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Abstract

Background: Combustion-related nitrogen dioxide (NO2) air pollution is associated with pediatric asthma incidence. We

estimated global surface NO2 concentrations consistent with the Global Burden of Disease Study for 1990-2019 at 1km resolution,

and concentrations and attributable pediatric asthma incidence trends in 13,189 cities from 2000-2019. Methods: We scaled

an existing surface annual average NO2 concentrations dataset for 2010-2012 from a land use regression model (based on

5,220 NO2 monitors in 58 countries and land use variables) to other years using NO2 column densities from satellite and

reanalysis datasets. We applied these concentrations to epidemiologically-derived concentration-response factors, population,

and baseline asthma rates to estimate NO2-attributable pediatric asthma incidence. Findings: We estimated that 1.85 million

(95% uncertainty interval: 0.93 – 2.8 million) new pediatric asthma cases were attributable to NO2 globally in 2019, two-thirds

of which occurred in urban areas. The fraction of pediatric asthma incidence that is attributable to NO2 in urban areas declined

from 20% in 2000 to 16% in 2019. Urban attributable fractions dropped in High-income (-41%), Latin America/Caribbean

(-16%), Central Europe, Eastern Europe, and Central Asia (-13%), and Southeast Asia, East Asia, and Oceania (-6%), and rose

in South Asia (+23%), Sub-Saharan Africa (+11%), and North Africa and Middle East (+5%) regions. The importance of NO2

concentrations, pediatric population size, and asthma incidence rates in driving these changes differs regionally. Interpretation:

Despite improvements in some regions, combustion-related NO2 pollution continues to be an important contributor to pediatric

asthma incidence globally, particularly in cities. Funding: Health Effects Institute, NASA
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 17 

Abstract  18 

Background: Combustion-related nitrogen dioxide (NO2) air pollution is associated with 19 
pediatric asthma incidence. We estimated global surface NO2 concentrations consistent with the 20 
Global Burden of Disease Study for 1990-2019 at 1km resolution, and concentrations and 21 
attributable pediatric asthma incidence trends in 13,189 cities from 2000-2019.  22 

Methods: We scaled an existing surface annual average NO2 concentrations dataset for 2010-23 
2012 from a land use regression model (based on 5,220 NO2 monitors in 58 countries and land 24 
use variables) to other years using NO2 column densities from satellite and reanalysis datasets. 25 
We applied these concentrations to epidemiologically-derived concentration-response factors, 26 
population, and baseline asthma rates to estimate NO2-attributable pediatric asthma incidence.  27 

Findings: We estimated that 1.85 million (95% uncertainty interval: 0.93 – 2.8 million) new 28 
pediatric asthma cases were attributable to NO2 globally in 2019, two-thirds of which occurred in 29 
urban areas. The fraction of pediatric asthma incidence that is attributable to NO2 in urban areas 30 
declined from 20% in 2000 to 16% in 2019. Urban attributable fractions dropped in High-income 31 
(-41%), Latin America/Caribbean (-16%), Central Europe, Eastern Europe, and Central Asia (-32 
13%), and Southeast Asia, East Asia, and Oceania (-6%), and rose in South Asia (+23%), Sub-33 
Saharan Africa (+11%), and North Africa and Middle East (+5%) regions. The importance of 34 
NO2 concentrations, pediatric population size, and asthma incidence rates in driving these 35 
changes differs regionally. 36 

about:blank
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Interpretation: Despite improvements in some regions, combustion-related NO2 pollution 37 
continues to be an important contributor to pediatric asthma incidence globally, particularly in 38 
cities.  39 

Funding: Health Effects Institute, NASA 40 

 41 

Research in context: 42 

Evidence before this study: We searched PubMed and Google Scholar databases for studies 43 
published in English from the database inception until March 11, 2021, using the search terms 44 
(“NO2” OR “nitrogen dioxide”) AND “asthma” AND “trends”. Previous studies have reported 45 
epidemiological analyses linking changes with asthma to changes in NO2, or have assessed long-46 
term trends in NO2 concentrations in some countries or world regions. However, these studies 47 
provide little information about how NO2 concentrations are changing in urban areas all around 48 
the world, and the influence those changes have on pediatric asthma incidence. An earlier study 49 
published in 2019 showed that over 4 million new pediatric asthma cases, representing ~13% of 50 
all pediatric asthma incidence worldwide in 2015, could be attributed to NO2 pollution. 51 
Understanding temporal trends in NO2-attributable pediatric asthma incidence could help inform 52 
asthma and air pollution mitigation strategies. 53 

Added value of this study: We show that urban areas experience higher NO2 concentrations and 54 
disease burdens compared with rural areas, with 16% of pediatric asthma incidence in urban 55 
areas estimated to be attributable to NO2 pollution. We also find that the fraction of pediatric 56 
asthma incidence that is attributable to NO2 declined in High-income, Latin American and 57 
Caribbean, Central Europe, Eastern Europe, and Central Asia from 2000 to 2019, and increased 58 
in the rest of the world, particularly in South Asia and Sub-Saharan Africa. In carrying out this 59 
work, we produced the most spatially resolved (1km x 1km) long-term (1990-2019) dataset of 60 
surface NO2 concentrations, which is compatible with the Global Burden of Disease Study and is 61 
now publicly available. Our study also demonstrates the utility of satellite remote sensing for 62 
environmental and public health surveillance in urban areas worldwide.  63 

Implications of all the available evidence: Current levels of NO2 contribute substantially to 64 
pediatric asthma incidence, particularly in cities. Mitigating air pollution should be a critical 65 
element of children’s public health strategies.  66 

Acknowledgements: This work was supported by grants from the Health Effects 67 
Institute/Bloomberg Philanthropies (Research Agreement #4977/20-11) and NASA (Grant 68 
#80NSSC19K0193). We gratefully acknowledge the developers of the OMI NO2 concentration 69 
products, GHS-SMOD urban area dataset, GBD disease rate datasets, and Worldpop population 70 
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Data availability: NO2 concentrations are available at: 73 
https://figshare.com/articles/dataset/Global_surface_NO2_concentrations_1990-2020/12968114. 74 
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Estimated NO2-attributable asthma incidence results are available at: 75 
https://github.com/AMohegh/Asthma_NO2_urban 76 
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 82 
Introduction 83 

Nitrogen dioxide (NO2), a component of nitrogen oxides (NOx), is a pervasive air pollutant that 84 
is a precursor for ground-level ozone and fine particulate matter (PM2.5), the leading contributors 85 
to air pollution-related mortality.1 Major anthropogenic NO2 sources include on-road and non-86 
road transportation tailpipe emissions (including heavy-, medium-, and light-duty vehicles, 87 
shipping, and aviation), power plants, industrial manufacturing, and agriculture.2–5 NO2 is an 88 
effective tracer for anthropogenic fuel combustion generally, and traffic specifically, especially 89 
in urban areas.6–9 NO2 concentration trends can be used to evaluate the efficacy of air pollution 90 
regulations, as well as effects of abrupt emission changes (e.g. power plant closures, new oil and 91 
gas fields, COVID-19 lockdowns).10–14 92 

Beyond its role in PM2.5 and ozone formation, NO2 itself has been associated with adverse health 93 
outcomes including asthma exacerbation.15,16 Epidemiological studies have also found 94 
associations between transportation-related air pollutants with new onset asthma in children.17,18 95 
While the putative agent in the traffic-related air pollution mixture remains unknown, 96 
epidemiological studies are relatively consistent in their finding that NO2 is significantly 97 
associated with pediatric asthma incidence, while the evidence for other traffic-related air 98 
pollutants (e.g. PM2.5) is more mixed.17,18 Previous health impact assessments have linked NO2 99 
with ~13% of the global pediatric asthma burden, and up to ~50% in the most populated 250 100 
cities worldwide.19,20  101 

NOx emissions and NO2 concentrations have changed dramatically in response to socioeconomic 102 
changes and regulation, even prior to the large-scale activity changes during the COVID-19 103 
pandemic.21–25 In the U.S., average NO2 concentrations dropped ~50% from the 1980s to 104 
2010s,26 with larger drops near major roadways26 and point sources.10 In the last two decades, 105 
U.S. NOx emissions fell ~3-6% per year as vehicles got more fuel efficient and cleaner and 106 
power plants shifted from coal to relatively cleaner fuels (e.g. natural gas).11,27,28 NO2 107 
concentrations have also decreased in Europe, though more slowly.29,30 In contrast, NO2 has 108 
increased in India,31 the Middle East,32 and Eastern Europe.23 In China, NOx emissions peaked 109 
around 2011/2012 and subsequently declined.33–35 110 

NO2 pollution is a pediatric health challenge in cities, driven by higher population growth, 111 
particularly in Asia and Africa where NO2 concentrations have risen since 2000, and higher 112 
asthma rates in cities compared with national averages. Previous research on NO2 temporal 113 
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trends have focused on small subsets of cities and have not considered its health impacts, 114 
precluding globally consistent comparisons of trends in NO2 concentrations and associated 115 
health burdens. The global coverage and long continuous record of satellite remote sensing since 116 
the 1990s makes it possible to track NO2 concentrations globally.36–39 Additionally, the high 117 
spatial resolution of current satellites can capture NO2 variation at urban and intra-urban 118 
scales.40,41 119 

Here we investigate long-term trends of annual average NO2 concentrations and associated 120 
pediatric asthma burdens in 13,189 urban areas over the past two decades globally. We first 121 
generate a new gridded global surface annual average NO2 concentration dataset from 1990 to 122 
2019 that is compatible with the spatiotemporal coverage of the Global Burden of Disease 123 
(GBD) Study. We then explore trends in NO2 concentrations and attributable pediatric asthma 124 
incidence for urban areas from 2000 to 2019, for which estimated concentrations have greater 125 
certainty due to available ground monitoring. Finally, we deconstruct the drivers of these trends 126 
to explore the influence of NO2 concentrations versus demographic changes.  127 

 128 

Methods 129 

We integrated global environmental and demographic datasets from different sources to generate 130 
new estimates of surface NO2 concentrations globally and NO2-attributable pediatric asthma 131 
incidence in cities. The analysis was done in Python (version 3.6.7).  132 

Globally gridded NO2 concentrations  133 

We generated a new dataset of surface annual average NO2 concentrations at 0.0083° (~1 km2) 134 
resolution in five-year increments from 1990-2010 and annually from 2010-2019, consistent with 135 
the GBD 2020 analysis years. We used an existing global NO2 concentration dataset (2010-2012 136 
average) at 100m resolution from a land use regression (LUR) model described by Larkin et 137 
al.8,42 and made adjustments to correct for a high bias in rural areas and to scale concentrations to 138 
additional years (Figure S1). A full description of the methods and data sources used to construct 139 
the concentration dataset is in the Supplemental Material. 140 

For the base year 2011, we used the Larkin et al.42 LUR estimates directly in all gridcells 141 
categorized as “urban” according to the Global Human Settlement Model grid43 or that include 142 
major roadways. The LUR used annual measurements from 5,220 air monitors in 58 countries 143 
(mostly in Europe, North America, and Asia) with inputs from road networks and other land use 144 
variables and satellite NO2 column observations. Globally, the model captured 54% of NO2 145 
variation, with a mean absolute error of 3.7 ppb. Model performance differed regionally: R2 146 
varied from 0.42 in Africa to 0.67 in South America. In North America, Europe, and Asia, R2 147 
(0.52 for each region) approximately matched the global average (0.54). For rural areas, we 148 
found that the Larkin et al.42 dataset was biased high, and therefore adjusted concentrations using 149 
surface NO2 concentrations derived from Ozone Monitoring Instrument (OMI) satellite NO2 150 
columns (Figure S2). After adjusting the 2011 rural NO2 concentration estimates, we scaled all 151 
2011 gridcell concentrations to the GBD 2020 analysis period (1990-2019) using the MERRA-2 152 
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reanalysis product44 for 1990, 1995, and 2000 and OMI NO2 column densities for 2005-2019 153 
(Figure S3).  154 

As Larkin et al.42 demonstrated that their NO2 concentrations agreed well with urban ground 155 
observations, we added evaluations of the changes made in this work: 1) we compared our 2011 156 
rural NO2 concentration estimates to the European Monitoring and Evaluation Program (EMEP) 157 
ground monitoring dataset, which has a large number of stations in rural areas, while “rural” 158 
monitors in other ground monitoring networks are often located directly downwind from urban 159 
areas; 2) we compared our 2019 concentrations in urban and rural areas against 4,348 monitors 160 
in the U.S., Canada, and Europe. 161 

While we created this spatially (all urban and rural areas globally) and temporally complete 162 
(1990-2019) concentration dataset for compatibility with the GBD 2020, we focused our trend 163 
analysis on urban areas over the last two decades (2000-2019), for which estimated 164 
concentrations have greater certainty due to available ground monitoring.  165 

NO2-attributable pediatric asthma incidence 166 

We estimated NO2-attributable cases of pediatric asthma incidence using an epidemiologically-167 
derived concentration response function, following previous studies19,20 (Equation 1): 168 

Equation 1:  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑘𝑘,a =  � 𝐼𝐼𝐵𝐵𝐼𝐼𝑐𝑐,a × 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑗𝑗,a × (1 − 𝐵𝐵−𝛽𝛽𝑋𝑋𝑖𝑖,𝑗𝑗)
𝐺𝐺𝐺𝐺𝑖𝑖𝐺𝐺 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 k

 

 169 

where Burden is the NO2-attributable asthma incidence in city k for age group a, Inc is the 170 
baseline asthma incidence rate for age group a and country c, Pop is the population in gridcell i,j 171 
for age group a, 𝛽𝛽 is the concentration response factor relating the NO2 concentration with 172 
increased risk of pediatric asthma incidence, and X is the annual average NO2 concentration in 173 
gridcell i,j. We regridded all datasets to 1km resolution and estimated NO2-attributable asthma 174 
incidence in each gridcell. We previously found that this resolution balances accuracy with 175 
computational efficiency in estimating city-level NO2-attributable disease burdens.20 We sum 176 
results across all gridcells within each city for a city-level total. 177 

We applied a relative risk (RR) of 1.26 [95% uncertainty interval (UI): 1.1 – 1.37] per 10 ppb 178 
annual average NO2 concentration increase from a large epidemiological meta-analysis, and 179 
calculated uncertainty in NO2-attributable pediatric asthma incidence using the statistical error in 180 
this RR estimate.17 As RR error is static over time it does not influence temporal trends. We used 181 
a low concentration threshold of 2 ppb annual average NO2 concentration, the 5th percentile of 182 
the minimum concentrations reported by the studies in the meta-analysis. Alternative low-183 
concentration thresholds would not substantially affect estimated trends in NO2-attributable 184 
asthma incidence, since thresholds are applied uniformly across gridcells and only 3% of year-185 
specific urban concentrations were below 2 ppb. 186 

We used population estimates from Worldpop45 from 2000-2019 for ages 1-4, 5-9, 10-14, and 187 
15-18 years old at ~1km resolution, and summed results across age groups for total NO2-188 
attributable pediatric asthma incidence. National baseline annual asthma incidence rates from 189 
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2000-2019 were from the GBD 2019 Study. Urban area boundaries were from the GHS-SMOD 190 
Urban Centre dataset for 2015 (latest year, applied here to all years).43 We consider gridcells and 191 
in-situ monitors (used to evaluate the concentration dataset) to be part of an “urban cluster” if 192 
they are located in “urban” and “suburban” areas in the GHS-SMOD dataset, defined as areas 193 
with >300 people per km2 that are part of clusters with >5,000 people. All other gridcells and 194 
monitors are considered “rural”. World regions definitions are from the GBD 2019 Study (Table 195 
S2 and Figure S4).1 196 

Drivers of change 197 

To disentangle the drivers of temporal trends in NO2-attributable pediatric asthma incidence, we 198 
isolated the contribution of exposure, population size, and baseline asthma rates using: 1) the 199 
core results with annually varying data inputs, and 2) three sets of simulations in which we revert 200 
one contributing parameter back to 2000 (see Supplemental Material for more details). Cohen et 201 
al.46 used a similar approach for disentangling drivers of national PM2.5 disease burdens. We 202 
ignored interactions between the contributing factors (e.g. the influence of changing NO2 203 
concentrations on baseline asthma rates), as we considered them to be minor relative to many 204 
other influences on these multi-factorial parameters (e.g. the effects of health care advances on 205 
baseline asthma rates). 206 

Role of the funding source 207 

The funders of the study had no role in study design, data collection, data analysis, data 208 
interpretation, or writing of the report. SA and AM had full access to all the data in the study and 209 
had final responsibility for the decision to submit for publication. 210 

 211 

Results 212 

Our new NO2 concentration dataset reduces the 2010-2012 Larkin et al.42 rural high 213 
concentrations bias [mean bias (MB) reduced from 2.4 to 1.0 ppb; Table S1 and Figure S6] and 214 
captures observed surface-level concentrations in both urban and rural areas in 2019 (MB = 3.3, 215 
1.7, and 2.3 in Canada, U.S., and Europe, respectively; Figure S7). See the Supplemental 216 
Material for further evaluation description and results. Estimated NO2 concentrations are highest 217 
in the most populated regions of the world, including North America, Europe, and South and 218 
East Asia throughout the time period (Figure 1). Cities with the 10 highest NO2 concentrations in 219 
2019 were located in the Middle East (Lebanon, Iraq, Iran), China, and Russia (Figure S8). 220 

We estimated that the global population-weighted average annual mean NO2 concentration was 221 
6.6 ppb in 2019, leading to 1.85 million (95% UI: 0.93 – 2.8 million) new asthma cases among 222 
children worldwide that year, or 8.5% (95% UI: 4.3% – 12.8%) of all pediatric asthma incidence 223 
(Figure 2). Approximately two-thirds of NO2-attributable pediatric asthma incidence occurred in 224 
the 13,189 urban areas (1.22 million cases; 95% UI: 0.60 – 1.8 million). Compared with rural 225 
areas, urban areas had 2-4 times higher population-weighted NO2 concentrations (10.6 ppb in 226 
urban areas versus 4.2 ppb in rural areas), NO2-attributable asthma cases (1.22 million versus 227 
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0.63 million), NO2-attributable asthma cases per 100,000 (156 versus 40), and attributable 228 
fractions (16.4% versus 4.5%) in 2019.  229 

Focusing on urban areas in the last two decades, we found that annual average NO2 230 
concentrations decreased by 13%, from 12.2 ppb in 2000 to 10.6 ppb in 2019, with a steady 231 
decline from 2011 to 2019 after rising from 2000 to 2011 (Figure 2). NO2 concentrations in 232 
High-income cities exceeded the global average throughout the time period, despite declining 233 
38% from 17.6 ppb in 2000 to 11.0 ppb in 2019 (Figure 3). Contrastingly, concentrations in 234 
South Asia and Sub-Saharan Africa rose by 18% (8.6 to 10.1 ppb) and 11% (6.4 to 7.1 ppb), 235 
respectively, but remained lower than the global urban average throughout the time period. 236 
These large regional groupings of cities obscure contrasting trends between sub-regions in some 237 
cases (Figure S9).  238 

We estimated that ~1.2 million pediatric asthma cases in urban areas globally were attributable to 239 
NO2 pollution in both 2000 and 2019, though the rate per 100,000 children declined 14% from 240 
176 to 156 per 100,000 children as the urban pediatric population grew by 12% (Figure 2). High-241 
income cities had the most NO2-attributable asthma incidence in 2019, with 341,000 cases or 242 
28% of the global urban total, despite having only 14% of the global urban pediatric population 243 
(Figure 4 and Table S4). While total NO2-attributable pediatric asthma cases were in the most 244 
populated cities of the world (Figure S10), all 10 highest attributable rates were in the U.S. 245 
(Figure S11). Contrastingly, cities in South Asia, with approximately a quarter of the global 246 
pediatric population, only accounted for 7% of global urban NO2-attributable pediatric asthma 247 
incidence. NO2-attributable pediatric asthma incidence rates were also highest in the High-248 
income region (311 attributable cases per 100,000 children) and were an order of magnitude 249 
lower in South Asia (50).  250 

The fraction of pediatric asthma incidence that was estimated to be attributable to NO2 across all 251 
13,189 urban areas globally dropped from 19.7% in 2000 to 16.4% in 2019 (Figure 2). Urban 252 
attributable fractions dropped between 2000 and 2019 in High-income (-41%), Latin America 253 
and Caribbean (-16%), Central Europe, Eastern Europe, and Central Asia (-13%), and Southeast 254 
Asia, East Asia, and Oceania (-6%) regions, and rose in South Asia (+23%), Sub-Saharan Africa 255 
(+11%), and North Africa and Middle East (+5%) regions. The large decrease in High-income 256 
cities is partly driven by even larger drops in North America (-52%; Figure S8). The 35% 257 
increase in Central Europe, Eastern Europe, and Central Asia was driven by >50% increases in 258 
Central Asia and Eastern Europe, balanced by a 14% decrease in Central Europe. In 2019, 259 
regional urban average attributable fractions ranged from 10% in Sub-Saharan Africa to 20% in 260 
Central Europe, Eastern Europe, and Central Asia and North Africa and Middle East. As for 261 
concentrations, the 10 highest attributable fractions were located in Lebanon, Iraq, Iran, China, 262 
and Russia (Figure S11). 263 

Estimated temporal trends in urban NO2-attributable pediatric asthma incidence are driven by 264 
simultaneous and often competing changes in NO2 concentrations, pediatric population, and 265 
asthma incidence rates (Figure 5). Australasia and High-income Asia Pacific are the only regions 266 
where declining concentrations, pediatric population size, and asthma rates all contribute to 267 
overall drops in NO2-attributable pediatric asthma incidence. The opposite occurred in Central, 268 
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South, and Southeast Asia, and in North Africa and the Middle East, where concentrations, 269 
pediatric population, and asthma rates all rose. In High-income North America, Western Europe, 270 
and several other regions, declining NO2 concentrations were offset by increases in asthma 271 
incidence rates and/or pediatric population size. These competing influences changed over time, 272 
with declining concentrations becoming more influential over time in North America and 273 
Southern Latin America, and population growth becoming more influential in North Africa and 274 
Middle East and Southern Sub-Saharan Africa (Figure S12).  275 

 276 

Discussion  277 

We estimated that 1.84 million (95% UI: 0.93 – 2.8 million) pediatric asthma cases globally 278 
could be attributable to NO2 pollution in 2019. Despite having only one-third of the global 279 
pediatric population, urban areas had two-thirds of NO2-attributable pediatric asthma incidence. 280 
The NO2-attributable fraction of pediatric asthma incidence in urban areas globally declined 281 
from 20% in 2000 to 16% in 2019. Regional trends were inconsistent: urban average attributable 282 
fractions dropped in High-income cities; Latin America and Caribbean; Central Europe, Eastern 283 
Europe, and Central Asia; and Southeast Asia, East Asia, and Oceania, and rose in South Asia; 284 
Sub-Saharan Africa; and North Africa and Middle East. The drivers of temporal trends in NO2 285 
concentrations and pediatric asthma burdens were also inconsistent regionally, with declining 286 
NO2 concentrations in some regions counteracted by increases in pediatric population size and 287 
asthma incidence rates. 288 

Our study is consistent with the broader literature demonstrating that NO2 is largely an urban 289 
pollutant.7,47–49 Estimated NO2 concentration trends are consistent with recent studies using 290 
satellite data to investigate NO2 concentration trends during 2004-2018 for the U.S., Europe, 291 
China, India, and Japan.23,31,50 For example, Qu et al.51 also showed a similar decrease in U.S. 292 
NO2 concentrations based on ground observations, satellite data, and modeling outputs from 293 
2006-2016, and Henneman et al.26 showed a similar decrease using ground observations from 294 
1980-2020. A recent study focused on biomass burning in the equatorial Africa region found 295 
declining concentrations from 2005 to 201752, while we found an increase in Sub-Saharan Africa 296 
from 2000-2019. A biomass burning decline in the region may be smaller and offset by 297 
anthropogenic emission changes in populated urban areas.  298 

While our new NO2 dataset leverages advantages of different data sources, concentrations 299 
remain uncertain. Many cities, particularly in low- and middle-income countries (LMICs), still 300 
lack ground NO2 monitors, challenging calibration and evaluation of LUR models.42 Urban NO2 301 
concentrations are therefore more certain in North America, Europe, and Asia, compared with 302 
Africa and South America. Rural concentrations are uncertain globally with limited ground 303 
monitoring outside of urban areas. Scaling the 2010-2012 LUR NO2 concentrations to other 304 
years assumes that the land use predictors are static over time. This assumption is likely 305 
supported by slow changes in road density and volume and urban form, but over the two decades 306 
explored here, some land use evolution is likely53, particularly in rapidly developing LMICs. The 307 
directional impact of these uncertainties on results is unknown.  308 
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Our estimate of the global burden of NO2 on pediatric asthma incidence in 2019 is less than half 309 
of the 4.2 million found by Achakulwisut et al.19 for 2015. Our results for India are also lower 310 
than previous estimates while our U.S. results are higher.17,20 Several factors explain this 311 
discrepancy. First, our new NO2 concentrations correct for a high rural NO2 bias, leading to 312 
lower NO2-attributable asthma incidence estimates, especially in countries with larger rural 313 
populations (e.g. India). Second, GBD 2019 baseline asthma rates are much lower than in 314 
previous versions, except in high income areas (e.g. U.S.), due to a change in the case definition 315 
used which lowered estimated rates in most places and raised them for the U.S.54 For example, 316 
baseline pediatric asthma incidence rates in 2015 (the year analyzed by Mohegh et al.20) in the 317 
GBD 2019 were 81% of GBD 2017 values. Contrastingly, U.S. pediatric asthma incidence rates 318 
were a factor of 2.2 higher in the GBD 2019 versus GBD 2017. Changes in baseline asthma rates 319 
approximately proportionally affect estimated NO2-attributable pediatric asthma incidence. Our 320 
NO2 attributable fraction result in High-Income North America in 2019 (17.3%) was similar to a 321 
previous estimate for the U.S. in 2000 (17.9%), though our NO2 concentrations were lower (10.9 322 
ppb in urban areas vs. 13.2 ppb overall).47 The different analysis years are important since, as we 323 
have shown, NO2 concentrations trends are changing rapidly. 324 

The health impact assessment method also introduces uncertainties. While we used national 325 
pediatric asthma rates, asthma prevalence varies within countries.47 Living in urban areas has 326 
been associated with increased risk of asthma prevalence in LMICs55 and asthma-related 327 
emergency department visits and hospitalizations in the U.S.56 Similarly, temporal trends in 328 
baseline asthma incidence may differ in urban areas compared with national averages, especially 329 
in rapidly urbanizing LMICs. If asthma prevalence is higher in urban areas compared with 330 
national averages, NO2-attributable asthma incidence may be underestimated. In addition, it is 331 
currently unknown whether pediatric asthma incidence is associated with NO2, the traffic-related 332 
air pollution mixture, or the broader combustion-related air pollution mixture. Finally, the 1km 333 
resolution of our NO2 concentration estimates may not capture areas with co-located steep spatial 334 
gradients in concentrations and population, potentially leading NO2-attributable asthma 335 
incidence to be underestimated.  336 

Despite these uncertainties and limitations, our results demonstrate the important influence of 337 
combustion-related air pollution on children’s health in cities globally. In places that have 338 
effective air quality management programs (e.g. U.S., Europe), NO2 concentrations have been 339 
trending downward for decades, with benefits for children’s respiratory health. Even with these 340 
improvements, current NO2 levels contribute substantially to pediatric asthma incidence, 341 
highlighting that mitigating air pollution should be a critical element of children’s public health 342 
strategies. For cities that have not benefited from strong local or national-scale air quality 343 
management programs, the experience of cities that have such programs demonstrates that 344 
addressing combustion-related air pollution can lead to major air quality and public health 345 
improvements over relatively short time frames (years). These air quality improvements can be 346 
achieved through either end-of-pipe emission control technologies such as catalytic converters or 347 
avoiding the combustion in the first place, which would have additional benefits from reduced 348 
greenhouse gas emissions.  349 
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Our study demonstrates the value of satellite remote sensing and statistical models for tracking 350 
NO2 pollution and for environmental health surveillance at local, national, and global scales. The 351 
combination of methods offers strengths beyond the capabilities of each technique alone: a long 352 
and consistent observational record of NO2 column densities from satellites with the high spatial 353 
resolution of surface concentration predictions from LUR models. Future studies may leverage 354 
these data sources and others, including new satellite sensors that have higher temporal and 355 
spatial resolutions, mobile monitoring, distributed ground sensor networks, and chemical 356 
transport models, to further improve the accuracy and spatiotemporal resolution of NO2 357 
concentration estimates. Further, our study shows the importance of considering demographic 358 
changes over time for understanding air pollution health risks. Improved and more widely 359 
accessible information about disease rates, and capturing population distribution and movement, 360 
will enable more accurate and highly resolved air pollution health impact assessments. 361 

 362 

  363 
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Figures  600 

 601 

Figure 1. Annual average NO2 concentrations at 1km x 1km resolution in a) 1990, 2000, 2010 602 
and 2019 and b) difference between 2019 and 2000.  603 

604 
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 605 

Figure 2. Trends (2000-2019) in population-weighted annual average NO2 concentrations (ppb), 606 
NO2-attributable pediatric asthma incidence, NO2-attributable pediatric asthma incidence rate 607 
(per 100,000 children), and NO2 attributable fraction globally (%), in all rural areas, and in 608 
13,189 urban areas. Uncertainty intervals for NO2-attributable pediatric asthma incidence are not 609 
shown since they are based on error in the relative risk estimate, which is constant over time. 610 
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 611 

 612 

Figure 3. Trends (2000-2019) in population-weighted annual average NO2 concentrations (ppb), 613 
NO2-attributable pediatric asthma incidence (cases), NO2-attributable pediatric asthma rates (per 614 
100,000 children), and NO2 attributable fraction (% of all pediatric asthma incidence) in urban 615 
areas in each sub-region. Results for each subregion within each super-region are shown in 616 
Figure S8. Uncertainty intervals for NO2-attributable pediatric asthma incidence are not shown 617 
since they are based on error in the relative risk estimate, which is constant over time. 618 

 619 
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 620 

Figure 4. Percent of global total pediatric population and NO2-attributable asthma cases in 2000 621 
and 2019, for a) all rural areas and 13,189 urban areas globally, and b) urban areas within each 622 
region. 623 
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 624 

Figure 5. Contribution of pediatric population, baseline pediatric asthma rates, and NO2 concentrations to changes in estimated NO2-625 
attributable pediatric asthma incidence between 2000 and 2019 for each sub-region. A different y-axis is used for regions in Sub-626 
Saharan Africa. Results for the full time period are shown in Figure S11. 627 
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Supplemental material: 

Long-term trends in urban NO2 concentrations and associated pediatric asthma incidence: 
estimates from global datasets 

Susan C. Anenberg, Arash Mohegh, Daniel L. Goldberg, Gaige H. Kerr, Michael Brauer, Katrin Burkart, Perry 
Hystad, Andrew Larkin, Sarah Wozniak, Lok Lamsal 

 

Methods for adjusting surface NO2 concentrations in rural areas 

For grid cells >5km away from roadways and in rural areas, we developed new NO2 concentration estimates using 
NO2 column observations from the OMI satellite instrument with some adjustments to fill spatial and temporal gaps 
in the OMI satellite record, and to estimate 24-hour averages from the early afternoon OMI overpass time (Figure 
S1). We use an OMI NO2 version 3, level 4 surface concentration dataset (0.1° x 0.1° resolution) for 2011, which 
followed methods described by Lamsal et al.1 and was obtained from the NASA Goddard Space Flight Center 
(GSFC). The newer version 4 OMI retrieval uses enhanced surface reflectivities in the calculation of the 
tropospheric column amounts, but surface concentrations prepared by NASA GSFC are not currently available from 
the version 4 product. Due to the lack of satellite dataset coverage over snow/ice covered areas, some gridcells 
(mostly in higher latitudes) have no OMI observations in some months. We used the MERRA-2 reanalysis product 
(0.625° x 0.5° resolution) to generate a correction factor to ensure availability of NO2 concentrations in all locations 
and months, as follows:  

 

Equation S1:  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶#1 =  
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎 𝑠𝑠𝑓𝑓𝑎𝑎𝑚𝑚ℎ𝑠𝑠 𝑚𝑚ℎ𝑎𝑎𝑚𝑚 𝑂𝑂𝑂𝑂𝑂𝑂 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 4 𝑖𝑖𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
 

 

We also applied a second correction factor to convert surface NO2 concentrations from the early afternoon OMI 
overpass time (13:00 local time) to 24-hour averages. Following Anenberg et al.2, we used NO2 surface 
concentrations from the GMI-Replay chemical transport model3,4 (2° x 2.5° resolution) simulations to generate these 
correction factors, as follows: 

Equation S2:  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶#2 =
𝐺𝐺𝑀𝑀𝐺𝐺24 ℎ𝑓𝑓𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

𝐺𝐺𝑀𝑀𝐺𝐺13:00 
 

The NO2 surface concentration estimates used for gridcells >5km away from roads and in rural areas were then 
generated using the following formula: 

Equation S3:  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴 𝐶𝐶𝐴𝐴𝐶𝐶𝑓𝑓𝑟𝑟 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴 = 𝑂𝑂𝑂𝑂𝑂𝑂 𝑟𝑟𝐶𝐶𝑙𝑙𝐶𝐶𝑟𝑟 4 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶#1 ×
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 #2 

For rural gridcells within 5km of major roadways, we linearly scaled between Larkin et al.5 values and the new 
adjusted rural concentrations in the span of the 5 km distance. The result of these steps is a 1km x 1km annual 
average surface NO2 concentration dataset for 2011 that uses Larkin et al.5 values in gridcells that are categorized as 
urban or over roads, and a new concentration dataset derived from OMI satellite observations in rural areas (Figure 
S2). 

 

Methods for scaling NO2 concentrations from 2011 to 1990-2019 

The GBD requires NO2 concentrations for each year included in the comparative risk assessment, from 1990-2019. 
We therefore scaled the new 2011 surface NO2 concentration dataset to each year in this time period, in five-year 
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increments from 1990-2005, and annually from 2010-2019. For the years 2005-2019, we scaled surface NO2 
concentrations from 2011 to each year using 3-year rolling averages of annual average NO2 columns from the OMI 
version 4.0 level 2 product (13 km x 25 km resolution at nadir; Figure S3) at the gridcell level. We use NO2 columns 
because surface concentrations derived from the version 4 OMI retrieval are not yet available. We oversampled the 
column NO2 dataset to 0.1° x 0.1° resolution and re-gridded to 0.0083° x 0.0083° (approximately 1km x 1km). The 
3-year rolling averages remove noise from the satellite data. For 2005 and 2019, we did not have data to create 3-
year rolling averages, so we used that year’s NO2 columns directly. The years 1990, 1995, and 2000 predated the 
OMI observational record. We therefore used NO2 concentrations from the MERRA-2 reanalysis product to scale 
2011 NO2 concentrations to those years.6 To remove model noise, we created the MERRA-2 scaling factors across 
broad world regions (Figure S5), as opposed to applying scaling factors on a gridcell by gridcell basis as we did for 
the OMI scaling. 

The final result used for estimating the global burden of disease from NO2 is a global, 0.0083° x 0.0083° 
(approximately 1km x 1km) resolution dataset of annual average surface NO2 concentrations from 1990-2019 
(Figure 1).  

 

Evaluation of NO2 concentration dataset 

The Larkin et al.5 NO2 concentration dataset was evaluated extensively in that work and agreed well with ground 
observations in urban areas. Here we add two limited new analyses to evaluate the changes we made in rural areas 
and the scaling other years (focusing specifically on the latest year, 2019).  

We evaluated the rural NO2 concentration estimates using the European Monitoring and Evaluation Program 
(EMEP) ground monitoring dataset, which has a large number of stations in rural areas (Table S1 and Figure S6). 
Other ground monitoring datasets (e.g. from EPA) may have rural sites, but we found that most were located directly 
downwind from urban areas. For example, the average surface annual mean NO2 concentration in rural areas in 2011 
from the EPA network is 4.3 ppb, likely too high to represent true background concentrations. We aggregated the 
available monitoring stations for the year 2011 to calculate annual averages and used a set of criteria to filter for 
stations that mostly closely represent background concentrations: 1) Stations with >300 days of data (the threshold 
was selected based on the distribution in days available for stations); 2) Stations that are at least 500m away from 
roads; 3) Stations that are not in urban and suburban areas. After applying these criteria, 67 stations across Europe 
remained. The evaluation is performed based on the aggregated annual average surface NO2 concentrations for each 
monitor, and the value of the gridcell corresponding to that monitor for both original exposure dataset and final 
product. 

The evaluation results show that the newly developed NO2 surface concentrations outperformed the Larkin et al.5 
concentrations in rural areas, based on Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Bias 
(MB), and correlation with ground observations (Table S1). The slope of the best fitted line is improved from 1.41 
to 1.10, and the mean ratio of estimated to observed concentrations is improved from 1.81 to 1.32 (Table S1 and 
Figure S6). The RMSE is reduced from 3.37 ppb to 2.26 ppb, and MAE is improved from 2.74 ppb to 1.72 ppb, and 
the MB is reduced from 2.40 ppb to 1.02 ppb. The correlation between the estimated surface concentrations and 
ground measurements is improved from Pearson correlation coefficient (R) of 0.51 in the original product to 0.58.  

In addition to the comparison of our dataset with previously published NO2 concentrations during their overlapping 
time period, we further test the fidelity of our dataset for a more recent year (Figure S7). We obtain annual average 
observations for 2019 from three different networks: the National Air Pollution Surveillance (NAPS) program in 
Canada7, the Air Quality System (AQS) in the United States8, and the European Environment Agency (EEA) in 
Europe.9 These networks provide data from 4,348 individual monitors (181 NAPS, 466 AQS, and 3,701 EEA), and 
we compare each monitor’s NO2 concentration to the concentration in the gridcell co-located with each monitor for 
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2019. All monitor data for 2019 have passed several quality control tests and quality assurance assessments by the 
entities that disseminate these data.  

The mean bias (normalized mean bias) was -2.27 ppb (-20.40%) in Europe, 1.69 ppb in the U.S. (20.79%), and 3.34 
ppb (49.56%) in Canada across the three networks in 2019 (Figure S7b,e,h). In urban areas specifically, the mean 
bias was -2.87 (-22.51%) in Europe, 1.26 ppb (12.21%) in the U.S., and 3.93 ppb (50.14%) in Canada for an average 
of 0.77 ppb across these three networks (Figure S7c,f,i). The mean bias at rural sites averaged over the three 
networks is 1.56 ppb, similar in magnitude to the rural bias reported for 2010-2012 (compare Figure S7c,f,i with 
Table S1).  

The high mean bias evident in the NAPS and AQS datasets (Figure S7b-c, e-f) could, in part, reflect known issues 
with NO2 monitors, which have been reported to overestimate NO2 concentrations by up to ~50% due to interference 
from reactive nitrogen compounds, especially at locations distant from NOx sources.10 Additionally, this high bias 
could also stem from monitors sited near traffic or other sources of NOx emissions that may not be resolved in our 
~1 km2 dataset.  

The paucity of monitors throughout large swaths of Canada and the United States (Figure S7a, d) and throughout the 
rest of the world inhibits a more in-depth performance assessment of our dataset and highlights the urgent need for 
more strategic and equitable monitoring of ambient air pollution (e.g. 11).  

 

Methods for decomposing parameter contributions to NO2-attributable asthma trends 

We calculate the contribution of each parameter used in health impact assessment (population, baseline asthma rates, 
and concentrations) using four sets of simulations:  

● Control scenario, where we calculated the asthma cases for each year. 

● Three “parameter rollback” simulations in which we revert one of the parameters (population, baseline 
asthma rates, or concentrations) to the base year 2000.  

By comparing each of the three parameter rollback scenarios to the control scenario, we calculate the contribution of 
each parameter to the change in asthma cases between 2000 and all other years. We use the following set of 
equations to calculate the contribution of each parameter. 

We use Equation S4 to calculate pediatric asthma incidence attributable to NO2 for the control scenario. This 
equation is the same as Equation 1 in the main text, but we denote the parameters differently here to make it easier 
to compare with the control scenario equations. 

Equation S4:  

Where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑡𝑡 is the NO2-attributable pediatric asthma incidence for year t, 𝑥𝑥𝑡𝑡 is the baseline pediatric asthma rate 
for year t, 𝑦𝑦𝑡𝑡 is the pediatric population for year t, and 𝑧𝑧𝑡𝑡 is the fraction of pediatric asthma incidence that is 
attributable to NO2 for year t. 

We then calculate NO2-attributable pediatric asthma incidence for each simulation, replacing one parameter with its 
value in the year 2000 while holding the other two parameters at the same value used in the control scenario 
(Equations S5-S7). 

Equation S5:  

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑡𝑡(𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡 , 𝑧𝑧𝑡𝑡) = 𝑥𝑥𝑡𝑡 × 𝑦𝑦𝑡𝑡 × 𝑧𝑧𝑡𝑡 

𝑆𝑆𝐶𝐶𝑆𝑆𝐴𝐴𝑟𝑟𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥,𝑡𝑡(𝑥𝑥0,𝑦𝑦𝑡𝑡 , 𝑧𝑧𝑡𝑡) = 𝑥𝑥0 × 𝑦𝑦𝑡𝑡 × 𝑧𝑧𝑡𝑡 
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Equation S6:  

 

Equation S7:  

Where 𝑆𝑆𝐶𝐶𝑆𝑆𝐴𝐴𝑟𝑟𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 is the estimated NO2-attributable pediatric asthma incidence for year t, where we have 
reverted one parameter back to the base year of 2000. 

We then calculate the ratio of estimated NO2-attributable pediatric asthma incidence in the control scenario versus in 
each of the parameter rollback scenarios, as shown in Equation S8. 

Equation S8:  

 

Since NO2-attributable pediatric asthma incidence is calculated by multiplying three parameters, we assume that the 
ratio of NO2-attributable asthma incidence between year t and base year 2000 would be equivalent to the 
multiplication of the three rollback scenario ratios calculated in Equations S5-S7 (Equation S9). In this step we 
assume that aggregating the three parameter rollbacks separately is equivalent to reverting all of them together.  

Equation S9:  

 

To calculate the contribution of each parameter individually, we need to transform the parameter ratios so that they 
add up to 1 when summed. We therefore calculate a logarithm in the base of the left side of Equation S9 
(𝐴𝐴𝐴𝐴𝐶𝐶ℎ𝑆𝑆𝑓𝑓𝑡𝑡/𝐴𝐴𝐴𝐴𝐶𝐶ℎ𝑆𝑆𝑓𝑓0); since the logarithm of every number in its own base equals 1, this step makes the left side 
equal to 1 (Equation S10). 

Equation S10:  

 

Finally, we multiply each of the three log-transformed parameter rollback ratios by the total percentage change in 
NO2-attributable asthma incidence between years 2000 and t to calculate the percent contribution of each parameter 
to that total change (Equation S11).  

Equation S11:  

 

Using this methodology, we calculated percent contributions for each of the three health impact function parameters 
(concentration, population, asthma rates) that add up to the total percentage changes between the two years, while 
remaining loyal to the multiplicative nature of the original health impact assessment function. 

𝑆𝑆𝐶𝐶𝑆𝑆𝐴𝐴𝑟𝑟𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑦𝑦,𝑡𝑡(𝑥𝑥𝑡𝑡 ,𝑦𝑦0, 𝑧𝑧𝑡𝑡) = 𝑥𝑥𝑡𝑡 × 𝑦𝑦0 × 𝑧𝑧𝑡𝑡 

𝑆𝑆𝐶𝐶𝑆𝑆𝐴𝐴𝑟𝑟𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑧𝑧,𝑡𝑡(𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡 , 𝑧𝑧0) = 𝑥𝑥𝑡𝑡 × 𝑦𝑦𝑡𝑡 × 𝑧𝑧0 

𝑅𝑅𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑡𝑡

𝑆𝑆𝐶𝐶𝑆𝑆𝐴𝐴𝑟𝑟𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡
 

𝐴𝐴𝐴𝐴𝐶𝐶ℎ𝑆𝑆𝑓𝑓𝑡𝑡
𝐴𝐴𝐴𝐴𝐶𝐶ℎ𝑆𝑆𝑓𝑓0

≈ 𝑅𝑅𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥,𝑡𝑡 × 𝑅𝑅𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑦𝑦,𝑡𝑡 × 𝑅𝑅𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑧𝑧,𝑡𝑡 

1 = log�𝑅𝑅𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥,𝑡𝑡� + log�𝑅𝑅𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑦𝑦,𝑡𝑡� + log (𝑅𝑅𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑧𝑧,𝑡𝑡) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 =
𝐴𝐴𝐴𝐴𝐶𝐶ℎ𝑆𝑆𝑓𝑓𝑡𝑡
𝐴𝐴𝐴𝐴𝐶𝐶ℎ𝑆𝑆𝑓𝑓0

× 𝑟𝑟𝐶𝐶𝑙𝑙�𝑅𝑅𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡� 
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Supplemental Tables and Figures 

Table S1. Statistical parameters for NO2 concentrations from the Larkin et al.5 dataset and our new concentration 
estimates for rural areas compared with EMEP rural observations. Values reported here for Larkin et al.5 differ from 
those reported in their paper because here we are only evaluating predicted concentrations in rural areas at the 
EMEP monitor locations. 

 

Root Mean 
Square Error 
(RMSE) (ppb) 

Mean 
Absolute 

Error 
(MAE) (ppb) 

Mean Bias (MB) 
(ppb) 

Pearson 
coefficient (R) 

Mean ratio: 
Estimate/obs 

Slope of best 
fitted line 

New product 2.26 1.72 1.02 0.58 1.32 1.10 

Larkin et al.5 3.37 2.74 2.40 0.51 1.81 1.41 

 

 

 

  



6 
 

Table S2. Count of urban clusters in each GBD region/super region. The total does not match the total urban clusters 
in analysis (13,189) since some urban clusters are located at the border between two regions. 

Super region name Region name Count 

Central Europe, Eastern Europe, and Central Asia   628 

  Central Asia 148 

  Central Europe 161 

  Eastern Europe 319 

High-income   1280 

  Australasia 35 

  High-income Asia Pacific 148 

  High-income North America 389 

  Southern Latin America 115 

  Western Europe 593 

Latin America and Caribbean   968 

  Andean Latin America 93 

  Caribbean 75 

  Central Latin America 438 

  Tropical Latin America 362 

North Africa and Middle East   1231 

  North Africa and Middle East 1231 

South Asia   3899 

  South Asia 3899 

Southeast Asia, East Asia, and Oceania   2904 

  East Asia 1955 

  Oceania 49 

  Southeast Asia 900 

Sub-Saharan Africa   2313 

  Central Sub-Saharan Africa 250 

  Eastern Sub-Saharan Africa 1024 

  Southern Sub-Saharan Africa 124 

  Western Sub-Saharan Africa 915 

Grand Total   13223 
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Table S3. Population-weighted NO2 concentrations (ppb), NO2-attributable pediatric asthma incidence (95% 
uncertainty interval in parentheses), NO2-attributable pediatric asthma incidence rate (per 100,000), and NO2 
attributable fraction (%) for each super-region in 2000, 2005, 2010, and 2019. 

Super region Year 

Pop-wt NO2 
concentration 
(ppb) 

NO2-attributable pediatric 
asthma incidence 

NO2-attributable asthma 
rate (per 100,000) 

NO2 
attributable 
fraction 

Central Europe, 
Eastern Europe, 
Central Asia 

2000 15.1 65,000 
(33,400 – 107,500) 202 23 

2010 13.6 44,300 
(26,400 – 85,300) 172 20 

2019 12.7 54,900 
(26,400 – 87,000) 188 20 

High-income 
2000 17.3 464,800 

(264,700 – 725,800) 428 29 

2010 15.1 433,300 
(255,500 – 655,000) 404 24 

2019 11.1 340,900 
(191,400 – 523,200) 310 17 

Latin America and 
Caribbean 2000 12.8 256,100 

(147,300 – 397,000) 332 19 

2010 12.4 236,900 
(138,000 – 380,300) 302 19 

2019 10.6 233,800 
(125,300 – 375,800) 281 16 

North Africa and 
Middle East 2000 12.1 111,800 

(63,300 – 176,300) 180 19 

2010 13.2 120,100 
(65,000 – 189,200) 189 20 

2019 12.8 157,600 
(67,000 – 202,200) 203 20 

South Asia 
2000 8.6 50,000 

(28,600 – 78,100) 33 13 

2010 9.9 106,500 
(55,900 – 161,900) 65 15 

2019 10.1 90,400 
(40,700 – 130,700) 50 16 

Southeast Asia, East 
Asia, and Oceania 2000 11.1 211,300 

(113,900 – 343,100) 109 16 

2010 14 226,600 
(129,500 – 377,600) 128 18 

2019 10.6 240,900 
(122,100 – 378,000) 129 15 

Sub-Saharan Africa 
2000 6.4 49,100 

(27,400 – 78,700) 89 9 

2010 6.9 65,700 
(26,000 – 74,700) 84 9 

2019 7.1 102,900 
(30,200 – 90,900) 97 10 
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Figure S1. Schematic of datasets used and the process of combining them. Blue arrows represent applied processes. 

 

 

Figure S2. Annual average surface NO2 concentration estimates for 2011 at ~1km x 1km resolution globally from 
this work, using a combination of Larkin et al.5 land use regression estimates, OMI satellite observations, and 
chemical transport modeling. 

Level 4 
OMI

Larkin 2017

Annual NO2 
surface

concentration
for year 2011

Factor#1: 
Adjusting for 

coverage

Factor#2: 
Adjusting for 
satellite pass 

time

Adjusted
rural 

concentrations Combining 
rural and 

urban

Annual NO2 
surface 

concentration 
for 1990-2019

Scaling for 
different years 

using OMI 
column values 
for 2005-2019 
and MERRA2 
for 1990-2005



9 
 

 

Figure S3. Regional trends in annual average NO2 column densities (0.5° x 0.5°) from the OMI satellite instrument 
(2005-2019). 
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Figure S4. Countries and territories included in each region and super region, using regional definitions from the 
GBD 2019 Study. 

 

 

Figure S5. World regions used to generate the MERRA-2 scaling factors for NO2 in 1990, 1995, and 2000.
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Figure S6. Comparison between annual average NO2 concentrations from the original Larkin et al.5 product (orange) 
and our new NO2 concentration product (blue), versus concentrations from ground measurements for 2011 in rural 
areas. A 1:1 reference line is added for comparison. Each point represents a monitor. Monitor data source: European 
Monitoring and Evaluation Programme (EMEP). 
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Figure S7. (a,d,g) The location of NO2 monitors from the NAPS, AQS, and EEA networks and their annual average 
2019 concentrations. (b,e,h) Annual average 2019 NO2 concentrations from the gridcells co-located with each 
monitor versus the monitor concentrations. (c,f,i) are the same as (b,e,h) but for urban versus rural monitors. 
Rurality in (c,f,i) is determined with the GHS-SMOD dataset. The mean bias (MB; = 𝑂𝑂� − 𝑂𝑂�), normalized mean 

bias (NMB; = (𝑀𝑀
�

𝑂𝑂�
− 1) × 100%), and RMSE (= �1

𝑁𝑁
∑  (𝑂𝑂𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁
𝑖𝑖=1 �

1
2) are indicated in each scatterplot. Here, M 

corresponds to the new dataset and O corresponds to observed concentrations. A 1:1 reference line is included in 
scatterplots for comparison.  
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Figure S8. Population-weighted annual average NO2 concentrations (ppb) for 13,189 urban areas (top) and the cities 
with the top 10 concentrations (bottom) in 2019. Color bar saturates at 18 ppb for greater contrast.
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Figure S9. As for Figure 3, but for each subregion within each super-region. 
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Figure S10. As for Figure S8, but for NO2-attributable pediatric asthma incidence.  
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Figure S11. As for Figure S8, but for NO2-attributable pediatric asthma incidence rate per 100,000 children.  
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Figure S12. As for Figure S8, but for the fraction of pediatric asthma incidence attributable to NO2 (%). Color bar 
saturates at 30% for greater contrast. 
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Figure S13. As for Figure 5, but for the change from 2000 to 2005 and 2010-2019 annually (represented left to right by the bars in each panel).
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