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Abstract

This study introduces the results from fitting a Bayesian hierarchical spatiotemporal model to COVID-19 cases and deaths at
the county-level in the United States for the year 2020. Two models were created, one for cases and one for deaths, utilizing
a scaled Besag, York, Mollié model with Type I spatial-temporal interaction. Each model accounts for 16 social vulnerability
variables and 7 environmental measurements as fixed effects. The spatial structure of COVID-19 infections is heavily focused
in the southern U.S. and the states of Indiana, Iowa, and New Mexico. The spatial structure of COVID-19 deaths covers less of
the same area but also encompasses a cluster in the Northeast. The spatiotemporal trend of the pandemic in the U.S. illustrates
a shift out of many of the major metropolitan areas into the U.S. Southeast and Southwest during the summer months and
into the upper Midwest beginning in autumn. Analysis of the major social vulnerability predictors of COVID-19 infection and
death found that counties with higher percentages of those not having a high school diploma and having minority status to be
significant. Age 65 and over was a significant factor in deaths but not in cases. Among the environmental variables, above ground
level (AGL) temperature had the strongest effect on relative risk to both cases and deaths. Hot and cold spots of COVID-19
cases and deaths derived from the convolutional spatial effect show that areas with a high probability of above average relative
risk have significantly higher SVI composite scores. Hot and cold spot analysis utilizing the spatiotemporal interaction term
exemplifies a more complex relationship between social vulnerability, environmental measurements, and cases/deaths.

Spatiotemporal Associations Between Social Vulnerability, Environmental Measurements, and COVID-19 in
the Conterminous United States.

Daniel P. Johnson, Ph.D.*1, Niranjan Ravi2, and Christian V. Braneon, Ph.D.3,4

*Corresponding Author
1. Indiana University - Purdue University at Indianapolis, Department of Geography email:
dpjohnso@iu.edu2. Indiana University - Purdue University at Indianapolis, Department of Electrical and
Computer Engineering3. Goddard Institute for Space Studies
4. SciSpace, LLC

Key Points

1. Patterns of COVID-19 cases and deaths vary considerably through time and space.
2. COVID-19 cases and deaths concentrated in areas of increased social vulnerability at different times

of the year.
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3. The relationship between social vulnerability, environmental measurements, and COVID-19 cases and
deaths is spatially and temporally variable.

Abstract

This study introduces the results from fitting a Bayesian hierarchical spatiotemporal model to COVID-19
cases and deaths at the county-level in the United States for the year 2020. Two models were created, one
for cases and one for deaths, utilizing a scaled Besag, York, Mollié model with Type I spatial-temporal
interaction. Each model accounts for 16 social vulnerability variables and 7 environmental measurements
as fixed effects. The spatial structure of COVID-19 infections is heavily focused in the southern U.S. and
the states of Indiana, Iowa, and New Mexico. The spatial structure of COVID-19 deaths covers less of the
same area but also encompasses a cluster in the Northeast. The spatiotemporal trend of the pandemic in the
U.S. illustrates a shift out of many of the major metropolitan areas into the U.S. Southeast and Southwest
during the summer months and into the upper Midwest beginning in autumn. Analysis of the major social
vulnerability predictors of COVID-19 infection and death found that counties with higher percentages of
those not having a high school diploma and having non-white status to be significant. Age 65 and over
was a significant factor in deaths but not in cases. Among the environmental variables, above ground level
(AGL) temperature had the strongest effect on relative risk to both cases and deaths. Hot and cold spots
of COVID-19 cases and deaths derived from the convolutional spatial effect show that areas with a high
probability of above average relative risk have significantly higher SVI composite scores. Hot and cold spot
analysis utilizing the spatiotemporal interaction term exemplifies a more complex relationship between social
vulnerability, environmental measurements, and cases/deaths.

Plain Language Summary

COVID-19 affects different locations at different points in time and understanding its impact on communities
is an imperative research effort. Communities that are considered socially vulnerable – less resilient to hazards
– are disproportionately impacted by pandemics and other environmental stresses. In this study, we utilize
a modelling approach that accounts for COVID-19 cases and deaths, social vulnerability, environmental
measurements and both space and time domains at the U.S. county level from March 1 – December 31,
2020. Throughout much of the time period, cases were clustered in the U.S. South and the states of Indiana,
Iowa and New Mexico. Deaths clustered (although less in extent) in many of these same areas along with
the addition of some urbanized counties in the U.S. Northeast. Measurements of social vulnerability were
higher in these longer term clusters for both cases and deaths. Examining short-term clusters on a monthly
basis, COVID-19 cases and deaths focused more heavily in socially vulnerable areas during the summer and
autumn months respectively. The individual social vulnerability variable of not having a high school diploma
and non-white status were the most significant contributors to relative risk to both cases and deaths. Age 65
and over contributed significantly to deaths but not to cases. Temperature, with an inverse relationship, had
the strongest effect on risk among the environmental measurements. The remaining variables had differing
levels of importance in the models. Social vulnerability measures were higher in areas where there was an
increased risk of COVID-19 infection and death during the summer and autumn respectively.

Data

Data utilized for the conclusions in this study are available on the Indiana University – Purdue University
at Indianapolis Data Repository. https://doi.org/10.7912/D2/23 (Johnson & Ravi, 2021). These data are in
CSV format and readily importable into the R statistical package or other platforms.

Index Terms and Keywords

Index Terms: 0240 Public health 0230 Impacts of climate change: human health 0299 General or miscellaneous
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Keywords: Spatial epidemiology Social vulnerability COVID-19 pandemic Bayesian spatiotemporal disease
mapping Environmental determinants of COVID-19 Remote sensing and COVID-19

Introduction

The Coronavirus Disease 2019 (COVID-19, ICD-10-CM, U07.1, 2019-nCoV acute respiratory disease) pan-
demic is currently affecting much of the world. As of January 30, 2021, 11 months (325 days) into the
pandemic and one year since the WHO declared COVID-19 a Public Health Emergency of International
Concern (PHEIC), there are over 100 million confirmed cases of the disease and over 2 million deaths within
223 countries, areas, or territories (WHO 2021). In the United States, as of the same time, there are over 25
million confirmed cases and close to 500,000 deaths; 25.25% of cases and 19.62% of deaths worldwide (U.S.
CDC 2021). The U.S. only accounts for 4.23% of the global population, so it is disproportionately affected
(U.S. Census Bureau , 2021)

Pandemics, as well as other natural and man-made hazards, disproportionately impact socially vulnerable
individuals and communities (Freitas & Cidade, 2020; Gaynor & Wilson, 2020; Seddighi, 2020; Usher et al.,
2020). The past decade has witnessed an increasing trend in research activity focusing on social and envi-
ronmental vulnerability as it relates to geophysical and man-made hazards. More recently, there has been
vigorous interest in social vulnerability as it relates to the ongoing COVID-19 pandemic (Bilal et al., 2020;
Coelho et al., 2020; Dasgupta et al., 2020; Gaynor & Wilson, 2020; Khazanchi et al., 2020; Kim & Bostwick,
2020; Lancet, 2020; Mishra et al., 2020; Mohanty, 2020; Neelon et al., 2020; Snyder & Parks, 2020). Addi-
tionally, researchers have attempted to construct COVID-19-specific vulnerability indices, examine spatial
relationships or integrate both social and environmental determinants into a complete model, illustrating
areas more prone to adverse impacts (Khazanchi et al. 2020; Snyder and Parks 2020; Karaye and Horney
2020).

However, there is a paucity of studies focusing on the spatiotemporal nature of the pandemic and the
relationships between social and environmental determinants of COVID-19 vulnerability. This study focuses
on a spatiotemporal analysis of the COVID-19 pandemic in the conterminous United States during the year
2020. This investigation not only adds to the growing literature on vulnerability and COVID-19, it also
illuminates some of the spatial and temporal underpinnings of the pandemic in the U.S. In order to achieve
this, the presented research has three specific aims:

1. Highlight the spatiotemporal associations between social vulnerability, environmental measurements
and both cases of and deaths from COVID-19 aggregated by U.S. counties.

2. Model the spatial-temporal dimensions of the pandemic and determine if socially vulnerable counties
are more or less impacted at certain times of the year.

3. Create two complementary parsimonious spatiotemporal models - one (1) for COVID-19 cases, and one
(1) for COVID-19 deaths - that take into account social vulnerability, environmental measurements,
and spatial and temporal random effects.

Background

1.

COVID-19 as a U.S. Health Disparity

The disproportionate impact of COVID-19 on Black, Indigenous and People of Color (BIPOC) in the U.S.
is ongoing as of early 2021 (LaVeist 2005; Shi and Stevens 2021). A number of disparities associated with
nonwhite status have been examined in the literature. This list includes among others cardiovascular disease,
chronic respiratory conditions, hepatitis, and cancer (LaVeist 2005). The fact that COVID-19 is dispropor-
tionately represented in U.S. communities of color is not surprising (Singu et al. 2020). The reason(s) for the
disparity in representation of COVID-19 cases and deaths within the U.S. population is likely multifaceted
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encompassing a variety of cultural, social, environmental and economic contributors. While Persad et al.
have noted that “racial identity is not an inherent risk factor”, “COVID-19 disparities reflect the health,
environmental, and occupational effects of structural racism” (Persad et al., 2020). The popular press and
media in the U.S. has highlighted the underfunding of preventative public health infrastructure, an inefficient
health-care system, inadequate governmental response, and systemically racist policies that have exacerba-
ted the pandemic’s effects. However, one highly probable contributor is the number and extent of socially
vulnerable communities within the U.S. that demonstrate reduced resiliency in the face of a hazard (Shi and
Stevens 2021; Karaye and Horney 2020; Khazanchi et al. 2020).

Social Vulnerability and COVID-19

Social vulnerability (SV) as a concept refers to a society or communities’ impaired ability to respond to
an external stressor. These external pressures can be a single incident or the compounding consequences of
multiple events leading to deleterious effects on the society or community. Studies highlighting the negative
impact COVID-19 has on those considered socially vulnerable have grown exponentially since the beginning
of the pandemic. Here we highlight research that focuses on social vulnerability as a covariate in geographic
ecological regression studies. Many of these efforts come to similar conclusions; albeit with different variables
being more or less related to COVID-19’s effects. The studies highlighted utilize the U.S. Centers for Disease
Control and Prevention’s (U.S. CDC) Social Vulnerability Index (SVI), which we apply in this study (CDC’s
Social Vulnerability Index (SVI) , 2021; Flanagan et al., 2011).

Khazanchi et al., using a quasi-Poisson regression approach, discovered that counties considered vulnerable
had a 1.63-fold greater risk for COVID-19 diagnosis and a 1.73-fold greater risk for COVID-19-related death
(Khazanchi et al., 2020). When considering only the language and non-white status domain of vulnerability
they found a 4.94 and 4.74-fold increase in diagnosis and death respectively. Examining counties broken
into the most vulnerable by socioeconomic status, housing and transportation deficiencies resulted in a
higher relative risk (i.e. were at a greater risk of COVID-19 infection and death). Further effort by Nayak
et al., examining 433 U.S. counties (counties with >= 50 COVID-19 cases as of April 4, 2020), using a
generalized linear mixed-effect model, found that higher SV was associated with an increased COVID-19
case fatality rate (CFR) (Aditi Nayak et al. 2020). The relative risk further increased after adjusting for
age 65 and over. However, the relationship between the overall SVI score and COVID-19 incidence was
not statistically significant. In a study by Neelon et al (2020) utilizing COVID-19 cases and deaths within a
Bayesian hierarchical negative binomial model between March 1 and August 31, 2020, counties were classified
based on SVI composite percentiles (Neelon et al., 2020). Cases and deaths were examined daily for all U.S.
counties after adjusting for percentage rural, percentage poor or in fair health, percentage of adult smokers,
county average daily PM2.5 and primary care physicians per 100,000. By March 30, 2020 relative risk became
significantly greater than 1.00 in the most vulnerable counties. Upper SVI quartile counties had higher death
rates on average beginning on March 30, 2020. By late August the lower quartiles for SVI began to exhibit
increasing levels of cases and deaths. Dasgupta et al. (2020), examined COVID-19 cases from June 1 – July
25, 2020 relating them to the CDC’s SVI. Areas with a higher proportion of individuals with nonwhite
status, housing density, and crowded housing units were more likely to become COVID-19 hot spots; defined
as areas where there is a >60% change in the most recent 3-7 day COVID-19 incidence rate (Dasgupta et
al., 2020). Among the hot spot counties, those with greater SVI composite scores had higher COVID-19
incidence rates. Karaye and Horney (2020) examined local relationships between COVID-19 case counts and
SVI utilizing geographically weighted regression (GWR) (Karaye & Horney, 2020). The study examined data
from January 21 through May 12, 2020 and found, (after adjusting for population size, population density,
number of persons tested, average daily sunlight, precipitation, air temperature, heat index, and PM2.5) that
non-white status, limited English, household composition, transportation, housing and disability effectively
predicted case counts in the U.S. Snyder and Parks (2020), in another spatial analysis (utilizing GWR),
which did not utilize the CDC SVI, found that socio-ecological vulnerability to COVID-19 varied across
the contiguous U.S., with higher levels of vulnerability in the Southeast and low vulnerability in the Upper
Midwest, Great Plains and Mountain West (Snyder & Parks, 2020).
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Environmental Determinants of COVID-19

Even though we are only 11 months into the pandemic, there is growing evidence regarding environmental
determinants of COVID-19 infection and mortality. Initially, it was hypothesized that COVID-19 may be-
have like many other respiratory infections and cases would subside in the summer months in the Northern
Hemisphere due to increases in temperature (Hassan et al., 2020; Jamil et al., 2020; Prata et al., 2020). The-
refore, many researchers have concentrated on temperature and less on other meteorological measurements
as a factor in spread of SARS-CoV-2. A study conducted in Bangladesh, found that high temperature and
high humidity significantly reduce the transmission of COVID-19 when analyzed using ordinary least squa-
res regression (Haque & Rahman, 2020). Another analysis utilizing log-linear generalized additive models
across 166 countries, revealed that temperature and relative humidity were also associated with a decrease in
COVID-19 cases (Y. Wu et al., 2020). A 1° C increase in temperature was associated with a 3.08% reduction
in daily new cases and 1.19% reduction in daily deaths across the studied countries. Relative humidity had a
similar effect on cases and deaths. However, this is not surprising given the calculation of relative humidity
employs a function of temperature. Rouen et al. , utilizing micro-correlation analysis using a 10-day moving
window, found a negative correlation between temperature and outbreak progression (Rouen et al., 2020).
Their research was conducted across 4 continents in both hemispheres. Sarkodie and Owusu (2020), using
panel estimation techniques, focused their research on the top 20 countries with COVID-19 cases between
January 22 and April 27, 2020 and found that high temperature and high relative humidity reduced the
transmission of COVID-19 (Sarkodie & Owusu, 2020). However, low temperature, wind speed, dew/frost
point, precipitation and surface pressure increased the infectivity of the virus.

At a much finer scale, research in China at 31 different provincial levels revealed a “biphasic” relationship
with temperature, using distributed lag nonlinear models (P. Shi et al., 2020). Epidemic intensity was slightly
reduced on days following higher temperatures and was associated with a decrease in relative risk. An inves-
tigation into temperature and precipitation’s relationship with COVID-19 in Oslo, Norway found maximum
temperature and average temperature to be positively associate with COVID-19 transmission and precipita-
tion to have a negative relationship, using non-parametric correlation estimaton (Menebo, 2020). Research
in the sub-tropical cities of Brazil uncovered a negative relationship between temperature and COVID-19,
using generalized additive models and polynomial linear regression (Prata et al., 2020). Bashir et al. (2020)
in New York City, New York, USA, between March and April of 2020, found a significant positive correlation
between average temperature and minimum temperature on total cases, using Kendall and Spearman rank
correlation tests (Bashir et al., 2020). Average temperature was significantly positively related to COVID-19
mortality and the minimum temperature was associated with new cases. Another study, utilizing multi-
variate regression focusing on all U.S. counties from the beginning of the pandemic to April 14, 2020 found
that higher temperatures were associated with a decrease in cases but not deaths (Li et al., 2020). This
sample of studies demonstrates – particularly at finer spatial and temporal scales and depending on how
temperature is sampled – the relationship between environmental variables and COVID-19 are complex and
variable.

Methods

1.

Study Area and Timeframe

This study focuses on the counties (sub-state administrative districts) located in the conterminous United
States. We selected this subset due to Alaska and Hawai’i being non-contiguous and the error and complexity
these “islands” would introduce into the spatial weighting matrices necessary for the spatiotemporal analysis.
Furthermore, we focus on the timeframe from March 1 to December 31, 2020 (10 full months or 307 days);
the first calendar year of the pandemic in the United States.
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Data Collection

The data described below in steps 3.2.1 – 3.2.4, was used to create the dataset for the analysis (Johnson &
Ravi, 2021).

COVID-19 Cases and Deaths

COVID-19 cases and deaths were collected from USAFACTS (US Coronavirus Daily Cases by County ,
2021; US Coronavirus Daily Deaths by County , 2021). These data were retrieved in comma separated values
(csv) format and were grouped into monthly cases and deaths for all counties of the contiguous U.S. (n =
3106); two counties were missing data. The expected number of cases and deaths, E , per county areai,
was determined by calculating the number of cases and deaths per month and computing the standardized
infection rate (SIR) and standardized mortality rate (SMR) for each area for each month; the denominator
in the rates =Eit ,. This value is later used as an offset; expected number of cases/deaths at area i duringtime
t .

Social Vulnerability

In this analysis we utilize the U.S. CDC’s Social Vulnerability Index (SVI) (CDC’s Social Vulnerability
Index (SVI) , 2021; Flanagan et al., 2011). The SVI is composed of 18 variables that are related to social
vulnerability and the local socio-ecology at the county or census tract-level for the entire U.S. We chose the
SVI because it is highly cited in the literature and while there are inherent limitations in all vulnerability
indices it demonstrates greater accuracy and relevancy in many studies (Bakkensen et al., 2017; Rufat et al.,
2019; Spielman et al., 2020; Tate, 2012). The SVI variables are listed below in Table 1.

<<<Insert Table 1>>>

We utilize the percentage ((variable/total population) * 100) of each variable (except for per capita income
where we used U.S. Dollars $) for all the selected counties standardized by their respective z-scores. The SVI
also includes 4 themes, based on vulnerability domains, and a composite score of vulnerability. We utilize
the composite SVI score for comparison of counties after modeling.

Land Surface Temperature

Daily land surface temperature (LST) measurements were collected from the Moderate Resolution Imaging
Spectroradiometer (MODIS) TERRA satellite system; MOD11a1.006 (Thome, 2020; Wan, Zhengming et
al., 2015). MODIS data has a low spatial resolution (1 km) but a high (daily) temporal resolution. This
remotely sensed data set, an emissivity corrected land surface temperature image for both daytime and
nighttime, was collected from Google Earth Engine using geemap (Gorelick et al., 2017; Q. Wu, 2020). After
collection, the daily values were averaged per month for each county in the conterminous U.S. resulting in a
monthly average for daytime and nighttime LST. Areas where cloud cover interfered with image acquisition
were assigned a NA value. These monthly averaged data were standardized by z-score.

Meteorological Measurements

For additional environmental variables, we utilized the North American Land Data Assimilation System
(NLDAS). NLDAS contains land surface model datasets available hourly at 1km spatial resolution and
is also accessible in Google Earth Engine (Cosgrove et al., 2003; Gorelick et al., 2017). All but one of
the environmental variables listed in Table 2 were averaged by day and then by month for each county
and standardized by their respective z-scores. However, for precipitation, we calculated a daily sum and
then a monthly average before standardizing. After adjusting for multi-collinearity, the measurements for
specific humidity, longwave radiation, shortwave radiation and potential evaporation were removed. Specific
humidity is the ratio of the mass of H20(v) per total mass of the air parcel (kg/kg). This measurement is not
a function of temperature and water content like relative humidity, but we still found a greater than 80%
correlation across all counties throughout the time period with 2m AGL temperature. The other extraneous
environmental variables had correlation coefficients above .80 with 2m AGL temperature.

6
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Modelling and Specification

1.

Bayesian Spatial-Temporal Framework

This study utilizes a Bayesian hierarchical spatiotemporal modeling approach initialized within the freely
available R Statistical platform and the R-INLA package (R: The R Project for Statistical Computing , 2021;
Rue et al., 2009). Furthermore, all models developed in this study were executed within Indiana University’s
High Performance Computing (HPC) environment (Research and High Performance Computing , 2020).
Bayesian hierarchical modeling provides a flexible and robust framework where space-time components can
be modeled in a straightforward manner. There are numerous introductions to Bayesian disease mapping to
which we direct the novice (Best et al., 2005; Blangiardo et al., 2013; A. B. Lawson, 2013; A. Lawson & Lee,
2017; Moraga, 2020).

The Bayesian hierarchical methodology offers many benefits. For example, when creating disease models
and relating counts to covariates, it is unreasonable to assume that one can collect all the necessary variables
that account for a given response. The approach utilized here, allows for the inclusion of these “unknown”
covariates as random effects within the model (Bernardinelli et al., 1995; Best et al., 2005; Congdon, 2019).
These effects, in the spatial-temporal domain, account not only for spatial structure (spatial autocorrelation)
and noise (overdispersion), but for temporal correlation and interaction between space and time (Besag et al.,
1991; N. A. Samat & Pei Zhen, 2017; N.A Samat & Mey, 2017; Ugarte et al., 2014). Also, it is appropriate to
utilize the standardized incidence rate (SIR), number of cases/expected number of cases, and standardized
mortality rate (SMR), number of deaths/expected number of deaths, for country-level disease modelling.
However, when examining disease measurements at a finer level (i.e. county-level or smaller), the SIR/SMR,
a surrogate for relative risk, can be unstable and suffer large fluctuations due to some areas possessing a
small population relative to the incidence of disease. The Bayesian modelling approach utilized “smooths”
values of relative risk through space and time, by “borrowing” information both locally and globally, thereby
reducing the impact of these instabilities (Bernardinelli et al., 1995; Besag et al., 1991).

In order to model relative risk, observed counts - in this study, COVID-19 cases of infection and deaths - Yi
are modelled using a Poisson distribution with meanEi θi ; E = expected counts, θi is the relative risk (RR)
of areai. The logarithm of RRi is the sum of an intercept α and random effects accounting for extra-Poisson
variability.

Yi ∼ Poisson (Eiθi) , i = 1, . . . , 3106

log (θi) = α+ Si + Ui

α is the overall risk in the study area and S and U are spatial random effects for area i modelling the
spatial dependency structure (S ) and the unstructured uncorrelated noise (U ). Along with the inclusion of
covariates, that determine risk (i.e. social vulnerability, environmental measurements), and/or other random
effects the overall spatial model can be represented as

log (θi) = diβ + Si + Ui

di is a vector consisting of the intercept (α) and β is a coefficient vector; the fixed effects of the model. The
parameters of the 27 fixed covariates included in this study are each assigned β1:27 ∼ Normal(µ, σ) prior
distributions.

A widely cited specification for the random spatial effects S andU , the Besag, York, Mollié (BYM) model,
is regularly utilized in disease mapping studies (Besag et al., 1991). In the BYM model, the spatial random

7
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effect S is assigned a conditional autoregressive (CAR) distribution; smoothing the associated data based
on a specified neighborhood structure, where neighbors are defined as areas sharing a common border.

Si|S−i ∼ N
(
Sδi,

σ2
S

nδi

)
Sδi= n−1

δi

∑
j∈δi

Sj

δi = set of neighbors

nδi = number of neighbors of area i

The unstructured component U is modeled as independent and identically distributed (IID) with mean of
zero and variance =σ2

U . Therefore, data is shared both locally through theS component and globally through
the U component.

In this study we follow the parameterization of the Besag, York, Mollié (BYM) model proposed by Simpson
at al. (2015) that enables assigning penalized complexity (PC) priors (Simpson et al., 2015). This so-called
“BYM2” model, incorporates a scaled spatially structured and unstructured component (S* and U*) and is
defined as:

log (θi) = diβ +
1√
τ

(
√

1− ϕ S∗ +
√
ϕU∗)

The mixing - between S * andU * - parameter φ(0 ≤ ϕ ≤ 1) measures the proportion of variance explained
by S *. This scales the BYM2 model making it equal to the spatial model when φ = 1 and equal to
only unstructured spatial noise when φ = 0 (Riebler et al., 2016). We set priors for these parameters
following suggestions by Simpson et al., 2015. PC priors as their name suggest penalize model complexity.
In this case they penalize based on the degree with which a given model deviates from a foundational
assumption of no spatial dependency (φ = 0). Conjoining the random spatial effects for each area (S* +
U *) is termed the convolutional spatial component. The exponential factor for the convolutional spatial
effect e(S∗+U∗)provides one with RR contribution of the random spatial effects additively. Repeating this
procedure for either S* or U* will provide the relative contribution of each and allow the determination of
the comparative contribution to variance (spatial fraction). This scaling parameterization makes the BYM2
representation more interpretable between models than the unscaled BYM model.

The above specification for log(θi) can be extended into the spatial-temporal domain by the addition of
further random effects.

log (θit) = diβ +
1√
τ

(
√

1− ϕ S∗ +
√
ϕU∗) + γt + ωt + δit

Here, γt &amp; ωt, correspondingly represent the temporally structured and temporally unstructured ran-
dom effect. Typically, γt, is modeled as a conditional autoregressive random walk of either order one or two
(RW1, RW2), but there can be additional specifications (i.e. seasonal). In the present study, we model the
temporally structured effect as RW1, and specifyωt as a Gaussian exchangeable IID (ωt ∼ Normal(0, 1

τω
)).

The space-time interaction component δit, represents a parameter vector that varies jointly through space and
time. This vector allows for deviations from the space and time structure that expresses both dynamic spatial
changes from one time frame to another and active temporal patterns from one area to another (Knorr-Held,
2000). Therefore, mapping δit, characterizes short-term clusters of disease activity that deviate from the
space-time average over the study area at time t .

8
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Ecological Regression

The covariates representing SVI and environmental measurements (after correcting for multi-collinearity)
were included in the models as fixed effects, to examine which measurements are intricately linked to the
spatiotemporal processes of the pandemic in the U.S. This study opted to include all variables that logically
fit into the framework of vulnerability regardless of their statistical significance provided there is limited
issues with multi-collinearity. In addition to accounting for the variables, much of this decision is based on
the potentially poor inference generated by utilizing a stepwise framework and the Deviance Information
Criteria (DIC) not significantly decreasing when the variables were removed (Greenland et al., 2016; Huberty,
1989). Even though a particular variable might not be statistically significant it is nonetheless important
to see its effect in the model and to compare between COVID-19 cases and deaths when an alternative
approach, aimed at reducing variables based on their significance, might result in less comparable models.
Furthermore, since the response is logarithmic we calculate the exponential of the mean of the β coefficients
and subtract from 1.00 to determine each variables effect on relative risk.

Model Selection Criteria

Deviance Information Criteria (DIC), was employed to select the most parsimonious model (Spiegelhalter et
al., 2014). During exploratory data analysis, we examined two different prior specifications on the covariates:

β1:27 ∼ Uniform (−∞,+∞)

β1:27 ∼ Normal (µ, σ)

These resulted in minimal changes to the models and we selected the specification for the covariates which
produced the lowest DIC score; in this case the normal prior which produced a DIC score of˜10 less than
the uniform specification (DIC Cases: Normal 243958.04 vs. Uniform 243969.28 / DIC Deaths: Normal
90824.00 vs. Uniform 90835.76); a somewhat significant reduction (Spiegelhalter et al., 2014). Furthermore,
we utilized all 4 types of spatial-temporal interactions suggested by Knorr-Held (2000) and found that Type
I best fit our data, temporal stratification, and modeled process. Therefore, in our modeling approach
we imposed no restrictions on when or where a space-time anomaly could occur (Type I spatial-temporal
interaction).

Disease Mapping

Another key benefit of Bayesian inference is the creation of the posterior distribution where one can generate
the probability of exceeding a certain threshold; the so-called exceedance probability. For this purpose, we
mapped the convolutional spatial effect,e(S∗+U∗), and the spatially structured effect, e(S∗), at the county level.
Also, we plotted the modeled space time interaction, eδit , which represents short-term clusters of activity
relative to the study-area average at time t . In these maps we followed the classification rule followed by
Richardson (2004); areas wherePr (θit ≥ 1) is ≥ .8, is considered a hot spot,Pr (θit ≥ 1) is .8 ≥ .2, is
considered areas statistically similar to the national average, andPr (θit ≥ 1) is ≤ .2, signifies a cold spot;
areas that represent infection/mortality rates below the national average (Richardson et al., 2004). Counties
that are considered hot spots through the convolutional spatial effect, the spatially structured effect, and
the space time interaction component are compared to the SVI composite score of the combined average and
cold spot areas; areas wherePr (θit ≥ 1) is < .8 (non-hot spot areas). This assessment, utilizing notched
box-plots, is employed to examine differences in the SVI composite score between the affected areas and in
the case of eδit , different times.

Limitations and Caveats

A potential limitation of this study - likely not a significant constraint - is the lack of greater temporal
resolution with regard to the social vulnerability index. In the case of the CDC’s SVI, the index is calculated
either yearly or every other year. This study focuses on COVID-19 on a monthly basis and there is no
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available capability of measuring changes in social vulnerability at that temporal resolution. That considered,
it is likely that many of the individual variables that are used to define social vulnerablity do not change
dramatically from one month to the next (Flanagan et al., 2011; Neelon et al., 2020; L. Shi & Stevens, 2021).
Also, the internal limitations present in the SVI are extend to our analysis (Bakkensen et al., 2017; Rufat
et al., 2019; Tate, 2012)

Another potential limitation is the number of zeros the dataset for COVID-19 fatalities contains; at least
initially. We could have opted for a Zero-Inflated Poisson model for deaths but decided to keep the hierar-
chical specifications and structure as consistent as possible between COVID-19 cases and deaths. By doing
so, we eliminate a level of complexity within the model and maintain their comparability.

Finally, we decided not to place temporal lags on the environmental variables in relation to COVID-19 cases
and deaths. Estimates for a latency in exposure to COVID-19 and onset of symptoms ranges from 2-24 days
(CDC, 2020, p. 19; Grant et al., 2020). The WHO estimates that there is a temporal lag of 2-8 weeks from
onset of symptoms to death in the most severe cases (Baud et al., 2020; Woolf et al., 2021). Given these
large ranges of temporal associations and the aggregation of the data by month, we opted to compare SVI
and environmental measurements on the date where a case or death was reported. Therefore, the coefficients
should be interpreted in the proper context and with this consideration in mind.

Results

1.

Temporal Trends in COVID-19 Cases and Deaths

COVID-19 cases by month per 100,000 people is presented in Figure 1A. Cases steadily increased until
October, with an exponential increase through October until the end of 2020. Deaths from COVID-19,
presented in Figure 1B, increased exponentially between March and April, then decreased and remained
fairly stable through October, with another exponential increase in November and December.

<<<Insert Figure 1>>>

Spatiotemporal Ecological Regression

The coefficients resulting from the spatiotemporal ecological regression model for COVID-19 infections are
presented in Table 2. The variables grayed out are considered not statistically significant since 0 falls
within the 95% credibility interval (Wang et al., 2018). The variables unemployed, age 65 and up, disabled,
crowded living, no vehicle, limited English, LST nighttime, AGL temperature, and precipitation have a
negative relationship with COVID-19 infection risk. The strongest effect on cases is from the variable “no
high school diploma” with a 20.60% increase in risk from a one standard deviation (6.34%) increase. AGL
temperature is the second strongest with a 20.70% decrease in risk resulting from an 8.58k (1 standard
deviation) increase. The remaining effects of each variable are presented in Table 2.

<<<Insert Table 2>>>

Table 3 contains the coefficient results from the posterior distributions of the ecological regression model
for COVID-19 fatalities. The variables with the strongest impact (percent increase) on risk to COVID-19
deaths are non-white status (+40.19%), no high school diploma (35.21%), AGL temperature (-26.68%), age
65 and over (23.93%), and age 17 and under (19.42%) after a standard deviation increase in each variable
respectively. Unemployed, single parent, mobile home, group quarters, poverty, uninsured, LST daytime
were not statistically significant.

<<<Insert Table 3>>>
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Modelled Temporal Trend

Figure 2 exhibits the temporally structured γτand unstructured ωτ effects for both cases and deaths. The
left panel shows the modeled structured temporal effect for cases with all covariates, following the random
walk order-1 and IID specification for unstructured temporal effects. The structured component shows an
increase in relative risk until August with a decrease for the remainder of the year. The unstructured effect
tends to fluctuate between being slightly above 1.00 to slightly below 1.00; with its 95% credibility envelope
easily encompassing 1.00. In the right panel for deaths, γτ, increases until June, drops in July, increases until
September, and drops until the end of the study period. Similar to the cases panel, ωτ , fluctuates between
being slightly above 1.00 to slightly below 1.00.

<<<Insert Figure 2>>>

Spatial Effects

The convolutional spatial effect and the spatially structured effect for COVID-19 cases are mapped in Figure
3A. These figures show the probability that the relative risk exceeds 1.00; the national average. There is
a strong clustering of high probability for the convolutional spatial effect in Florida, Alabama, Mississippi,
Louisiana, Arkansas, Tennessee, Iowa, and Arizona. There is sporadic clustering of high probability most
prominent of which is in Indiana, Kansas, and Colorado. There is significant clustering of low probability
areas in the Northeast, Pacific Northwest, Upper Atlantic Coast, Upper Midwest, Michigan, and West
Virginia. The spatially structured effect for cases follow a similar pattern to the convolutional effect as it
explains 82.7% of the variance in the overall spatial effects. Key differences include some higher probabilities
in Connecticut and Iowa. Probability is lower in Southern California, Michigan, and New Mexico.

<<<Insert Figure 3>>>

Figure 3B shows exceedance probabilities for the convolutional spatial effect and the spatially structured
effect for deaths. There is a strong clustering of high probabilities in New Mexico, Indiana, Louisiana,
Eastern Pennsylvania, and the Northeast megalopolis. Higher probabilities are scattered throughout the
Southeast and portions of the Midwest into Montana, Idaho and Eastern Oregon. The spatially structured
effect accounts for 60.9% of the variance for (S*+U*) so similarities are expected, although not as high of
a degree as in the spatial effect for cases. The most notable difference is the increase in clustering in the
Southeast, the increase in Indiana, and less sporadic dispersion of counties in the Midwest into the Mountain
West.

Spatiotemporal Interaction

1.

Cases

Exceedance probabilities using 1.00 as a threshold for the spatiotemporal interaction term are presented in
Figure 4, for cases, and Figure 7, for deaths. Initial clustering of high probabilities in March are noted in the
Northeast, especially New York, Florida, Louisiana and counties containing some of the major metropolitan
areas around the country (i.e., Atlanta, Denver, Detroit, Chicago, Indianapolis, San Diego, Los Angeles, San
Francisco, Portland, and Seattle). Lower probabilities are less stable than in April and this is likely due
to the average risk being so low at this point in time. In April, the areas noted previously in March have
expanded in what appears to be a diffusion pattern; in many cases doubling in extent. Lower probability
areas are more prominent and are focused in the Upper Midwest south through the Great Plains into Texas.
There is another notable area of low probabilities in Ohio south through West Virginia, west into Kentucky
and further south into Tennessee. In May, areas previously noted at high probability have remained fairly
stable, with a notable decrease in probability in upper New York, the Upper Northeast and Michigan. There
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is a crescent of lower probability extending from Western Pennsylvania, through West Virginia and west to
Kansas and Oklahoma. There is a notable increase in cases in Minnesota and upper Iowa.

By June there are some significant changes to areas of high probability. The pandemic seems to have settled
much more into the southern U.S. focusing again in Florida, Alabama, Mississippi, Louisiana, eastern Texas,
South and North Carolina. Probabilities have decreased in the Northeast and throughout much of the
Midwest apart from much of Iowa and southern Minnesota. High probabilities remain in Arizona and have
expanded into Utah, Nevada, and much of California. July shows a further solidification of the pandemic in
the southern U.S. extending from the Atlantic to the Pacific coast. Arizona northward into Utah and Idaho
has joined this high probability area. Metropolitan areas in Minnesota, Wisconsin, Ohio, and Pennsylvania
are showing renewed higher probabilities. The Northeast and the middle Midwest are the lowest probability
areas, with Illinois and Indiana continuing a trend of decreasing activity. By August, the pandemic is
shifting out of the southern U.S. and into the Midwest with increases from Tennessee into Minnesota, North
Dakota, and South Dakota. The Mountain West is exhibiting an increase in activity as is much of California.
Arizona and New Mexico are showing a decrease in probability and the Northeast remains firmly in the lower
category.

September, witnesses the pandemic lessening in the southern U.S., but the increases previously noted in the
Upper Midwest have become even more pronounced, with Missouri, Illinois, Iowa, Wisconsin, Minnesota,
Kansas, Nebraska, and North and South Dakota heavily burdened. The pandemic continues to lessen in
Arizona and California. By October the pandemic continues to rage in the Upper Midwest affecting much
of the counties in the states from Wisconsin to Idaho. There is a notable lessening in southern Minnesota
and Iowa. The pandemic continues to subside in the southern U.S. and remains stable in the Northeast.
November, expresses a further strengthening in the upper Midwest with areas previously showing a lessening
pattern overrun by cases. Much of the U.S. is affected apart from the southern U.S., California, Arizona,
Washington, and the Northeast. Through December, the pandemic has diminished in the Upper Midwest
and shifted with higher probabilities into the Northeast and Texas and has further reasserted itself on the
Pacific Coast. The upper Midwest and extreme South continue a waning effect apart from Florida which
displays a resurgence.

<<<Insert Figure 4>>>

4.5.2. Deaths

The spatiotemporal interaction term probability exceedances for deaths are shown in Figure 5. As expected
there is not much activity in March apart from a deaths in some major cities. By April, deaths begin to
show in many of the major metropolitan areas of the U.S. with a clustering of high probabilities in the New
York City area, Chicago, Detroit, Indianapolis, Atlanta, San Diego, Los Angeles, San Francisco, Portland,
and Seattle. Through May, many of these areas of high probability have expanded in a similar apparent
diffusion pattern to cases a month or so earlier. Much of the Northeast megalopolis is affecting along with
Detroit, Cleveland, Pittsburg, Chicago, Indianapolis, Nashville, Birmingham, New Orleans, and counties in
New Mexico, Arizona, and Southern California. In June, many of the counties around these same cities
have become even more heavily burdened, with notable clusters in the Northeast, Ohio, eastern Michigan,
northern Illinois, central Indiana, central Mississippi, Arizona and southern California. Through July many
of these areas are showing a decrease in deaths apart from the northeast megalopolis, Chicago, central
Indiana, Arizona and southern California.

Through August, probabilities of high deaths have shifted to the southern U.S., while lessening in the
Northeast and Midwest. The probabilities have strengthened in Arizona and much of California. September
witnesses a further strengthening of probabilities in the southern U.S. affecting much of South Carolina,
southern Georgia and much of Florida. The pandemic continues to strengthen in Arizona and California.
The waning trend has continued throughout much of the upper Northeast and the Ohio Valley. By October,
these shifts continue with sporadic higher probabilities throughout the southern U.S. The lessening continues
in the Ohio Valley and upper Northeast as Arizona begins a trend of diminishing deaths. November witnesses
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a shift in the probability of deaths into the upper Midwest, as suspected considering cases witnessed a similar
trend a few months prior. The pandemic begins to lessen in the southern U.S.; but contains some sporadic
high probabilities. However, the shift to the north is apparent. Lessening continues in Arizona and California
with the same effect stable in the upper Northeast. Through December, the shift in to the upper Midwest is
even more evident with the Mountain West now included. December further witnesses a resurgent trend in
the upper Northeast, especially northern New York, Vermont, New Hampshire and Maine. The continued
lessening in the southern U.S., Arizona and California is noteworthy.

<<<Insert Figure 5>>>

Comparisons of Composite Vulnerability in Hot and Cold Spots

Figure 6A displays the boxplots comparing hot and cold spots for the convolutional spatial effect (e(S∗+U∗))
for COVID-19 infections. The light gray distribution is for areas having a probability less than .80 of
exceeding 1.00 (cold spots) and the red distribution for areas where the probability is greater than or equal
to .80 of exceeding 1.00 (hot spots). Hot spot areas have a significantly higher SVI composite score compared
to the low probability areas. Figure 6B illustrates the boxplot comparing areas delineated in the same way
to the composite SVI score for COVID-19 fatalities. Likewise, area with a higher probability of COVID-19
deaths have a statistically significant higher SVI composite score. The composite SVI score for the spatially
structured effect is similarly higher in areas of higher probability, which is expected based on the percent of
variance explained in the convolutional effect by that component.

<<<Insert Figure 6>>>

Taken in the spatiotemporal context, the relationship between higher SVI composite scores and the hot and
cold spots are not as straightforward. Figure 7A and 7B displays boxplots comparing the SVI composite
score for the areas by month that have a high probability of exceeding 1.00; within the spatiotemporal
interaction component

(
eδit
)
. The individual plots are delineated in the same way as above. Comparing

the distributions for SVI composite scores to cases (9A) from April through August the score is higher
and statistically significant in hot spot counties. Similarly, for deaths (9B) the SVI score is higher for the
counties involved for the months July – October. The mean SVI score for the hot spots during these month
nears or exceeds the 3rd quartile value in the cold spot counties. November also witnesses a higher but not
statistically significant SVI score interpreted via the notches in the boxplots.

<<<Insert Figure 7>>>

Discussion

1.

Relationships Between Social Vulnerability Variables and COVID-19 Infections and
Deaths

Dividing the SVI index into its separate variables and including them in the hierarchical model offered
some noteworthy results. Counties that have a high percentage of those without a high school diploma and
non-white status have the strongest positive effect on risk; raising risk for COVID-19 infections by 21.44%
and 20.60% respectively. Counties with greater percentages of those aged 17 and under are at greater
risk; increasing risk by 11.78% for each standard deviation increase (3.43%). Living in a multi-unit dwelling
increased risk by 11.18% which is expected due to the density of living spaces. However, living in a home with
more than 10 people (crowded living) lowered risk by 5.13%. Additionally, percent unemployed, disabled,
no vehicle, limited English, and uninsured negated risk to varying degrees (see Table 2). These findings
tend to support other studies that show COVID-19 having a disparate effect in non-white communities
(LaVeist 2005; Shi and Stevens 2021; Singu et al. 2020; Karaye and Horney 2020; Khazanchi et al. 2020).
They especially support Karaye and Horney (2020) with conclusions related to non-white status, but not as
significantly as their findings related to limited English, household composition, transportation, housing and
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disability (Karaye & Horney, 2020). This is likely due to their study focusing on cases through May 12, 2020,
so the comparison in the amount of data and the timeframe of investigation is different. Dasgupta et al.
(2020) found that non-white status and crowded housing were more likely to become COVID-19 hot spots
during June and July 2020. Our study supports these findings for non-white status, multi-unit dwelling and
group quarters throughout the year 2020.

The SVI index variables and the relationship with death from COVID-19 possesses some dissimilarities
compared to cases. Non-white status had the strongest impact on risk of death; increasing relative risk by
40.19% when raised by one standard deviation (19.84%). No high school diploma is again ranked second with
a 35.31% increase. Furthermore, age 65 and over demonstrates an increase in relative risk of death by 23.93%;
this variable was statistically insignificant in the model for cases. Age 65 and above is a highly recognized
individual risk factor for COVID-19 severe disease and mortality (Woolf et al., 2021). Age 17 and under is
again relatively high in its impact on risk with a 23.93% increase. Limited English lowered risk by 13.35%
(compared to 5.10% for cases) and Multi-unit dwelling increased risk by 11.29%. The result for limited
English potentially implies that decreased social connections due to the perceived language barrier may have
a preventative effect. The remaining variables are either not statistically significant or offer minimal (less
than 10%) impact on deaths. Although there are not as many previous studies that examined deaths as
opposed to cases, these findings especially support Khazanchi et al. (2020) where non-white status resulted
in a 4.74-fold increase in death.

Relationships Between Environmental Variables and COVID-19 Infections and Deaths

Regarding environmental variables in relation to COVID-19 cases, above ground level (AGL) temperature
had the strongest relationship. A one standard deviation increase (8.58K) in temperature results in a 20.70%
reduction in relative risk for cases when examined within the context of the entire study. Nighttime LST
results in a 11.82% decrease in risk when increased by a single standard deviation (14.61K). Atmospheric
pressure produces a 12.34% increase in relative risk for cases when increased by 5465.36 Pa. Precipitation
increases lower risk by 4.07% and wind speed (2.84%) and direction (11.79%) have a positive effect on risk
of infection. These findings support research which points to increases in temperature lowering the risk of
COVID-19 infections (Haque & Rahman, 2020; Prata et al., 2020; Rouen et al., 2020; Sarkodie & Owusu,
2020; P. Shi et al., 2020). Our precipitation finding contradicts Sarkodie and Owusu (2020) where they
found a positive association between temperature and COVID-19 cases. However, it does support Menebo
(2020) where both variables had a negative association. In relationship to winds, prior research has found a
negative association with wind speed and COVID-19 incidence (Islam et al., 2020; Şahin, 2020). However,
in our study average monthly wind direction, when the azimuth is increased by 35 degrees, increased risk
by 11.79% and average monthly wind speed, when increased by .69m/s, raises risk by 2.84%. While this
relationship is difficult to explain it is worth noting and we opted to keep wind data in the analysis to account
for its potential effects.

AGL temperature has the strongest effect on risk from death of the environmental variables with a 26.68%
decrease in risk for every 8.58K increase. LST nighttime also lowers risk by 11.14% when increased by
14.61K. As atmospheric pressure increases by 5465.36 Pa, it raises the relative risk of death by 14.66%.
Precipitation increases by a standard deviation lower risk by 5.62%. Wind direction is significant in the
model for deaths. As the azimuth of wind increases by 35° the relative risk lowers by 6.99%. Wind speed is
not statistically significant. Again, these findings are for wind 10m above ground level and support the notion
that wind may have some impact on COVID-19, although it’s difficult to infer. More research is needed on
wind’s relationship, especially at a finer temporal stratification (i.e. daily) where it should be easier to infer
the relationship (Islam et al., 2020; Şahin, 2020).

Temporal Structure of the Pandemic in the United States

Cases and deaths have clearly increased throughout the year 2020 as evidenced by Figure 1. However, the
modeled relative risks have fluctuated throughout the time period (Figure 2). These relative risks as modeled
through random walk order – 1 show rapid increases in cases and deaths from March through much of the
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summer of 2020. Decreases are then evident for the remainder of the year. Temporal relative risk from death
shows more fluctuation than cases but also presents a steady decline in average relative risk for the last few
months of 2020. On the surface, these results (Figure 1 vs Figure 2) may seem contradictory. Apart from one
chart showing per capita COVID-19 cases/deaths and the other modeled relative risk, closer examination of
the maps of the spatiotemporal interactions (Figures 4 and 5) show there are more counties affected in the
latter months of 2020. This observation suggests the pandemic has broadened in spatial extent, especially in
regard to cases during October and November, but has become less intense overall as measured by relative
risk. This finding also implies the pandemic may be starting to decline in average intensity – in the U.S. – as
we head into 2021. The average non-modelled standardized infection rate (SIR) and standardized mortality
rate (SMR) across all counties, support this and demonstrate a similar relative risk trend and corresponding
decrease for the latter months of 2020.

Spatial Structure of the Pandemic in the United States

After adjusting for the fixed effects of the covariates and the temporally structured and unstructured random
effects, the convolutional spatial effect risk map and the spatially structured effect risk map identified counties
at increased risk of COVID-19 infection and death throughout the study period. The most prominent spatial
aspect of relative risk to COVID-19 infection were the clusters most heavily focused in the southern U.S., and
the states of Indiana, Iowa, and New Mexico. Somewhat supported by Snyder and Parks (2020), with their
geographically weighted regression (GWR) approach, this result was not completely unanticipated (Snyder
& Parks, 2020). There were additional sporadic areas of increased risk scattered throughout the Midwest,
U.S. South and Great Plains. Strong degrees of spatial autocorrelation, which supports the clustering, as
modelled with the spatially structured effect, were present in many of those same areas.

Convolutional risk from COVID-19 deaths were less focused than cases but were still prevalent in the U.S.
South, especially Louisiana and Tennessee. Indiana and the megalopolis region of the Northeast were also
part of this cluster. Interestingly, the latter region did not present as an increased risk area relative to cases
throughout the study period. This is a potentially alarming finding suggesting this region has a higher rate of
death relative to the number of cases throughout the year. Further west, nearly every county in New Mexico
was at an elevated risk. A large degree of spatial autocorrelation (as the spatially structured effect accounts
for nearly 61% of the variance between the two components) is also present in many of these identical areas
based on the spatially structured risk from death.

Spatiotemporal Structure of the Pandemic in the United States

The spatiotemporal interaction term is a random effect and can be interpreted as the modelled residual risk
after accounting for the fixed effects, spatially structured and unstructured and temporally structured and
unstructured effects. This represents short-term (month long in our study) sporadic clusters of COVID-19
cases and deaths. During the time period of the study, it is notable that areas impacted by the pandemic
shift drastically throughout the country. Cases shift from major metropolitan areas and the Northeast, into
the Southern and Southwest U.S. in the summer months. This trend supports evidence found by Snyder
and Parks (2020) that the pandemic was focusing in the highly vulnerable U.S. South by mid-summer. By
late summer and early autumn, elevated cases have moved into the Upper Midwest with a second shift into
the Southwest and a re-emergence in the Northeast by the end of 2020.

The short-term patterns in deaths follow a similar trend but are delayed by approximately a month to
month-and-a-half and are not as large in extent or as contiguous. This implies there is a temporal delay
from cases to deaths that falls within the WHO suggestion of 2-8 weeks; tending toward the higher end
(Baud et al., 2020). Elevated deaths shift into the Southwest by early summer and into the Southern U.S.
by late summer. Increased probabilities of above average deaths have moved from the Northeast megalopolis
by August as they refocus in the South. By November, deaths have moved into the Upper Midwest and
are beginning to shift out of the U.S. South (apart from Florida); into less socially vulnerable areas of the
country. December shows the U.S. South to be below average risk along with the Southwest. A further
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broadening is evident in the Upper Midwest and Mountain West.

Composite Social Vulnerability in Hot and Cold Spots

The convolutional spatial effect for COVID-19 cases was classified into hot and cold spots based on the
criteria of Richardson et al. (2004). For COVID-19 cases of infection, areas that were considered hot spots
throughout the course of the study period had higher SVI composite scores (.57) than those that were
considered cold spots (.48). In relation to deaths, there was a similar trend with higher SVI composite scores
for hot spot areas (.55) versus cold spot areas (.49). These differences were statistically significant at .05
confidence interval. These relationships provide further evidence to studies finding locations that have higher
vulnerability scores to be more at-risk of COVID-19 infection and death (Dasgupta et al., 2020; Karaye &
Horney, 2020; Khazanchi et al., 2020).

When comparing SVI composite scores to hot and cold spots for cases and deaths based on the spatiotemporal
interaction term, the relationship is not as straightforward. In respect to cases, our study supports the
findings of Nayak et al., where the relationship between composite SVI score and COVID-19 cases is not
statistically significant in the first month of the pandemic in the U.S.(Nayak et al. 2020). The SVI composite
score is higher from April to August and again in December in hot spot counties. This observation supports
Neelon et al., where counties with higher SVI scores contained higher COVID-19 cases through August.
Furthermore, this result verifies Dasgupta et al., where higher SVI scores in June and July 2020 supported
the probability of becoming a COVID-19 hotspot. Neelon et al. also discovered that in August, counties
with lower composite SVI scores were beginning to be affected. This is also supported by our study, but the
composite index is lower in hot spot areas extending into the months after August. For deaths, the index is
higher from July through October, with the remaining months either lower or not statistically significant.
In the case of August, September and October, the SVI composite score is much higher in hot spots than in
cold spots. The mean SVI score in hot spot areas is approaching the 3rd quartile value in cold spot areas.

Much of this observed shift in the relationship between COVID-19 and vulnerability is due to the spatial-
temporal nature of the pandemic in the U.S. Cases shift into the southern and Southwest U.S. in the summer
months. These areas are known to have significantly larger numbers and percentages of vulnerable than most
other areas of the country (L. Shi & Stevens, 2021). Likewise, in the instance of deaths in August, September,
and October, they are likewise focused in some of the more vulnerable locations of the American Southeast
and Southwest. These results support a more complex or nuanced relationship between temperature and
COVID-19 cases and deaths; especially when examined in a smaller spatial and temporal context (Bashir
et al., 2020; P. Shi et al., 2020). The overall time period relationships are not stable across all counties
for all time periods. By utilizing the spatiotemporal modelling approach used in this study we are able to
uncover this more elusive space-time relationship. Alternatively, in areas where the SVI composite score
in hot spots is lower than in cold spots, the pandemic has shifted into less socially vulnerable areas of the
country; the Upper Midwest and Northeast. However, a key finding is that during the summer months (for
cases) and autumn (for deaths) the pandemic seemed to shift into warmer and more socially vulnerable areas
of the country. Future spatiotemporal analyses, after the behavior of the pandemic in 2021, are needed to
determine if this is likely to be a trend the virus follows or if this is simply how the pandemic initially diffused
in the U.S.

Conclusion

Bayesian hierarchical modeling provides a flexible and robust framework in which to model complex spa-
tiotemporal systems. This study presents the findings of fitting a Bayesian hierarchical spatiotemporal model
to COVID-19 cases and deaths in the United States for the year 2020. The data collection and modeling
framework are explained in detail for straightforward replication. This hopefully will foster continued effort
in modeling the spatiotemporal nature of the pandemic in the U.S. and abroad.

A key finding of this study is the spatiotemporal character of the pandemic in the U.S. after accounting for
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social vulnerability, environmental measurements and spatial and temporal random effects. In terms of cases,
the pandemic shifted into the U.S. South and Southwest during the hotter months of the year, which are
the most vulnerable regions of the U.S. Deaths followed the same pattern only with a 1-2-month temporal
lag. This demonstrates a potentially alarming trend if this pattern or a similar one is repeated in other
years. These highly vulnerable areas are already under significant stress at this time of the year and the
introduction of another stressor on a regular basis could be catastrophic in some areas. Further alarming, is
the cluster of deaths in the Northeast Megalopolis region.

Studies such as the one presented here provide insight into the complicated mix of social and environmental
factors relating to vulnerability. We demonstrate that relationships between COVID-19 cases/deaths, social
vulnerability, and environmental measurements are spatially and temporally variable. Even though many
of the findings presented here are supportive of other studies, more work is needed in the spatial-temporal
domain of the pandemic. One primary effort should be modelling the spatiotemporal structure at a finer
temporal scale (i.e. weekly). This could elucidate other relationships with the examined variables and allow
for more elaborate spatial temporal interaction specifications (Type IV spatial temporal interaction). Such
examinations, perhaps at finer spatial scales (i.e. census tract), could also allow us to focus on some of this
study’s more alarming results.
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Variable Mean
Standard
Deviation Minimum Maximum

Unemployed 5.74% 2.78% 0% 26.40%
Per Capita
Income

$27,036.00 $6457.00 $0 $72,832.00

No High School
Diploma

13.45% 6.34% 1.20% 66.30%

Age 65+ 18.43% 4.54% 3.80% 55.60%
Age17- 22.35% 3.43% 7.30% 40.30%
Disabled 15.96% 4.40% 3.80% 33.70%
Single Parent 8.30% 2.71% 0% 25.60%
Non-White Status 23.15% 19.84% 0% 99.30%

21



P
os

te
d

on
1

D
ec

20
22

—
C

C
-B

Y
-N

C
-N

D
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

10
02

/e
ss

oa
r.

10
50

66
3
0/

v
2

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Variable Mean
Standard
Deviation Minimum Maximum

Mobile Home 13.03% 9.62% 0% 59.30%
Crowded
Living(>10 per
hh)

2.33% 1.92% 0% 33.80%

No Vehicle 6.18% 3.57% 0% 77.00%
Group Quarters 3.48% 4.74% 0% 55.70%
Poverty 15.63% 6.46% 0% 55.10%
Multi-Unit
Dwelling

4.63% 5.64% 0% 89.40%

Limited English 1.70% 2.79% 0% 30.40%
Uninsured 10.00% 4.98% 1.70% 42.40%
Daytime LST* 294.65 K 16.62 K 239.00 K 334.00 K
Nighttime LST* 292.73 K 14.61 K 240.21 K 326.94 K
(AGL) Temperature
** 2 m Above
Ground Level

289.11 K 8.58 K 262.81 K 309.40 K

Specific
Humidity**

.008 kg/kg .004 kg/kg .0015 kg/kg .020 kg/kg

Atmospheric
Pressure**

96628.92 Pa 5465.36 Pa 6669.97 Pa 102268.70 Pa

Longwave
Radiation**

327.85 W/m2 51.84 W/m2 170.07 W/m2 438.38 W/m2

Shortwave
Radiation**

208.13 W/m2 72.30 W/m2 38.76 W/m2 359.35 W/m2

Potential
Evaporation**

.22 kg/m2 .10 kg/m2 -.0051 kg/m2 .55 kg/m2

Precipitation** .11 kg/m2 .008 kg/m2 0 kg/m2 .66 kg/m2

Wind Speed 10 m
AGL**

3.45 m/s .69 m/s 1.08 m/s 6.93 m/s

Wind Direction
10 m AGL**

190.52° 35.00° 77.38° 335.61°

Table 1: Descriptive statistics of monthly (year 2020) averages for SVI and environmental variables utilized
in the models and aggregated by U.S. county * MODIS ** NLDAS.

Variable Mean ? Standard Deviation ? 2.5% Credibility Interval 97.5% Credibility Interval Effect on Risk (%)

Intercept -0.65 0.01 -0.66 -0.63
Unemployed -0.09 0.04 -0.17 -0.01 -8.5
Per Capita Income 0.04 0.01 0.01 0.07 4.26
No High School Diploma 0.19 0.02 0.16 0.23 21.44
Age 65+ -0.02 0.01 -0.05 0 -2.26
Age17- 0.11 0.01 0.08 0.14 11.78
Disabled -0.07 0.01 -0.1 -0.04 -6.73
Single Parent 0.03 0.01 0.01 0.05 2.94
Minority 0.19 0.01 0.16 0.21 20.6
Mobile Home -0.01 0.01 -0.04 0.01 -1.3
Crowded Living(>10 per hh) -0.05 0.01 -0.07 -0.03 -5.13
No Vehicle -0.07 0.01 -0.1 -0.05 -7.19
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Variable Mean ? Standard Deviation ? 2.5% Credibility Interval 97.5% Credibility Interval Effect on Risk (%)

Group Quarters 0.03 0.01 0.01 0.05 3.41
Poverty 0.09 0.04 0.01 0.18 9.6
Multi-Unit Dwelling 0.11 0.01 0.08 0.13 11.18
Limited English -0.05 0.01 -0.08 -0.03 -5.1
Uninsured -0.01 0.01 -0.03 0.01 -1.03
LST Day 0 0.01 -0.02 0.02 0.45
LST Night -0.13 0.01 -0.14 -0.11 -11.82
AGL Temperature -0.23 0.02 -0.27 -0.2 -20.7
Pressure 0.12 0.01 0.09 0.14 12.34
Precipitation -0.04 0.01 -0.06 -0.03 -4.07
Wind Direction 0.11 0.01 0.09 0.13 11.79
Wind Speed 0.03 0.01 0.01 0.04 2.84

Table 2: Posterior coefficients and 95% credibility intervals of variables utilized in the model for COVID-19
cases of infection. Grayed out variables are not statistically significant.

Variable Mean ? Standard Deviation ? 2.5% Credibility Interval 97.5% Credibility Interval Effect on Risk (%)

Intercept -1.88 0.05 -1.99 -1.79
Unemployed -0.06 0.07 -0.2 0.08 -5.57
Per Capita Income 0.06 0.02 0.02 0.11 6.65
No High School Diploma 0.3 0.03 0.25 0.36 35.21
Age 65+ 0.21 0.02 0.17 0.26 23.93
Age17- 0.18 0.03 0.13 0.23 19.42
Disabled -0.09 0.02 -0.13 -0.04 -8.37
Single Parent 0.07 0.02 0.03 0.11 7.05
Minority 0.34 0.02 0.3 0.38 40.19
Mobile Home 0.01 0.02 -0.03 0.05 1.09
Crowded Living(>10 per hh) -0.09 0.02 -0.13 -0.05 -8.54
No Vehicle -0.02 0.02 -0.05 0.01 -1.78
Group Quarters 0.03 0.02 -0.01 0.06 3.02
Poverty 0.07 0.07 -0.08 0.21 7.06
Multi-Unit Dwelling 0.11 0.02 0.07 0.15 11.29
Limited English -0.14 0.02 -0.19 -0.1 -13.35
Uninsured -0.01 0.02 -0.05 0.03 -0.73
LST Day 0 0.02 -0.03 0.04 0.48
LST Night -0.12 0.01 -0.15 -0.09 -11.14
AGL Temperature -0.31 0.03 -0.37 -0.25 -26.68
Pressure 0.14 0.02 0.1 0.17 14.66
Precipitation -0.06 0.01 -0.08 -0.03 -5.62
Wind Direction -0.07 0.01 -0.1 -0.04 -6.99
Wind Speed -0.02 0.01 -0.04 0.01 -1.73

Table 3: Posterior coefficients and 95% credibility intervals of variables utilized in the model for COVID-19
deaths. Grayed out variables are not statistically significant.
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Figure 1: A. Cases of COVID-19 per 100,000 count of population in the United States for the year 2020.
(Crimson line = Locally weighted scatterplot smoothing (LOWESS) line of cases). B. Deaths from COVID-
19 per 100,000 count of population in the United States for the year 2020. (Crimson line = Locally weighted
scatterplot smoothing (LOWESS) line of deaths)

Figure 2: Posterior temporally structured; γτ(light blue) and unstructured; ωτ (light red) effects for COVID-
19 cases; panel A, and deaths; panel B (95% credibility envelope) in the U.S. by month for the year 2020.
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A

B

Figure 3: Exceedance probabilities of convolutional spatial effect (e(S∗+U∗)) and spatially structured effect
(e(S∗)) relative risk associated with COVID-19 infection; panel A, and COVID-19 mortality; panel B.

Figure 4: Probabilities of space-time interaction termPr
(
eδit
)

exceeding 1.00 during the year 2020 for U.S.
COVID-19 infections stratified monthly.
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Figure 5: Probabilities of space-time interaction termPr
(
eδit
)

exceeding 1.00 during the year 2020 for U.S.
COVID-19 mortalities stratified monthly.

A
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B

Figure 6: Boxplot of SVI composite score for hot and cold spots for the convolutional spatial effect for
COVID-19 infections; plot A, COVID-19 fatalities; plot B.

Figure 7: Boxplots organized by month, comparing cold spots and hot spots of COVID-19 cases (A) and
deaths (B) to composite SVI score.
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Key Points

1. Patterns of COVID-19 cases and deaths vary considerably through time and space.

2. COVID-19 cases and deaths concentrated in areas of increased social vulnerability at different

times of the year.

3. The  relationship  between  social  vulnerability,  environmental  measurements,  and  COVID-19

cases and deaths is spatially and temporally variable.

Abstract

This study introduces the results from fitting a Bayesian hierarchical spatiotemporal model to

COVID-19 cases and deaths at the county-level in the United States for the year 2020. Two models were

created, one for  cases and one for  deaths,  utilizing a scaled Besag, York,  Mollié model with Type I

spatial-temporal  interaction.  Each  model  accounts  for  16  social  vulnerability  variables  and  7

environmental measurements as fixed effects. The spatial structure of COVID-19 infections is heavily

focused in the southern U.S. and the states of Indiana, Iowa, and New Mexico. The spatial structure of

COVID-19 deaths covers less of the same area but also encompasses a cluster in the Northeast. The

spatiotemporal  trend  of  the  pandemic  in  the  U.S.  illustrates  a  shift  out  of  many  of  the  major

metropolitan areas into the U.S. Southeast and Southwest during the summer months and into the

upper Midwest beginning in autumn. Analysis of the major social vulnerability predictors of COVID-19

infection and death found that counties with higher percentages of those not having a high school

diploma and having non-white status to be significant. Age 65 and over was a significant factor in deaths

but not in cases. Among the environmental variables, above ground level (AGL) temperature had the

strongest effect on relative risk to both cases and deaths.  Hot and cold spots of COVID-19 cases and

deaths derived from the convolutional spatial effect show that areas with a high probability of above

average relative risk have significantly higher SVI composite scores. Hot and cold spot analysis utilizing

the  spatiotemporal  interaction  term  exemplifies  a  more  complex  relationship  between  social

vulnerability, environmental measurements, and cases/deaths. 

Plain Language Summary

COVID-19 affects different locations at different points in time and understanding its impact on

communities is an imperative research effort. Communities that are considered socially vulnerable – less

resilient to hazards – are disproportionately impacted by pandemics and other environmental stresses.

In  this  study,  we utilize  a modelling  approach that  accounts  for  COVID-19 cases  and deaths,  social

vulnerability, environmental measurements and both space and time domains at the U.S. county level
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from March 1 – December 31, 2020. Throughout much of the time period, cases were clustered in the

U.S. South and the states of Indiana, Iowa and New Mexico. Deaths clustered (although less in extent) in

many of these same areas along with the addition of some urbanized counties in the U.S. Northeast.

Measurements  of  social  vulnerability  were higher  in  these longer  term clusters  for  both cases  and

deaths. Examining short-term clusters on a monthly basis, COVID-19 cases and deaths focused more

heavily in socially vulnerable areas during the summer and autumn months respectively. The individual

social vulnerability variable of not having a high school diploma and non-white status were the most

significant  contributors  to  relative  risk  to  both  cases  and  deaths.  Age  65  and  over  contributed

significantly to deaths but not to cases. Temperature, with an inverse relationship, had the strongest

effect on risk among the environmental measurements. The remaining variables had differing levels of

importance in  the models.   Social  vulnerability  measures were higher in areas where there was an

increased risk of COVID-19 infection and death during the summer and autumn respectively.

Data

Data utilized for the conclusions in this study are available on the Indiana University – Purdue 

University at Indianapolis Data Repository. https://doi.org/10.7912/D2/23  (Johnson & Ravi, 2021). 

These data are in CSV format and readily importable into the R statistical package or other platforms.

Index Terms and Keywords

Index Terms: 0240 Public health

                       0230 Impacts of climate change:  human health

                       0299 General or miscellaneous

Keywords:  Spatial epidemiology

                    Social vulnerability

                    COVID-19 pandemic

                   Bayesian spatiotemporal disease mapping

                     Environmental determinants of COVID-19

                     Remote sensing and COVID-19 
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1. Introduction

The  Coronavirus  Disease  2019  (COVID-19,  ICD-10-CM,  U07.1,  2019-nCoV  acute  respiratory

disease) pandemic is currently affecting much of the world. As of January 30, 2021, 11 months (325

days) into the pandemic and one year since the WHO declared COVID-19 a Public Health Emergency of

International Concern (PHEIC), there are over 100 million confirmed cases of the disease and over 2

million deaths within 223 countries, areas, or territories  (WHO 2021).  In the United States, as of the

same time, there are over 25 million confirmed cases and close to 500,000 deaths; 25.25% of cases and

19.62% of deaths worldwide (U.S. CDC 2021). The U.S. only accounts for 4.23% of the global population,

so it is disproportionately affected (U.S. Census Bureau, 2021)

Pandemics, as well as other natural and man-made hazards, disproportionately impact socially

vulnerable individuals and communities (Freitas & Cidade, 2020; Gaynor & Wilson, 2020; Seddighi, 2020;

Usher et al., 2020). The past decade has witnessed an increasing trend in research activity focusing on

social  and  environmental  vulnerability  as  it  relates  to  geophysical  and  man-made  hazards.  More

recently, there has been vigorous interest in social vulnerability as it relates to the ongoing COVID-19

pandemic  (Bilal  et  al.,  2020;  Coelho  et  al.,  2020;  Dasgupta  et  al.,  2020;  Gaynor  &  Wilson,  2020;

Khazanchi et al., 2020; Kim & Bostwick, 2020; Lancet, 2020; Mishra et al., 2020; Mohanty, 2020; Neelon

et al., 2020; Snyder & Parks, 2020). Additionally, researchers have attempted to construct COVID-19-

specific vulnerability indices, examine spatial relationships or integrate both social and environmental

determinants into a complete model, illustrating areas more prone to adverse impacts (Khazanchi et al.

2020; Snyder and Parks 2020; Karaye and Horney 2020).

However, there is a paucity of studies focusing on the spatiotemporal nature of the pandemic and

the relationships between social and environmental determinants of COVID-19 vulnerability. This study

focuses on a spatiotemporal  analysis  of  the COVID-19 pandemic in the conterminous United States

during the year 2020. This investigation not only adds to the growing literature on vulnerability and

COVID-19, it also illuminates some of the spatial and temporal underpinnings of the pandemic in the

U.S. In order to achieve this, the presented research has three specific aims:

1. Highlight  the  spatiotemporal  associations  between  social  vulnerability,  environmental

measurements and both cases of and deaths from COVID-19 aggregated by U.S. counties.

2. Model the spatial-temporal dimensions of the pandemic and determine if socially vulnerable

counties are more or less impacted at certain times of the year.
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3. Create two complementary parsimonious spatiotemporal models - one (1) for COVID-19 cases,

and one (1) for COVID-19 deaths - that take into account social vulnerability, environmental

measurements, and spatial and temporal random effects.

2.  Background

2.1. COVID-19 as a U.S. Health Disparity

The disproportionate impact of COVID-19 on Black, Indigenous and People of Color (BIPOC) in

the U.S.  is  ongoing as  of  early  2021  (LaVeist  2005;  Shi  and Stevens 2021).  A  number of  disparities

associated with nonwhite status have been examined in the literature. This list includes among others

cardiovascular disease, chronic respiratory conditions, hepatitis, and cancer (LaVeist 2005). The fact that

COVID-19 is disproportionately represented in U.S. communities of color is not surprising  (Singu et al.

2020).  The reason(s) for the disparity in representation of COVID-19 cases and deaths within the U.S.

population is likely multifaceted encompassing a variety of cultural, social, environmental and economic

contributors. While Persad et al. have noted that “racial identity is not an inherent risk factor”, “COVID-

19 disparities reflect the health, environmental, and occupational effects of structural racism” (Persad et

al., 2020). The popular press and media in the U.S. has highlighted the underfunding of preventative

public health infrastructure, an inefficient health-care system, inadequate governmental response, and

systemically racist policies that have exacerbated the pandemic’s effects. However, one highly probable

contributor  is  the  number  and  extent  of  socially  vulnerable  communities  within  the  U.S.  that

demonstrate reduced  resiliency in the face of a hazard (Shi and Stevens 2021; Karaye and Horney 2020;

Khazanchi et al. 2020). 

2.2. Social Vulnerability and COVID-19

Social  vulnerability  (SV) as a concept refers to a society or communities’  impaired ability  to

respond to an external stressor.  These external pressures can be a single incident or the compounding

consequences of multiple events leading to deleterious effects on the society or community.  Studies

highlighting the negative impact  COVID-19 has  on those considered socially  vulnerable  have grown

exponentially since the beginning of the pandemic. Here we highlight research that focuses on social

vulnerability as a covariate in geographic ecological regression studies.  Many of these efforts come to

similar conclusions; albeit with different variables being more or less related to COVID-19’s effects. The

studies  highlighted  utilize  the  U.S.  Centers  for  Disease  Control  and  Prevention’s  (U.S.  CDC)  Social

Vulnerability  Index (SVI),  which we apply  in  this  study  (CDC’s  Social  Vulnerability  Index  (SVI),  2021;

Flanagan et al., 2011).
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Khazanchi et al., using a quasi-Poisson regression approach, discovered that counties considered

vulnerable had a 1.63-fold greater risk for COVID-19 diagnosis and a 1.73-fold greater risk for COVID-19-

related  death  (Khazanchi  et  al.,  2020).  When  considering  only  the  language  and  non-white  status

domain of vulnerability they found a 4.94 and 4.74-fold increase in diagnosis and death respectively.

Examining  counties  broken  into  the  most  vulnerable  by  socioeconomic  status,  housing  and

transportation deficiencies resulted in  a higher  relative risk  (i.e.  were at  a greater  risk  of  COVID-19

infection and death). Further effort by Nayak et al., examining 433 U.S. counties (counties with >= 50

COVID-19 cases as of April 4, 2020), using a generalized linear mixed-effect model, found that higher SV

was associated with an increased COVID-19 case fatality rate (CFR) (Aditi Nayak et al. 2020). The relative

risk further increased after adjusting for age 65 and over. However, the relationship between the overall

SVI score and COVID-19 incidence was not statistically significant. In a study by Neelon et al (2020)

utilizing COVID-19 cases and deaths within a Bayesian hierarchical negative binomial model between

March 1 and August 31, 2020, counties were classified based on SVI composite percentiles (Neelon et

al., 2020). Cases and deaths were examined daily for all U.S. counties after adjusting for percentage

rural, percentage poor or in fair health, percentage of adult smokers, county average daily PM2.5 and

primary care physicians per 100,000. By March 30, 2020 relative risk became significantly greater than

1.00 in the most vulnerable counties. Upper SVI quartile counties had higher death rates on average

beginning on March 30, 2020. By late August the lower quartiles for SVI began to exhibit increasing

levels of cases and deaths. Dasgupta et al. (2020), examined COVID-19 cases from June 1 – July 25, 2020

relating them to the CDC’s SVI.  Areas with a higher proportion of individuals  with nonwhite status,

housing density, and crowded housing units were more likely to become COVID-19 hot spots; defined as

areas where there is a >60% change in the most recent 3-7 day COVID-19 incidence rate (Dasgupta et al.,

2020).  Among the hot spot counties, those with greater SVI composite scores had higher COVID-19

incidence rates. Karaye and Horney (2020) examined local relationships between COVID-19 case counts

and  SVI  utilizing  geographically  weighted  regression  (GWR)  (Karaye  &  Horney,  2020).  The  study

examined data from January 21 through May 12, 2020 and found, (after adjusting for population size,

population density, number of persons tested, average daily sunlight, precipitation, air temperature,

heat index, and PM2.5) that non-white status, limited English, household composition, transportation,

housing and disability effectively predicted case counts in the U.S. Snyder and Parks (2020), in another

spatial  analysis  (utilizing  GWR),  which  did  not  utilize  the  CDC  SVI,  found  that  socio-ecological

vulnerability to COVID-19 varied across the contiguous U.S., with higher levels of vulnerability in the

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164



Southeast and low vulnerability in the Upper Midwest, Great Plains and Mountain West (Snyder & Parks,

2020).

2.3. Environmental Determinants of COVID-19

Even though we are only 11 months into the pandemic, there is growing evidence regarding

environmental  determinants  of  COVID-19 infection and mortality.  Initially,  it  was hypothesized that

COVID-19 may behave like many other respiratory infections and cases would subside in the summer

months in the Northern Hemisphere due to increases in temperature (Hassan et al., 2020; Jamil et al.,

2020; Prata et al., 2020). Therefore, many researchers have concentrated on temperature and less on

other  meteorological  measurements  as  a  factor  in  spread  of  SARS-CoV-2.  A  study  conducted  in

Bangladesh, found that high temperature and high humidity significantly reduce the transmission of

COVID-19 when analyzed using ordinary least squares regression  (Haque & Rahman, 2020).  Another

analysis utilizing log-linear generalized additive models across 166 countries, revealed that temperature

and relative humidity were also associated with a decrease in COVID-19 cases (Y. Wu et al., 2020).  A 1°

C  increase  in  temperature  was  associated  with  a  3.08%  reduction  in  daily  new  cases  and  1.19%

reduction in daily deaths across the studied countries. Relative humidity had a similar effect on cases

and deaths. However, this is not surprising given the calculation of relative humidity employs a function

of temperature. Rouen et al. , utilizing micro-correlation analysis using a 10-day moving window, found a

negative  correlation  between  temperature  and  outbreak  progression  (Rouen  et  al.,  2020).  Their

research was conducted across 4 continents in both hemispheres. Sarkodie and Owusu (2020), using

panel  estimation  techniques,  focused  their  research  on  the  top  20  countries  with  COVID-19  cases

between January 22 and April 27, 2020 and found that high temperature and high relative humidity

reduced the transmission of  COVID-19  (Sarkodie  & Owusu,  2020).  However,  low temperature,  wind

speed, dew/frost point, precipitation and surface pressure increased the infectivity of the virus. 

At a much finer scale, research in China at 31 different provincial levels revealed a “biphasic”

relationship with temperature, using distributed lag nonlinear models  (P. Shi  et al.,  2020).  Epidemic

intensity  was  slightly  reduced  on  days  following  higher  temperatures  and  was  associated  with  a

decrease in relative risk. An investigation into temperature and precipitation’s relationship with COVID-

19 in Oslo, Norway found maximum temperature and average temperature to be positively associate

with COVID-19 transmission and precipitation to have a negative relationship,  using non-parametric

correlation estimaton (Menebo, 2020). Research in the sub-tropical cities of Brazil uncovered a negative

relationship between temperature and COVID-19, using generalized additive models and polynomial
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linear regression  (Prata et al., 2020).  Bashir et al. (2020) in New York City, New York, USA, between

March and April  of 2020, found a significant positive correlation between average temperature and

minimum temperature on total cases, using Kendall and Spearman rank correlation tests (Bashir et al.,

2020). Average temperature was significantly positively related to COVID-19 mortality and the minimum

temperature was associated with new cases. Another study, utilizing multi-variate regression focusing

on  all  U.S.  counties  from  the  beginning  of  the  pandemic  to  April  14,  2020  found  that  higher

temperatures were associated with a decrease in cases but not deaths (Li et al., 2020). This sample of

studies  demonstrates  –  particularly  at  finer  spatial  and  temporal  scales  and  depending  on  how

temperature is sampled – the relationship between environmental variables and COVID-19 are complex

and variable.

3. Methods

3.1. Study Area and Timeframe

This  study  focuses  on  the  counties  (sub-state  administrative  districts)  located  in  the

conterminous United States. We selected this subset due to Alaska and Hawai’i being non-contiguous

and  the  error  and  complexity  these  “islands”  would  introduce  into  the  spatial  weighting  matrices

necessary for the spatiotemporal analysis. Furthermore, we focus on the timeframe from March 1 to

December 31, 2020 (10 full months or 307 days); the first calendar year of the pandemic in the United

States.

3.2. Data Collection

The data described below in steps 3.2.1 – 3.2.4, was used to create the dataset for the analysis

(Johnson & Ravi, 2021).

3.2.1. COVID-19 Cases and Deaths

COVID-19  cases  and  deaths  were  collected  from USAFACTS  (US Coronavirus  Daily  Cases  by

County,  2021;  US Coronavirus Daily  Deaths by County,  2021).  These data  were retrieved in  comma

separated values (csv) format and were grouped into monthly cases and deaths for all counties of the

contiguous U.S. (n = 3106); two counties were missing data. The expected number of cases and deaths,

E,  per county  areai
, was determined by calculating the number of cases and deaths per month and

computing the standardized infection rate (SIR) and standardized mortality rate (SMR) for each area for

each month; the denominator in the rates = Eit,. This value is later used as an offset; expected number of

cases/deaths at area i during time t .
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3.2.2. Social Vulnerability

In  this  analysis  we  utilize  the  U.S.  CDC’s  Social  Vulnerability  Index  (SVI)  (CDC’s  Social

Vulnerability  Index (SVI),  2021; Flanagan et  al.,  2011).  The SVI  is  composed of  18 variables that are

related to social vulnerability and the local socio-ecology at the county or census tract-level for the

entire U.S. We chose the SVI because it is highly cited in the literature and while there are inherent

limitations in all vulnerability indices it demonstrates greater accuracy and relevancy in many studies

(Bakkensen et al., 2017; Rufat et al., 2019; Spielman et al., 2020; Tate, 2012). The SVI variables are listed

below in Table 1. 

<<<Insert Table 1>>>

We utilize the percentage ((variable/total  population) * 100) of each variable (except for per capita

income where we used U.S. Dollars $) for all the selected counties standardized by their respective z-

scores.  The  SVI  also  includes  4  themes,  based  on  vulnerability  domains,  and  a  composite  score  of

vulnerability. We utilize the composite SVI score for comparison of counties after modeling.

3.2.3. Land Surface Temperature 

Daily  land  surface  temperature  (LST)  measurements  were  collected  from  the  Moderate

Resolution Imaging Spectroradiometer (MODIS) TERRA satellite system; MOD11a1.006  (Thome, 2020;

Wan,   Zhengming  et  al.,  2015).  MODIS  data  has  a  low spatial  resolution (1  km)  but  a  high (daily)

temporal resolution.  This remotely sensed data set, an emissivity corrected land surface temperature

image for both daytime and nighttime, was collected from Google Earth Engine™ using geemap (Gorelick

et al., 2017; Q. Wu, 2020). After collection, the daily values were averaged per month for each county in

the conterminous U.S. resulting in a monthly average for daytime and nighttime LST. Areas where cloud

cover interfered with image acquisition were assigned a NA value. These monthly averaged data were

standardized by z-score.

3.2.4. Meteorological Measurements

For additional environmental variables, we utilized the North American Land Data Assimilation

System (NLDAS). NLDAS contains land surface model datasets available hourly at 1km spatial resolution

and is also accessible in Google Earth Engine™ (Cosgrove et al., 2003; Gorelick et al., 2017).  All but one

of the environmental variables listed in Table 2 were averaged by day and then by month for each

county and standardized by their respective z-scores.  However, for precipitation, we calculated a daily

sum  and  then  a  monthly  average  before  standardizing.  After  adjusting  for  multi-collinearity,  the
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measurements for specific humidity, longwave radiation, shortwave radiation and potential evaporation

were removed. Specific humidity is the ratio of the mass of H20(v) per total mass of the air parcel (kg/kg).

This measurement is not a function of temperature and water content like relative humidity, but we still

found a  greater  than 80% correlation across  all  counties throughout  the time period  with  2m AGL

temperature. The other extraneous environmental variables had correlation coefficients above .80 with

2m AGL temperature. 

3.3. Modelling and Specification

3.3.1. Bayesian Spatial-Temporal Framework

This study utilizes a Bayesian hierarchical spatiotemporal modeling approach initialized within

the  freely  available  R  Statistical  platform  and  the  R-INLA  package  (R:  The  R  Project  for  Statistical

Computing,  2021; Rue et al.,  2009).  Furthermore, all  models developed in this study were executed

within  Indiana  University’s  High  Performance  Computing  (HPC)  environment (Research  and  High

Performance  Computing,  2020).  Bayesian  hierarchical  modeling  provides  a  flexible  and  robust

framework where space-time components  can be modeled in  a  straightforward manner.  There are

numerous introductions to Bayesian disease mapping to which we direct the novice (Best et al., 2005;

Blangiardo et al., 2013; A. B. Lawson, 2013; A. Lawson & Lee, 2017; Moraga, 2020). 

The  Bayesian  hierarchical  methodology  offers  many  benefits.  For  example,  when  creating

disease models and relating counts to covariates, it is unreasonable to assume that one can collect all

the necessary variables that account for a given response. The approach utilized here, allows for the

inclusion of these “unknown” covariates as random effects within the model (Bernardinelli et al., 1995;

Best et al., 2005; Congdon, 2019). These effects, in the spatial-temporal domain, account not only for

spatial structure (spatial autocorrelation) and noise (overdispersion), but for temporal correlation and

interaction between space and time  (Besag et al., 1991; N. A. Samat & Pei Zhen, 2017; N.A Samat &

Mey, 2017; Ugarte et al., 2014). Also, it is appropriate to utilize the standardized incidence rate (SIR),

number  of  cases/expected  number  of  cases,  and  standardized  mortality  rate  (SMR),  number  of

deaths/expected number  of  deaths,  for  country-level  disease modelling.  However,  when examining

disease measurements at a finer level (i.e. county-level or smaller), the SIR/SMR, a surrogate for relative

risk,  can be unstable and suffer large fluctuations due to some areas possessing a small  population

relative to the incidence of  disease.  The Bayesian modelling  approach utilized  “smooths”  values  of

relative risk  through space and time, by “borrowing” information both locally  and globally,  thereby

reducing the impact of these instabilities (Bernardinelli et al., 1995; Besag et al., 1991). 

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286



In order to model relative risk, observed counts - in this study, COVID-19 cases of infection and

deaths -  Yi  are modelled using a Poisson distribution with mean  Eiθi;  E = expected counts,  θi  is  the

relative  risk  (RR)  of  area  i.  The  logarithm  of  RRi is  the  sum of  an  intercept  α  and  random effects

accounting for extra-Poisson variability.

Y i Poisson (Ei θi ) ,i=1,…,3106

log (θi )=α+S i+U i

α is the overall risk in the study area and  S  and U are spatial random effects for area i modelling the

spatial dependency structure (S) and the unstructured uncorrelated noise (U). Along with the inclusion

of covariates, that determine risk (i.e. social vulnerability, environmental measurements), and/or other

random effects the overall spatial model can be represented as

log (θi )=d i β+Si+U i

di  is a vector consisting of the intercept (α) and β is a coefficient vector; the fixed effects of the model.

The parameters of the 27 fixed covariates included in this study are each assigned β1 :27 Normal (μ ,σ )

prior distributions.  

A widely cited specification for the random spatial effects S and U, the Besag, York, Mollié (BYM)

model, is regularly utilized in disease mapping studies (Besag et al., 1991). In the BYM model, the spatial

random effect  S is assigned a conditional autoregressive (CAR) distribution; smoothing the associated

data  based on a specified neighborhood structure,  where neighbors  are  defined as areas sharing  a

common border. 

Si∨S−i N (Sδ i ,

σS
2

nδ i

)
Sδi=nδ i

−1∑
j ∈ δi

S j

δ i=set of neighbors

nδ i
=number of neighbors of areai
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The unstructured component U is modeled as independent and identically distributed (IID) with mean of

zero and variance = σ U
2 .  Therefore, data is shared both locally through the S component and globally

through the U component.

In this study we follow the parameterization of the Besag, York, Mollié (BYM) model proposed

by Simpson at al. (2015) that enables assigning penalized complexity (PC) priors (Simpson et al., 2015).

This so-called “BYM2” model, incorporates a scaled spatially structured and unstructured component (S *

and U*) and is defined as:

log (θi )=d i β+
1

√τ
(√1−φ S¿+√φU ¿)

The mixing - between S* and U* - parameter φ (0≤φ≤1) measures the proportion of variance explained

by S*. This scales the BYM2 model making it equal to the spatial model when φ = 1 and equal to only

unstructured  spatial  noise  when  φ =  0  (Riebler  et  al.,  2016).  We  set  priors  for  these  parameters

following  suggestions  by  Simpson  et  al.,  2015.   PC  priors  as  their  name  suggest  penalize  model

complexity. In this case they penalize based on the degree with which a given model deviates from a

foundational assumption of no spatial dependency (φ = 0). Conjoining the random spatial effects for

each  area  (S* +  U*)  is  termed the  convolutional  spatial  component.  The  exponential  factor  for  the

convolutional  spatial  effect  e ( S¿+U ¿ ) provides  one  with  RR contribution of  the random spatial  effects

additively. Repeating this procedure for either S* or U* will provide the relative contribution of each and

allow  the  determination  of  the  comparative  contribution  to  variance  (spatial  fraction).  This  scaling

parameterization  makes  the  BYM2  representation  more  interpretable  between  models  than  the

unscaled BYM model.

The above specification for log(θi) can be extended into the spatial-temporal domain by the

addition of further random effects.

log (θit )=d i β+
1

√τ
(√1−φ S¿+√φU ¿)+γ t+ω t+δit

Here, γt∧ωt
, correspondingly represent the temporally structured and temporally unstructured random

effect. Typically, γt
, is modeled as a conditional autoregressive random walk of either order one or two

(RW1, RW2), but there can be additional specifications (i.e. seasonal). In the present study, we model

the  temporally  structured  effect  as  RW1,  and  specify  ωt
 as  a  Gaussian  exchangeable  IID  (
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ωt Normal(0 ,
1
τω

)¿.  The space-time interaction component  δ it
, represents a parameter vector that

varies  jointly  through  space  and  time.  This  vector  allows  for  deviations  from  the  space  and  time

structure  that  expresses  both dynamic  spatial  changes from one time frame to another and active

temporal patterns from one area to another (Knorr-Held, 2000). Therefore, mapping  δ it , characterizes

short-term clusters of disease activity that deviate from the space-time average over the study area at

time t.

3.3.2. Ecological Regression

The covariates representing SVI and environmental measurements (after correcting for multi-

collinearity)  were  included  in  the  models  as  fixed  effects,  to  examine  which  measurements  are

intricately  linked to the spatiotemporal  processes  of  the pandemic  in  the U.S.  This  study opted to

include all variables that logically fit into the framework of vulnerability regardless of their statistical

significance provided there is  limited issues with multi-collinearity.  In addition to accounting for the

variables,  much of  this  decision is  based on the potentially  poor inference generated by  utilizing  a

stepwise framework and the Deviance Information Criteria (DIC) not significantly decreasing when the

variables were removed (Greenland et al., 2016; Huberty, 1989). Even though a particular variable might

not be statistically significant it is nonetheless important to see its effect in the model and to compare

between COVID-19 cases and deaths when an alternative approach, aimed at reducing variables based

on  their  significance,  might  result  in  less  comparable  models.  Furthermore,  since  the  response  is

logarithmic we calculate the exponential of the mean of the β coefficients and subtract from 1.00 to

determine each variables effect on relative risk.

3.3.3. Model Selection Criteria

Deviance  Information  Criteria  (DIC),  was  employed  to  select  the  most  parsimonious  model

(Spiegelhalter  et  al.,  2014).  During  exploratory  data  analysis,  we  examined  two  different  prior

specifications on the covariates:

β1 :27 Uniform (−∞,+∞ )

β1 :27 Normal ( μ , σ )

These resulted in minimal changes to the models and we selected the specification for the covariates

which produced the lowest DIC score; in this case the normal prior which produced a DIC score of ~10

less than the uniform specification (DIC Cases: Normal 243958.04  vs. Uniform 243969.28 / DIC Deaths:
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Normal 90824.00 vs. Uniform 90835.76); a somewhat significant reduction (Spiegelhalter et al., 2014).

Furthermore, we utilized all 4 types of spatial-temporal interactions suggested by Knorr-Held (2000) and

found that Type I  best fit  our data,  temporal  stratification, and modeled process. Therefore, in our

modeling approach we imposed no restrictions on when or where a space-time anomaly could occur

(Type I spatial-temporal interaction). 

3.4. Disease Mapping

Another key benefit of Bayesian inference is the creation of the posterior distribution where one

can generate the probability of exceeding a certain threshold; the so-called exceedance probability. For

this purpose, we mapped the convolutional spatial effect, e ( S¿+U ¿), and the spatially structured effect, e ( S¿),

at the county level. Also, we plotted the modeled space time interaction,  eδ it, which represents short-

term clusters of activity relative to the study-area average at time  t. In these maps we followed the

classification rule followed by Richardson (2004); areas where Pr (θ it≥1 ) is≥ .8, is considered a hot spot,

Pr (θ it≥1 ) is .8≥ .2, is considered areas statistically similar to the national average, and Pr (θ it≥1 ) is≤ .2,

signifies  a  cold  spot;  areas  that  represent  infection/mortality  rates  below  the  national  average

(Richardson et  al.,  2004).  Counties that  are  considered  hot  spots  through  the convolutional  spatial

effect, the spatially structured effect, and the space time interaction component are compared to the

SVI composite score of the combined average and cold spot areas; areas where Pr (θ it≥1 ) is<.8 (non-

hot spot areas). This assessment, utilizing notched box-plots, is employed to examine differences in the

SVI composite score between the affected areas and in the case of eδ it, different times. 

3.5. Limitations and Caveats

A potential limitation of this study - likely not a significant constraint - is the lack of greater

temporal resolution with regard to the social vulnerability index. In the case of the CDC’s SVI, the index

is calculated either yearly or every other year. This study focuses on COVID-19 on a monthly basis and

there is no available capability of measuring changes in social vulnerability at that temporal resolution.

That  considered,  it  is  likely  that  many  of  the  individual  variables  that  are  used  to  define  social

vulnerablity do not change dramatically from one month to the next (Flanagan et al., 2011; Neelon et al.,

2020; L. Shi & Stevens, 2021). Also, the internal limitations present in the SVI are extend to our analysis

(Bakkensen et al., 2017; Rufat et al., 2019; Tate, 2012)

Another potential limitation is the number of zeros the dataset for COVID-19 fatalities contains;

at least initially. We could have opted for a Zero-Inflated Poisson model for deaths but decided to keep
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the hierarchical  specifications and structure  as  consistent  as  possible  between COVID-19 cases  and

deaths.  By  doing  so,  we  eliminate  a  level  of  complexity  within  the  model  and  maintain  their

comparability. 

Finally, we decided not to place temporal lags on the environmental  variables in relation to

COVID-19 cases and deaths. Estimates for a latency in exposure to COVID-19 and onset of symptoms

ranges from 2-24 days (CDC, 2020, p. 19; Grant et al., 2020). The WHO estimates that there is a temporal

lag of 2-8 weeks from onset of symptoms to death in the most severe cases (Baud et al., 2020; Woolf et

al., 2021). Given these large ranges of temporal associations and the aggregation of the data by month,

we opted to compare SVI and environmental measurements on the date where a case or death was

reported.  Therefore,  the  coefficients  should  be  interpreted  in  the  proper  context  and  with  this

consideration in mind.

4. Results

4.1. Temporal Trends in COVID-19 Cases and Deaths

COVID-19 cases by month per 100,000 people is presented in Figure 1A. Cases steadily increased

until October, with an exponential increase through October until the end of 2020.  Deaths from COVID-

19,  presented in  Figure  1B,  increased exponentially  between March and April,  then decreased and

remained fairly stable through October, with another exponential increase in November and December. 

<<<Insert Figure 1>>>

4.2. Spatiotemporal Ecological Regression

The coefficients resulting from the spatiotemporal ecological  regression model for COVID-19

infections are presented in Table 2. The variables grayed out are considered not statistically significant

since 0 falls within the 95% credibility interval  (Wang et al., 2018). The variables unemployed, age 65

and up,  disabled,  crowded living,  no  vehicle,  limited  English,  LST  nighttime,  AGL temperature,  and

precipitation have a negative relationship with COVID-19 infection risk. The strongest effect on cases is

from the variable “no high school diploma” with a 20.60% increase in risk from a one standard deviation

(6.34%) increase. AGL temperature is the second strongest with a 20.70% decrease in risk resulting from

an 8.58k (1 standard deviation) increase. The remaining effects of each variable are presented in Table

2. 

<<<Insert Table 2>>>
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Table  3  contains  the  coefficient  results  from  the  posterior  distributions  of  the  ecological

regression model for COVID-19 fatalities.  The variables with the strongest impact (percent increase) on

risk  to  COVID-19  deaths  are  non-white  status  (+40.19%),  no  high  school  diploma  (35.21%),  AGL

temperature (-26.68%), age 65 and over (23.93%), and age 17 and under (19.42%) after a standard

deviation  increase  in  each  variable  respectively.  Unemployed,  single  parent,  mobile  home,  group

quarters, poverty, uninsured, LST daytime were not statistically significant.

<<<Insert Table 3>>>

4.3. Modelled Temporal Trend

Figure 2 exhibits the temporally structured  γt and unstructured  ωt effects for both cases and

deaths.  The left panel  shows the modeled structured temporal  effect  for  cases  with  all  covariates,

following  the  random  walk  order-1  and  IID  specification  for  unstructured  temporal  effects.  The

structured component shows an increase in relative risk until August with a decrease for the remainder

of the year.  The unstructured effect tends to fluctuate between being slightly above 1.00 to slightly

below 1.00; with its 95% credibility envelope easily encompassing 1.00. In the right panel for deaths, γt,

increases until  June, drops in July,  increases until September,  and drops until the end of  the study

period.  Similar to the cases panel,  ωt, fluctuates between being slightly above 1.00 to slightly below

1.00. 

<<<Insert Figure 2>>>

4.4. Spatial Effects

The  convolutional  spatial  effect  and  the  spatially  structured  effect  for  COVID-19  cases  are

mapped in Figure 3A.  These figures show the probability that the relative risk exceeds 1.00; the national

average. There is a strong clustering of high probability for the convolutional spatial effect in Florida,

Alabama, Mississippi, Louisiana, Arkansas, Tennessee, Iowa, and Arizona. There is sporadic clustering of

high probability  most  prominent  of  which is  in  Indiana,  Kansas,  and Colorado.   There  is  significant

clustering  of  low probability  areas in the Northeast,  Pacific Northwest,  Upper Atlantic Coast,  Upper

Midwest, Michigan, and West Virginia. The spatially structured effect for cases follow a similar pattern to

the convolutional effect as it explains 82.7% of the variance in the overall spatial effects. Key differences

include some higher probabilities in Connecticut and Iowa. Probability is lower in Southern California,

Michigan, and New Mexico.

<<<Insert Figure 3>>>
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Figure 3B shows exceedance probabilities for the convolutional spatial effect and the spatially

structured effect for deaths. There is a strong clustering of high probabilities in New Mexico, Indiana,

Louisiana,  Eastern  Pennsylvania,  and  the  Northeast  megalopolis.  Higher  probabilities  are  scattered

throughout the Southeast and portions of the Midwest into Montana, Idaho and Eastern Oregon. The

spatially structured effect accounts for 60.9% of the variance for (S *+U*) so similarities are expected,

although not as high of a degree as in the spatial effect for cases. The most notable difference is the

increase in clustering in the Southeast, the increase in Indiana, and less sporadic dispersion of counties

in the Midwest into the Mountain West.

4.5. Spatiotemporal Interaction

4.5.1. Cases

Exceedance probabilities using 1.00 as a threshold for the spatiotemporal interaction term are

presented in Figure 4, for cases, and Figure 7, for deaths. Initial clustering of high probabilities in March

are noted in the Northeast, especially New York, Florida, Louisiana and counties containing some of the

major metropolitan areas around the country (i.e., Atlanta, Denver, Detroit, Chicago, Indianapolis, San

Diego, Los Angeles, San Francisco, Portland, and Seattle). Lower probabilities are less stable than in April

and this is likely due to the average risk being so low at this point in time. In April, the areas noted

previously in March have expanded in what appears to be a diffusion pattern; in many cases doubling in

extent.  Lower  probability  areas  are  more  prominent  and are  focused in  the Upper  Midwest  south

through the Great Plains into Texas. There is another notable area of low probabilities in Ohio south

through West Virginia, west into Kentucky and further south into Tennessee.  In May, areas previously

noted at high probability have remained fairly stable, with a notable decrease in probability in upper

New York, the Upper Northeast and Michigan. There is a crescent of lower probability extending from

Western Pennsylvania, through West Virginia and west to Kansas and Oklahoma.  There is a notable

increase in cases in Minnesota and upper Iowa.  

By June there are some significant changes to areas of high probability. The pandemic seems to

have settled much more into the southern U.S. focusing again in Florida, Alabama, Mississippi, Louisiana,

eastern Texas, South and North Carolina. Probabilities have decreased in the Northeast and throughout

much of the Midwest apart from much of Iowa and southern Minnesota. High probabilities remain in

Arizona  and  have  expanded  into  Utah,  Nevada,  and  much  of  California.   July  shows  a  further

solidification of  the pandemic in the southern U.S. extending from the Atlantic to the Pacific coast.

Arizona northward into Utah and Idaho has joined this high probability area.  Metropolitan areas in
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Minnesota, Wisconsin, Ohio, and Pennsylvania are showing renewed higher probabilities. The Northeast

and the middle Midwest are the lowest probability areas, with Illinois and Indiana continuing a trend of

decreasing activity.  By August, the pandemic is shifting out of the southern U.S. and into the Midwest

with increases from Tennessee into Minnesota, North Dakota, and South Dakota. The Mountain West is

exhibiting  an  increase  in  activity  as  is  much  of  California.  Arizona  and  New Mexico  are  showing  a

decrease in probability and the Northeast remains firmly in the lower category.

September, witnesses the pandemic lessening in the southern U.S., but the increases previously

noted  in  the  Upper  Midwest  have  become  even  more  pronounced,  with  Missouri,  Illinois,  Iowa,

Wisconsin, Minnesota, Kansas, Nebraska, and North and South Dakota heavily burdened. The pandemic

continues to lessen in Arizona and California. By October the pandemic continues to rage in the Upper

Midwest  affecting much of  the counties in  the states  from Wisconsin  to  Idaho.  There is  a  notable

lessening in southern Minnesota and Iowa. The pandemic continues to subside in the southern U.S. and

remains stable in the Northeast. November, expresses a further strengthening in the upper Midwest

with areas previously showing a lessening pattern overrun by cases. Much of the U.S. is affected apart

from the southern U.S., California, Arizona, Washington, and the Northeast.  Through December,  the

pandemic has diminished in the Upper Midwest and shifted with higher probabilities into the Northeast

and Texas and has further reasserted itself on the Pacific Coast. The upper Midwest and extreme South

continue a waning effect apart from Florida which displays a resurgence.

<<<Insert Figure 4>>>

4.5.2. Deaths

The spatiotemporal interaction term probability exceedances for deaths are shown in Figure 5.

As expected there is not much activity in March apart from a deaths in some major cities. By April,

deaths begin to show in many of the major metropolitan areas of the U.S. with a clustering of high

probabilities in the New York City area, Chicago, Detroit, Indianapolis, Atlanta, San Diego, Los Angeles,

San  Francisco,  Portland,  and  Seattle.  Through  May,  many  of  these  areas  of  high  probability  have

expanded in a similar apparent diffusion pattern to cases a month or so earlier. Much of the Northeast

megalopolis  is  affecting  along  with  Detroit,  Cleveland,  Pittsburg,  Chicago,  Indianapolis,  Nashville,

Birmingham, New Orleans, and counties in New Mexico, Arizona, and Southern California. In June, many

of  the  counties  around these  same cities  have become even  more heavily  burdened,  with  notable

clusters in the Northeast, Ohio, eastern Michigan, northern Illinois, central Indiana, central Mississippi,
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Arizona and southern California. Through July many of these areas are showing a decrease in deaths

apart from the northeast megalopolis, Chicago, central Indiana, Arizona and southern California.

Through August, probabilities of high deaths have shifted to the southern U.S., while lessening in

the Northeast and Midwest.  The probabilities have strengthened in Arizona and much of California.

September witnesses a further strengthening of probabilities in the southern U.S. affecting much of

South Carolina, southern Georgia and much of Florida. The pandemic continues to strengthen in Arizona

and California. The waning trend has continued throughout much of the upper Northeast and the Ohio

Valley. By October, these shifts continue with sporadic higher probabilities throughout the southern U.S.

The lessening continues in the Ohio Valley and upper Northeast as Arizona begins a trend of diminishing

deaths.  November witnesses a shift in the probability of deaths into the upper Midwest, as suspected

considering cases witnessed a similar trend a few months prior. The pandemic begins to lessen in the

southern  U.S.;  but  contains  some  sporadic  high  probabilities.  However,  the  shift  to  the  north  is

apparent.  Lessening  continues  in  Arizona  and  California  with  the  same  effect  stable  in  the  upper

Northeast.   Through  December,  the  shift  in  to  the  upper  Midwest  is  even  more  evident  with  the

Mountain West now included. December further witnesses a resurgent trend in the upper Northeast,

especially northern New York, Vermont, New Hampshire and Maine. The continued lessening in the

southern U.S., Arizona and California is noteworthy.

<<<Insert Figure 5>>>

4.6. Comparisons of Composite Vulnerability in Hot and Cold Spots

Figure 6A displays the boxplots comparing hot and cold spots for the convolutional spatial effect

(e ( S¿+U ¿ )) for COVID-19 infections. The light gray distribution is for areas having a probability less than .80

of exceeding 1.00 (cold spots) and the red distribution for areas where the probability is greater than or

equal to .80 of exceeding 1.00 (hot spots). Hot spot areas have a significantly higher SVI composite score

compared to the low probability areas. Figure 6B illustrates the boxplot comparing areas delineated in

the same way to the composite SVI score for COVID-19 fatalities. Likewise, area with a higher probability

of COVID-19 deaths have a statistically significant higher SVI composite score. The composite SVI score

for the spatially structured effect is similarly higher in areas of higher probability, which is expected

based on the percent of variance explained in the convolutional effect by that component.

<<<Insert Figure 6>>>
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Taken in the spatiotemporal context, the relationship between higher SVI composite scores and

the hot and cold spots are not as straightforward. Figure 7A and 7B displays boxplots comparing the SVI

composite score for the areas by month that have a high probability  of  exceeding 1.00;  within the

spatiotemporal  interaction component  (eδ it ).  The individual  plots are delineated in the same way as

above. Comparing the distributions for SVI composite scores to cases (9A) from April through August the

score is higher and statistically significant in hot spot counties. Similarly, for deaths (9B) the SVI score is

higher for the counties involved for the months July – October. The mean SVI score for the hot spots

during these month nears or exceeds the 3rd quartile value in the cold spot counties. November also

witnesses a higher but not statistically significant SVI score interpreted via the notches in the boxplots.

<<<Insert Figure 7>>>

5. Discussion

5.1. Relationships  Between  Social  Vulnerability  Variables  and  COVID-19  Infections

and  

             Deaths

Dividing the SVI index into its separate variables and including them in the hierarchical model

offered some noteworthy results. Counties that have a high percentage of those without a high school

diploma and  non-white  status  have  the  strongest  positive  effect  on  risk;  raising  risk  for  COVID-19

infections by 21.44% and 20.60% respectively. Counties with greater percentages of those aged 17 and

under are at greater risk; increasing risk by 11.78% for each standard deviation increase (3.43%). Living

in a multi-unit dwelling increased risk by 11.18% which is expected due to the density of living spaces.

However,  living  in  a  home  with  more  than  10  people  (crowded  living)  lowered  risk  by  5.13%.

Additionally, percent unemployed, disabled, no vehicle, limited English, and uninsured negated risk to

varying degrees (see Table 2). These findings tend to support other studies that show COVID-19 having a

disparate effect in non-white communities (LaVeist 2005; Shi and Stevens 2021; Singu et al. 2020; Karaye

and Horney  2020;  Khazanchi  et  al.  2020).  They  especially  support  Karaye  and  Horney  (2020)  with

conclusions  related to non-white  status,  but  not  as  significantly  as  their  findings  related to limited

English, household composition, transportation, housing and disability (Karaye & Horney, 2020). This is

likely due to their study focusing on cases through May 12, 2020, so the comparison in the amount of

data and the timeframe of investigation is different. Dasgupta et al. (2020) found that non-white status

and crowded housing were more likely to become COVID-19 hot spots during June and July 2020. Our
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study supports these findings for non-white status, multi-unit dwelling and group quarters throughout

the year 2020.

The  SVI  index  variables  and  the  relationship  with  death  from  COVID-19  possesses  some

dissimilarities  compared  to  cases.   Non-white  status  had  the  strongest  impact  on  risk  of  death;

increasing  relative risk  by  40.19% when raised by one standard deviation (19.84%).  No high school

diploma is again ranked second with a 35.31% increase. Furthermore, age 65 and over demonstrates an

increase in relative risk of death by 23.93%; this variable was statistically insignificant in the model for

cases. Age 65 and above is a highly recognized individual risk factor for COVID-19 severe disease and

mortality  (Woolf et al.,  2021).  Age 17 and under is again relatively high in its impact on risk with a

23.93% increase. Limited English lowered risk by 13.35% (compared to 5.10% for cases) and Multi-unit

dwelling increased risk by 11.29%. The result for limited English potentially implies that decreased social

connections  due  to  the  perceived  language  barrier  may  have  a  preventative  effect.  The  remaining

variables  are  either  not  statistically  significant  or  offer  minimal  (less  than  10%)  impact  on  deaths.

Although there are not as many previous studies that examined deaths as opposed to cases,  these

findings  especially  support  Khazanchi  et  al.  (2020)  where  non-white  status  resulted  in  a  4.74-fold

increase in death.

5.2. Relationships Between Environmental Variables and COVID-19 Infections and   

             Deaths

Regarding  environmental  variables  in  relation to  COVID-19 cases,  above ground level  (AGL)

temperature had the strongest relationship. A one standard deviation increase (8.58K) in temperature

results in a 20.70% reduction in relative risk for cases when examined within the context of the entire

study. Nighttime LST results in a 11.82% decrease in risk when increased by a single standard deviation

(14.61K). Atmospheric pressure produces a 12.34% increase in relative risk for cases when increased by

5465.36 Pa. Precipitation increases lower risk by 4.07% and wind speed (2.84%) and direction (11.79%)

have a positive effect on risk of infection. These findings support research which points to increases in

temperature lowering the risk of COVID-19 infections (Haque & Rahman, 2020; Prata et al., 2020; Rouen

et al., 2020; Sarkodie & Owusu, 2020; P. Shi et al., 2020). Our precipitation finding contradicts Sarkodie

and Owusu (2020) where they found a positive association between temperature and COVID-19 cases.

However,  it  does  support  Menebo  (2020)  where  both  variables  had  a  negative  association.  In

relationship to winds, prior research has found a negative association with wind speed and COVID-19
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incidence (Islam et al., 2020; Şahin, 2020). However, in our study average monthly wind direction, when

the azimuth is increased by 35 degrees, increased risk by 11.79% and average monthly wind speed,

when increased by .69m/s, raises risk by 2.84%. While this relationship is difficult to explain it is worth

noting and we opted to keep wind data in the analysis to account for its potential effects.

AGL temperature has the strongest effect on risk from death of the environmental variables

with a 26.68% decrease in risk for every 8.58K increase. LST nighttime also lowers risk by 11.14% when

increased by 14.61K. As atmospheric pressure increases by 5465.36 Pa, it raises the relative risk of death

by  14.66%.  Precipitation  increases  by  a  standard  deviation  lower  risk  by  5.62%.  Wind  direction  is

significant in the model for deaths. As the azimuth of wind increases by 35° the relative risk lowers by

6.99%. Wind speed is not statistically significant. Again, these findings are for wind 10m above ground

level and support the notion that wind may have some impact on COVID-19, although it’s difficult to

infer. More research is needed on wind’s relationship, especially at a finer temporal stratification (i.e.

daily) where it should be easier to infer the relationship (Islam et al., 2020; Şahin, 2020). 

5.3. Temporal Structure of the Pandemic in the United States

Cases and deaths have clearly increased throughout the year 2020 as evidenced by Figure 1.

However,  the  modeled  relative  risks  have  fluctuated  throughout  the  time period  (Figure  2).  These

relative risks as modeled through random walk order – 1 show rapid increases in cases and deaths from

March through much of the summer of 2020. Decreases are then evident for the remainder of the year.

Temporal relative risk from death shows more fluctuation than cases but also presents a steady decline

in average relative risk for the last few months of 2020. On the surface, these results (Figure 1 vs Figure

2) may seem contradictory. Apart from one chart showing per capita COVID-19 cases/deaths and the

other modeled relative risk, closer examination of the maps of the spatiotemporal interactions (Figures

4 and 5) show there are more counties affected in the latter months of 2020. This observation suggests

the  pandemic  has  broadened  in  spatial  extent,  especially  in  regard  to  cases  during  October  and

November, but has become less intense overall as measured by relative risk. This finding also implies the

pandemic may be starting to decline in average intensity – in the U.S. – as we head into 2021. The

average non-modelled standardized infection rate (SIR) and standardized mortality rate (SMR) across all

counties, support this and demonstrate a similar relative risk trend and corresponding decrease for the

latter months of 2020.
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5.4. Spatial Structure of the Pandemic in the United States

After  adjusting  for  the  fixed  effects  of  the  covariates  and  the  temporally  structured  and

unstructured random effects, the convolutional spatial effect risk map and the spatially structured effect

risk map identified counties at increased risk of COVID-19 infection and death throughout the study

period. The most prominent spatial aspect of relative risk to COVID-19 infection were the clusters most

heavily  focused in the southern U.S.,  and the states  of  Indiana, Iowa,  and New Mexico.  Somewhat

supported by Snyder and Parks (2020), with their geographically weighted regression (GWR) approach,

this result was not completely unanticipated  (Snyder & Parks, 2020). There were additional sporadic

areas of increased risk scattered throughout the Midwest, U.S. South and Great Plains. Strong degrees of

spatial autocorrelation, which supports the clustering, as modelled with the spatially structured effect,

were present in many of those same areas.  

Convolutional risk from COVID-19 deaths were less focused than cases but were still prevalent in

the U.S. South, especially Louisiana and Tennessee. Indiana and the megalopolis region of the Northeast

were also part of this cluster. Interestingly, the latter region did not present as an increased risk area

relative to cases throughout the study period. This is a potentially alarming finding suggesting this region

has a higher rate of death relative to the number of cases throughout the year. Further west, nearly

every county in New Mexico was at an elevated risk. A large degree of spatial autocorrelation (as the

spatially structured effect accounts for nearly 61% of the variance between the two components) is also

present in many of these identical areas based on the spatially structured risk from death. 

5.5. Spatiotemporal Structure of the Pandemic in the United States

The spatiotemporal interaction term is a random effect and can be interpreted as the modelled

residual risk after accounting for the fixed effects, spatially structured and unstructured and temporally

structured and unstructured effects.  This  represents  short-term (month long in  our  study)  sporadic

clusters of COVID-19 cases and deaths. During the time period of the study, it  is notable that areas

impacted by the pandemic shift drastically throughout the country. Cases shift from major metropolitan

areas and the Northeast,  into the Southern and Southwest U.S.  in  the summer months.  This  trend

supports evidence found by Snyder and Parks (2020) that the pandemic was focusing in the highly

vulnerable U.S. South by mid-summer. By late summer and early autumn, elevated cases have moved

into the Upper Midwest with a second shift into the Southwest and a re-emergence in the Northeast by

the end of 2020.
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The short-term patterns in deaths follow a similar trend but are delayed by approximately a

month to month-and-a-half  and are not as large in extent or  as contiguous.  This  implies there is  a

temporal delay from cases to deaths that falls within the WHO suggestion of 2-8 weeks; tending toward

the higher end (Baud et al., 2020). Elevated deaths shift into the Southwest by early summer and into

the Southern U.S. by late summer. Increased probabilities of above average deaths have moved from

the Northeast megalopolis by August as they refocus in the South. By November, deaths have moved

into the Upper Midwest and are beginning to shift out of the U.S. South (apart from Florida); into less

socially vulnerable areas of the country. December shows the U.S. South to be below average risk along

with the Southwest. A further broadening is evident in the Upper Midwest and Mountain West.

5.6. Composite Social Vulnerability in Hot and Cold Spots

The convolutional spatial effect for COVID-19 cases was classified into hot and cold spots based

on the criteria of Richardson et al. (2004). For COVID-19 cases of infection, areas that were considered

hot spots throughout the course of the study period had higher SVI composite scores (.57) than those

that were considered cold spots (.48). In relation to deaths, there was a similar trend with higher SVI

composite scores for hot spot areas (.55) versus cold spot areas (.49). These differences were statistically

significant at .05 confidence interval.  These relationships provide further evidence to studies finding

locations that  have higher  vulnerability  scores  to  be  more at-risk  of  COVID-19 infection and death

(Dasgupta et al., 2020; Karaye & Horney, 2020; Khazanchi et al., 2020).

When comparing SVI composite scores to hot and cold spots for cases and deaths based on the

spatiotemporal interaction term, the relationship is not as straightforward. In respect to cases, our study

supports the findings of Nayak et al., where the relationship between composite SVI score and COVID-19

cases is not statistically significant in the first month of the pandemic in the U.S.(Nayak et al. 2020). The

SVI composite score is higher from April to August and again in December in hot spot counties. This

observation supports Neelon et al., where counties with higher SVI scores contained higher COVID-19

cases through August. Furthermore, this result verifies Dasgupta et al., where higher SVI scores in June

and July 2020 supported the probability of becoming a COVID-19 hotspot. Neelon et al. also discovered

that in August, counties with lower composite SVI scores were beginning to be affected. This is also

supported by our study, but the composite index is lower in hot spot areas extending into the months

after August. For deaths, the index is higher from July through October, with the remaining months

either  lower or  not  statistically  significant.  In  the  case  of  August,  September and  October,  the SVI
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composite score is much higher in hot spots than in cold spots. The mean SVI score in hot spot areas is

approaching the 3rd quartile value in cold spot areas.

Much of this observed shift in the relationship between COVID-19 and vulnerability is due to the

spatial-temporal nature of the pandemic in the U.S. Cases shift into the southern and Southwest U.S. in

the summer months. These areas are known to have significantly larger numbers and percentages of

vulnerable than most other areas of the country  (L. Shi & Stevens, 2021). Likewise, in the instance of

deaths in August, September, and October, they are likewise focused in some of the more vulnerable

locations of the American Southeast and Southwest. These results support a more complex or nuanced

relationship  between temperature  and COVID-19 cases  and deaths;  especially  when examined in  a

smaller spatial and temporal context  (Bashir et al., 2020; P. Shi et al., 2020). The overall time period

relationships  are  not  stable  across  all  counties for  all  time periods.  By  utilizing  the spatiotemporal

modelling approach used in this study we are able to uncover this more elusive space-time relationship.

Alternatively,  in areas where the SVI  composite score  in  hot spots  is  lower than in cold  spots,  the

pandemic  has  shifted  into  less  socially  vulnerable  areas  of  the  country;  the  Upper  Midwest  and

Northeast. However, a key finding is that during the summer months (for cases) and autumn (for deaths)

the pandemic seemed to shift into warmer and more socially vulnerable areas of the country. Future

spatiotemporal analyses, after the behavior of the pandemic in 2021, are needed to determine if this is

likely to be a trend the virus follows or if this is simply how the pandemic initially diffused in the U.S.

6. Conclusion

Bayesian hierarchical modeling provides a flexible and robust framework in which to model 

complex spatiotemporal systems. This study presents the findings of fitting a Bayesian hierarchical 

spatiotemporal model to COVID-19 cases and deaths in the United States for the year 2020. The data 

collection and modeling framework are explained in detail for straightforward replication. This hopefully

will foster continued effort in modeling the spatiotemporal nature of the pandemic in the U.S. and 

abroad.

A key finding of this study is the spatiotemporal character of the pandemic in the U.S. after 

accounting for social vulnerability, environmental measurements and spatial and temporal random 

effects. In terms of cases, the pandemic shifted into the U.S. South and Southwest during the hotter 

months of the year, which are the most vulnerable regions of the U.S. Deaths followed the same pattern

only with a 1-2-month temporal lag. This demonstrates a potentially alarming trend if this pattern or a 

similar one is repeated in other years. These highly vulnerable areas are already under significant stress 
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at this time of the year and the introduction of another stressor on a regular basis could be catastrophic 

in some areas. Further alarming, is the cluster of deaths in the Northeast Megalopolis region.

Studies such as the one presented here provide insight into the complicated mix of social and 

environmental factors relating to vulnerability. We demonstrate that relationships between COVID-19 

cases/deaths, social vulnerability, and environmental measurements are spatially and temporally 

variable. Even though many of the findings presented here are supportive of other studies, more work is

needed in the spatial-temporal domain of the pandemic. One primary effort should be modelling the 

spatiotemporal structure at a finer temporal scale (i.e. weekly). This could elucidate other relationships 

with the examined variables and allow for more elaborate spatial temporal interaction specifications 

(Type IV spatial temporal interaction). Such examinations, perhaps at finer spatial scales (i.e. census 

tract), could also allow us to focus on some of this study’s more alarming results.
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Variable Mean Standard Deviation Minimum Maximum

Unemployed 5.74% 2.78% 0% 26.40%

Per Capita Income $27,036.00 $6457.00 $0 $72,832.00

No High School Diploma 13.45% 6.34% 1.20% 66.30%

Age 65+ 18.43% 4.54% 3.80% 55.60%

Age17- 22.35% 3.43% 7.30% 40.30%

Disabled 15.96% 4.40% 3.80% 33.70%

Single Parent 8.30% 2.71% 0% 25.60%

Non-White Status 23.15% 19.84% 0% 99.30%

Mobile Home 13.03% 9.62% 0% 59.30%

Crowded Living(>10 per hh) 2.33% 1.92% 0% 33.80%

No Vehicle 6.18% 3.57% 0% 77.00%

Group Quarters 3.48% 4.74% 0% 55.70%

Poverty 15.63% 6.46% 0% 55.10%

Multi-Unit Dwelling 4.63% 5.64% 0% 89.40%

Limited English 1.70% 2.79% 0% 30.40%

Uninsured 10.00% 4.98% 1.70% 42.40%

Daytime LST* 294.65 K 16.62 K 239.00 K 334.00 K

Nighttime LST* 292.73 K 14.61 K 240.21 K 326.94 K

(AGL) Temperature **
2 m Above Ground Level 

 289.11 K 8.58 K 262.81 K 309.40 K

Specific Humidity** .008 kg/kg .004 kg/kg .0015 kg/kg .020 kg/kg

Atmospheric Pressure** 96628.92 Pa 5465.36 Pa 6669.97 Pa 102268.70 Pa

Longwave Radiation**
327.85 W/m2 51.84 W/m2 170.07 W/

m2

438.38 W/m2

Shortwave Radiation**
208.13 W/m2 72.30 W/m2 38.76 W/

m2

359.35 W/m2

Potential Evaporation**
.22 kg/m2 .10 kg/m2 -.0051 kg/

m2

.55 kg/m2

Precipitation** .11 kg/m2 .008 kg/m2 0 kg/m2 .66 kg/m2

Wind Speed 10 m AGL** 3.45 m/s .69 m/s 1.08 m/s 6.93 m/s

Wind Direction 10 m AGL** 190.52° 35.00° 77.38° 335.61°

Table 1: Descriptive statistics of monthly (year 2020) averages for SVI and environmental variables 

utilized in the models and aggregated by U.S. county * MODIS ** NLDAS.
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Variable Mean
? 

Standard
Deviation ?

2.5% Credibility
Interval

97.5% Credibility
Interval

Effect on Risk
(%)

Intercept -0.65 0.01 -0.66 -0.63

Unemployed -0.09 0.04 -0.17 -0.01 -8.5

Per Capita Income 0.04 0.01 0.01 0.07 4.26

No High School Diploma 0.19 0.02 0.16 0.23 21.44

Age 65+ -0.02 0.01 -0.05 0 -2.26

Age17- 0.11 0.01 0.08 0.14 11.78

Disabled -0.07 0.01 -0.1 -0.04 -6.73

Single Parent 0.03 0.01 0.01 0.05 2.94

Minority 0.19 0.01 0.16 0.21 20.6

Mobile Home -0.01 0.01 -0.04 0.01 -1.3

Crowded Living(>10 per hh) -0.05 0.01 -0.07 -0.03 -5.13

No Vehicle -0.07 0.01 -0.1 -0.05 -7.19

Group Quarters 0.03 0.01 0.01 0.05 3.41

Poverty 0.09 0.04 0.01 0.18 9.6

Multi-Unit Dwelling 0.11 0.01 0.08 0.13 11.18

Limited English -0.05 0.01 -0.08 -0.03 -5.1

Uninsured -0.01 0.01 -0.03 0.01 -1.03

LST Day 0 0.01 -0.02 0.02 0.45

LST Night -0.13 0.01 -0.14 -0.11 -11.82

AGL Temperature -0.23 0.02 -0.27 -0.2 -20.7

Pressure 0.12 0.01 0.09 0.14 12.34

Precipitation -0.04 0.01 -0.06 -0.03 -4.07

Wind Direction 0.11 0.01 0.09 0.13 11.79

Wind Speed 0.03 0.01 0.01 0.04 2.84
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Table 2: Posterior coefficients and 95% credibility intervals of variables utilized in the model for COVID-19 cases of infection. Grayed out variables are not 

statistically significant.
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Variable Mean 
? 

Standard
Deviation ?

2.5% Credibility
Interval

97.5% Credibility
Interval

Effect on Risk
(%)

Intercept -1.88 0.05 -1.99 -1.79

Unemployed -0.06 0.07 -0.2 0.08 -5.57

Per Capita Income 0.06 0.02 0.02 0.11 6.65

No High School Diploma 0.3 0.03 0.25 0.36 35.21

Age 65+ 0.21 0.02 0.17 0.26 23.93

Age17- 0.18 0.03 0.13 0.23 19.42

Disabled -0.09 0.02 -0.13 -0.04 -8.37

Single Parent 0.07 0.02 0.03 0.11 7.05

Minority 0.34 0.02 0.3 0.38 40.19

Mobile Home 0.01 0.02 -0.03 0.05 1.09

Crowded Living(>10 per hh) -0.09 0.02 -0.13 -0.05 -8.54

No Vehicle -0.02 0.02 -0.05 0.01 -1.78

Group Quarters 0.03 0.02 -0.01 0.06 3.02

Poverty 0.07 0.07 -0.08 0.21 7.06

Multi-Unit Dwelling 0.11 0.02 0.07 0.15 11.29

Limited English -0.14 0.02 -0.19 -0.1 -13.35

Uninsured -0.01 0.02 -0.05 0.03 -0.73

LST Day 0 0.02 -0.03 0.04 0.48

LST Night -0.12 0.01 -0.15 -0.09 -11.14

AGL Temperature -0.31 0.03 -0.37 -0.25 -26.68

Pressure 0.14 0.02 0.1 0.17 14.66

Precipitation -0.06 0.01 -0.08 -0.03 -5.62

Wind Direction -0.07 0.01 -0.1 -0.04 -6.99

Wind Speed -0.02 0.01 -0.04 0.01 -1.73

Table 3: Posterior coefficients and 95% credibility intervals of variables utilized in the model for COVID-19 deaths. Grayed out variables are not statistically 

significant.
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Figure 1: A. Cases of COVID-19 per 100,000 count of population in the United States for the year 2020. (Crimson line = Locally weighted scatterplot smoothing 

(LOWESS) line of cases). B.  Deaths from COVID-19 per 100,000 count of population in the United States for the year 2020. (Crimson line = Locally weighted 

scatterplot smoothing (LOWESS) line of deaths)
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Figure 2: Posterior temporally structured; γt (light blue) and unstructured; ωt (light red) effects for COVID-19 cases; panel A, and deaths; panel B (95% credibility 

envelope) in the U.S. by month for the year 2020.
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Figure 3: Exceedance probabilities of convolutional spatial effect (e ( S¿+U ¿ )) and spatially structured effect (e ( S¿)) relative risk

associated with COVID-19 infection; panel A, and COVID-19 mortality; panel B.
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Figure 4: Probabilities of space-time interaction term Pr (eδ it) exceeding 1.00 during the year 2020 for U.S. COVID-19 infections stratified monthly.
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Figure 5: Probabilities of space-time interaction term Pr (eδ it) exceeding 1.00 during the year 2020 for U.S. COVID-19 mortalities stratified monthly.
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Figure 6: Boxplot of SVI composite score for hot and cold spots for the convolutional spatial effect for COVID-19 

infections; plot A, COVID-19 fatalities; plot B.
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Figure 7: Boxplots organized by month, comparing cold spots and hot spots of COVID-19 cases (A) and deaths (B) to composite SVI score. 
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