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Abstract

Quantifying the anthropogenic fluxes of CO2 is important to understand the evolution of carbon sink capacities, on which the

required strength of our mitigation efforts directly depends. For the historical period, the global carbon budget (GCB) can be

compiled from observations and model simulations as is done annually in the Global Carbon Project’s (GCP) carbon budgets.

However, the historical budget only considers a single realization of the Earth system and cannot account for internal climate

variability. Understanding the distribution of internal climate variability is critical for predicting the future carbon budget terms

and uncertainties. We present here a decomposition of the GCB for the historical period and the RCP4.5 scenario using single

model large ensemble simulations from the Max Planck Institute Grand Ensemble (MPI-GE) to capture internal variability.

We calculate uncertainty ranges for the natural sinks and anthropogenic emissions that arise from internal climate variability,

and by using this distribution, we investigate the likelihood of historical fluxes with respect to plausible climate states. Our

results show these likelihoods have substantial fluctuations due to internal variability, which are partially related to ENSO. We

find that the largest internal variability in the MPI-GE stems from the natural land sink and its increasing carbon stocks over

time. The allowable fossil fuel emissions consistent with 3°C warming may be between 9–18 PgCyr-1. The MPI-GE is generally

consistent with GCP’s global budgets with the notable exception of land-use change emissions in recent decades, highlighting

that human action is inconsistent with climate mitigation goals.
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Key Points:

 We use a single-model large ensemble to estimate uncertainties from internal climate 
variability in the global carbon budget.

 The land sink accounts for most internal climate uncertainty which may permit 9–18 
PgCyr-1 in allowable emissions by 2050 (for 3°C warming).
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Abstract

Quantifying the anthropogenic fluxes of CO2 is important to understand the evolution of carbon 
sink capacities, on which the required strength of our mitigation efforts directly depends. For the 
historical period, the global carbon budget (GCB) can be compiled from observations and model 
simulations as is done annually in the Global Carbon Project's (GCP) carbon budgets. However, 
the historical budget only considers a single realization of the Earth system and cannot account 
for internal climate variability. Understanding the distribution of internal climate variability is 
critical for predicting the future carbon budget terms and uncertainties. We present here a 
decomposition of the GCB for the historical period and the RCP4.5 scenario using single model 
large ensemble simulations from the Max Planck Institute Grand Ensemble (MPI-GE) to capture 
internal variability. We calculate uncertainty ranges for the natural sinks and anthropogenic 
emissions that arise from internal climate variability, and by using this distribution, we 
investigate the likelihood of historical fluxes with respect to plausible climate states. Our results 
show these likelihoods have substantial fluctuations due to internal variability, which are 
partially related to ENSO. We find that the largest internal variability in the MPI-GE stems from 
the natural land sink and its increasing carbon stocks over time. The allowable fossil fuel 
emissions consistent with 3°C warming may be between 9–18 PgCyr-1. The MPI-GE is generally 
consistent with GCP's global budgets with the notable exception of land-use change emissions in 
recent decades, highlighting that human action is inconsistent with climate mitigation goals.

1 Introduction

The global carbon budget of CO2 can be decomposed into anthropogenic emissions and natural 
sinks. Anthropogenic emissions are mostly due to fossil fuel burning and fossil carbonates (EFF), 
but also from land-use induced land cover change and land management (“land-use change 
emissions” in the following, ELUC). The emitted CO2 is then distributed into three natural sinks: it 
is either assimilated by the land surface via ecosystem productivity (SLAND), absorbed by the 
ocean via diffusion and photosynthesis of marine organisms (SOCEAN), or accumulated in the 
atmosphere (atmospheric growth: GATM) leading to increased atmospheric CO2 concentrations 
(Le Quéré et al. 2013; Friedlingstein et al. 2020).

One of the key goals of the Global Carbon Project (GCP) is to evaluate anthropogenic 
perturbations on the global carbon cycle and to understand the response of the natural carbon 
sinks to increasing fossil emissions and land-use changes (e.g. Friedlingstein et al. 2020; Le 
Quéré et al. 2018a,b). These global carbon budgets, conducted almost every year since 2007 
(Canadell et al. 2008), provide an important understanding of the efficiency and potential 
saturation of the natural sinks. This in turn is essential knowledge for predicting the future sink 
capacities and, therefore, the required strength for future climate mitigation targets and of 
“allowable” emissions under given climate targets. A comprehensive understanding of 
uncertainties in these budgets is essential for guiding policy and decision-making.

The components of the GCP carbon budgets are associated with large uncertainties, 
which are based on a combination of observation and model uncertainties. Fossil emissions are 
based on energy and fuel consumption data whereby the uncertainties lie in the fuel 
consumption, fuel carbon content, and combustion efficiency (Andres et al. 2012). The ELUC 
estimate is based on three bookkeeping models, in which estimates of land-use transitions are 
combined with observation-based carbon densities to track terrestrial emissions and removals 
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according to empirical temporal response curves for each ecosystem (Hansis et al. 2015; 
Houghton and Nassikas 2017). The corresponding estimates for ELUC uncertainty have low 
confidence and are based on expert knowledge, which considers the bookkeeping models and the 
range of the 17 global dynamical vegetation models (DGVMs) (Friedlingstein et al. 2020). The 
ocean sink estimate is based on the standard deviation of nine global ocean biogeochemical 
models and their consistency with observed CO2 partial pressure-based flux estimates. The 
terrestrial sink in earlier budgets was estimated as a residual from all other terms or based on 
DGVMs from the 2019 budget onwards. The estimates of both SLAND and SOCEAN are evaluated to 
have medium confidence (Friedlingstein et al. 2020). When estimating the land sink with 
DGVMs, the GATM cannot be matched, leading to a “budget imbalance” term of ~0.4 Pg C yr-1. 
While atmospheric measurements of CO2 concentration are relatively more accurate, there are 
substantial interannual variations (IAV) driven by natural climate variability (Dlugokencky and 
Tans 2018; Conway et al. 1994).

From such global carbon budgets, it is possible to quantify the future emissions to stay 
within a given trajectory of climate change (Rogelj et al. 2016, Millar et al. 2016). However, 
estimating these “allowable emissions” from historical budgets actually requires considering an 
additional source of uncertainty: the internal variability of the climate system. The uncertainties 
in the GCP budgets are related to observational and model uncertainties while uncertainties 
associated with internal climate variability are not directly addressed.

Much of the IAV in CO2 concentration and its impacts on the regional (Zhu et al. 2018) 
and global carbon sinks (Bastos et al. 2013, Ballantyne et al. 2012) is driven by internal 
variability in the climate system. Internal variability arises from stochastic processes and 
feedbacks in the coupled ocean-atmosphere system (e.g. El Niño–Southern Oscillation; ENSO) 
and is difficult to predict due to high sensitivity to initial conditions and the chaotic evolution of 
the Earth system (Deser et al. 2012). Traditionally, internal variability in weather and climate 
forecasts is accounted for by performing ensemble forecasting, i.e. running multiple simulations 
of the same (or several) models started from perturbed initial conditions, in order to estimate the 
distribution of future climate states (Deser et al. 2012). 

The importance of considering the full range of potential climate states due to internal 
climate variability is particularly pertinent to future estimates of the carbon budget, where the 
exact climate state (and consequently the strength of the natural sinks) in a given year is 
unknown. Using only one realization may not robustly capture these future states. Furthermore, 
we cannot assume that the variance of the natural CO2 fluxes is stationary under increasing 
atmospheric CO2. It is not possible to estimate the range of plausible carbon budget fluxes due to 
internal climate variability using only one instance of historical observations or observationally 
forced model simulations. Using ensemble simulations will allow for a more robust calculation 
of future trends in the mean and variability of the carbon budget terms (e.g. Kay et al. 2015).

Since the historical observation-based carbon budget uncertainty only considers one 
realization of internal climate variability, the influence of internal climate variability on each 
budget term is unknown. Therefore, we ask the following research questions:

 How large is the uncertainty from internal climate variability in the global carbon budget 
terms and how does it compare to the variability of the latest global carbon budget 
(GCB2020) values?
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 How likely were the historical carbon fluxes with respect to the distribution of possible 
fluxes from internal climate variability and what drove those anomalies?

 How will the carbon budget components and their internal variability change in the future 
(e.g. under RCP4.5)?

In this study, we estimate uncertainties associated with internal climate variability for 
each component of the carbon budget using a large ensemble of single-model simulations from 
the Max Planck Institute Grand Ensemble project (MPI-GE; Maher et al. 2019). We compare the 
results of the estimates for internal climate variability uncertainties to the uncertainties of the 
recent GCB2020 (Friedlingstein et al. 2020). Furthermore, we discuss the suitability and possible 
limitations of using a large ensemble of simulations for better understanding variability and 
uncertainties associated with ELUC and SLAND  and how many ensemble members are required to 
answer these questions.

2 Methods

2.1 Overview of models and simulations

The methods used to generate the ensemble of climate realizations as part of the MPI-GE project 
are fully described in Maher et al. (2019). Therefore, we only give a summary here. The MPI-GE 
is a single model large ensemble project that uses the Max Planck Institute Earth System Model 
(MPI-ESM; for a full description see Giorgetta et al. 2013) version 1.1. The MPI-ESM is 
composed of an atmospheric component provided by ECHAM 6.3.01p3 (Stevens et al. 2013) run 
at T63L47 resolution (~1.8° and 47 vertical layers), an ocean component provided by MPIOM 
1.6.1p1 (Marsland et al. 2003) run at GR15L40 resolution (~1.5°), the ocean biogeochemistry 
model HAMOCC5.2 (Ilyina et al. 2013), and the land component JSBACH3 (Reick et al. 2013, 
Goll et al. 2015). 100 ensemble members are generated by branched initialization (every ~6–24 
years) from a sub-sample of years from a pre-industrial control (piControl) simulation. The 
piControl as well as the subsequent historical and future simulations follow the protocol of 
concentration-driven Earth system model runs of the Coupled Model Intercomparison projects 
(CMIP), in this case specifically CMIP5 (Taylor et al. 2012).

The JSBACH3 component simulates transitions in land cover types with respect to both 
natural vegetation dynamics and land-use changes. However, we utilize a smaller standalone 
sub-component of JSBACH3 called Carbon Balance ALONE (CBALONE) to differentiate the 
emissions due to land-use change from the remaining net land sink (as is done in e.g. Roeckner 
et al. 2010). As in all Earth system model simulations that perform historical or scenario 
simulations, anthropogenic and natural effects occur concurrently, i.e. the simulations only 
provide the net land-atmosphere exchange (i.e. SLAND + ELUC). Only instantaneous emissions to 
the atmosphere can be derived directly from the historical or scenario simulations (as, e.g., in 
Lawrence et al. 2012). These, however, neglect legacy emissions that result in particular from the 
slow decay of wood products, harvested material left on site, and the adjustment of soil carbon 
stocks to the altered land-use over decades to centuries, but also comprise slow carbon uptake in 
processes like forest regrowth. In order to capture all fluxes from land-use change (instantaneous 
and legacy), additional simulations are essential that exclude the land-use change forcing, such 
that by difference to the historical or scenario simulation ELUC can be isolated (Pongratz et al., 
2014). Note that effects of altered atmospheric CO2 concentrations by ELUC, with emissions 
creating a compensating carbon sink in land and ocean (the “land-use feedback”), are excluded 
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in our concentration-driven feedback (Pongratz et al. 2014). Similarly, since CBALONE is 
driven with the climate from the coupled simulation, changes in surface climate due to land-use 
change also act the same way in both simulations. Thus, the difference between the simulations 
with (MPI-GE) and without land-use change (CBALONE) cancels these effects (apart from 
secondary-order terms) and excludes resulting feedbacks. This is essential to make our estimates 
consistent with the methodology used in the GCB2020 for the terrestrial budget terms. 

CBALONE includes only the long-term dynamics associated with carbon turnover rates 
and vegetation biogeography. We force CBALONE with daily data from 100 climate realizations 
taken from the MPI-GE, both with and without anthropogenic land-use change (LUC and 
noLUC simulations respectively) comparable to the approach taken by the GCP (Friedlingstein 
et al. 2020). The land-use change transition data utilized by MPI-GE and CBALONE are taken 
from the Land Use Harmonization 2 project (LUH2; Hurtt et al. 2011). While the carbon fluxes 
from CBALONE did not exactly match JSBACH3 estimates, they consistently simulate 
JSBACH3 fluxes to within 5% accuracy (Figure S6). Therefore, the CBALONE simulations with 
land-use change are required so that ELUC could be calculated independent of the small 
CBALONE error (in absence of the error, the net land-atmosphere exchange could have been 
directly provided by the MPI-GE simulations).

The climate realizations used to force CBALONE were taken from existing daily output 
from the MIP-GE historical and RCP4.5 scenarios (1850–2099; Table 1). We chose the RCP4.5 
scenario as a scenario of medium climate change that estimates the CO2 emissions under climate 
policies designed to limit global warming to no more than 3°C over present-day temperatures, 
allowing us to create uncertainty estimates of fossil emissions that are consistent with this goal. 
The daily model output variables that are used to force CBALONE include 2m air temperature, 
soil temperature, precipitation, net primary productivity (NPP) per plant functional type (PFT), 
leaf area index (also per PFT), and maximum wind. These variables are marked as 
“environmental” in Figure 1.
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Figure 1. Workflow schematic for simulations and carbon budget decomposition for each 
ensemble member. Variables from MPI-GE labeled “environmental” include leaf area index, net 
primary productivity, topsoil temperature, maximum 10m wind speed, air temperature and 
precipitation (see section 2.2).

Table 1. Experiment simulations. Each experiment has 100 ensemble members. The MPI-GE 
simulations have been labeled with the prefix “mpige”, while the CBALONE simulations are 
labeled as “cbal”. The scenarios are labeled with the suffix “hist” for the historical scenario and 
“rcp4.5” for the future scenario. Both scenarios for CBALONE are simulated with land-use 
change (labeled with LUC) and without land-use change using 1850 land-use throughout the 
simulation (labeled with noLUC). There are only 97 ensemble members for the CBALONE 
RCP4.5 scenario because a few MPI-GE output files required by CBALONE contained 
erroneous data.

LUC No LUC

Historical (1850–2005) mpige-LUC-hist
cbal-LUC-hist

cbal-noLUC-hist

RCP 4.5 (2006–2099) mpige-LUC-rcp4.5
cbal-LUC-rcp4.5

cbal-noLUC-rcp4.5
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2.2 Carbon budget decomposition

The carbon budget is decomposed here into various source and sink terms as in Friedlingstein et 
al. (2019), utilizing output from the MPI-GE and the CBALONE simulations. The monthly 
CBALONE output is aggregated to annual values for comparison to the GCB2020. The cbal-
noLUC simulation provides land-atmosphere exchange that would occur without land-use 
changes, and thus SLAND is calculated as the net biome productivity (NBP) from this simulation. 
Equation 1 clarifies components of NBP taken from the model, where NPP is net primary 
productivity, RH is heterotrophic respiration, fFire is carbon flux due to wildfires, fHarvest is 
carbon flux due to crop and wood harvest, fGrazing is carbon flux due to herbivorous grazing, 
and fLCC is the instantaneous emissions from land-use induced land cover changes. The fLCC 
term is zero in the cbal-noLUC simulations.

NBP=SLAND=NPP+RH+ fFire+fHarvest+ fGrazing+fLCC (1)

ELUC is calculated as the difference in NBP between the cbal-LUC and cbal-noLUC 
simulations (Equation 2; note that fluxes to the natural sinks are negative values and fluxes to the 
atmosphere are positive consistent with Friedlingstein et al. 2020). Correspondingly, the NBP 
from the cbal-LUC simulation is equivalent to the net land-atmosphere exchange (NETLAND).

ELUC=NBP |cbal-LUC − NBP |cbal-noLUC =NET LAND − SLAND (2)

GATM and SOCEAN are taken directly from the MPI-GE output. The implied “compatible” 
emissions (also EFF) are calculated as the residual of all other terms in the budget (Equation 3 & 
Figure 1), as described in Roeckner et al. (2010) and Jones et al. (2013). These are the emissions 
that would need to occur for CO2 to be conserved given particular atmospheric concentration, 
land-use emissions, and natural sink fluxes. This is different from the GCB2020 approach, where 
all terms were determined independently based on model or observational estimates, which 
requires a budget imbalance term to be added.

EFF+ELUC=G ATM+SOCEAN +S LAND (3)

We calculated the full decomposition of the carbon budget for each ensemble member of 
the historical and RCP4.5 scenarios and compare it to the GCB2020 (Friedlingstein et al. 2020) 
as the best estimate of the real global carbon cycle. Decadal averages of the MPI-GE ensemble 
mean and standard deviation are calculated for a direct comparison with the decadal mean and 
uncertainties presented in the GCB2020. To assess the magnitude of the uncertainties due to 
internal climate variability compared to the magnitude of the budget terms, we further calculate 
the signal-to-noise ratio (SNR) of each term as the ensemble mean divided by the ensemble 
standard deviation.

2.3 Interannual variability

While internal climate variability may contribute to interannual variations in carbon fluxes to the 
natural sinks, there are also variations driven by non-internal climate related factors, for example 
changes in anthropogenic activity (EFF + ELUC) and volcanism. An assessment of uncertainties 
based on temporal standard deviations would be a mixture of internal and non-internal 
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variability, while an ensemble standard deviation at a given time step would reflect variations 
only due to internal climate variability. In order to assess future uncertainties, it is important that 
the model can simulate historical IAV appropriately. Here we assess the ability of individual 
MPI-GE and CBALONE ensemble members to adequately represent the temporal standard 
deviation of the historical year-to-year climate variations in each GCB2020 budget term. 
Therefore, we define a reference IAV as the temporal standard deviation of annual fluxes over 
the base period 1961–1990 (World Meteorological Organization standard reference period). All 
models have unique imperfections in their ability to simulate the statistical properties of the 
carbon fluxes such as mean and standard deviation, which we refer to as model bias. 
Furthermore, each may have a different trend over the base period which would artificially alter 
the IAV. To remove the model biases in the ensemble mean of the MPI-GE, we detrend the 
budget terms of each ensemble member before calculating IAV using an ordinary least-squares 
regression (OLR) of the ensemble mean over the historical period 1959–2005. We also detrended 
each model used in the GCB2020 and calculate the IAV over the same period.

2.4 Probability of exceedance of past budget terms

To evaluate how likely past carbon fluxes were compared to the range of possible climate states 
due to internal variability, we describe here a measure of the probability of exceedance. 
Supposing a relatively small amount of CO2 uptake by the land surface in a particular year, it is 
quite likely that under more favorable climate conditions for carbon storage this land CO2 uptake 
would be exceeded. Therefore, we aim to calculate the probability that the MPI-GE members are 
greater than the GCB2020 multi-model mean (which we assume to be the closest estimate to 
historical CO2 fluxes). Each budget term for the MPI-GE and GCB2020 is OLR detrended in the 
same way as described above (Section 2.3) except that we use the 1959–2018 period (i.e. the 
longest available common period for GCB2020 and the MPI-GE simulations). For each year and 
budget term, we calculate the corresponding cumulative distribution functions (“exceedance”) of 
the MPI-GE ensemble members using a kernel density estimator (Scott 2015). We then evaluate 
the GCB2020 terms on the complement of the cumulative distribution functions (1 – Pr.) to find 
their occurrence probability (e.g. see Figure S3). Since we use a cumulative distribution, the 
complement probability is the “exceedance probability” of the ensemble spread being larger than 
the historical value. Unusually large historical fluxes will therefore have low probability of 
exceedance. This is similar to the probability of exceedance calculations from studies on climate 
extremes (e.g. Suarez‐Gutierrez et al. 2020).

Finally, we assess the relationship of the GCB2020 exceedance probabilities for SLAND 
and SOCEAN fluxes to ENSO, since this is the most prominent mode that drives internal climate 
variability (Dannenberg et al. 2015; Zhang et al. 2019). We use the annual mean Niño 3.4 index 
from the NOAA Climate Prediction Center (Climate Prediction Center 2017) which uses ERSST 
V5 (Huang et al. 2017) sea surface temperatures averaged over the region 5°N–5°S, 170–120°W. 
We then calculate the Pearson’s correlation coefficient and the OLR between the exceedance 
probabilities of the natural sinks and the Niño 3.4 index. We test the significance of this 
correlation using a two-sided t-test under the null hypothesis that a relationship between the 
exceedance probabilities of the GCB2020 fluxes and ENSO state can be rejected at the 95% 
confidence level. Since these methods assume normally distributed data, we beforehand tested 
the normality of the budget terms and their probabilities using the Shapiro-Wilk test for 
normality (Shapiro and Wilk, 1965). We found that all budget terms (except for GATM) are 
normally distributed in the 1850–2018 period.
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3 Results

3.1 Temporal evolution of budget components and internal climate variability 
uncertainties

The historical period and RCP4.5 scenario have globally increasing CO2 fluxes from the 
atmosphere to the land and ocean sinks until about 2040 before decreasing thereafter (see Figure 
2) due to assumed RCP4.5 mitigation measures. The decrease in land and ocean sink is because 
GATM in RCP4.5 decelerates after 2040 resulting in an atmospheric concentration of ~525 ppm 
CO2 by 2100 (Thomson et al. 2011). The compatible fossil emissions in the MPI-GE (EFF in 
Figure 2) share similar temporal evolution of the natural sinks. On the other hand, ELUC is driven 
by the LUH2 land-use data set and is independent of fossil emissions, which increases until 
about 1990 before becoming a weak net sink from around 2020 onward under the RCP4.5 
scenario (Figure 2 and S1 b). Within the period 1970–2010, the ensemble means of the GATM and 
EFF terms show annual to decadal-scale variations, which are a known feature of the CO2 
concentration forcing used in the historical period (caused by the introduction of additional CO2 
observation stations in the 1960s, see Figure 10 of Meinshausen et al. 2017) and are not 
internally driven variations in the MPI-ESM. The SLAND and SOCEAN do not immediately respond 
to such rapid changes in GATM since they are dominated by the climate state and its variability. It 
then follows that these variations are evident in the residual EFF term.
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Figure 2. Stacked decomposition of the CO2 budget terms from the MPI-GE for the historical 
(1850–2005) and RCP4.5 (2006–2099) scenarios (a) (unstacked plots of the individual terms can 
be found in Figure S1). Thick lines mark the ensemble mean and shading marks the range of the 
ensemble ±1 standard deviation. Overlaid are the GCB2020 budget terms for comparison. 
Vertical lines mark the end of the historical period (2006) and the end of the latest GCP budget 
(2019). An alternative budget using the CMIP5 EFF taken from Andres et al. (2012) is also 
provided (b). The pink line shows the reflected net emissions, the difference with the net natural 
sinks would give the simulated BIM term in Figure S1 f.

The budget terms in Figure 2 are stacked for SLAND and GATM, and hence the shown 
standard deviation of the ensemble members for these terms aggregates according to a normal 
sum distribution (i.e., σ(SOCEAN+SLAND)=√[σ²(SOCEAN) + σ²(SLAND)] ). The atmospheric 
concentration is prescribed to be the same for all ensemble members, and so GATM has no 
ensemble standard deviation. The standard deviation of residual EFF is inherited directly from the 
net natural sinks and ELUC because it is calculated as a residual in the budget. SOCEAN has a stable 
standard deviation of ~0.15 Pg C yr-1 (Figure 3 c), which does not have a trend. SLAND has the 
largest standard deviation throughout the historical period and the RCP4.5 scenario (see Figure 3 
d), therefore the standard deviation of the net of natural sinks in Figure 2 (and consequently 
residual EFF) mostly originates from SLAND. Standard deviation increases with time for residual 
EFF and SLAND (Figure 3 a & d) from ~1 Pg C yr-1 in 1850 to ~1.5 Pg C yr-1 in 2100. ELUC standard 
deviation gradually increases from almost 0 to ~0.2 Pg C yr-1 by 2010 and later (Figure 3 b).

Figure 3. Yearly ensemble standard deviation for each carbon budget term. The emissions are on 
the top (a residual EFF & b ELUC) and the natural sink terms are on the bottom (c SOCEAN & d 
SLAND).

The importance of internal climate-driven variations (Figure 3) relative to the ensemble 
mean state can be better understood by analyzing the SNRs (Figure 4). Values greater than one 
indicate that the mean state dominates the signal, whereas values less than one indicate that the 
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internal climate variability uncertainty is the dominant factor in the carbon fluxes. For residual 
EFF and SLAND (Figure 4 a & d), internal variations are more relevant up until 1970. After that, the 
mean carbon fluxes (i.e. the forced signal) are much larger than the variations due to internal 
climate variability, for example ~2.5–3 times greater for SLAND. SOCEAN generally follows the same 
pattern (Figure 4 c); the internal climate variability remains several times smaller than the mean 
carbon flux to the ocean from about 1890 onward. On the other hand, the standard deviation in 
ELUC is as large as the mean from 2010 onward (Figure 4 b), however, this is likely a 
consequence of the simulation setup: land-use changes begin in 1850 but the full range of 
variation from the legacy emissions of land-use change does not manifest until several decades 
later. This means the ELUC SNR is effectively only valid under the future scenario when the mean 
ELUC is small.

Figure 4. Yearly signal-to-noise ratio for each budget term in the MPI-GE. Dashed lines 
delineate ratio 1, where the standard deviation of the respective flux equals the mean flux. ELUC 
has an inset plot with the post 2010 period zoomed in, when variations from legacy land-use 
fluxes have fully established.

3.2 Comparison to GCB2020

3.2.1 Comparison of means

We compare here the GCB2020 mean of each budget term to the ensemble mean of the MPI-GE 
for each decade, before comparing the variances in the following sections. Firstly, the residual 
EFF mean increases faster in the MPI-GE than observed in the GCB2020 (Figure 5 a). Initially, 
MPI-GE residual EFF in the 1960s is less than the GCB2020 estimate by 0.8 Pg C yr-1 while it is 
greater than it by 1.3 Pg C yr-1 in the 2010–2018 decade. However, the range of GCB2020 means 
is well within the range of values simulated by the MPI-GE. Secondly, there are large differences 
in the mean ELUC fluxes between MPI-GE and GCB2020 (Figure 5 b). MPI-GE ELUC is larger 
compared to GCB2020 in decades prior to 2000, however, these values are also within the large 
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uncertainty ranges of the GCB2020. In recent decades, the MPI-GE estimates lower ELUC than 
the GCB2020. Thirdly, SLAND tends to be slightly higher in the MPI-GE for almost all decades 
(Figure 5 e). Fourthly, SOCEAN mean fluxes in MPI-GE and GCB2020 are very similar (Figure 5 
d). Lastly, GATM in MPI-GE has similar decadal variations as GCB2020, both displaying a dip in 
the 1990s, and there is no consistent bias (Figure 5 f).

Figure 5. Decadal average of carbon flux budget terms (bars), and the uncertainty expressed as 
±1 standard deviation from the mean (error whiskers). The MPI-GE uncertainties are ensemble 
standard deviations and the GCB2020 uncertainties are multi model standard deviations. The 
dark bars are the MPI-GE and the lighter bars are the GCB2020 values taken from Friedlingstein 
et al. (2019). The top row (a and b) are the emissions and the simulated budget imbalance term 
(c) as shown in Figure 2 b, and the bottom row (d, e and f) are the sink terms.

3.2.2 Un-bias-corrected comparison of uncertainties

The uncertainty ranges in Figure 5 are based on ensemble standard deviations for MPI-GE (and 
therefore reflect internal climate variability uncertainties) and multi-model standard deviation for 
GCB2020. These ranges can tell us two things: how realistic the MPI-GE range of fluxes is 
compared to observations, and how large uncertainties associated with internal climate 
variability are compared to other sources of uncertainty (e.g. from observational measurements 
or the differing process representations in the diferent GCB2020 models). Therefore, we will 
determine here whether the GCB2020 mean state lies outside the MPI-GE uncertainty ranges for 
each budget term.

Residual EFF, BIM (based on the budget in Figure 2 b) and SLAND (Figure 5 a, c & e) have 
larger standard deviations in the MPI-GE compared to GCB2020, i.e. internal variability is a 
larger source of error than observational and model uncertainty (more detail follows in 3.2.3). 
The GCB2020 mean for these budget terms falls within the uncertainty range due to internal 
climate variability, demonstrating the capability of MPI-GE to capture the observed carbon flux.

344
345
346
347
348

349

350
351
352
353
354
355

356

357
358
359
360
361
362
363
364

365
366
367
368
369



manuscript submitted to Global Biogeochemical Cycles

On the other hand, ELUC and SOCEAN have a narrower range of internal climate variability 
uncertainty in the MPI-GE compared to the modeled uncertainty in the GCB2020 (Figure 5 b & 
d). While the GCB2020 mean is within the MPI-GE uncertainty for SOCEAN for most decades 
(indicating consistency between the two), ELUC GCB2020 means are outside the corresponding 
MPI-GE ranges for nearly all decades. However, the uncertainty ranges of MPI-GE and 
GCB2020 overlap for both SOCEAN and ELUC, i.e. certain ensemble members match certain 
GCB2020 models. Only, the ELUC 2009–2018 mean and standard deviation of the GCB2020 is 
outside the standard deviation range of uncertainty due to internal climate variability, indicating 
clear inconsistency (see discussion section 4.1).

There is no uncertainty range for GATM from MPI-GE (Figure 5 f) since all ensemble 
members are prescribed with the same atmospheric CO2 concentration. The error whiskers in the 
GATM GCB2020 are derived from various observational uncertainties, which are very small 
compared to the terms that are simulated by dynamical models (SLAND, SOCEAN, and ELUC). 
Because the MPI-GE CO2 concentration starting 2006 is derived from the Global Change 
Assessment Model (GCAM; Thomson et al. 2011), the difference in GATM between MPI-GE and 
the GCB2020 for the last two decades may in part be due to the differences in carbon cycle 
processes that are represented in MPI-ESM and GCAM.

3.2.3 Bias-corrected comparison of uncertainties

To more directly evaluate the magnitude of the historical uncertainties associated with internal 
climate variability compared to the GCB2020, Figure 6 shows the standard deviations where the 
biases in the means have been removed (centered). The models used in the GCB2020 estimates 
are forced by only one realization of the climate state—the actual historical climate evolution. 
Therefore, the plausible carbon fluxes under different climate states cannot be inferred using 
only the GCB2020, and while the models used in the GCB2020 do contain internal climate 
variability, the multi-model standard deviations only account for model uncertainty, but not that 
from natural variability. If we assume that there is no or negligible uncertainty due to internal 
climate variability associated with the multi-model GCB2020 standard deviation and that the 
standard deviation of the MPI-GE is entirely due to internal climate variability, then we can find 
the proportion of the total uncertainty attributable to internal climate variability (i.e. the sum of 
GCB2020 and MPI-GE uncertainties; red lines in Figure 6). The importance of internal climate 
variability decreases with time for SLAND and residual EFF and the MPI-GE land sink uncertainty 
increases faster than the multi-model uncertainty in the GCB2020. For the 2009–2018 decade the 
contribution of internal climate variability to total uncertainty is 70% for the residual EFF and 
60% for SLAND. A constant multi-model uncertainty was assumed for ELUC in the GCB2020 and 
therefore the MPI-GE ELUC uncertainty increases gradually relative to it. By the 2009–2018 
decade the uncertainty due to internal climate variability would account for 22% of the total ELUC 

uncertainty. Lastly, approximately 20% of total uncertainty is from internal climate variability 
uncertainty for SOCEAN.
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Figure 6. Centered standard deviation of carbon flux from the multi-model GCB2020 (solid 
lines) and ensemble standard deviation from the MPI-GE (dashed lines). The relative 
contribution of internal climate variability uncertainty is marked in red (dot-dashed lines 
corresponding to the right-hand axis). The color coding is the same as that used in Figures 2–5.

3.2.4 Interannual variability

The ability of individual ensemble members to capture the IAV (in the base period 1961–1990) 
for each term compared to the GCB2020 IAVs is shown in Figure 7. The ranges of the IAVs 
generally have good overlap for the ELUC and SOCEAN budget terms. This means that individual 
MPI-GE members can simulate a plausible range of IAV values that are not significantly 
different from the published values from the GCB2020. SLAND, however, shows some IAV bias in 
the MPI-ESM compared to other models in the GCB2020. IAV in MPI-GE SLAND tends to be on 
average 0.4 Pg C yr-1 larger than other models. A higher IAV may contribute to the large 
ensemble spread in the MPI-GE for SLAND (compare to Figure 5). There are large differences 
between MPI-GE and GCB2020 for EFF, and GATM (Figure 7). Evaluation of GATM is difficult 
because there is no associated uncertainty range; the GCB2020 only has one potential realization 
of past emissions and observed CO2 concentration, and the MPI-GE atmospheric CO2 
concentrations are prescribed. The observationally-based GCB2020 uncertainties are only 0.02 
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Pg C yr-1 for GATM and at most 0.5 Pg C yr-1 for residual EFF and if we use these values as a range 
on top of the GCB2020 IAV, MPI-GE is still outside these ranges.

Figure 7. Box and whisker plots of interannual variability (IAV) calculated as the standard 
deviation over the base period 1961–1990 for the MPI-GE (blue) and the GCB2020 (red). The 
ranges shown here are derived from the ensemble members for MPI-GE, and from multiple 
model simulations for the GCB2020. The boxes mark the median and inter-quartile range, and 
the whiskers mark the full range of values.

3.3 The relationship of historical probabilities to ENSO

To investigate a potential source of the IAV and uncertainty from internal climate variability, we 
examine here the exceedance probabilities and the relationship to ENSO. Figure 8 shows the 
probability of the magnitude of the past carbon fluxes in GCB2020 with respect to the 
distribution of the MPI-GE. Higher values indicate years where the carbon flux for the respective 
sink was unusually small compared to the MPI-GE distribution and thus were more likely to be 
exceeded under more favorable climate conditions. SLAND and SOCEAN have large annual variations 
in exceedance probability. For example, since 1960 there were three years where the historical 
SLAND was so high, related to La Niña, that it had a chance of less than 20% to be exceeded and 
five years with SLAND so low that it had a chance of more than 80% to be exceeded (Figure 8 a). 
This highlights the importance of using a large ensemble to capture the high variability in SLAND 

(see Section 4.5). The cause of these year-to-year variations may come from a variety of internal 
climate variability modes. To investigate potential drivers, Figure 9 shows that there are 
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significant correlations between the Niño 3.4 index and SOCEAN or SLAND exceedance probability of 
-0.61 and 0.56 respectively (see also Supplementary Text and Figure S2).

Figure 8. Probability of exceedance that the MPI-GE carbon fluxes are greater than the historical 
GCB2020 mean. Lower values indicate years where the carbon flux to the respective sink was 
unusually high compared to the MPI-GE distribution (vice versa for large values). The vertical 
lines mark El Niño (red) and La Niña (blue) years where Niño 3.4 index is greater than 1 
standard deviation from the mean.
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Figure 9. Regression and correlation analysis between Niño 3.4 index and the probability of 
exceedance for carbon fluxes a) SOCEAN and b) SLAND. The units of the slope are in °C-1.

4 Discussion

In summary, SLAND has the largest uncertainty, which emphasizes the dominant role of internal 
climate variability on the land sink (Figure 3 d). This uncertainty gradually increases over time to 
approximately ±1.5 Pg C yr-1. While the global SLAND flux and CO2 concentration increases until 
the middle of the 21st century (Figure 2), afterwards its signal-to-noise ratio of the mean flux 
nevertheless decreases (Figure 4 b). The internal climate variability uncertainty in ELUC is 
relatively smaller at approximately ±0.2 Pg C yr-1 (Figure 3 b). However, the trend in ELUC 
variability is likely due to a combination of sensitivity to initial conditions and the time delay 
associated with legacy land-use change emissions. The SOCEAN variations from internal climate 
variability are similarly small as those in ELUC but show almost no trend (Figure 3 c). The SLAND 
internal climate variability accounts for about 70% of the total uncertainty that results from both 
internal variability and uncertainties from models and observations (Figure 6 d), much more than 
for ELUC (approximately 22%) and SOCEAN (approximately 19%). The standard deviations of the 
MPI-GE compare well with the uncertainty ranges of the GCB2020 for most budget terms: with 
respect to the ensemble standard deviation against multi-model standard deviations (usually at 
least an overlap, Figure 5), and with respect to individual ensemble IAV against individual 
model IAV in the GCB2020 (Figure 7). Finally, we show that the effect of internal climate 
variability on the historically observed exceedance probabilities of carbon fluxes to the land and 
ocean have significant but moderate correlations to ENSO (Figure 9).

4.1 Differences between MPI-GE and GCB2020

One of the most striking differences between the MPI-GE and the GCB2020 estimates is in ELUC, 
where the forced ensemble mean signal from land-use change in the RCP4.5 scenario differs 
from the observed LUH2 data in the last historical decade. The MPI-GE ELUC transitions to a net 
sink at around 2020, while the forcing used in GCB2020 estimates sustained ELUC until this 
period (Friedlingstein et al. 2020, Bastos et al. 2020). Given that the variance of ELUC ensemble 
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members is quite small compared to the forced mean response, the disparity between the RCP4.5 
land-use change and the GCB2020 becomes evident. The RCP4.5 scenario is characterized by a 
high CO2 price that encourages investment into agricultural intensification rather than expansion. 
Consequently, re-/afforestation would occur following widespread abandonment of agricultural 
lands and substantial deforestation reduction since 2007 (Thomson et al. 2011). Despite the 
process of forest regrowth (such as that in North America and Europe; Doelman et al. 2020) 
being slow, the MPI-GE reduction in ELUC associated with stopping deforestation globally (in 
particular the Amazon and other tropical regions) is quick and modeling studies simulate 
substantial carbon uptake by re-/afforestation and reduced deforestation. For example, Sonntag et 
al. (2016) estimate an uptake of about 200 Pg C over the 21st century with RCP4.5 land-use 
change in an RCP8.5 climate compared to unmitigated deforestation. However, the trajectory of 
RCP4.5 land-use change has not been followed until now, and so the land-use-related mitigation 
potential remains untapped. This explains the large divergence of our results from the GCB2020 
estimates for the last 15 years.

There are also considerable differences in the “compatible” residual EFF in the MPI-GE 
compared to the GCB2020 values. If we assume the GCB2020 estimate to be the closest estimate 
to the mean in reality, then the MPI-GE first underestimates the EFF then overestimates it. The 
discrepancy may arise due to the closure of the carbon balance and the consequent effect that 
SLAND has on the compatible emissions. On the other hand, the GCB2020 has an imbalance term 
that includes carbon fluxes that remain unaccounted for. This term would include errors 
introduced by the calculation of budget terms independently (e.g. model bias errors in ELUC and 
SLAND, e.g. Dai and Fung, 1993), errors from incomplete coverage of observations, and minor 
terms that are not included in the budget decomposition. For these reasons, we would not expect 
the MPI-GE to accurately reproduce EFF.

Lastly, another approach to evaluating the MPI-GE against the GCB2020 is to verify that 
there are no trends in the budget imbalance relative to the GCB2020. If the compatible residual 
EFF in the MPI-GE budget is replaced with the CMIP5 EFF values (Figure 2b), a budget 
imbalance term (BIM) can be calculated that is the residual carbon flux that is not accounted for 
under each ensemble member’s climate state. This simulated BIM term (Figure S1 f) derived from 
the MPI-GE is largely consistent with the BIM from the GCB2020 and shows no significant long-
term trends over the analysis period. Both MPI-GE and GCB2020 show as a positive BIM around 
the 1950s and again more briefly in the 1990s (suggesting either an overestimate in the emissions 
or underestimate in the sinks). While Friedlingstein et al. (2020) could not directly attribute a 
cause to the BIM, they suggest that its variations originate mostly from SLAND and SOCEAN. 
Specifically, they suggest that it could originate from internal variability which models cannot 
capture with a single realization. However, the multiple realizations in the MPI-GE BIM range 
also show positive values in the 1950’s, which suggests that it is more likely from common 
deficiencies in model physics, resolution, or forcing data. In particular, the land-use forcing 
could explain the 1950s BIM, as the LUH2 forcing creates large emissions in the 1950s (e.g., 
Hansis et al. 2015) not captured by datasets based on other land-use forcing such as FAO 
(Houghton and Nassikas 2017).

4.2 Allowable emissions under RCP4.5

The standard deviations in the MPI-GE (Figure 2) are derived either directly from the ensembles 
or are inferred from other budget terms, and therefore they should be interpreted with care. The 
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standard deviation of residual EFF is mostly derived from SLAND due to its calculation as a 
residual. In this case, the ranges here are merely a range of emissions that are compatible with 
the likely range of climate states, and the corresponding strengths of the ocean and land sinks. 
Therefore, the residual EFF uncertainty estimates from MPI-GE should not be interpreted as 
variations in fossil fuel emissions due to internal climate variability-related global demand.

The net sinks and the corresponding compatible residual EFF range are still useful when 
deciding what the allowable future emissions may be. They indicate the allowable emissions 
(accounting for internal climate variability) if appropriate policies are implemented to 
successfully mitigate climate change in a manner that is consistent with the RCP4.5 scenario. 
Therefore, the maximum and minimum ensemble ranges of 9–18 Pg C yr-1 in residual EFF at 2050 
denote allowable emissions under this scenario (2019 was 9.95 Pg C yr-1 as per the GCB2020). 
In Fig 2 the ±1 standard deviation range of the ensemble is shown instead. In the comparison it is 
clear that extreme outliers occur mainly at the maximum end. These maximum values may occur 
before fossil emissions have to drop steeply in the MPI-GE and level off at around 5 Pg C yr-1 if 
the 3°C target is to be met by 2100. This evolution matches well the fossil emissions estimates 
from GCAM (Thomson et al. 2011) but allows some higher peak emissions than the Integrated 
Assessment Model assumed, suggesting smaller assumed sinks and slightly larger ELUC in the 
simplified carbon cycle of this assessment model (see Figure 2 to compare to EFF and ELUC from 
GCAM).

As highlighted by Mankin et al. (2020), decision makers need to be provided the full 
range of possible outcomes in order to make appropriate decisions. For example, policy 
decisions based only on the most likely outcome may lead to a blowout of greenhouse gas 
inventory targets, particularly if SLAND performs poorly within a given 5-year accounting period 
of the Paris Agreement's Global Stocktake (UNFCCC, 2015 and 2017). On the other hand, 
caution should be taken when considering the efficacy of past decision making because internal 
variability uncertainties can potentially obfuscate emission reduction efforts such as 
re-/afforestation.

4.3 Trends in uncertainty

The increase in standard deviation in the ensemble members for SLAND may be due to an increase 
in the variability in the climate state as is expected under a warming climate. For example, 
Maher et al. (2019) find an increase in the global mean precipitation variability in the MPI-GE 
1% CO2 scenario. The trend in SLAND internal variability can also potentially arise from the 
increase in the magnitude of fossil emissions, which is initially forced in the MPI-GE as the 
prescribed atmospheric CO2 concentration. Larger emissions would result in higher atmospheric 
CO2 concentrations and increased potential carbon uptake by vegetation via so-called CO2 
fertilization (Walker et al. 2021). This combined with the effect of unfavorable climatic 
conditions (i.e. heat and drought stress) on the carbon uptake by plants acting on an increased 
carbon stock, results in a larger variance depending on the climate conditions. The increasing 
internal variability makes it more likely that SLAND becomes near-neutral by the end of the 
century compared to the start of the historical period (Figure S1 d). This contrasts somewhat with 
SOCEAN, which has a relatively lower variance and does not have a trend in the historical or future 
periods under the RCP4.5 scenario (a similar standard deviation is found by Li and Ilyina 2018). 
However, under higher emissions scenarios SOCEAN has been shown to also have increasing trends 
in CO2 flux standard deviation (see Figure 1 of Maher et al. 2019).
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The trend in ELUC may arise for several reasons. Firstly, the legacy effects of land-use 
change (mostly from wood harvest) take time to manifest. The anthropogenic pools in which 
CBALONE stores deforested biomass decay to the atmosphere at time scales of 1–100 years. 
The variance of the ensemble members therefore not only depends on the climate variability of 
the current year but also on that of preceding years. Consequently, it would take at least 100 
years for the full variance due to land-use change to manifest. Similarly, the carbon pool of 
woody, slowly-decomposing litter left on site after clearing or harvesting will build up over time 
as land-use transitions occur. Thus, more litter is available to react to the climate-dependent 
microbial decomposition. Note that while the study of Yue et al. (2020) included this effect in 
their assessment of the contribution of land-use to the interannual variability of the land carbon 
pools, their high IAV of ELUC ( 30-45% of net land exchange IAV, compared to 15% in this 
study) also originates from attributing part of SLAND (the part on managed land) to ELUC. Internal 
variability alone, our study shows, is about 0.25 Pg C yr-1 standard deviation for ELUC in recent 
decades (Figure 3) or 20% of the total uncertainty (model plus internal; Figure 6). IAV of ELUC in 
the MPI-GE is only slightly larger than in the GCB2020 (Figure 7), indicating that the main 
driver is not internal climate variability, but land-use forcing.

Figure 10. Range of ensemble standard deviation (2080–2100) as a function of sample size from 
30 sub-samples for SLAND.

While the data analyzed in this study is annual and much of the analysis concerns 
interannual variations, we conducted simulations for several centuries, and therefore the longer 
time scale variations must also be considered. There are centennial-scale internal variations in 
the land carbon content in JSBACH3 and CBALONE (see Figure 2 in Schneck et al. 2013) 
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which could influence trends and variability of SLAND and ELUC for simulations that run for several 
hundred years. These variations have a periodicity of ~250 years and consist of a change in the 
total land carbon content of ~8 Pg C . This corresponds to an average land carbon flux of 0.03 Pg 
C yr-1 or roughly 2% of the MPI-GE SLAND standard deviation. Schneck et al. (2013) suggest that 
these long-duration variations in land carbon content are linked to variations in anthropogenic 
land cover changes, and the modulation of soil respiration by long-term changes in temperature 
from volcanism and solar forcing. Since the duration of the MPI-GE and CBALONE simulation 
in this study is 250 years, it is possible that these long-term variations may affect the estimates of 
internal climate variability uncertainty in SLAND.

4.4 ENSO as a potential source of variability

ENSO is positively correlated with SLAND exceedance probabilities and negatively correlated with 
SOCEAN exceedance probabilities, which is consistent with how ENSO affects CO2 fluxes to the 
land surface and ocean. During La Niña, cool and moist mean global conditions tend to 
encourage vegetative productivity on land and increase land carbon storage, while El Niño 
drought conditions put widespread stress on ecosystems and suppress productivity (Gonsamo et 
al. 2016; Jones et al. 2001). Meanwhile, over the ocean, stronger pacific equatorial up-welling 
during La Niña brings dissolved inorganic carbon-rich subsurface water to the surface, thereby 
favoring CO2 out-gassing and reducing net CO2 uptake (Jones et al. 2001; Feely et al. 1999). The 
cooler sea surface temperatures during La Niña events can increase the dissolution of CO2 and 
can reduce CO2 outgassing, but this is a smaller term relative to the up-welling-induced CO2 
outgassing. This could explain the diverging response of SOCEAN to ENSO compared to that of 
SLAND. The moderate correlation suggests that while ENSO may have a considerable impact on 
interannual variations in CO2 fluxes, it is very likely that other climate modes and internal 
dynamics are also important. No significant correlations with other climate modes could be 
found at the global scale, however the impacts of climate modes on regional budgets may be 
considerable.

4.5 Importance of ensemble size

Lastly, it is important to discuss the effect of ensemble size on the results and whether or not 
using 100 members is enough or more than necessary. A framework to assess this is 
demonstrated in Milinski et al. (2020). In accordance with this framework, our goal is to quantify 
variability using the metric of ensemble standard deviation, to within 5% accuracy of the full 100 
member variance. We estimate standard deviation using 30 iterations of subsample sizes from 3–
100 members without replacement. Figure 10 suggests that at least 40 ensemble members are 
required to capture the standard deviation of SLAND to within ±5% accuracy. Since SLAND has the 
largest standard deviation of all budget terms, the accuracy of a sub-sample of the carbon budget 
decomposition would depend on this term. The other budget terms (Figure S5) do not display 
variations as large as SLAND and therefore 40 members are sufficient for those terms. Whether this 
result is representative of other models that simulate internal variability through ensemble 
simulations depends on the budget terms. In the absence of extensive multi-model large 
ensemble projects that provide the full suite of budget terms, including the split into SLAND and 
ELUC, we evaluated this based on the IAV in the models participating in the GCB2020 
simulations that are forced with observed climate (Figure 7). A key assumption is that MPI-GE is 
capable of accurately representing IAV, and the fact that MPI-GE slightly overestimates SLAND 
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IAV by 0.4 Pg C yr-1 compared to other models in the GCB2020 suggests that the minimum 40 
ensemble members required here may be a conservative estimate.

5 Conclusion

In this study, we use a large ensemble of single-model simulations from the Max Planck Institute 
Grand Ensemble and a sub-component of JSBACH3 (called CBALONE) to decompose the 
global anthropogenic carbon budget into fossil and land-use change emissions, atmospheric 
growth, and natural land and ocean sinks. Through its 100 ensemble members, the MPI-GE 
captures the uncertainties associated with internal climate variability, which we compare to the 
2020 global carbon budget’s uncertainty and interannual variability, and calculate exceedance 
probabilities of the past carbon fluxes with respect to a full range of climate variability states. 
We estimate about 40 ensemble members are required to capture internal variability in SLAND and 
thus all budget components. Contrary to SLAND, to reduce uncertainty in SOCEAN and ELUC 
estimates, we must prioritize reducing observational error and model spread rather than capturing 
internal variability. Despite its high internal variability, SLAND (or SOCEAN) is likely not the reason 
behind the high budget imbalance found in previous studies for the 1950s, which suggests 
common model deficiencies or biases in the land-use forcing.

We also present a novel estimate of the uncertainty in land-use change emissions 
associated with internal climate variability at approximately ±0.2 Pg C yr-1, which we estimate 
would account for about 20% of the total (internal and multi-model) land-use change emissions 
uncertainties. Land-use change emissions thus contribute little to interannual variability of the 
annual carbon budget and are driven rather by land-use forcing than by climate variability.

We investigate future changes in the global carbon budget under RCP4.5 and demonstrate 
upper and lower bounds on the allowable future CO2 emissions depending on climate variations. 
The RCP4.5 scenario exemplifies a future where climate policies are implemented to limit 
warming to less than 3°C over present-day conditions. Our study largely confirms that the 
allowable emissions under the assumptions of the socioeconomic model GCAM are compatible 
with RCP4.5, though slightly higher emissions of up to 13 Pg C yr-1 on average would be 
allowed in the MPI-ESM. The minimum of the full ensemble range is 9 Pg C yr-1 and would be 
the lower risk limit to ensure we stay below 3°C warming for all possible climate states, while 
the maximum of 18 Pg C yr-1 would be the higher risk limit for the climate states leading to 
stronger land CO2 uptake. Our results suggest that internal variability of the natural land sink 
increases over the 21st century, which puts the steady persistence of carbon removal by land 
ecosystems at risk. We also show that even when accounting for random variations in climate 
and natural sinks, the emissions in recent decades for land-use change—characterized by 
continuing global deforestation—are dangerously inconsistent with the RCP4.5 goals and further 
erode our ability to successfully mitigate future warming.
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Introduction 

The following document contains supporting text and figures for the analysis 
in the main article. The MPI-GE carbon budget is presented in various forms: 
there is an unstacked presentation of the budget terms (Figure S1), spatial 
maps of ensemble standard deviation (Figure S2), a budget composed using 
CMIP5 emissions (Figure S3), comparisons to the future emissions and the 
2020 Global Carbon Budget (Figure S4), demonstration of the exceedance 
probability calculation (Figure S5 and S6) and the ensemble sub-sampling for 
terms not presented in the main text (Figure S7).
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Figure S1. Unstacked MPI-GE carbon budget terms. The shaded region 
shows the ±1σ uncertainty range around the MPI-GE ensemble mean. The 
fine gray lines mark the corresponding GCB2020 budget terms. Panel f) 
shows the simulated BIM term using the budget in Figure S3.
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Text S1.

The spatial distribution of the standard deviation may reveal the 
regions of SLAND and ELUC that are most sensitive to changes in the 
climate under the RCP4.5 scenario. Figure S2 shows the standard 
deviation of SLAND and ELUC averaged over the last decade of the RCP4.5 
scenario. The regions of SLAND with the largest variations are tropical 
regions that can store large masses of carbon in particular in plant 
biomass (such as the Amazon region in South America, the Congo 
region in equatorial Africa, and Southeast Asia), and are also strongly 
influenced by ENSO. Vegetation in all of these regions is known to be 
sensitive to variations in climate modes (Dannenberg et al. 2015; 
Poulter et al. 2014; Zhang et al. 2019; Bastos et al. 2018). There are 
also moderate variances found in extra-tropical regions that are 
affected by internal climate variability, such as North America, Europe 
and Australia. Regions that are not sensitive to climate variations are 
the highly arid regions of Saharan Africa, Central Asia, and the boreal 
tundra regions. The distribution patterns of sensitivity are similar for 
ELUC (since the cleared biomass is affected by internal climate 
variations in the same way as the biomass contributed by SLAND is, 
although the magnitude of the variations are much smaller, and the 
largest values are focused on regions with high land-use change (which 
are scenario dependent). The EFF and ELUC are not directly affected by 
internal climate variations, but the historical exceedance probabilities 
are nonetheless presented in Figure S7.
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Figure S2. Maps of MPI-GE SLAND and ELUC standard deviation averaged for the 
final decade of the RCP4.5 scenario.
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Figure S3. Probability of occurrence calculation of SLAND for a single year 
1990. The probability distribution function of the MPI-GE is on the left and the 
cumulative distribution function is on the right. Dots mark the SLAND values for 
individual ensemble members. The 1990 GCB2020 value is the vertical line 
and it’s corresponding cumulative probability of occurrence is the horizontal 
line.
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Figure S4. Probability of exceedance that the MPI-GE anthropogenic carbon 
fluxes are greater than the historical GCB2020 mean. The vertical lines mark 
El Niño (red) and La Niña (blue) years where Niño 3.4 index is greater than 1 
standard deviation from the mean.
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Figure S5. Range of standard deviation of the ensemble sub-samples for EFF 
(top), ELUC (middle) and SOCEAN (bottom). Blue dashed lines mark the accuracy 
range of the subsample estimates for ±5% error and the black dotted lines 
mark the accuracy range of the subsamples estimates for ±10% error.

7



Figure S6. Net land-atmosphere exchange expressed as NBP for the 
historical period. MPI-GE and CBALONE with land use change are shown for 
comparison.
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