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Abstract

The higher frequency and intensity of sustained heat events have increased the demand for cooling energy across the globe.

Current estimates of summer-time energy demand are primarily based on Cooling Degree Days (CDD), representing the number

of degrees a day’s average temperature exceeds a predetermined comfort zone temperature. Through a comprehensive analysis

of the historical energy demand data across the USA, we show that the commonly used CDD estimates fall significantly short

(±25%) of capturing regional thermal comfort levels. Moreover, given the increasingly compelling evidence that air temperature

alone is not sufficient for characterizing human thermal comfort, we extend the widely-used CDD calculation to heat index,

which accounts for both air temperature and humidity. Our results indicate significant mis-estimation of regional thermal

comfort when humidity is ignored. Our findings have significant implications for the security, sustainability, and resilience of

the grid under climate change.

1



manuscript submitted to Earth’s Future

The Goldilocks Zone in Cooling Demand: What can we1

do better?2

Debora Maia-Silva1, Rohini Kumar2, and Roshanak Nateghi3,4,53

1Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, 479064
2Department Computational Hydrosystems, Helmholtz Centre for Environmental Research-UFZ, Leipzig,5

Germany, 043186
3School of Industrial Engineering, Purdue University, West Lafayette, IN, 479067

4Purdue Climate Change Research Center, Purdue University, West Lafayette, IN, 479068
5Center for the Environment, Purdue University, West Lafayette, IN, 479069

Key Points:10

• The analysis of historical electricity demand shows that the widely used CDD es-11

timates fall short (±25%) of capturing regional thermal comfort zones.12

• Estimates of air conditioning penetration and affordability based on traditional13

calculation of CDD can lead to significant misestimation.14

• Extending CDD calculations to include humidity improves the characterization15

of climate-demand nexus under present and future climate conditions.16

• A singular focus on air-temperature based CDD with a generic set-point temper-17

ature undermines grid resilience during extreme heat events.18
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Abstract19

The higher frequency and intensity of sustained heat events have increased the demand20

for cooling energy across the globe. Current estimates of summer-time energy demand21

are primarily based on Cooling Degree Days (CDD), representing the number of degrees22

a day’s average temperature exceeds a predetermined comfort zone temperature. Through23

a comprehensive analysis of the historical energy demand data across the USA, we show24

that the commonly used CDD estimates fall significantly short (±25%) of capturing re-25

gional thermal comfort levels. Moreover, given the increasingly compelling evidence that26

air temperature alone is not sufficient for characterizing human thermal comfort, we ex-27

tend the widely-used CDD calculation to heat index, which accounts for both air tem-28

perature and humidity. Our results indicate significant mis-estimation of regional ther-29

mal comfort when humidity is ignored. Our findings have significant implications for the30

security, sustainability, and resilience of the grid under climate change.31

Plain Language Summary32

Hotter summer days and more frequent and intense heatwaves are causing a sharp33

rise in demand for air conditioning across the globe. Accurate estimation of demand for34

space cooling is an integral component of resilient planning, operation, and management35

of the grid. One widely used metric for characterizing this demand is the Cooling De-36

gree Days (CDD), which is calculated by measuring the difference between the mean daily37

temperature and a pre-defined base temperature that represents a “comfort zone”. In38

this paper, we analyze historical data on climate and energy demand and find that the39

most frequently used base temperature of 65◦F in CDD calculations leads to mis-characterizing40

comfort zones across different geographic areas in the U.S. This can cause significant under-41

or over-estimations of cooling energy demand. Moreover, we extend the temperature-42

based CDD calculations to also account for the role of humidity and demonstrate the43

cost of ignoring humidity in CDD calculations under present and future climate condi-44

tions.45

1 Introduction46

Maintaining the thermal comfort of societies is critical not only for human health47

and well-being but also for achieving a high-sustainability future. Despite the direct link-48

ages between cooling demand and each of the 17 Sustainable Development Goals (SDGs),49

the unprecedented global increase in demand for cooling has been largely absent from50

today’s sustainability debates (Khosla et al., 2020a). Under current socio-economic and51

climatic conditions, three-quarters of the global population will experience health risk52

due to exposure to extreme heat events (McGregor et al., 2015), with significant equity53

and justice implications. The demand for space cooling is expected to witness a three-54

fold increase by 2050 (Birol, 2018). The inability to meet this rising demand sustainably55

is bound to widen the energy poverty gap and increase GHG (greenhouse gas) emissions,56

exacerbating climate change and its impacts on modern society.57

Air conditioning is touted as an integral component of modern living and a testa-58

ment to human civilization’s progress (Berger, 2004). Moreover, it is an important driver59

of summer-time peak load—the highest energy demand in a given period—which often60

sets the key operational and planning parameters in energy infrastructure management61

(Auffhammer et al., 2017; Jaglom et al., 2014; Reyna & Chester, 2017; van Ruijven et62

al., 2019; Mukhopadhyay & Nateghi, 2017). With increased intensity and frequency of63

heat waves and accelerated adoption of air conditioning, access to accurate estimates of64

cooling demand (during both peak and off-peak hours) has become an important pillar65

in energy systems planning (Coumou & Rahmstorf, 2012; Mukherjee & Nateghi, 2017a,66

2017b; IEA, 2008). Accurate characterization of summer-time peak load is particularly67

important for residential customers, which represent the most climate-sensitive segment68
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of the energy sector (Obringer et al., 2019; Khosla et al., 2020b; Obringer, Mukherjee,69

& Nateghi, 2020; Isaac & van Vuuren, 2009; Sailor, 2001).70

Cooling Degree Day (CDD) is a practical and widely used measure for quantify-71

ing summer-time space cooling demand in energy planning (Day, 2006; Biardeau et al.,72

2020; Lebassi et al., 2010; Deroubaix et al., 2021). CDD represents the number of de-73

grees a day’s average temperature exceeds a pre-specified set-point temperature, and any74

value that exceeds this base temperature is assumed to trigger demand for cooling. CDD’s75

set-point temperature represents a comfort zone – aka a ‘Goldilocks zone’ for human ther-76

mal comfort, where it is neither too cold nor too hot. The selected comfort zone tem-77

perature is often arbitrarily set at 65◦F (18.3◦C) in global and regional energy planning78

studies (Biardeau et al., 2020; Waite et al., 2017; Sivak, 2009; Petri & Caldeira, 2015a;79

Goldstein et al., 2020; Davis & Gertler, 2015; Khan et al., 2021). More specifically, while80

in certain applications such as building-level thermal comfort studies (Shin & Do, 2016)81

empirically derived base temperatures have been used, in studies related to energy in-82

frastructure planning – which is the focus of this paper – CDD’s set-point temperature83

is almost always set at 65◦F (18.3◦C) (Biardeau et al., 2020; Waite et al., 2017; Sivak,84

2009; Goldstein et al., 2020; Davis & Gertler, 2015).85

The use of CDD for studying the climate-energy nexus has limitations since the86

CDD calculation is solely based on air temperature, and that the metric was originally87

derived to study buildings’ thermal comfort. Additionally, there are two fundamental88

caveats to the approaches that calculate CDD based on the generic set-point value of 65◦F89

for sustainability and resilience analytics in energy infrastructure planning and manage-90

ment. Firstly, the set-point value of 65◦F was derived decades ago, with no considera-91

tion of climate change, and thus might no longer be a representative value under present92

and future climate conditions. Secondly, previous studies have shown that air temper-93

ature is a necessary but not sufficient measure of heat stress (Buzan et al., 2015; Maia-94

Silva et al., 2020; Li et al., 2020; Raymond et al., 2020; Pokhrel et al., 2018; Ortiz et al.,95

2018; Angeles et al., 2018). However, temperature-based CDD calculations do not take96

humidity into account (Day, 2006). This renders the effectiveness of CDD as a metric97

for capturing human thermal comfort questionable. In the light of the recent record-breaking98

blackouts last summer (Borunda, 2020) along with the increased frequency and inten-99

sity of heatwaves (Hulley et al., 2020), the energy sector must address these shortcom-100

ings to mitigate the growing threats of climate change and enhance the security, sustain-101

ability, and resilience of the grid. Otherwise, incomplete and inaccurate understandings102

of how human thermal comfort relates to cooling demand will hamper urgent transfor-103

mations needed to unlock sustainable pathways, and will likely increase the risk of path-104

dependent trajectories in the energy sector.105

We address these fundamental gaps by first deriving geographically-specific CDDs106

and extending the calculation of CDD to also account for humidity. Specifically, we first107

derive geographically-specific CDDs for each state1, using summer-time (May to Septem-108

ber) residential energy consumption data (1990–2016) to establish region-specific opti-109

mal set-point temperatures. We then measure the deviations between these values and110

the CDD estimates based on 65◦F set-point temperature throughout the American ter-111

ritory. We discuss the implications of the over- or underestimations, as revealed by the112

newly calculated CDDs, for energy planning under both present and future climate con-113

ditions. Additionally, to account for the critical role of humidity, we go beyond air tem-114

perature in calculating CDD. In particular, we extend the CDD method to heat index115

(HI) – a widely used climate measure for human heat comfort that includes humidity116

(Buzan et al., 2015; Anderson G. Brooke et al., 2013; Willett & Sherwood, 2012; Maia-117

1 While state boundaries do not always coincide with climate boundaries, our state-level analysis is

motivated by providing insights that are relevant to state-level policymakers and energy planners.
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Silva et al., 2020) – and harness CMIP5-GCM climate scenarios to make projections un-118

der climate change.119

We provide the details of the data collection, data processing, and methodology120

in Section 2. We then give a detailed account of our results in Section 3. Finally, we sum-121

marize our findings and discuss the significance of our results in Section 4. Our results122

demonstrate a considerable deviation of the optimal set-point temperatures from the base123

temperature of 65◦F (18.3◦C) in most states, with an average deviation of 10%. Our find-124

ings reveal that a singular focus on air temperature-based CDDs with a generic set-point125

temperature in energy systems planning undermines the resilience of the grid under cli-126

mate change, especially during extreme heat events.127

2 Data and Methods128

2.1 Observed Climate Data129

We acquired the observed climate data at a sub-daily (3-hourly) time scale for the130

period of 1990–2016 from the NCEP North American Regional Reanalysis (NARR) at131

a 32 kilometer spatial resolution (Mesinger et al., 2006; NCEP, 2019; CIESIN, 2019). We132

aggregated the data to a monthly level to match the chronological scale of electricity con-133

sumption data, and weighted the data by population density when aggregating to the134

state level. Specifically, the 2010 UN-adjusted Grid Population of the World dataset (Ver-135

sion 4) is used for this work, collected from the Socioeconomic Data and Applications136

Center (SEDAC; http://sedac.ciesin.columbia.edu). Giving higher weights to regions with137

higher population densities when averaging state level data is in line with previous stud-138

ies on residential electricity demand (Schlenker & Roberts, 2009; Kumar et al., 2020).139

2.2 Projected Climate Data140

While analyzing observational data is essential for understanding past variability141

in historical events, they provide limited knowledge for anticipating the future, especially142

under non-stationary conditions. Using the projected climate data is essential for char-143

acterizing the growing effects of climate variability and change on the energy sector (Maia-144

Silva et al., 2020; Auffhammer et al., 2017; Obringer, Kumar, & Nateghi, 2020). To ex-145

tend our analysis into the future such that our findings are relevant for medium and long-146

term energy planning, the projected climate data were acquired for both future period147

of 2031–2050 and also the historical period of 1990–2016. The 2031-2050 timeline is cho-148

sen due to the fact that the year 2050 is consistently used as a target year in energy plan-149

ning reports (EIA, 2020a; IPCC, 2014). This timeline is practical as it allows for con-150

sidering climate change effects on the sector without having to consider significant trans-151

formations to the architecture of the electrical grid.152

The projected climate data used in this paper are derived from five different Global153

Circulation Models (GCM), namely: Geophysical Fluid Dynamics Laboratory Earth Sys-154

tems Model (GFDL-ESM2M), Hadley Global Environment Model 2 - Earth System (HadGEM2-155

ES), IPSL Earth System Model for the 5th IPCC report (IPSL-CM5A-LR) (IPCC, 2014),156

Atmospheric Chemistry Coupled version of MIROC-ESM, a Earth System model (MIROC-157

ESM-CHEM), and the Norwegian Earth System Model (NorESM1-M). The climate model158

projection data-sets used in our analysis are obtained from the Inter-Sectoral Impact Model159

Intercomparison Project (ISI-MIP; (Warszawski et al., 2014)); and are part of the CMIP5160

database (Taylor et al., 2012). These climate model datasets are bias-corrected using a161

trend-preserving approach (Hempel et al., 2013); and have been widely used in several162

impact assessment studies (see www.isimip.org for details). Here, we considered the cli-163

mate projection estimates under the Representative Concentration Pathway (RCP) 8.5164

emission scenario that has an end-of-century radiative forcing equal to 8.5 Wm−2 and165

is characterized by high greenhouse emission levels (Taylor et al., 2012; Warszawski et166
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al., 2014; Nateghi & Mukherjee, 2017). Finally, we aggregated these bias-corrected cli-167

mate projection data to obtain the state-level estimates taking into account the state168

boundary and corresponding population estimates as a weighing factor, which is in-line169

with previous studies (Kumar et al., 2020; Biardeau et al., 2020).170

2.3 Observed Electricity Demand Data171

Similar to the temporal resolution of the observed climate data, we used monthly172

electricity sales data in this work. We collected the data from the U.S. Energy Informa-173

tion Administration (EIA, 2020c) over the years of 1990–2016 at a state level for the res-174

idential sector. We then normalized the electricity demand data by the state-level pop-175

ulation to obtain a per capita value of consumption.176

To isolate the climate effects from the electricity data, which are influenced by var-177

ious factors such as technological changes, policy implementation, and demographic shifts178

(van Ruijven et al., 2019; Mukherjee et al., 2018; Auffhammer et al., 2017), we de-trended179

the raw, state-level electricity consumption data. There are various different de-trending180

approaches in the literature (Bessec & Fouquau, 2008). The method used in this study181

(Sailor & Muñoz, 1997) is based on one the most widely-used approaches in the climate-182

energy research literature and its effectiveness has been extensively documented (Khoshbakht183

et al., 2018; Santágata et al., 2017; Parkinson & Djilali, 2015; Brown et al., 2016; Alipour184

et al., 2019; Mukherjee & Nateghi, 2017a). The de-trending process involves the follow-185

ing steps:186

E(y) =

∑nyears

y=1

∑12
m=1 E(m, y)

nyears
(1)

Where the total years, nyears, range from 1990–2016; m denotes the month and y de-187

notes the year. An adjustment factor is calculated per year by summing the monthly per188

capita demand and dividing it by the yearly average consumption E(y).189

Fadj = E(y)−1
12∑

m=1

E(m, y) (2)

The final de-trended demand is obtained by dividing the monthly consumption by190

the calculated adjustment factor.191

E(m, y)adj = E(m, y)/Fadj (3)

2.4 CDD Calculation192

Once the climate and electricity data are aggregated, the CDD for a given can be193

calculated as (Equation 4):194

CDDdaily =

{
0, Td < Tb

Td − Tb, Td > Tb

(4)

where Td represents daily average temperature and Tb represents the base temperature/set-195

point temperature selected for the CDD calculation. The CDD is usually aggregated to196

annual, seasonal, or monthly levels by summing the respective daily values.197

While Tb is often arbitrarily set at 65◦F (18.3◦C) (Biardeau et al., 2020; Goldstein198

et al., 2020), we leveraged the well-established Energy Signature method (F. R. Jacob-199

sen, 1985; Brown et al., 2014; Bhatnagar et al., 2018; Lee et al., 2013; Sailor & Muñoz,200
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1997) to derive geographically-specific CDD set-points for all 48 CONUS states. The anal-201

ysis is done by examining scatter plots of energy consumption versus climate variables202

to select a vertex that reflect cooling sensitivity, as characterized by a sharp increase in203

demand at a certain climate threshold value. More specifically, the Energy Signature method204

is performed in the following three steps:205

1. Iteratively process the data to select relevant intervals that are conducive to iden-206

tifying the sensitivity points (or base values/set-points);207

2. Fit piece-wise constant regression models to each region.208

3. Repeat steps 1 and 2 until distinct vertex points are detected.209

Considering the uncertainty associated with this method, confidence intervals with210

10,000 bootstrap re-samples are calculated for each base value. At the end of the pro-211

cess, the CDD base values for both air temperature and heat index are identified for each212

of the 48 CONUS states. An example of the Energy Signature method is illustrated in213

Figure 1.214

We compared the derived geographically-specific CDD base values with the widely215

used 65◦F (18.3◦C). The deviations are spatially illustrated in Section 3. We then used216

reduced form equations to understand and quantify the implication of the discrepancies217

between the derived and widely used set point temperature of 65◦F (18.3◦C) in terms218

of energy demand (discussed in Section 3).219

2.5 Extending the CDD Calculation to Include Humidity220

To extend the CDD analysis under climate change to also account for humidity,221

heat index-CDD was calculated using the Energy Signature method using observational222

and climate projections data records, as illustrated in Figures 1(b) and 1(d). Heat in-223

dex (HI), also called apparent temperature, describes what the temperature feels like to224

the human body when relative humidity is combined with air temperature (Buzan et al.,225

2015; Rothfusz, 1990). Characterizing the climate-sensitivity of energy demand requires226

accounting for the synergistic effects of surface temperature and humidity on human body.227

Accounting for the role of humidity, therefore, is necessary for modeling energy demand228

profile (Maia-Silva et al., 2020). Heat index is calculated following the equation bellow:229

HI = −42.379 + 2.04901523 TF + 10.14333127 RH − 0.22475541 TFRH

−6.83783x10−3T 2
F − 5.481717x10−2 RH2 + 1.22874x10−3T 2

F RH

+8.5282x10−4TF RH2 − 1.99x10−6T 2
F RH

(5)

Where (TF ) denotes the air temperature, RH denotes relative humidity and HI is mea-230

sured in degrees Fahrenheit.231

Furthermore, we also analysed the extension of conventional temperature-based CDD232

to another heat-stress measure based on Discomfort Index (DI) that also accounts for233

variability in both near-surface air temperature and humidity (Buzan et al., 2015). A234

recent study by (Sailor et al., 2019) demonstrated the usefulness of DI in building com-235

fort levels. DI is estimated considering both dry-bulb and wet-bulb temperatures – the236

functional form and estimation approach are detailed in (Buzan et al., 2015) and (Maia-237

Silva et al., 2020).238

2.6 Characterizing Air Conditioning Prevalence and Affordability239

The Cooling Degree Day (CDD) index has other applications beyond its direct use240

in cooling demand estimation. Specifically, CDD is used in estimating air conditioning241
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penetration (PNT) as well as in calculating the ratio of households that could afford air242

conditioning (Smax).243

We extended our detailed CDD analysis to these two widely used indices due to244

their relevance to human heat comfort (S. Laine et al., 2019; Jakubcionis & Carlsson,245

2017). PNT represents the percentage of homes in a certain area that have air condi-246

tioning, and is calculated using the following equation (S. Laine et al., 2019).247

PNT =

{
26.33 lnCDD − 81.69, 0 < CDD < 920

97.3, CDD > 920
(6)

Where CDD is the summation of annual CDD. Smax represents the fraction of house-248

holds in a certain area that would acquire AC if they could afford it (Jakubcionis & Carls-249

son, 2017) and is calculated as shown below.250

Smax = 1 − 0.949e−0.00187CDD (7)

The CDD here denotes the annual CDD value for the region.251

3 Results252

In this section, we first summarize the results associated with deriving geographically-253

specific CDDs. We then present the extension of the CDD calculation to also account254

for humidity, and discuss the associated implications under present and future climate255

conditions.256

3.1 The CDD Base-Value Heterogeneity Across the CONUS257

To test the hypothesis of whether the CDD estimates that use 65◦F (18.3◦C) as258

their base point temperature adequately capture thermal comfort across the CONUS,259

we leverage the Energy Signature method (Lee et al., 2013; Bhatnagar et al., 2018; F. Ja-260

cobsen, 1985; Zmeureanu & Renaud, 2008) discussed in the previous section. Implement-261

ing the Energy Signature method involved using the average monthly residential energy262

consumption data from 1990 to 2016 (EIA, 2020b) together with air temperature data263

for the same period (NARR, 2020).264

The differences between the 65◦F (18.3◦C) and derived optimal set-points are de-265

picted in Figure 2(a), with states shaded in orange (blue) representing CDDs with higher266

(lower) than 65◦F (18.3◦C) set-point temperatures (also see Figure 3(a)). The state of267

Washington is excluded from Figure 2 owing to the relative climate insensitivity of its268

summer-time demand during the study’s time span (Petri & Caldeira, 2015b; Maia-Silva269

et al., 2020)(also see Supplementary Figure S1).270

There are significant deviations of the derived base temperatures from the com-271

monly used 65◦F (18.3◦C), with 30% of the CONUS states showing absolute variations272

higher than 10% (6.5◦F). In Southern states, the derived set-point temperature is sig-273

nificantly higher than the conventional 65◦F base value. For instance, Texas (TX) and274

Florida (FL) show notable deviations from 65◦F, with significant implications for the states’275

energy planning, given their high population and energy consumption, especially dur-276

ing hot summers.277

To quantify the implications of these deviations from the commonly used set point278

temperature for cooling demand, we harness state-specific reduced form equations es-279

tablished via regressing summer-time energy demand on the estimated CDD values. Fig-280

ure 2(b) depicts the implication of estimating CDD using the derived set pint air tem-281
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peratures. Specifically, the figure depicts the percentage shift in the climate-sensitive por-282

tion of cooling demand state-wide, with variations up to 29%. This result demonstrates283

that in states with negative variations (shaded in red), the conventional set-point tem-284

perature overestimates the climate-sensitive portion of the cooling demand. The over-285

estimation has a higher absolute variation, as seen in states like Florida (FL, -28.38%)286

and Georgia (GA, -14.68%) which rank amongst the most energy-intensive states in the287

country. To illustrate the extent of these deviations, we use Florida as an example. A288

-28.38% change in FL cooling consumption would reflect an overestimation of 4,700KWh289

per capita (EIA, 2020c).290

States shaded in blue demonstrate areas where the use of the conventional set-point291

temperature in calculating CDD underestimates the climate-sensitive portion of demand.292

While these underestimations are comparatively lower in absolute value, they have sig-293

nificant implications in key energy-intensive states such as Illinois (IL, 12.69%) and New294

York (NY, 7.94%). Moreover, the states where the conventional approach leads to an295

underestimation of cooling demand present serious challenges to energy planning. Specif-296

ically, even a small deviation from forecasted and/or anticipated demand in these states297

can prove costly, not only to energy infrastructure planners and operators but also the298

consumers.299

Besides the advantage of using geographically-specific CDDs for more accurate de-300

mand forecasting, there are other benefits such as better estimation of air conditioning301

penetration and adoption rates. For example, the use of generic CDDs in calculating Cool-302

ing Penetration (PNT) (S. Laine et al., 2019) and the fraction of households that would303

acquire AC if they could afford it (Smax) (Jakubcionis & Carlsson, 2017) (refer to Sec-304

tion 2.6) would yield misestimations as high as 9% and 17%, respectively (Figure 3).305

The PNT estimates are also significantly affected when using the projected CDDs306

as well as the humidity-based CDD, as seen in Supplementary Figures S2 and S3 (up to307

28% change for air CDD and a max of 7% in heat index CDD—total average of 5% and308

2%, respectively). Smax has a greater variation for projected data, shown in Supplemen-309

tary Figures S4 and S5, with an average of 9% change for air temperature CDD and 6%310

for heat-index based CDD estimates. Compared to the PNT estimates, Smax has a higher311

variation partly due the lack of threshold limits in its calculation (Equation 7). Never-312

theless, for both indices (i.e., PNT and Smax) over half of the states (shaded in blue) rep-313

resent significant underestimations of the projected CDD estimates (Fig. 3 (b) and (c);314

see also Supplementary Figs. S4 and S5), presenting significant cause for concern in en-315

ergy planning.316

3.2 The Role of Near-surface Humidity and Corresponding CDD Es-317

timates318

Considering the significant challenges posed by climate change, not only in terms319

of increased frequency and intensity of extreme heat events over time (IPCC, 2014; Auffham-320

mer et al., 2017; Mehrabi et al., 2019; Creutzig et al., 2018), but also the growing im-321

portance of humidity in shaping future air conditioning demand (Maia-Silva et al., 2020;322

Bhatnagar et al., 2018; Sailor et al., 2019; Guan, 2009; Holmes et al., 2016), we analyze323

the projected changes in CDDs based on air temperature and contrast them with a sim-324

ilar measure based on heat index, which accounts for both air temperature and humid-325

ity. We harness the climate projection data-set of five CMIP5-GCMs under the RCP8.5326

for the period of 2031-2050.327

Heat index-based CDDs are calculated using the same method that is used for cal-328

culating air temperature-based CDDs. In other words, we estimate the geographically329

varying optimal heat-index values based on electricity consumption data. For conduct-330

ing projections under climate change, we use the 2031–2050 time period to be consis-331
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tent with the time span most commonly used in mid-term energy planning reports (EIA,332

2020a; IPCC, 2014), while still accounting for climate change effects.333

Figure 4(a) and Figure 4(b) show monthly summer-time CDD values using air tem-334

perature of 65◦F (18.3◦C) as the set-point for the historical period (1990–2016, a) and335

future projections (2031–2050, b), while Figure 4(d) and Figure 4(e) demonstrate the336

same information when using derived temperature set-points. Figure 4(g) and Figure 4(h)337

reflect the same monthly summer-time CDD values for both historical and future pro-338

jections for heat index. Figure 4(c), Figure 4(f), and Figure 4(i) illustrate the percent-339

age difference within each climate measure (i.e., between air temperature set-point of 65◦F340

, derived air temperature set-points, and heat index, respectively) between the histor-341

ical and future time periods. In other words, they reflect the intensity that each climate342

measure is changing over time. Important differences between the 65◦F air temperature343

and the updated set-point are seen in the southern states, such as Texas and Florida,344

with the 65◦F set-point presenting higher values of CDD (334 and 324 units, respectively).345

This is expected since 65◦F is below the derived set-point values for these states, lead-346

ing to a possible overestimation in CDD values. When comparing to heat index for the347

future projected scenario (Figure 4(h)) there is a great general increase for the same ar-348

eas, showing the important role of humidity in the southern region of the country. Cal-349

ifornia, a crucial state in terms of energy consumption, population, and revenue, presents350

a dramatic change in humidity measure compared to air temperature based CDD, with351

a higher monthly CDD (213 units), showing the potential for underestimation when only352

focusing on air temperature CDDs, either the updated values or the convention fixed set-353

point values. This is in line with previous research (Kumar et al., 2020) that showed a354

strong asymmetrical effect of heat-stress measure (that accounts for both humidity and355

air temperature) on electricity demand in California.356

Heat index was used in this study as it is a widely used indicator of heat-stress (Buzan357

et al., 2015). Having said that, a comprehensive analysis of the role of humidity through358

an extensive analysis of other measures of heat stress is necessary to identify the opti-359

mal heat-stress measure for each state (Maia-Silva et al., 2020). However, the goal in this360

study is to simply exemplify how humidity-related measures change differently over time361

when compared to air temperature, both 65◦F set-point and derived values, and the pos-362

sible misestimations that result from these differences. Additionally, we illustrate the im-363

portance of extending the CDD methodology beyond air temperature for more accurate364

energy-climate nexus analysis, using heat index as an example. Moreover, to check the365

robustness of the implications of the result, we also applied the CDD method to another366

widely adopted heat-stress measure of discomfort index (Sailor et al., 2019; Guan, 2009;367

Holmes et al., 2016). Results are shown in Supplementary Figure S6. These results also368

indicate the substantial differences in projected CDD based on discomfort index com-369

pared to temperature based CDDs. In summary, by illustrating these examples, we high-370

light the crucial role of accounting for humidity in the climate-energy nexus research.371

4 Discussion and Concluding Remarks372

Increased demand for cooling has been identified as a critical blind spot in today’s373

sustainability discourse (Khosla et al., 2020a). Inadequate characterization of human ther-374

mal comfort poses significant challenges to the security and resilience of the grid and present375

obstacles to achieving sustainable development goals (SDGs) (Biardeau et al., 2020; Li376

et al., 2020; Isaac & van Vuuren, 2009). Despite its widespread use in characterizing hu-377

man thermal comfort, CDD is not a universally reliable proxy for cooling energy demand.378

Here, we examine the consequences of calculating CDD based on the widely-used379

generic set-point temperature of 65◦F (18.3◦C) in energy infrastructure planning. Specif-380

ically, we use the historical summer-time energy demand data to derive geographically381

specific comfort-zone temperatures across the CONUS. We demonstrate the degree to382
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which generic CDDs over- or underestimate demand for cooling by disregarding geograph-383

ical heterogeneity in thermal comfort across the country. Moreover, we extend the cal-384

culation of CDD to also account for humidity and demonstrate the degree to which cur-385

rent approaches fall short in capturing human thermal comfort under present and future386

climate conditions.387

As the world gets hotter and the demand for cooling energy soars, utilities face un-388

precedented challenges in reliably balancing the grid, especially during the more frequent389

and prolonged heat events (Auffhammer et al., 2017; Coumou & Rahmstorf, 2012; Davis390

& Gertler, 2015; Maia-Silva et al., 2020). We demonstrate that relying on conventional391

CDD for energy projections and ignoring the critical role of humidity will be costly for392

both utilities and customers. Credible projections of demand, both in the near-term and393

future, allow policymakers and utilities to develop more sustainable and proactive plans.394

For instance, policy levers such as carbon tax credit and demand-side management can395

decelerate the adoption of AC units, increase the share of renewable generation and in-396

centivize investments in energy-efficient appliances. Additionally, passive cooling designs397

and nature-inspired construction methods can lower the temperature in buildings and398

mitigate the soaring demand for cooling. Such design solutions include the use of shades,399

enhanced wind circulation, green rooftops, evaporative cooling, glass modifications, and400

bio-inspired cooling technologies (Fu et al., 2020; De Angelis et al., 2017; Nie et al., 2020).401

Higher vegetation in the urban environment has also been shown to have a modulating402

effect during extreme heat events (Bounoua et al., 2015; Susca et al., 2011; Melaas et al.,403

2016).404

In summary, our study underscores the value of leveraging the observed trends in405

energy demand in deriving optimal, regionally-specific comfort zone levels for calculat-406

ing CDDs. Moreover, we demonstrate that disregarding humidity leads to mis-estimation407

of projected energy demand under climate change, with considerable implications for the408

security of the grid. Overall the insights and findings of our study contribute to push-409

ing the sustainable development agenda and efforts in delivering sustainable cooling to410

society.411

5 Open Research412
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Figure 1. An example of the Energy Signature Method conducted for the state of Arizona

(AZ) for air temperature-based CDD (a) and heat index-based CDD (b). The example is also

shown for the state of Georgia (GA) for air temperature-based CDD (c) and heat index-based

CDD (d). The derived heating and cooling set-points for each state and variable are depicted in

blue.

–16–



manuscript submitted to Earth’s Future

MT
7.72

ID
1.72 WY

0.29

OR
5.45

NV
14.25

CA
0.38

UT
8.71

AZ
-9.70

ND
-1.59

SD
5.61

NE
3.23

CO
13.61

NM
7.59

KS
-0.36

OK
1.27

TX
-5.17

MN
4.81

IA
-0.92

MO
-3.31

AR
3.53

LA
-9.05

WI
4.41 MI

8.17
IL

12.69 IN
0.42

KY
-7.43

TN
-0.55

MS
-3.39 AL

-12.63

GA
-14.68

FL
-28.38

SC
-1.33

NC
-1.77

WV
1.91 VA

-2.54
MD

-0.51

DE
2.58

NJ
4.41

PA
0.33OH

-0.22

NY
7.94

CT
4.49

RI
4.14

MA
10.23

VT
10.49

ME
9.39

NH
17.59

%

-28.38 17.590

MT
15.4

ID
17.7 WY

18.6

OR
16.6

NV
16.0

CA
18.2

UT
16.7

AZ
20.2

ND
19.0

SD
16.7

NE
17.5

CO
15.0

NM
15.8

KS
18.4

OK
18.0

TX
19.8

MN
17.4

IA
18.5

MO
19.0

AR
17.1

LA
21.9

WI
17.5 MI

17.1

IL
16.5 IN

18.2
KY

19.5
TN

18.5
MS

20.3 AL
21.1

GA
20.9

FL
23.3

SC
18.6

NC
18.7

WV
18.0 VA

18.7
MD

18.4

DE
17.8

NJ
17.7

PA
18.2OH

18.3

NY
16.6

CT
17.6

RI
17.7

MA
16.6

VT
16.2

ME
15.9

NH
14.7

Air temperature updated CDD  set-point (oC)

Variation from 65oF (18.3oC) in %

-19.8 27.3

(a)

Energy % variation based on CDD

(a)

Figure 2. (a) The derived CDD air temperature set-points for the CONUS states. The num-

bers indicated on the panel (a) represent the derived set-point temperatures, and the background

colors the deviation of the set-point temperature from the traditional fixed value of 18.3◦C. In

orange (blue), the darker the state color, the greater its positive (negative) variation from the

traditionally used 65◦F (18.3◦C) set-point. (b) Percentage change in the climate-sensitive portion

of residential cooling demand in all 48 CONUS states when using the updated set-point for air

temperature CDD. Here in panel (b), both indicated numbers and background colors represent

the percentage change estimates.

–17–



manuscript submitted to Earth’s Future

300

200

100

OK

100 200 300

U
p
d
at

ed
 b

as
e 

va
lu

es
 C

D
D

18.3oC base CDD

NV

AR

NM

NE

IL

DESDCO
NY UT NJ

IN
ID

NH
WVMNMI

MA

WI

MTME

VT
WY

OR

CA

PA

RI

CT

AZ

TX

SC

KS

TN
MS

NC AL
LA

FL
GA

MO

VA

KY

MD

IA

OH

ND

FL

VA

MA

ME

MT

VT

WY
RI

WI

CT

PA

CO

NH

MI ID

MN CA

WV

NY

UT

NJ

SD

DE

IL NE

NM

KS

OR

AR MS OK

TX

TN

AZSC

LA
NC

MO

NV

AL

GA

KYMD

IA

OH

ND

IN

P
N

T
 fr

om
 v

ar
ia

bl
e 

C
D

D
 b

as
e

90

80

40 80 100

70

60

60

PNT from 18.3 CDD base

ID

WV

NY

IN

OH

0.8

0.6

0.6
Smax from 18.3 CDD base

S
m

ax
 fr

om
 v

ar
ia

bl
e 

C
D

D
 b

as
e

OR

VT

ME

MT

RI

WY

PA
CT

WI

MA

CO

NH

MI

MN

CA

UT

NJ

SD

IL

DE NE

NM

NV
AR

OK

AZ

TX

MSSC

KS
TN

NC

LA

AL

FL
GA

MO

VA

MD

MD

IA

ND

0.4

0.2 0.4 0.8 1.0

CDD PNT Smax

(a) (b) (c)

Figure 3. Scatter plots depicting the state-wide variation in: (a) Summer CDD values esti-

mated using the 18.3◦C base point temperature vs. the derived base point values; (b) same as

(a), but for the PNT estimates (representing the percentage of homes in a certain area that have

access to air conditioning); and (c) for the Smax values (representing the fraction of households

in a certain area that would acquire AC if they could afford it). All three variables are average

estimates corresponding to the observational time-period (1990-2016). In all three scatter plots,

the respective (1:1) lines are also shown as the reference.
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Figure 4. The top two panels represent state-level CDD values estimated using air tem-

perature with a traditional set-point value of 65◦F (the top panel) and the derived set-point

temperature (the middle panel). The bottom panel represents CDD for heat index. The results

illustrated in (a), (d), and (g) represent data from the GCMs-based historical period (1990-2016)

for summer months (May to September) for, respectively, the traditional set-point temperature,

the derived air temperature, and heat index. (b), (e), and (h) represent the projected time period

(2031–2050) and same summer months for the the traditional set-point temperature, derived air

temperature, and heat index, respectively. Finally, figure (c), (f), and (i) depict the difference

between the two previous panels for each variable (traditional air temperature, derived air tem-

perature, and heat index).
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Figure S1. The Energy Signature method for the state of Washington (WA). Even though

there is a energy response for the heating demand, there is no visible response for the cooling

demand. Hence, we did not add WA results for the derived air temperature results depicted in

the main Figure 1.
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Figure S2. Projected values (2031-2050) PNT from variable CDD versus PNT from the 65◦F

(18.3◦C) base value.
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Figure S3. Projected values (2031-2050) PNT from heat index CDD versus PNT from vari-

able CDD.

–4–



manuscript submitted to Please set Journal Name by using \journalname

NM
NC

KY
GA

MD

VA

MI
CT

SC

KS

0.8

0.4
0.4 0.6 0.8 1.0

Smax from 18.3 CDD base

S
m

ax
 fr

o
m

 v
ar

ia
bl

e 
C

D
D

 b
a

se

1.0

Projected Smax 2031-2050

NH

MA

CO

MT

ME

OR

VT

WY

ID

UT

WI
RI MN

PA

SD

WV

IL

NJ

NY

CA

IN

DE

NE

AR
NV

OK

ND

OH

IA

FL

AL LAMO

TN MS

AZ

TX

0.6

Figure S4. Projected values (2031-2050) Smax from variable CDD versus Smax from the

65◦F (18.3◦C) base value.
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Figure S6. Discomfort index (DI) CDD. (a) represents data from the projected GCMs from

1990-2016 for the summer months (May to September). (b) represents the projected time frame

(2031-2050) and summer months, but for the updated discomfort index base. Finally, (c) depicts

the difference between the first two panels.
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