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Abstract

We present an approach for estimating in near real-time full moment tensors of earthquakes and their parameter uncertainties

based on short time windows of recorded seismic waveform data by considering deep learning of Bayesian Neural Networks. The

individual neural networks are trained on synthetic seismic waveform data and corresponding known earthquake moment-tensor

parameters. A monitoring volume has been pre-defined to form a three-dimensional grid of locations and to train a Bayesian

neural network for each grid point.

Variational inference on several of these networks allows us to consider several sources of error and how they affect the estimated

full moment-tensor parameters and their uncertainties. In particular, we demonstrate how estimated parameter distributions

are affected by uncertainties in the earthquake centroid location in space and time as well as in the assumed Earth structure

model.

We apply our approach on seismic waveform recordings of aftershocks of the Ridgecrest 2019 earthquake with moment mag-

nitudes ranging from Mw 2.7 to Mw 5.5. Overall, good agreement has been achieved between inferred parameter ensembles

and independently estimated parameters using classical methods. Our developed approach is fast and robust, and therefore,

suitable for operational earthquake early warning systems.
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Abstract15

We present an approach for estimating in near real-time full moment tensors of earth-16

quakes and their parameter uncertainties based on short time windows of recorded17

seismic waveform data by considering deep learning of Bayesian Neural Networks. The18

individual neural networks are trained on synthetic seismic waveform data and cor-19

responding known earthquake moment-tensor parameters. A monitoring volume has20

been pre-defined to form a three-dimensional grid of locations and to train a Bayesian21

neural network for each grid point. Variational inference on several of these networks22

allows us to consider several sources of error and how they affect the estimated full23

moment-tensor parameters and their uncertainties. In particular, we demonstrate how24

estimated parameter distributions are affected by uncertainties in the earthquake cen-25

troid location in space and time as well as in the assumed Earth structure model. We26

apply our approach on seismic waveform recordings of aftershocks of the Ridgecrest27

2019 earthquake with moment magnitudes ranging from Mw 2.7 to Mw 5.5. Overall,28

good agreement has been achieved between inferred parameter ensembles and indepen-29

dently estimated parameters using classical methods. Our developed approach is fast30

and robust, and therefore, suitable for operational earthquake early warning systems.31

1 Introduction32

Robust and fast estimation of the source mechanism of earthquakes, i.e., the seis-33

mic moment tensor (MT), is important for many near-real time hazard assessments34

(earthquake early warning), and provides helpful information for evaluating appro-35

priate measures and responses. Furthermore, hazard assessments and physics based36

aftershock probability calculations can be improved by using the inferred full seismic37

MT. Routine operational monitoring frameworks such as the United States Geologi-38

cal Survey (USGS) and GEOFON provide automatic centroid moment tensor (CMT)39

point-source solutions within minutes for moderate and large earthquakes (>Mw 4.5),40

usually in telseismic distances (Ekström, Nettles, & Dziewoński, 2012; Hanka & Kind,41

1994). However, the MTs for smaller regional or local earthquakes, are often only42

analysed after manual inspection with delay times of up to days. The estimation of43

the full MT of smaller earthquakes (>Mw 3) can be important for detailed analysis of44

fore- and aftershock sequences, inference of local stress redistribution and especially,45

for seismicity monitoring in geotechnical applications (Cesca, Şen, & Dahm, 2014),46

where significant non double-couple (DC) components due to volumetric changes can47

be expected.48

CMTs are usually estimated as solutions to an inverse problem by iterative com-49

parison of synthetic and observed waveform data until a sufficient match is achieved.50

Forward modelling of synthetics is typically performed by assuming a point source and51

by considering a range of potential source model parameters and their combinations;52

whereas the uncertainties of the estimated parameters are quantified by considering53

data errors and theory errors which are introduced by the measurement and the as-54

sumptions in the inverse problem, respectively (Vasyura-Bathke et al., 2020). Uncer-55

tainties can be obtained through probabilistic approaches (Duputel, Rivera, Fukahata,56

& Kanamori, 2012; Kühn, Heimann, Isken, Ruigrok, & Dost, 2020; Stähler & Sigloch,57

2014, 2016; Vackář, Burjánek, Gallovič, Zahradńik, & Clinton, 2017; Vasyura-Bathke58

et al., 2020, e.g.), but these methods are computationally expensive and the estimation59

of CMT parameter densities can take tens of minutes to hours. Faster estimates would60

greatly increase the capabilities of earthquake early warning systems. Machine learning61

algorithms have been shown to be helpful and fast for seismic signal detection and lo-62

calisation (Kriegerowski, Petersen, Vasyura-Bathke, & Ohrnberger, 2019; Smith, Ross,63

Azizzadenesheli, & Muir, 2021), phase picking (Mousavi, Ellsworth, Zhu, Chuang, &64

Beroza, 2020; Ross, Meier, & Hauksson, 2018) as well as initial characterization of the65

seismic source (e.g., Käufl, Valentine, O’Toole, & Trampert, 2014; van den Ende &66
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Ampuero, 2020). P-wave first-motion polarity can be used to determine the MT of67

earthquakes assuming a DC source, which has been shown to be fast and reliably to68

enhance MT catalogs using deep learning (Hara, Fukahata, & Iio, 2019; Ross et al.,69

2018; Uchide, 2020). Recently, deep learning has been used to train the so called Fo-70

cal Mechanism Network (FMNet) to determine pure DC MTs based on full waveform71

synthetics Kuang, Yuan, and Zhang (2021). The FMNet has 16 trainable layers and72

was applied to four 2019 Ridgecrest earthquakes with magnitude larger than Mw 5.4.73

The network was trained on subjectively pre-defined Gaussian distributions as labels,74

describing the assumed distribution of the DC parameters strike, dip and rake.75

Here, we present a machine learning framework employing several Bayesian Neu-76

ronal Networks (BNN) and using variational inference. Comprehensible consideration77

of errors are especially important for estimates obtained from unsupervised machine78

learning algorithms, as these are often treated and used as black boxes. Our BNNs are79

trained on synthetic waveforms with the aim to estimate MT parameters in near-real80

time considering errors in measurement and theory. We validate our approach on a81

subset of earthquakes from the aftershocks of the Californian Ridgecrest 2019-202082

sequence (Ross et al., 2019), as the Ridgecrest area is exceptionally well monitored83

with a dense station distribution, both in azimuth and distance (Fig. (1,a). The main84

shock of the 2019 Ridgecrest sequence was the Mw 7.1 2019-07-06 03:19:52 earthquake,85

preceded by several foreshocks of which the largest was the Mw 6.4 2019-07-04 17:33:4986

earthquake. The following months several hundred aftershocks ¿Mw 3 were recorded87

(Ross et al., 2019). For the subset of earthquakes from the 2019 Ridgecrest sequence88

we investigate earthquakes with moment magnitudes MW between 2.7 and 5.5. We89

compare our estimations with the moment tensors provided by the Southern California90

Earthquake Data Center (SCEDC).91

2 Variational inference Neural Network estimation of Moment Ten-92

sors93

Our main goal is to infer the radiation pattern and the orientation of the earth-94

quake source. We train location specific neural networks for each point of a pre-defined95

grid of potential hypo-centers based on full sets of synthetic waveforms with associated96

source model parameters to be learned. We use a set of 41 broadband stations within97

a range up to 150 km around the center of our grid (Fig. 1,a). The grid (Fig. 1,b)98

extends horizontally 10.5 by 10.5 km, with a step size of 1.5 km. The vertical extent99

ranges from 2 km to 10 km depth, in 2 km steps.100

As prior information our proposed framework needs a detection of an earthquake101

and the associated approximate source time. Furthermore, an approximate earthquake102

location can be considered. Nevertheless, it has already been demonstrated that detec-103

tion and location of earthquakes are timely deliverable by other established machine104

learning based algorithms (Kriegerowski et al., 2019; Mousavi et al., 2020). Our ap-105

proach does not estimate earthquake moment magnitudes and is indirectly limited to106

a range of magnitudes (e.g. between Mw 3 and 5) as the network training depends on107

signal processing parameters. The magnitude of earthquakes can be readily estimated108

in real time by other approaches (van den Ende & Ampuero, 2020).109

2.1 Input110

As input we use synthetic displacement waveform data calculated for a specific111

earthquake source and for all considered stations in E, N and Z components. Training112

on synthetic data has several advantages compared to training on recorded data sets.113

The procedure is applicable to regions with low seismicity, and furthermore, the use of114

synthetic waveforms allows exploring the full range of possible CMTs. Consequently,115

the training is not restricted by a biased set of catalog mechanisms from available116
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Figure 1: a) Region of interest, seismicity from 2019-07-04 to 2021-01-26 (black dots) and
the station distribution (red triangles). Top-left inset shows the location of the map in
California. The white rectangle shows the location of the study area. b) Zoom in to the
study area. The black lines mark the grid of locations for which individual Neural Net-
works are trained. The focal mechanisms of earthquakes between July 2019 and December
2020 used for testing are plotted for full and double-couple CMTs in red and black, re-
spectively. The indicated mechanisms are given as determined by SCEDC. Background in
both a) and b) is a shaded relief of a digital elevation model.
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observations, but it can be assured that the complete parameter space has been ex-117

plored. For fast simulation of synthetic waveforms we use pre-calculated Green’s func-118

tions (GF) stores from the Pyrocko software framework (Heimann et al., 2017, 2019).119

These GF stores are based on 1-D layered Earth structure models computed by using120

the reflectivity-type wavenumber integration method implemented in QSEIS (Wang,121

1999). We calculate three different GF stores based on 1-D velocity profiles (Supp.122

Fig. S1): 1) for the entire Mojave Region used by the USGS and the SCEDC, 2) for123

the Coso Geothermal area (Wu & Lees, 1999) and 3) for a regional shallow velocity124

profile based on Crust2.0 (Bassin, Laske, & Masters, 2000).125

We train our neural networks on pure synthetic waveforms without adding noise,126

because the characteristics of the noise would be learned as well by the networks. We127

filter the waveforms with a butterworth bandpass filter of fourth order between 0.8 and128

2.4 Hz to avoid poor long-period response and weak long-period signals below the cor-129

ner frequency of Mw 3.5 earthquakes (Aki & Richards, 2002). We assume a triangular130

source time function of fixed duration of 0.5 seconds, representative of earthquakes in131

the magnitude range 3-3.5 (Aki & Richards, 2002). Therefore, our trained networks132

are restricted to specific frequencies. This implies that our trained networks are only133

valid for a pre-defined magnitude range and that for studying earthquakes of different134

magnitudes, additional specific networks would need to be trained. For each source135

grid point location and the given 1-D Earth structure model we use the expected the-136

oretical travel times to extract a snippet of waveform data 1 s before and 4 s after the137

theoretical first phase arrival. This also means that our extracted waveform snippets138

are relative in time and that they can be used for all possible centroid times in the139

training phase. To cut out real data, however, this means that the centroid time needs140

to be known.141

We convert the extracted waveform snippets around the P-wave onset to form142

a 2D input image such that the rows represent the waveforms that are grouped first143

by channels (E, N, Z) and second by stations; the columns represent the samples144

over time. Finally, we normalize and re-scale the image by the absolute maximum145

amplitude of the full image such that all values fall between the closed interval of 0146

and 1, where 0.5 indicates zero in the original waveform amplitudes as well as missing147

data. Due to this normalization all synthetics can be calculated for one single (but148

arbitrary) magnitude. The order of stations needs to be consistent for each image149

and must not change. Here, we chose an alphabetical order according to the station150

codes as arranging by azimuth or distance would be different for each considered source151

location and would cause artificial patterns which in turn would make efficient training152

of the networks difficult.153

2.2 Labels154

For each set of synthetic waveforms forming an input image we know the pa-155

rameters of the underlying source. These are the output labels that our networks156

predict. The common MT parameterization with six independent components (Aki157

& Richards, 2002; Madariaga, 2007) seems a natural choice for describing the seis-158

mic source. However, a uniform sampling in this parameter space does not yield a159

uniform unique distribution of samples in moment-tensor space (Tape & Tape, 2015).160

Such a non-uniform and non-unique mapping would lead to bias in learned patterns161

for our networks. This problem can be solved by using spherical coordinates on the162

unit sphere of the fundamental lune description of the moment tensor(Tape & Tape,163

2012b). Moreover, this parameterization allows for a uniform sampling of moment-164

tensors, with the advantage of only five independent parameters to describe the full165

spectrum of moment tensors. These five independent parameters (Tab. 1) are: κ as the166

strike-angle equivalent, σ as the rake-angle equivalent of the moment tensor slip angle,167

h as the dip-angle equivalent and the non-isotropic components v and w as the lune168
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Table 1: Lune parameter definitions and chosen discretization for constructing the train-
ing dataset.

Parameter interpretation min. value max. value step size

κ strike angle 0 2π 0.1π
σ rake angle −π

2
π
2 0.2

h dip angle 0 1 0.2
w Lune latitude − 3

8π
3
8π 0.2

v Lune co-longitude − 1
3

1
3 0.02

latitude and co-longitude, respectively (Tape & Tape, 2015). This parameterization169

of the MT clearly separates the radiation pattern from the source orientation. We170

choose a discretization of 0.1 · π for κ, 0.2 for σ, h, w and 0.02 for v. This results to171

171.600 synthetic waveform datasets that we use for training for each single location172

grid-point.173

2.3 Network design174

Instead of using deterministic network layers where scalar weights and biases are175

learned, we use their probabilistic expression with distributions of weights and biases.176

Each distribution is assumed to be Gaussian with mean µ and a standard deviation σ̂177

(e.g. Blundell, Cornebise, Kavukcuoglu, & Wierstra, 2015; Graves, 2011; Wen, Vicol,178

Ba, Tran, & Grosse, 2018). A neural network designed with such probabilistic layers179

(i.e., flipout layers) forms a Bayesian Neural Network (BNN) and can be considered180

as representing an ensemble of deterministic neural networks trained several times on181

the same input data. These BNNs allow to represent epistemic uncertainty in their182

inherent predictions due to limited training data and they yield a likelihood value to183

each drawn sample. Consequently, rather than predicting the same set of output labels184

given the same input data, repeated forward pass yields a distribution of output labels,185

i.e. uncertainties in lune parameters. This can vary for each individual BNN learned186

for the grid points, as the significance of specific seismic stations towards the source187

will vary.188

Each single training iteration of a BNN consists of a forward pass and a back-189

propagation pass (Wen et al., 2018). In the forward pass a single sample is drawn190

from the output labels. During a backwards pass the gradients of the layer weights191

and bias distributions (i.e. means µ and standard-deviations σ̂) are calculated with192

automatic differentiation and µ and σ̂ are then updated to maximize an objective193

function depending on the input and output labels (Wen et al., 2018).194

Our goal is to use a simple neuronal network architecture to avoid over-fitting195

and to allow for straightforward interpretation of the individual training steps. The196

network design (Fig. 2,a) is similar in rationale to Kriegerowski et al. (2019). We use197

three 2-D convolutional flipout hidden layers. The first two hidden layers are sensitive198

to the information over time only (Fig. 2,a). The first hidden layer has 8 filters199

and a 1 by 2 kernel and the second layer has 10 filters and a 1 by 30 kernel. The200

last 2-D hidden layer collects information over the station components with 12 filters201

and a 3 by 1 kernel. We use a dropout of 0.2 between convolutional flipout layers202

to robustly handle data errors and missing waveform data at particular stations. We203

downsample the output data of the convolutional flipout layers with a 2-D max pooling204

layer with a 3 by 4 kernel (example activations see Fig. 2,c) followed by flattening205

the data into a vector and feeding them into a fully connected dense flipout layer.206

The relatively simple network design allows for visual inspection of the activations207

in each layer (Supp. Fig S2). All convolutional flipout layers are activated using a208
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Figure 2: a) Design of an individual Bayesian Neural Network. b) example 2d normalized
array input from synthetic waveforms. Blue arrows indicate hidden layers with RELU
activation. c) exemplary activation of the pooling layer given the input of b)

Rectified Linear Unit function (RELU) (Glorot, Bordes, & Bengio, 2011). Finally, a209

non activated lambda distribution layer is used to hold the resulting distributions of210

predicted source parameters. As objective function (loss function) we use the negative211

log-likelihood and as optimizer the Adam algorithm (Kingma & Ba, 2014).212

2.4 Variational inference from multiple BNN213

The probabilistic output of the BNNs allows to combine inferences at several214

likely locations and centroid times of the earthquake’s source. Each evaluation of215

a network with inputs yields a single prediction of the 5 MT parameters and the216

associated negative log-likelihood. The inferences from all these individual evaluations217

of networks can be combined and the source’s errors in both centroid location and time218

can be propagated to uncertainties in MT parameter marginals through variational219

inference, yielding an ensemble of possible source mechanisms.220

We consider an error in location within an ellipse around the assumed centroid221

location and evaluate the respective BNNs with the given input (Fig. 3). Note that222

waveform snippets are extracted differently from the waveform input according to223

theoretical arrival times at each receiver location (sec. 2.1).224

Errors in centroid time result in shifts of the predicted theoretical arrival times225

and the extracted waveform snippets. We assume uniform distributed errors in timing226

and draw random samples within the timing errors and therefore, all BNNs at the227

considered grid points are evaluated several times. Consequently, we get different228

likelihoods to the differently extracted waveform snippets. In classical approaches in229
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Figure 3: Training scheme, the normalized waveforms are timeshifted n-times within a
timing error. The location uncertainty of an event determines the number of k BNN’s
that are used for prediction and contribute to the posterior probability density ρ(m|x).

seismology this corresponds roughly to shifting the waveforms to find the maximum230

correlation (e. g. Kühn et al., 2020).231

Finally, errors in the Earth structure model can to be taken into account for ro-232

bust inference on the estimated source mechanism (Vasyura-Bathke, Dettmer, Dutta,233

Mai, & Jónsson, 2021). The theory error from the choice of the 1-D Earth structure234

model can be included in our framework by training and evaluating BNNs on each235

grid-point for each Earth structure. This requires calculation of the full set of syn-236

thetic waveforms for different Earth structures; in our case, three structures (Supp.237

Fig S1). This results in total to over 100 Million waveform datasets on which the 588238

BNNs (196 grid points times three Earth structures) are trained. The calculation of239

synthetic waveforms and the network training was done in parallel on several machines240

with a total of 128 CPUs over a period of three months. By using GPUs this time241

could be drastically reduced to a few days.242

2.5 Moment tensor ensemble similarity243

To asses the similarity between the predicted ensemble of MTs and a reference244

solution, e.g. from a catalog, we use the omega angle measure (Tape & Tape, 2012a).245

The omega angle has the advantage that focal mechanisms with opposite polarities246

are considered most dissimilar in contrast to other measures, e.g., the Kagan angle247

(Cesca et al., 2014; Tape & Tape, 2012a). The normalized omega angle distance d248

(Cesca et al., 2014; Tape & Tape, 2012a) between two moment tensors U1 and U2 with249

components I and J is calculated by:250

dω =
1

2

[
1− U1 · U2

||U1||||U2||

]
=

1

2

[
1−

∑I,J
i,j=1 U1ij · U2ij

(
∑I,J
i,j=1 U

2
1ij

)
1
2 (
∑I,J
i,j=1 U

2
2ij

)
1
2

]
(1)
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It is defined between 0 and 1, for identical and opposite seismic radiation patterns251

between the two compared moment tensors, respectively. Note, that in order to calcu-252

late dω we need to convert our predicted MT ensemble from the Lune parameterization253

to the North-East-Down coordinate system (Aki & Richards, 2002).254

3 Application to the Ridgecrest 2019 earthquake aftershock sequence255

We train our networks for an area South of the Coso geothermal field (Fig. 1),256

which is known to host both induced and tectonic earthquakes (Monastero et al., 2005;257

Schoenball, Davatzes, & Glen, 2015). Significant non-DC components can be expected258

for earthquakes in this region (Ichinose, Anderson, Smith, & Zeng, 2003), potentially259

also for tectonic earthquakes, due to the influence of the geothermal reservoir. To260

test the performance of our framework we use recorded waveform data of the after-261

shocks that occurred between July 2019 and December 2020 to the Mw 7.1 Ridgecrest262

earthquake.263

For these aftershocks, 8 full moment tensor solutions and 198 pure DC MT264

solutions (Fig. 1,b) are calculated (Hauksson & Unruh, 2007; Jordan & Maechling,265

2003) and made publicly available by the SCEDC ((SCEDC), 2013). We compare the266

MT estimates of our approach to the moment tensors as determined independently by267

USGS and SCEDC (Hutton, Woessner, & Hauksson, 2010).268

We download the waveform data for all events and for the 41 stations from the269

Southern California Seismic Network (California Institute Of Technology And United270

States Geological Survey Pasadena, 1926). Missing waveform data for any station and271

time period are replaced by zero values in the waveform data, which are then mapped272

to 0.5 values in the normalized input images. Measured waveform data are treated in273

the same way as our synthetic waveforms (sec. 2.1), i.e. data is restituted to ground274

displacement and down-sampled to match the Green’s function sampling rate of 14 Hz.275

For each aftershock we evaluate the BNNs for a total of 6000 samples. However,276

the number of activated BNNs depends on the uncertainties in centroid location and277

time as provided by the SCEDC catalog. The location uncertainty in horizontal and278

vertical position as given by the SCEDC is increased 10 times, as reported uncertainties279

are in the order of few hundreds of meters. The total ensemble of samples is then280

obtained by evaluating the activated BNNs equally.281

3.1 Inferences for full moment tensors282

We focus primarily on 8 aftershocks for, which a full moment tensor solution283

is available in the SCEDC catalog. We refer to these solutions as ”reference” in the284

following.285

We first evaluate only the waveform input with the BNN’s trained using synthet-286

ics based on the Mojave Earth structure, which is the same as used by the SCEDC287

to determine their focal mechanisms (Supp. Fig. S1). Consequently, the reference and288

predicted MTs should be consistent in their epistemic uncertainty as the same Earth289

structure model and (mostly the same) dataset is used. We use the SCEDC catalog290

values for source position and centroid time. For the comparison we only consider un-291

certainty in centroid location. We find very good agreement of our predicted ensembles292

to most of the 8 reference moment tensors, with most of the omega angle distances dω293

being below 0.1 (Fig 4,a-h). Histograms of dω show their maximum mostly within the294

first few bins. Only, two ensembles of predicted moment tensors show small system-295

atic errors (Fig 4,f and g). For those also the histograms of dω show their maxima at296

distances above zero.297
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Figure 4: Inferred ensembles of full MTs considering different uncertainties. a) to h)
show three fuzzy beachballs (BB), each based on 6000 MT predictions, where the refer-
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In addition to uncertainty in centroid location we consider in the following un-298

certainites in the centroid time, which are also provided by the SCEDC catalog for299

each event. These uncertainties differ from earthquake to earthquake but they do300

not exceed 0.4 s for the considered aftershocks. When uncertainties in centroid times301

are considered the widths of some of the dω histograms increase for some ensembles302

of MT predictions (Fig 4,b,f) confirming the quality of the absolute centroid times of303

these aftershocks determined by SCEDC. However, it is worth mentioning that the304

widths of some of the dω histograms also decrease for some ensembles of MT predic-305

tions (Fig 4,g,h,c) suggesting biased absolute centroid times for those aftershocks in306

the catalogue.307

Finally, in addition to uncertainties in centroid location and time we consider308

uncertainties in Earth structure. We evaluate the BNNs that have been trained on the309

synthetics from three different Earth structures (Supp. Fig. S1). The expected arrival310

times and thus extracted waveform snippets will be systematically different for each311

Earth structure. For some of the inferred MT ensembles the spread in dω histograms312

increases and some show values of up to 0.5 (Fig 4,f-g). For those events the Mojave313

structure model seems to be the most appropriate one and therefore uncertainties in314

Earth structure are overestimated. For other MT ensembles (Fig 4,a,d,e,h) the spread315

in dω histograms decreases or stays similar, meaning that the uncertainties in Earth316

structure are less crucial for those events. Nevertheless, the resulting ensembles of317

predicted MTs also comprise the solutions of considering only location uncertainty318

(Fig. 6) and, the maximum a-posterior (MAP) solution still shows good agreement319

between extracted waveform data snippets and synthetic waveforms calculated from320

the predicted source parameters (Fig. 5).321

3.2 Inferences for double-couple moment-tensors322

The SCEDC catalog also contains 198 pure double-couple focal mechanisms for323

events that occurred in the area of interest, which we refer to as reference in the fol-324

lowing. Without visual inspection we let for the waveform data of each of those events325

our BNNs infer ensembles of 6000 MT solutions considering centroid location and time326

uncertainty. We compare the 198 reference focal mechanisms with our ensembles of327

MT parameter predictions from our framework by setting the predicted v and w values328

to zero, representing a pure double-couple source (Fig. 7,a). We also show dω between329

the reference mechanism and the predicted full seismic MT ensembles (Fig. 7,b). The330

additional degree of freedom of full MT solutions versus DC constrained solutions331

results in broadening and a slight shift of the histogram towards higher dω (Fig. 7,b).332

With decreasing earthquake magnitude the spread of dω of the trained networks is333

increasing comparing the predicted ensembles of MT for the 198 earthquakes (Fig. 7,c).334

This spread is expected as the signal-to-noise ratio decreases with lower magnitude and335

larger dω values are expressions of an increase in uncertainty of the MT ensembles.336

However, the bulk part of dω shows distances below 0.1 and the predicted ensembles337

are in good agreement with the reference solutions across different magnitudes 2.7-338

4.5 (Fig. 7,d-g). We also notice a slight increase in the omega angle distances between339

reference and predicted source mechanisms for the largest of the 198 earthquakes. This340

might indicate a need for incorporating non-DC components in the source mechanism;341

whereas these components are missing in the catalogue descriptions.342

4 Discussion343

In general, we find a good agreement between the ensemble of predicted MTs and344

the independently determined and unseen moment tensor solutions from the SCEDC.345

Only a few predicted moment tensor ensembles show systematic differences (Fig 4,f and346

g), which could be due to several reasons, e. g. differences in the station configurations.347

–11–



manuscript submitted to Journal of Geophysical Research: Solid Earth

Figure 5: Exemplary waveform fits between observed waveforms (black) and synthetic
waveforms based on the ensemble of estimated MT parameters (brown) with the MAP
in red, for the Mw 4.1 earthquake on 2019/07/11 23:45:19. Note that the waveforms are
displacements and normalized as described in section 2.1.
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Mojave structure model and only considering error in location, yellow colors when using
the Mojave structure model and considering error in location and timing and red colors
the ensemble from all three considered Earth structure models and also considering errors
in centroid location and timing.
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quadratic.
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Some of those systematic differences partly vanished by including also uncertainty in348

centroid time into the variational inference scheme (Fig 4, g). As we estimate the full349

seismic moment tensor the distribution and density of the non-DC components from350

the predicted ensemble can be inferred (Supp. Fig. S3 and S4). The main regions of351

high probability of solutions is consistent considering different sources of theory error.352

However, larger uncertainties for both the CLVD as well as the isotropic components,353

i.e. the lune v and w parameters, can be observed when additionally considering354

errors in Earth structure models (Supp. Fig. S3). It has been shown that an error in355

Earth’s structure is often compensated by increased CLVD and isotropic components356

(Vasyura-Bathke et al., 2020).357

We note that we evaluate the prediction accuracy of our framework by comparison358

with SCEDC cataloged moment tensors. These solutions, however, could potentially359

also be biased, deviating from the unknown ”true” earthquake source. Variance reduc-360

tion could be used to estimate the precision with respect to the real waveform data.361

We observe larger ω angle distances between the predicted MT ensemble and reference362

MTs when considering the inferences from several Earth structure models (Fig4,a-h).363

This is not unexpected, because the reference solutions are estimated with only one364

of the Earth structure models. However, it is also possible that the ”true” unknown365

solution is better represented by our ensemble of predictions considering other Earth366

structure models. In regions with well known structure this approach likely overesti-367

mates the parameter uncertainties, but in regions with poorly known structure it might368

provide a more realistic representations of parameter uncertainties (Vasyura-Bathke369

et al., 2021).370

The observation of a relation between spread of inferred parameter uncertainties371

with magnitude is a result of parameter selections before learning, such as filter and372

time window length, as well as decreasing signal-to-noise ratios for lower magnitudes.373

Our considered filter frequencies are optimal for earthquakes with magnitudes Mw 3374

to 4, of which hundreds occurred during the 2019 Ridgecrest sequence (Ross et al.,375

2019). The station distribution around the Ridgecrest area and the good quality of the376

waveform data due to mostly remote station locations is exceptional and together with377

the statistically significant number of earthquakes this study area is bench-marking378

showcase to demonstrate the robustness and performance of our approach. It remains379

to be evaluated whether our approach performs equally well in areas with a sparse380

station network under worse noise conditions.381

The novelty of our proposed framework lies in the estimation of ensembles of382

the full seismic MTs yielding uncertainties in parameter estimates based on seismic383

waveforms. A shortcoming in our approach is the current limited transferability of384

the trained BNNs to other study areas, unlike P-wave first motion polarity based385

approaches (e. g. Ross et al., 2018). We assume that under operational conditions386

on live incoming waveform data the prediction of the ensemble of full seismic MTs387

using the presented framework can be done a few tens of seconds after the earthquake,388

being almost near-realtime. Main factors that influence this response time are: 1) Our389

algorithm considers a waveform window of 5 s. 2) The safe restitution of the waveform390

data into displacement to avoid filter effects requires that at least several seconds of391

data are available (around 2 s for the chosen frequencies in the case study). 3) In its392

current form our approach requires the detection and location of an earthquake, which393

can be used to infer a centroid time and optionally, its uncertainty as prior knowledge.394

However, these can be delivered fast by other deep learning methods (Kriegerowski et395

al., 2019). 4) Finally, the evaluation of the waveform data by a single trained BNN396

takes a few hundred milliseconds and can be done in parallel for several BNNs at the397

same time. Hence, approaches based on P-wave first motion polarity only (Hara et al.,398

2019; Ross et al., 2018; Uchide, 2020) will likely outperform our proposed framework399

in terms of response time. Nevertheless, these time factors are not of importance400
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for already cataloged data in a database, which can be searched fast by keeping the401

recorded waveform data in memory.402

In principle, the presented method can be made independent of the particular403

station configuration at the expense of computational cost. This could be accom-404

plished by calculating the synthetic waveforms for a distance-depth grid of locations405

and shifting the source and receiver relatively or by assuming a location grid of ab-406

stract receivers (van den Ende & Ampuero, 2020). The actual station locations can407

then be mapped to such an abstract receiver grid by interpolation or nearest neigh-408

bour. However, we do not expect that the framework could be made transferable to409

other regions, because of the characteristics of the assumed Earth structure models410

that are learned by the BNNs.411

The choice of training a BNN for each considered grid point instead of training412

a single large neural network with waveforms from all possible locations, such as in413

Kuang et al. (2021), is a key point in our approach which allows us for estimating414

MT parameter uncertainties considering uncertainty in centroid time and location as415

well as uncertainty in Earth structure. Training a single large neural network with416

waveforms from all potential source locations would require to estimate additionally417

three location parameters (latitude, longitude and depth) as labels. This significantly418

increases the non-linearity of the problem and, consequently increases the required419

complexity of the neural network architecture, i.e. the number of trained filter weights420

and biases. In our view, a simple network architecture with few trainable parameters421

is favorable (Mignan & Broccardo, 2019) and, therefore, we chose to train multiple,422

but individually rather simple networks.423

As a by-product of our approach it turns out that our BNNs also learned to be424

sensitive to the centroid location. Assuming that an earthquake occurred somewhere in425

the grid of BNNs, each BNN can be queried to return the log-likelihoods for the input426

data. The highest log-likelihoods should stem from BNNs learned for grid locations427

close to the true centroid location. We test this assumption for a Mw 3.9 earthquake428

included in the SCEDC catalog and indeed find a correlation of the log-likelihood429

values with distance to the centroid location (Fig. 8). As prior information only the430

centroid time and optionally its uncertainty is needed.431
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Figure 8: Earthquake centroid location inference. The grid points are colored by the
negative log-likelihood values as inferred from evaluation of the BNNs for the real wave-
form data of the Mw 3.9 at 2019-07-06 17:59:15. The map view shows grid points at 4 km
depth, whereas side views left and bottom show the grid-points at depth versus latitude
and longitude along the profiles outlined with grey rectangles in the map view, respec-
tively. The black star marks the centroid location as given by SCEDC for this earthquake.
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5 Conclusions432

We demonstrated that variational inference based on deep learning of Bayesian433

Neural Networks shows the capability to not only reproduce optimum parameter esti-434

mates of classical full moment tensor inversion, but it also yields uncertainties of the435

inferred MT parameters in near-real time. Our presented approach is flexible enough436

to optionally account for various cases of theory error that are well known to affect437

MT parameter estimates, i.e. errors in centroid location and time as well as errors in438

the assumed Earth structure.439

The presented method has been successfully applied on local scale using field data440

of a subset of the Ridgecrest 2019 aftershock sequence, comprising 206 earthquakes441

with magnitudes Mw 2.7 to 5.5. The inferred ensembles of MT parameters have been442

compared to independently determined source mechanisms by the SCEDC.443

One limitation of the presented approach is the non-transferable nature of the444

trained networks as they are trained for a specific Earth structure model, station445

setups, frequency filters and phase arrival time windows.446

Our approach demonstrates the capabilities and the potential of machine learning447

for near-real time earthquake source mechanism estimation of small earthquakes with448

associated uncertainties. These are important information for hazard assessments and449

for providing other products to policy makers and public which are based on earthquake450

source analysis, e.g. shakemaps. The presented framework has the potential to be451

expanded upon and to be used in standardized automatic operational procedures.452
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Vackář, J., Burjánek, J., Gallovič, F., Zahradńik, J., & Clinton, J. (2017). Bayesian589

ISOLA: New tool for automated centroid moment tensor inversion. Geophysical590

Journal International , 210 (2), 693–705. doi: 10.1093/gji/ggx158591

van den Ende, M. P. A., & Ampuero, J.-P. (2020). Automated Seismic Source592

Characterization Using Deep Graph Neural Networks. Geophysical Research593

Letters, 47 (17), e2020GL088690.594

Vasyura-Bathke, H., Dettmer, J., Dutta, R., Mai, P. M., & Jónsson, S. (2021,595

jan). Accounting for theory errors with empirical Bayesian noise models in596

nonlinear centroid moment tensor estimation. Geophysical Journal Inter-597

national . Retrieved from https://doi.org/10.1093/gji/ggab034 doi:598

10.1093/gji/ggab034599

Vasyura-Bathke, H., Dettmer, J., Steinberg, A., Heimann, S., Isken, M. P., Zielke,600

O., . . . Jónsson, S. (2020, jan). The Bayesian Earthquake Analysis Tool.601

Seismol. Res. Lett., 91 (2A), 1003–1018. Retrieved from https://doi.org/602

10.1785/0220190075 doi: 10.1785/0220190075603

Wang, R. (1999). A simple orthonormalization method for stable and efficient com-604

putation of Green’s functions. Bulletin of the Seismological Society of America,605

89 (3), 733–741.606

Wen, Y., Vicol, P., Ba, J., Tran, D., & Grosse, R. (2018). Flipout: Efficient607

pseudo-independent weight perturbations on mini-batches. arXiv preprint608

arXiv:1803.04386 .609

Wu, H., & Lees, J. M. (1999). Three-dimensional P and S wave velocity structures610

of the Coso geothermal area, California, from microseismic travel time data.611

Journal of Geophysical Research: Solid Earth, 104 (B6), 13217–13233.612

–21–



manuscript submitted to Journal of Geophysical Research: Solid Earth

6 Supplement613

–22–



JOURNAL OF GEOPHYSICAL RESEARCH

JOURNAL OF GEOPHYSICAL RESEARCHJournal of Geophysical Research: Solid Earth

Supplement to: Estimation of seismic moment tensors using

variational inference machine learning
Andreas Steinberg1,∗, Hannes Vasyura-Bathke2,∗, Peter Gaebler1, Matthias

Ohrnberger2, Lars Ceranna1
1Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany

2Institute for Earth and Environmental Sciences, University of Potsdam, Potsdam, Germany
∗These authors contributed equally to this work.

1



X - 2 :

1 2 3 4 5 6 7

5

S-wave and P-wave velocity [km/s]

10

15

20

25

30

D
e
p
th

 [
k
m

]

moho

Mojave
S-wave Coso

P-wave
Coso

S-wave

0

Mojave
P-wave

Crust
S-wave

Crust
P-wave

surface

Figure S1: 1-D Earth structure profiles that were used for the calculation of Green’s functions.
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Figure S2: a) normalized input waveform example, b) exemplary activations of a) the first convolutional layer over time, c)
the second convolutional layer over time, d) the third convolutional layer over the station components and e) the activation
in the pooling layer.
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Figure S3: Lune plot for estimated full moment tensors including uncertainties in centroid location and time and uncertain-
ties in the Earth structure (Fig. 4 in the main article). Shown are the 2-d marginals calculated on a sphere for the parameters
v and w as the lune latitude and co-longitude, respectively. Red and pink colors show regions of high probability.
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Figure S4: Lune plot for estimated full moment tensors including uncertainties in centroid location and time (Fig. 4 in
the main article). Shown are the 2-d marginals calculated on a sphere for the parameters v and w as the lune latitude and
co-longitude, respectively. Red and pink colors show regions of high probability.


