 0.79 0.61 0.40 0.56 0.58 0.62 0.66 0.68 0.70 0.65
13 0.73 0.75 0.76 0.68 0.41 0.40 0.56 0.62 0.69 0.71 0.64 0.65
14 0.66 0.65 0.73 0.65 0.44 0.43 0.48 0.55 0.64 0.67 0.66 0.61
15 0.63 0.59 0.70 0.56 0.44 0.40 0.46 0.47 0.58 0.66 0.67 0.66
16 0.65 0.60 0.63 0.53 0.33 0.30 0.40 0.48 0.51 0.62 0.68 0.63
17 0.66 0.64 0.55 0.55 0.41 0.29 0.27 0.41 0.48 0.50 0.65 0.67
18 0.64 0.69 0.56 0.52 0.37 0.26 0.22 0.24 0.37 0.48 0.54 0.63
19 0.60 0.66 0.63 0.52 0.27 0.29 0.22 0.20 0.27 0.41 0.45 0.57
20 0.49 0.60 0.63 0.47 0.37 0.26 0.22 0.21 0.22 0.23 0.42 0.45
21 0.39 0.48 0.55 0.50 0.31 0.24 0.23 0.24 0.25 0.23 0.27 0.43
22 0.38 0.38 0.50 0.45 0.29 0.28 0.24 0.17 0.26 0.26 0.23 0.33
23 0.28 0.38 0.40 0.44 0.27 0.17 0.25 0.27 0.28 0.22 0.25 0.24
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Table S3. Correlation skill - SINTEX-F
Target season

Forecast lead JFM FMA MAM AMJ MJJ JJA JAS ASO SON OND NDJ DJF
1 0.95 0.95 0.93 0.80 0.71 0.73 0.87 0.91 0.93 0.96 0.96 0.97
2 0.94 0.93 0.88 0.71 0.71 0.78 0.87 0.92 0.93 0.95 0.96 0.96
3 0.93 0.90 0.82 0.70 0.61 0.73 0.79 0.87 0.91 0.92 0.94 0.93
4 0.91 0.88 0.80 0.59 0.56 0.65 0.75 0.80 0.87 0.92 0.92 0.93
5 0.92 0.87 0.81 0.58 0.40 0.62 0.69 0.74 0.78 0.88 0.93 0.91
6 0.91 0.89 0.80 0.60 0.36 0.42 0.71 0.66 0.73 0.78 0.89 0.92
7 0.92 0.88 0.81 0.61 0.40 0.34 0.54 0.71 0.61 0.72 0.79 0.89
8 0.90 0.88 0.79 0.57 0.41 0.38 0.44 0.60 0.69 0.59 0.72 0.79
9 0.83 0.86 0.78 0.54 0.34 0.39 0.47 0.50 0.61 0.67 0.60 0.71
10 0.81 0.80 0.76 0.54 0.30 0.29 0.50 0.53 0.51 0.59 0.67 0.61
11 0.68 0.78 0.71 0.53 0.30 0.25 0.36 0.58 0.54 0.50 0.58 0.67
12 0.72 0.63 0.72 0.49 0.30 0.24 0.35 0.43 0.61 0.53 0.52 0.55
13 0.55 0.67 0.55 0.55 0.27 0.23 0.31 0.43 0.45 0.62 0.54 0.55
14 0.63 0.52 0.58 0.44 0.40 0.19 0.32 0.40 0.47 0.44 0.64 0.55
15 0.54 0.62 0.45 0.42 0.30 0.31 0.17 0.42 0.44 0.46 0.47 0.65
16 0.65 0.49 0.57 0.34 0.24 0.24 0.31 0.18 0.47 0.45 0.49 0.51
17 0.54 0.58 0.41 0.40 0.24 0.18 0.23 0.35 0.16 0.47 0.47 0.52
18 0.54 0.55 0.46 0.29 0.20 0.23 0.18 0.25 0.37 0.15 0.48 0.49
19 0.54 0.52 0.51 0.30 0.20 0.11 0.26 0.21 0.24 0.38 0.17 0.48
20 0.47 0.52 0.42 0.43 0.19 0.24 0.11 0.28 0.23 0.22 0.40 0.21
21 0.25 0.43 0.46 0.25 0.33 0.21 0.35 0.14 0.30 0.26 0.24 0.44
22 0.50 0.25 0.38 0.36 0.13 0.30 0.28 0.42 0.16 0.29 0.31 0.26
23 0.24 0.50 0.26 0.34 0.25 0.15 0.32 0.34 0.44 0.18 0.30 0.35
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