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Abstract

Given the key role, wetlands play in climate regulation and shoreline stabilization, identifying their spatial distribution is essen-

tial for the management, restoration, and protection of these invaluable ecosystems. The increasing availability of high spatial

and temporal resolution optical and synthetic aperture radar (SAR) remote sensing data coupled with advanced machine learn-

ing techniques have provided an unprecedented opportunity for mapping complex wetlands ecosystems. A recent partnership

between the National Aeronautics and Space Administration (NASA) and the Indian Space Research Organization (ISRO)

resulted in the design of the NASA-ISRO SAR (NISAR) mission. In this study, the capability of L-band simulated NISAR data

for wetland mapping in Yucatan Lake, Louisiana is investigated using two object-based machine learning approaches: Support

Vector Machine -(SVM) and Random Forest (RF). L-band Unmanned Aerial Vehicle SAR (UAVSAR) data is exploited as a

proxy for NISAR data. Specifically, we evaluated the synergistic use of different polarimetric features for efficient delineation

of wetland types, extracting 84 polarimetric features from more than 10 polarimetric decompositions. High spatial resolution

National Agriculture Imagery Program imagery is applied for image segmentation using the mean-shift algorithm. Overall

accuracies of 74.33% and 81.93% obtained by SVM and RF, respectively, demonstrate the great possibility of L-band prototype

NISAR data for wetland mapping and monitoring. In addition, variable importance analysis using the Gini index for RF

classifier suggests that H/A/ALPHA, Freeman-Durden, and Aghababaee features have the highest contribution to the overall

accuracy.
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Abstract 20 

Given the key role wetlands play in climate regulation and shoreline stabilization, identifying their 21 

spatial distribution is essential for the management, restoration, and protection of these invaluable 22 

ecosystems. The increasing availability of high spatial and temporal resolution optical and 23 

synthetic aperture radar (SAR) remote sensing data coupled with advanced machine learning 24 

techniques have provided an unprecedented opportunity for mapping complex wetlands 25 

ecosystems. A recent partnership between the National Aeronautics and Space Administration 26 

(NASA) and the Indian Space Research Organization (ISRO) resulted in design of the NASA-27 

ISRO SAR (NISAR) mission. In this study, the capability of L-band simulated NISAR data for 28 

wetland mapping in Yucatan Lake, Louisiana is investigated using two object-based machine 29 

learning approaches: Support Vector Machine -(SVM) and Random Forest (RF). L-band 30 

Unmanned Aerial Vehicle SAR (UAVSAR) data is exploited as a proxy for NISAR data. 31 

Specifically, we evaluated the synergistic use of different polarimetric features for efficient 32 

delineation of wetland types, extracting 84 polarimetric features from more than 10 polarimetric 33 

decompositions. High spatial resolution National Agriculture Imagery Program imagery is applied 34 

for image segmentation using the mean-shift algorithm. Overall accuracies of 74.33% and 81.93% 35 

obtained by SVM and RF, respectively, demonstrate the great possibility of L-band prototype 36 

NISAR data for wetland mapping and monitoring. In addition, variable importance analysis using 37 

the Gini index for RF classifier suggests that H/A/ALPHA, Freeman-Durden, and Aghababaee 38 

features have the highest contribution to the overall accuracy. 39 

Plain Language Summary 40 

By illuminating the surface SAR signals can provide meaningful information on the shape, 41 

geometry, and roughness of the surface. In particular, polarimetric decompositions brings a 42 

measure of the relative contribution of backscatter from different scattering mechanism that can 43 

be used for wetland delineations, classification, and monitoring. Given the availability of various 44 

polarimetric decompositions, the selection of appropriate decomposition based on the application 45 

and SAR sensor configuration is crucial. In this study, we investigated the performance of various 46 

polarimetric decompositions for delineating wetlands classes over Yucatan Lake in Louisiana. The 47 

adopted machine learning classification workflow was applied to the L-band simulated NISAR 48 

data that is acquired by the UAVSAR platform to evaluate the performance of planned L-band 49 

NISAR data. Our investigations showed that H/A/ALPHA, Freeman-Durden, and Aghababaee 50 

features have the highest contribution to the overall accuracy. 51 

1. Introduction 52 

Wetlands are defined as the transitional zone between water and land. The soil in these natural 53 

infrastructures is covered with water either permanently or for portions of the year (e.g., growing 54 

season) (Gardner & Davidson, 2011). According to Tiner et al.(2015) between 3–8% of the Earth’s 55 

land surface has been covered by wetlands (Tiner et al., 2015). Wetlands are highly productive 56 

and provide significant ecosystems services at regional and global scales (Bartsch et al., 2009), 57 

including facilitating water storage and purification, weather regulation, storm protection, flood 58 

mitigation, and shoreline stabilization (Mitsch et al., 2013). Moreover, the prolonged presence of 59 

water favors the growth of some endangered terrestrial and aquatic vegetation species (Dahl 2011). 60 

Due to the inherent wet conditions of these lands, they also are considered ideal regions for 61 

sequestering and storing atmospheric carbon (Bridgham et al. 2006). According to Bloom et 62 

al. (2010), wetlands also emit 20% to 25% of global carbon emission.  63 
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Despite the intrinsic importance of wetlands, they are being degraded due to man-made and natural 64 

threats. One of the main issues in recent years is transformation of wetlands into agricultural fields 65 

due to the demand for intensive farming (Jaramillo et al., 2018). Another triggering factor for the 66 

permanent loss of wetlands is over-exploitation of underground aquifers. (Dahl 2011) reported that 67 

the rate of declining marine and estuarine intertidal wetlands is 1.4 percent in USA between 2004 68 

and 2009. That percentage would be equal to 84,100 acres (34,050 ha). In particular for coastal 69 

wetlands of Atlantic, Pacific, and Gulf of Mexico coasts the rate for wetland loss is 19,000 acres 70 

per year for 1922–1954 and 46,000 acres per year for 1954–1974 (Stedman & Dahl, 2004) . This 71 

extensive loss of wetlands may hinder future economic, tourism, and technological advances. Due 72 

to the severe wetland loss over large extents, wetland mapping and monitoring using remote 73 

sensing data have gained more attention in the remote sensing community in recent years (Brisco 74 

et al., 2015; Mitsch et al., 2013; Wohlfart et al., 2018).  75 

Over the past two decades, remote sensing data has significantly facilitated wetland mapping and 76 

monitoring (Tiner et al., 2015; Tsyganskaya et al., 2018; Wohlfart et al., 2018). In particular, the 77 

ability of Synthetic Aperture Radar (SAR) sensors to collect data day and night in all-weather 78 

conditions makes this a highly valued data source for wetland monitoring. By providing medium 79 

to high spatial resolution imagery with a low revisit cycle, newer SAR datasets have proved to be 80 

a valuable tool for wetland monitoring (Wohlfart et al., 2018). Compared to other conventional 81 

methods for wetland monitoring such as optical imagery, SAR operates in longer wavelengths of 82 

the electromagnetic spectrum. This portion of the electromagnetic spectrum allows for deeper 83 

penetration of transmitted signals in vegetation cover, which enhances efficient delineation of 84 

different wetland classes. Moreover, sensitivity of the SAR signal to the roughness and dielectric 85 

properties of the surface, supports retrieval of information related to the shape, size, orientation, 86 

and moisture content of the target (Tsyganskaya et al., 2018).  87 

SAR sensors operate at different frequencies including L (24 cm wavelength), C (5.66 cm 88 

wavelength) and, X (3 cm wavelength) bands. The wavelength in which the sensor operates is an 89 

influential factor in the penetration depth and signal attenuation. Due to the longer wavelength, L-90 

band has deeper penetration depth and weaker attenuation through vegetation canopy compared to 91 

other frequencies, such as C-band (Hong & Wdowinski, 2014). This allows L-band to penetrate 92 

through dense wetland vegetation structure and reach the water surface.  According to Ott et al. 93 

(1990), L-band also is more sensitive to the available moisture content in the vegetation cover.  94 

These characteristics have made L-band ideal for mapping the dense cover prevalent in herbaceous 95 

wetlands (Zhao et al., 2018). In a study conducted in the Amazonian basin, Hess et al. (2015) 96 

classified wetlands using L-band JERS-1 mosaics with 100-m resolution. They used dual season 97 

backscattering values for estimating the extent of wetland and inundation state and found relatively 98 

high producer’s accuracy (better than 85%) for wetland extent (Hess et al., 2015). Several studies 99 

have also reported an increase in overall accuracy of wetlands classification by integrating 100 

different SAR frequency bands (Evans & Costa, 2013; Mahdianpari et al., 2017; 101 

Mohammadimanesh et al., 2018).  102 

Another factor influencing SAR sensor capability is polarization. Given the sensitivity of SAR 103 

signal to different backscattering mechanisms, full-polarimetric SAR data can facilitate 104 

distinguishing similar wetlands classes (Brisco et al., 2015). Compared to single or dual 105 

polarimetric SAR sensor configurations, full-polarimetric systems preserve the phase between the 106 

sensor and target, which allows for decomposition of coherency and covariance matrices. To this 107 

end, researchers have developed several techniques to decompose polarimetric SAR images into 108 

different classes based on scattering signatures (Cloude & Pottier, 1996; Freeman & Durden, 109 
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1998a; Touzi, 2007). Polarimetric decompositions can categorize ground targets using three 110 

different main scattering mechanisms: odd/single bounce, even/double bounce, and volume 111 

scattering. In wetlands, odd/single bounce can be attributed to direct scattering from open water. 112 

An example of even/double bounce is the scattering between a tree trunk and open water, which 113 

is prevalent in flooded vegetation areas. Volume scattering in wetlands mostly occurs as multiple 114 

scattering in the dense canopy structure. Adeli et al. (2020) provide a comprehensive review of 115 

studies focused on wetland monitoring using SAR data. 116 

A joint partnership between the National Aeronautics and Space Administration (NASA) and the 117 

Indian Space Research Organization (ISRO) has led to development of the spaceborne NASA-118 

ISRO SAR (NISAR) program (Hoffman et al., 2015). NISAR will be instrumented with multi-119 

polarimetric, dual-frequency L (24 cm wavelength) and S (10 cm wavelengths) band SARs for 120 

imaging the Earth. Notably, NISAR is equipped to receive twelve independents channels, enabling 121 

a 12-day global revisit cycle (Chuang et al., 2016). However, while the L-band SAR has the ability 122 

to collect all data while over land, the duty cycle of the S-band SAR is limited, and will be restricted 123 

to a planned subset of the Earth's surface.  Considering both ascending and descending orbits, the 124 

mission plans to image at L-band the Earth's global land mass twice every 12 days. The full 125 

resolution of the L-band SAR data while in its most common operating mode will be 7 m across 126 

its entire 240 km swath width. A few studies have explored the use of simulated NISAR for 127 

environmental monitoring. For example, Yu and Saatchi (2016) predict that NISAR will be able 128 

to generate global biomass map in short time frame, given the deeper penetration depth of L-band 129 

and short revisit cycle (Yu and Saatchi 2016). Duncanson et al. (2020) used simulated NISAR, 130 

simulated ICESat-2 and GEDI data to estimate above-ground biomass in Sonoma County, 131 

California. Their achieved RMSE for each of the missions were 57%, 75%, and 89% for GEDI, 132 

NISAR, and ICESat-2 respectively. (Duncanson et al. 2020). 133 

Albinet et al. (2019) report that NISAR will produce 40 PB of data per year. Although this will 134 

provide unprecedented global coverage in a short time frame, the high volume raises several 135 

challenging issues related to data processing in order to exploit, visualize, and discover the full 136 

potential of NISAR data. There are also issues that apply not only to use of the NISAR data, but 137 

are broader challenges in the classification of remote sensing data, e.g. the inherent complexity of 138 

land cover within wetlands and the limitation of training data. Fortunately, the development of 139 

advanced machine learning such as Random Forest (RF) and Support Vector Machines (SVM) 140 

and deep learning techniques such as Convolutional Neural Network (CNN) provides a significant 141 

contribution in terms of handling large-volume multi-temporal SAR data (Banks et al., 2019; 142 

Mahdianpari et al., 2017; Thanh Noi & Kappas, 2018). RF classifies an image using many decision 143 

trees that are trained based on subtle variations of the same training dataset, hence, the group of 144 

trees is less affected by overfitting compared to a single decision tree (Banks et al., 2019). SVM 145 

converts input data to a high-dimensional feature space and divides the feature space using optimal 146 

hyperplanes. SVM is more resistant to noise and unequal number of samples within each class 147 

(Mountrakis et al., 2011). According to Sheykhmousa et al. (2020) although deep learning 148 

techniques are powerful in reconstructing complex image patterns, they suffer from hidden layer 149 

effects that can result in interpretability issues. Moreover, unlike SVM and RF classifiers, deep 150 

learning techniques are more dependent on the presence of the high density and high-quality 151 

ground reference data. Another issue with deep learning techniques is their high computational 152 

complexity. Hence, RF and SVM are still attracting attention from the remote sensing community 153 

since they have provided efficient solutions with results that are competitive relative to the more 154 

complex deep learning techniques (Sheykhmousa & Mahdianpari, 2020). 155 
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The USA National Wetland Inventory (NWI) adopted the Cowardin system for generating wetland 156 

inventory maps within the USA which includes five major systems, 11 classes and, 28 subclasses.  157 

(Cowardin et al., 1979). The classes for this system are defined based on various factors including 158 

chemical, hydrological, and geomorphological attributes. NWI updated the national wetland 159 

inventory map of the USA in May 2016. One of the reasons behind this update was the demand 160 

for having surface waters and wetlands as polygons in a single geospatial dataset. This second 161 

NWI version included more detailed data of the wetlands and water bodies. There are also a range 162 

of studies in the literature that use the Cowardin classification scheme. For instance, Pistolesi et 163 

al. (2015) classified Hudson Highlands ecoregion wetlands in New York using the Cowardin 164 

classification system. They unified classes palustrine emergent, palustrine scrub/shrub, and 165 

palustrine forested as emergent, scrub/shrub, and forested wetlands, respectively. The class of open 166 

water includes palustrine aquatic bed, palustrine unconsolidated bottom, and palustrine 167 

unconsolidated shore based on the definition in Cowardin classification systems (Pistolesi et al., 168 

2015). In another study, implemented in Minnesota, Corcoran et al. (2013) used a two-level RF 169 

classifier to classify wetlands in six major classes of forested uplands, open water, forested, 170 

scrub/shrub, and emergent wetlands. The classification was based on a modified version of 171 

Cowardin classification systems (Corcoran et al., 2013). 172 

The fully polarimetric SAR data allows for the recreation of covariance and coherency matrices 173 

that can be led to attaining polarimetric decompositions elements. Hence the implementation of 174 

polarimetric decomposition pertains with separation of received signal to different scattering 175 

mechanism that are established to be advantageous for wetland separation analysis 176 

(Mohammadimanesh et al. 2019; Brisco et al. 2013; Koch et al. 2012). While the upcoming NISAR 177 

mission is expected to acquire SAR imagery in only dual-polarization (HH and HV) rather than 178 

full polarization for most of the Earth's entire land mass, NISAR does have the capability of 179 

acquiring fully polarimetric L-band SAR data, and an extended mission scenario could  include 180 

collection of fully polarimetric data over more extended areas. Therefore, the primary objective of 181 

this study was to assess the ability of fully polarimetric L-band simulated NISAR data for 182 

delineating wetlands complex using two machine learning classifiers. In particular, this study aims 183 

to: (1) compare the efficiency of object-based SVM and RF techniques for classifying L-band 184 

prototype science products; (2) evaluate the capability of recent polarimetric decomposition 185 

techniques for classifying wetlands complex; (3) explore the relative importance of polarimetric 186 

features in RF models, and (4) test the impact of SVM parameter selection on overall accuracy. 187 

To this end, once the raw L-band simulated NISAR data are preprocessed, 84 polarimetric features 188 

from more than 10 polarimetric decompositions are extracted. 189 

2. Study area, classification system and NISAR data 190 

Most parts of northeastern Louisiana are covered by rivers, lakes, and forested areas. This study 191 

focuses on Yucatan Lake in an unincorporated community covered by inundated willows and 192 

Cyprus trees, and in some part by crops. The aquatic environment of this area contains several 193 

ponds. The lake lies 8.36 kilometers from Newellton and 16.10 kilometers from Saint Joseph in 194 

Tensas Parish in Tenses County. The extent of Yucatan Lake is estimated to be around 10 square 195 

kilometers. The elevation around the lake varies from 20 to 66 feet. From the climate perspective, 196 

the temperature in the area changes from 37° F in December to 93 Fahrenheit in July. The highest 197 

average monthly precipitation varies from 3.06 inches in September to 6.31 inches in January and 198 
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March (Yucatan Lake Topo Map in Tensas Parish, Louisiana). Figure 1 shows the geographic 199 

location of the study area (left) and the simulated NISAR scene (right).  200 

 201 

 202 

 203 

 204 

 205 

Figure 1. Left: Geographic location of the Yucatan Lake is shown by a red rectangle in the 206 

boundary between northeastern Louisiana and Mississippi. Right: The simulated NISAR image.  207 

The date of this image is 30 Septemer 2019, and it was acquired in the morning at 9:17am local 208 

time. 209 

2.1. UAVSAR and Simulated NISAR data 210 

Full polarimetric L-band UAVSAR data was collected over the Yucatan lake area 13 times  211 

between June and October, 2019.  The UAVSAR instrument flies on a NASA Gulfstream 3 jet, 212 

and is equipped with a multi-polarimetry SAR sensor operating at L-band (23.5 cm wavelength).  213 

The collected data is part of NISAR UAVSAR AM/PM campaign to collect L-band SAR data with 214 

a similar observation cadence as NISAR for algorithm development and calibration (Chapman et 215 

al. 2019). The data were specially processed to mimic NISAR noise and resolution characteristics 216 

by the UAVSAR project. In particular, L-band simulated NISAR imitates the polarizations, 217 

incidence angles and signal-to-noise level of upcoming real NISAR data configurations (Huang et 218 

al. 2021). The duration of this data take was approximately 12 minutes. The UAVSAR data 219 

sampling was reduced from the standard UAVSAR slant range pixels of 0.8 x1.7 m to 10x10 m 220 

on the ground, corresponding to the smallest possible NISAR pixel spacing being considered for 221 

its products. The UAVSAR swath width is 16 km, but since incidence angles are limited on NISAR 222 
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to 34° in near range and 48° in far range (Kraatz et al., 2020), the corresponding incidence angle 223 

restricted swath width for UAVSAR is about 5 km. Compared to planned NISAR performance, 224 

UAVSAR has a higher signal to noise ratio and much higher resolution. Hence, the NASA Jet 225 

Propulsion Laboratory's (JPL) reduced the resolution and added Gaussian noise to the UAVSAR 226 

data. Moreover, the simulated NISAR data is coregistered on same grids. This characteristic eases 227 

time-series analysis applications. Further, given the need for radiometric terrain corrected 228 

backscatter, the simulated NISAR products comes with a radiometric terrain correction (RTC) 229 

calibration file (Simulated NISAR Products 2020). For comparing the characteristics of simulated 230 

NISAR and real NISAR data, the characteristics of real NISAR data is provided in Table 1.  231 

Table 1. Characteristics of the upcoming NISAR mission. 232 

Characteristics Descriptions 

Operating frequency L-band (24 cm wavelength) and S-band (10 cm wavelength) 

Full Spatial resolution 7 m in azimuth over a swath width of ~242 km, variable in range 

depending on mode 

Repeat orbit 12-day  

Altitude 740 km 

Polarization L: Single-pol through quad-pol, including compact-pol and split-

band dual-pol 

Incidence Angle Range 34°–48° 

Range resolution 3–10 m 

Azimuth resolution 7 m 

 233 

2.2. Training and test reference data description 234 

The NWI map of the area reveals that the area is covered by lakes, river, freshwater ponds, 235 

forested scrub/shrub wetlands and, emergent wetlands. National Agriculture Imagery Program 236 

(NAIP) is responsible for acquiring aerial imagery (with 1 meter resolution) during agricultural 237 

growing season within USA (USDA-FSA-APFO Aerial Photography Field Office, 2015). In this 238 

study a mosaic of  NAIP imagery  over our study site was overlaid onto the NWI wetland map of 239 

the Louisiana state. The series of NAIP imagery was captured in 2019 in leaf- on condition 240 

season. The wetland map of Louisiana state was downloaded from NWI website in the format of 241 

.shp. Once the .shp file loaded in the ArcMap, the attribute was set to the wetland type on its 242 

unique values. The scene of the simulated NISAR imagery was also overlaid to assure the 243 

consistency of borders and coregistration among these three layers. Next, the type of dominant 244 

wetland in each region was determined using NWI map. Ultimately, the borders of digitized 245 

reference polygons was drawn by relying on the NAIP imageries on leaf-on season.  246 
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The classes that were assigned to digitized polygons followed a modified version of the 247 

Cowardin classification scheme. This study used six major classes: emergent, forested 248 

scrub/shrub wetlands, open water, freshwater pond, forested upland and cultivated/planted land. 249 

The class of forested scrub/shrub wetland defined as forested swamp or wetland shrub bog or 250 

wetland that parallels to palustrine forested and/or palustrine shrub in the Cowardin system. 251 

Table 2 provides a summary of the classes considered, their abbreviations, and brief descriptions 252 

of each class. The total reference data employed were divided with 70% used as training data for 253 

the classifier and the rest used for testing.  254 

Table 2. Description of wetland classes used in this study and their corresponding NWI and 255 

Cowardin class names and code.      256 

NWI class name Cowardin 

class code 

Cowardin Class Description Classes Used 

Freshwater- 

Forested and 

Shrub wetland 

PFO, PSS Palustrine forested 

or Palustrine shrub 

Forested swamp or 

wetland shrub bog 

Forested scrub/ 

shrub wetland 

Freshwater 

Emergent wetland 

PEM Palustrine 

emergent 

Herbaceous marsh, 

fen, swale and wet 

meadow 

Emergent 

Wetland 

Freshwater pond PUB, PAB Palustrine 

unconsolidated 

bottom, Palustrine 

aquatic bed 

Pond Freshwater Pond 

Riverine R Riverine wetland 

and Deepwater 

River or stream 

channel 

Open Water 

 

Lakes L Lacustrine wetland 

and Deepwater 

Lake or reservoir 

basin 

Uplands UPL _________ _________ Planted/cultivated 

lands and 

Forested Uplands 

3. Methods 257 

3.1. Georeferencing and speckle filter 258 

L-band simulated NISAR data was  geo-referenced based NAD1983 UTM zone 15. After the 259 

simulated NISAR  images were georeferenced, we implemented a speckle reduction filter. An 260 

enhanced Lee filter with 5×5 window size was applied for reducing speckle (Jong-Sen Lee et al., 261 

2009). Unlike non-adaptive speckle filters, the enhanced Lee filter is adaptive, meaning it does not 262 

smooth the entire image to the same degree. Depending on the spatial location of each pixel, the 263 

enhanced Lee adaptive filter preserves edges, shapes, and texture of the image by lowering the 264 

standard deviation of neighboring pixels. The ultimate result is an image with reduced noise but 265 

has edges and image quality preserved (Choi & Jeong, 2019; Jong-Sen Lee et al., 2009).  266 
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3.2. Polarimetric decomposition 267 

The main goal of polarimetric decomposition is to separate the backscattering signal based on 268 

different scattering mechanisms. Depending on various sensor and target factors, including the 269 

roughness and dielectric properties of the surface, different backscattering mechanisms are 270 

expected from a specific land cover (Furtado et al., 2016). Generally, there are two types of 271 

decompositions: coherent and incoherent. While coherent decomposition is impractical for 272 

separating different natural targets due to a high degree of noise, incoherent decomposition is more 273 

applicable. Table 3 shows a number of different incoherent decomposition techniques and their 274 

corresponding polarimetric features. 275 

Table 3. Incoherent decomposition techniques and corresponding polarimetric features. 276 

Decompositions Extracted Polarimetric Features 

Pauli Pauli_a, Pauli_b, Pauli_c 

Krogager Krogager_Ks, Krogager_Kd, Krogager_Kh 

Freeman-

Durden 

Freeman_Vol, Freeman_Odd, Freeman_Dbl 

H/A/Alpha Entropy, Anisotropy, Shannon Entropy, H/A/A, T11, 

H/A/A_T22, H/A/A_T33, DERD, Polarization 

Asymmetry, Polarization Fraction, SERD, Radar 

Vegetation Index, Anisotropy12, Pedestal Height, 

Alpha, Anisotropy_Lueneburg, Pseudo Probabilities 

(p1, p2, p3), Lambda 

Yamaguchi  Yamaguchi_Vol, Yamaguchi_Odd, Yamaguchi_Dbl, 

Yamaguchi_Hlx 

An_Yang 

 

An_Yang Vol, An_Yang_Odd, An_Yang_Dbl 

An_Yang_Hlx 

Touzi  TSVM_alpha_s, TSVM_alpha_s1, TSVM_alpha_s2, 

TSVM_alpha_s3, TSVM_tau_m, TSVM_tau_m1 

TSVM_tau_m2, TSVM_phi_s2, TSVM_psi1 

TSVM_psi, TSVM_tau_m3, TSVM_phi_s3 

TSVM_psi2, TSVM_phi_s1, TSVM_phi_s, 

TSVM_psi3 

Singh Singh _Vol, Singh _Odd, Singh _Dbl, Singh _Hlx 

Huynen  Huynen_T11, Huynen_T22, Huynen_T33 

VanZyl VanZyl_Vol, VanZyl_Odd, VanZyl_Dbl 

Aghababaee Aghababaee_Alphap_mean, 

Aghababaee_Alphap_SM1, 

Aghababaee_Alphap_SM2, 

Aghababaee_Alphap_SM3, Aghababaee_M_SM1, 

Aghababaee_M_SM2, Aghababaee_M_SM3, 

Aghababaee_Orientation_max_mean, 

Aghababaee_Orientation_max_SM1, 

Aghababaee_Orientation_max_SM2, 
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Aghababaee_Orientation_max_SM3, 

Aghababaee_Tawp_mean, Aghababaee_Tawp_SM1, 

Aghababaee_Tawp_SM2, Aghababaee_Tawp_SM3 

 277 

As mentioned previously, polarimetric decomposition techniques can facilitate the physical 278 

interpretation of land cover types by decomposing the received signal into the scattering responses. 279 

The results of 11 decompositions applied to L-band UAVSAR data- as a prototype for planned 280 

NISAR- of the study area are illustrated in Figure 2(a)–(k). NAIP imagery of the study area is also 281 

presented to provide a visual assessment of the study site (Figure 2(l)). Color coding of the 282 

decomposition images in Figure 2 is as follows: odd-scattering is blue, even-scattering is red, and 283 

volume scattering as green. Double-bounce scattering can be attributed to the return signal from 284 

ground trunks or emergent wetlands. Most of the dark areas correspond to open water since the 285 

backscattering signal from calm water is usually weak (Qi et al., 2012).  286 

Pauli is based on the decomposition of the scattering matrix in the form of complex addition of the 287 

Pauli basis. Pauli decomposition uses the scattering matrix elements to produce three elements: 288 

odd-scattering, even-scattering, and volume scattering (Cloude & Pottier, 1996) Figure 2(a).  289 

Krogager decomposes the scattering matrix in form of factorization of a sphere, a diplane, and a 290 

helix. For interpretation of the Krogager decomposition, the phase values are usually ignored and 291 

three parameters that correspond to the weight coefficient of sphere, diplane and, helix are 292 

considered. Although Krogager is a coherent decomposition and generally is more applicable for 293 

man-made structures such as urban areas, it has provided a well-balanced interpretation of the 294 

targets such as vegetation and water area in Figure 2(b). The combination of powers scattered by 295 

a sphere, diplane- and the helix-like component of the Krogager generated the color code for 296 

visualization (Krogager, 1990).  297 

The three component Freeman-Durden decomposition has proven to have a good ability to 298 

discriminate between flooded and non-flooded forests especially in tropical regions. The ability of 299 

Freeman-Durden in discriminating different vegetation covers can be attributed to the scattering 300 

model of this decomposition, which contains randomly oriented dipoles and double bounce 301 

scatterer that can result from a corner-reflector (L-shape target) target. This decomposition 302 

categorizes the scene by extracting the different scattering mechanisms from the covariance matrix 303 

(Freeman & Durden, 1998b). The decomposition results in Figure 2(c) show that emergent 304 

wetlands and urban areas are identified using double-bounce. We expect that open water, 305 

freshwater pond areas, and some part of cultivated/planted land will be detected using the odd-306 

bounce mechanism and finally, forested scrub-shrub wetlands will be detected by volume 307 

scattering. The fourth decomposition implemented (Figure 2(d)) is H/A/ALPHA, so named for its 308 

three main features: Entropy (H), Anisotropy (A), and Alpha angle. Entropy represents the 309 

heterogeneity of a single scatter; the higher the entropy the larger the number of detected scattering 310 

mechanisms and low entropy meaning one scattering mechanism is detected. Anisotropy is a 311 

normalized ratio of eigenvalues and is defined as the dominancy of second scattering mechanisms. 312 

The last parameter is alpha, which is an angle that indicates the type of dominant backscattering 313 

mechanisms. A zero alpha angle illustrates that the surface scattering mechanism is prevailing, 314 
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where 45° and 90° incidence angles represent the dominance of double-bounce and volume 315 

scattering (Cloude & Pottier, 1997). 316 

Yamaguchi decomposition extends Freeman-Durden decomposition by adding an element of helix 317 

scattering, which helps to distinguish co-pol and cross-pol ratios. The presence of helix scattering 318 

makes this decomposition perform better in urban areas (Yamaguchi et al., 2005), but the 319 

visualization of the decomposition is quite similar to the Freeman-Durden (Figure 2(e)). An&Yang 320 

decomposition is similar to the Yamaguchi decomposition in terms of decomposition features 321 

(Figure 2(f)) (Wang et al., 2020). 322 

Touzi decomposition uses eigenvalue and eigenvector decomposition similar to H/A/ALPHA, but 323 

employs a roll-invariant coherent scattering model for decomposing eigenvectors of the coherency 324 

matrix. The parameter that is useful for vegetation structure mapping is the phase of symmetric 325 

scattering (Touzi, 2007). Although the Touzi decomposition image seems to be noisy (Figure 326 

2(g)), Touzi (2010) found it to be a powerful decomposition approach for delineating different 327 

wetlands types. Touzi decomposition produces 15 different polarimetric features including the 328 

symmetric scattering-type magnitude, phase, and target helicity. Target helicity generated from 329 

this decomposition is better than H/A/ALPHA for forest characterization. The other component of 330 

this decomposition that can discriminate different herbaceous wetlands is the phase. Despite the 331 

efficiency of Touzi for wetland monitoring, the optimal integration of its features, including 332 

dominant, medium, and low single scatterings, is still debatable. The coherency matrix can also be 333 

decomposed into four different elements to create Singh decomposition (Singh et al., 2013). This 334 

decomposition allows for full utilization of polarimetric decomposition, due to its ability to 335 

distinguish the difference between the dihedral and dipole scattering in volume scattering. This 336 

decomposition is also better in identifying urban areas due to its sensitivity to HV polarization 337 

(Figure 2(h)). 338 

Hyunen decomposes the coherency matrix into three different scattering mechanisms which are 339 

three eigen value of coherency matrix (Huynen, 1970). Although a theoretically powerful 340 

technique, there are major drawbacks of this decomposition and Li and Zhang (2016) found this 341 

decomposition provided little insight into the physics of scattering. Irregularity and asymmetry of 342 

the scattering elements, and instability are other drawbacks of this decomposition. However, Li & 343 

Zhang (2016) introduced a unified and improved version of this decomposition that has less 344 

irregularity and asymmetry (Figure 2(i)). Van Zyl is a decomposition of the nonnegative 345 

eigenvalue of the covariance matrix (Zyl, 1993).  To estimate all scattering component of the 346 

polarimetric data, this decomposition combines the eigenvector decomposition of the covariance 347 

matrix to produce three components of odd, double, and volume scatterings (Figure 2(j)).  348 

Similar to Freeman-Durden, Aghababaee decomposition is a model-based decomposition that 349 

employs multi-polarimetric SAR data as the sum of Kronecker products (SKP; Aghababaee & 350 

Sahebi, 2018). Aghababaee decomposition decomposes the target to direct, double-bounce, and 351 

random-volume scattering mechanisms. In particular, it can detect multiple scatterers in forested 352 

areas by using the SKPs of the covariance matrix. The results of Aghababaee decomposition seems 353 

a little noisy. The interesting thing about the RGB color code of this decomposition is that the open 354 

water has different colors in the Yucatan lake area and the river part (Figure 2(k)). Based on our 355 

knowledge from the area, this decomposition has weakness in discriminating different herbaceous 356 



AGU ADVANCING EARTH AND SPACE SCIENCE 

 

wetlands. However, this figure only shows one of the combinations of the three features that 357 

presumably has better visualization of the area.  358 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

 

Figure 2. Implemented decompositions: (a) Pauli, (b) Krogager, (c) Freeman-Durden, (d) 359 

H/A/Alpha, (e) Yamaguchi, (f) An_Yang, (g) Touzi, (h) Singh, (i) Huynen (j): VanZyl, (k) 360 

Aghababaee; (l) normal color NAIP image of the study area shown in figure 1.  The date of 361 
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UAVSAR imagery is 30 Septemer 2019, and it was acquired in the morning at 9:17am local 362 

time. 363 

 364 

3.3. Object-based machine learning classifiers 365 

This study implemented two object-based machine-learning algorithms (SVM and RF) to perform 366 

object-based classification of the simulated NISAR imagery. Object-based image analysis (OBIA) 367 

clusters pixels in order to create a segmented image that contains a grouped vector and defined 368 

geometry. The segmentation integrates contextual and spectral information to consider geographic 369 

information, color, and shape of each ground feature. As a result, the created objects bear more 370 

resemblance to real world features than pixel-based classifiers. Additionally, the salt and pepper 371 

noise that exists in the pixel-based image classification is eliminated in OBIA classifiers (Frohn et 372 

al., 2011; Salehi et al., 2018).  373 

SVM defines decision boundaries called hyperplanes to separate different classes. The iterative 374 

learning process of SVM occurs by searching for an optimal hyperplane decision boundary to 375 

minimize misclassification (Zhu & Blumberg, 2002). Unlike conventional classification 376 

techniques (e.g. maximum likelihood) that assume normal distribution of training data, SVM is a 377 

non-parametric classification technique that holds no initial assumption about training data 378 

distribution (Mountrakis et al., 2011). Another appealing characteristic of SVM for geospatial data 379 

analysis is its capability to train and minimize the classification error using a small number of 380 

training samples. However, the choice of SVM kernel and parameters is not yet defined (Martins 381 

et al., 2016), hence in this paper, two parameters of C and gamma for the Radial Basis Function 382 

(RBF) kernel were examined.  383 

RF classifiers use an integration of tree predictors in which each tree uses values from 384 

independently sampled random vectors (Pal 2005) RF is an attractive approach because it is also 385 

independent of assumptions about the normality of input data (Tian et al., 2016) and as the trees 386 

grow, best splits of a random subset of input features are chosen, which reduces correlation 387 

between separate trees. Another advantage of RF is that fewer variables need to be set for training 388 

the classifier. The number of trees trained in the RF classifier for this study was 200 and the number 389 

of seeds was equal to the square root of the number of samples (Mahdianpari et al. 2017).  390 

Variable importance measures the prediction strength of each variable generated by each tree and 391 

can be considered as a post accuracy assessment for RF classifiers. The relative importance of each 392 

feature can be obtained using variable importance analysis (Rodriguez-Galiano et al., 2012). Two 393 

methods are common for variable importance analysis: permutation importance or mean decrease 394 

accuracy (MDA), which is based on out-of-box (OOB) error, and Gini importance or mean 395 

decrease impurity (MDI) (Millard & Richardson, 2015). In MDA, the average of each tree 396 

accuracies sort in decreasing order as a result of permutation. In this study, we used the MDI 397 

procedure for variable importance analysis since we aimed at testing the consistency our results 398 

with other investigations (Amani et al. 2018). MDI measures the importance of each feature in 399 

terms of the total number of samples divided by the number of tree splits. After calculating the 400 

Gini index for each of the polarimetric features, they were sort in decreasing order.  401 
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The flowchart of the classification is shown in Figure 3.  84 polarimetric features were extracted 402 

from the L-band simulated NISAR preprocessed data and stacked into one single vector. The 403 

object-based mean-shift segmentation was implemented using red, green, blue, and near infrared 404 

(NIR) bands of NAIP imagery (Tao, Jin, and Zhang 2007). The computational complexity of this 405 

approach is low and it can provide near real-time image segmentation. In the next step, the 406 

optimized parameters for achieving the highest accuracy of the SVM classifier were evaluated. 407 

Once the classifiers were trained, the stacked vector containing polarimetric features was imported 408 

into SVM and RF classifiers. The accuracy assessment of the classification results implemented 409 

using the validation samples in form of a confusion matrix. Ultimately, the variable importance 410 

analysis of the RF classifier was performed.411 

 412 

Figure 3. Flowchart of classification framework. 413 

 414 

4. Results and Discussion 415 

Thematic classification maps produced from the SVM and RF classifiers are shown in Figure (4) 416 

with six classes: open water, freshwater pond, forested scrub/shrub, forested upland, emergent 417 

wetland, and cultivated/planted land. An initial visual assessment of thematic maps suggests that 418 

forested scrub/shrub wetlands are dominant in the study area. Moreover, the RF classifier is better 419 
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in discriminating between forested upland and forested scrub/shrub wetland in the northeast of the 420 

study area. Emergent wetlands around Yucatan Lake are predominantly classified as forested 421 

scrub/shrub wetland rather than an emergent wetland. Moreover, the result of the RF classifier 422 

shows better discrimination between the freshwater pond and the Open water area.  423 

 424 

                   
 

 (a) (b) 

 425 

Figure 4. Object-based classification results: (a) SVM map; (b) RF map for the study area shown 426 

in figure 1. 427 

 428 

4.1. Post analysis accuracy assessment 429 

Selecting the parameters of the SVM kernel can considerably affect the overall classification 430 

accuracy. Hence, the optimal selection of a different combination of C and Gamma was examined. 431 

The resultant overall accuracy for different combinations of parameters are shown in the form of 432 

a heatmap in Figure 5. As can be seen, Gamma values higher than 10 and C values lower than 0.01 433 

are better to be avoided in the classification, as they do not result in meaningful results. Overall, 434 

the combination of gamma values in the range of 0.001 to 10 and C values in the range of 0.1 to 435 

1000 produced the results with accepted overall accuracies. Among the various tested combination 436 

of gamma and C, gamma equal to 0.1 and C equal to 10 provided the highest overall accuracy in 437 

our study. 438 
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 439 
Figure 5. Variation in SVM overall accuracy based on different values of Gamma and C in the 440 

RBF kernel. 441 

 442 

To provide quantitative assessment of the classification results, confusion matrices were calculated 443 

for both SVM and RF classifiers (Figure 6). The diagonal elements represent the producer’s 444 

accuracy for each class. Overall accuracies of 74.33% and 81.93% were obtained for SVM and 445 

RF, respectively. The non-diagonal elements show the confusion between different classes.  The 446 

non-diagonal elements corresponding to herbaceous vegetation for both classifiers in the confusion 447 

matrix are more noticeable compared to the non-vegetated area such as open water and 448 

cultivated/planted land. To elaborate, the non-wetland classes have higher accuracies which can 449 

be considered as a low commission and omission error. Theoretically, we expected to observe 450 

higher accuracies with increasing the reference data. Hence, the higher accuracy of non-wetland 451 

classes can be attributed to the larger availability of train data in the non-wetland classes. 452 

Potentially, due to the high similarity of backscattering signature between forested/shrub wetland 453 

and emergent wetland the confusion error for these two classes is higher for both classifiers. The 454 

confusion between the open-water and freshwater pond seen is likely due to the similarities of 455 

these two classes in SAR imagery. Notably, the confusion between the emergent wetland and 456 

forested scrub/shrub wetlands is higher in the SVM classifier compared to the RF classifier. The 457 
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other confusion is between the cultivated planted land and the open-water. This similarity can be 458 

attributed to the presence of odd-bounce scattering in both classes (Chen et al. 2014). Another 459 

confusion is between forested scrub-shrub wetland and cultivated/planted class that can suggest 460 

the presence of double-bounce in both classes. Ultimately, the confusion between the emergent 461 

wetland and forested/scrub shrub wetland is present in both classifiers which also is consistent 462 

with the result of Pistolesi et al. (2015). 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

         480 

 481 

 482 

 483 

 (a) 484 

 485 

 486 



AGU ADVANCING EARTH AND SPACE SCIENCE 

 

 487 

 (b) 

 488 

Figure 6. Confusion matrices of classification results: (a) SVM confusion matrix; (b) RF 489 

confusion matrix. 490 

 491 

The relative importance of each polarimetric feature for the RF classifier was assessed using the 492 

Gini index. Figure 7 shows 84 polarimetric features sorted in decreasing order of importance, some 493 

of the H/A/ALPHA and Aghababaee features dominating in the highest levels. As shown in the 494 

figure, the first five of the polarimetric features have a high impact on the overall accuracy. After 495 

the fifteenth feature, the importance of polarimetric features decreases with a gradual slope. Hence, 496 

for future studies presenting the first fifteenth important features can be sufficient since including 497 

the rest of the features would not bring significant enhancement in the accuracy. Moreover, many 498 

polarimetric features correlate with each other, meaning they do not produce distinctive and 499 

meaningful results. The top parameters are all parameters that would be useful in identifying forest 500 

volume scattering.  Most of the non-open water area here is in fact forested.  It is far down before 501 

it hits a double bounce parameter, which should be an indicator of inundation in a forested area. 502 

These features are preferred to be eliminated from evaluations since they increase the processing 503 

time significantly. Ultimately, the one challenging issue that still needs to be resolved is the 504 

influence of the combination of polarimetric features on each other. For instance, the performance 505 

of Freeman-Durden features can vary in the presence of TSVM features (Amani et al. 2018).  506 
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 507 

Figure 5. Variable importance analysis of object-based RF classifier. 508 
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5. Conclusions 509 

Efficient extraction of information from geospatial datasets can facilitate management of complex 510 

wetland environments. As we move forward, more diverse data of higher quality are being 511 

acquired with satellite in sub-weekly basis. In this study, we used object-based SVM and RF 512 

classifications to classify L-band UAVSAR data, as a proxy for planned NISAR imagery, using 513 

84 polarimetric features and achieved overall accuracy of 74.33% and 81.93%, respectively. The 514 

choice of parameters of RBF kernel was the influential factor in the SVM’s overall accuracy. The 515 

confusion matrix of SVM demonstrates that SVM is a powerful classifier for delineating different 516 

upland classes. Likewise, the confusion matrix of RF classifier shows the superior ability of the 517 

RF classifier to distinguish between emergent wetland and forested scrub/shrub. It also explains 518 

the higher accuracy of RF classifier. Moreover, variable importance analysis of RF classifier 519 

demonstrated that among 11 different polarimetric decompositions H/A/ALPHA, Freeman-520 

Durden, and Aghababaee have superior ability for discriminating different wetlands types. As 521 

expected, among different land-cover classes non-wetland classes including planted/cultivated 522 

land and open water had higher accuracies in both classifiers. The used imagery for this study was 523 

acquired in low flood date that means with the least contribution of double bounce scattering. For 524 

further studies, the inclusion of high flood imagery may increase the overall accuracies. 525 

Ultimately, this study confirmed the ability of simulated NISAR configuration for the 526 

discrimination of wetland classes using object-based machine learning classifiers. 527 

The implemented ML classification scheme shall provide some initial insight on the application 528 

of L-band multi-polarization NISAR for wetland mapping and monitoring. The L-band NISAR 529 

data is planned to acquire data in dense time series, denser than Sentinel-1, with a global coverage. 530 

Large aperture reflectors and real time digital beamforming expected to bring a significant 531 

improvement in SAR capability for biomass remote sensing and solid earth surface observations. 532 

Ultimately, an accurate and meaningful wetland maps may leverage multi-frequency and multi-533 

polarization satellite data with higher temporal resolution such as planned NISAR.  534 

 535 

6. Acknowledgement 536 

 537 

This research was partially carried out at the Jet Propulsion Laboratory, California Institute of 538 

Technology, under a contract with the National Aeronautics and Space Administration 539 

(80NM0018D0004). 540 

 541 

The data used in this study is available online at  https://uavsar.jpl.nasa.gov/cgi-bin/data.pl 542 

 543 

 544 

 545 



AGU ADVANCING EARTH AND SPACE SCIENCE 

 

7. References 546 

Adeli, S., Salehi, B., Mahdianpari, M., Quackenbush, L. J., Brisco, B., Tamiminia, H., & Shaw, 547 

S. (2020). Wetland Monitoring Using SAR Data: A Meta-Analysis and Comprehensive 548 

Review. Remote Sensing, 12(14), 2190. https://doi.org/10.3390/rs12142190 549 

Aghababaee, H., & Sahebi, M. R. (2018). Model-Based Target Scattering Decomposition of 550 

Polarimetric SAR Tomography. IEEE Transactions on Geoscience and Remote Sensing, 551 

56(2), 972–983. https://doi.org/10.1109/TGRS.2017.2757062 552 

Amani, M., Salehi, B., Mahdavi, S., Brisco, B., & Shehata, M. (2018). A Multiple Classifier 553 

System to improve mapping complex land covers: A case study of wetland classification 554 

using SAR data in Newfoundland, Canada. International Journal of Remote Sensing, 555 

39(21), 7370–7383. https://doi.org/10.1080/01431161.2018.1468117 556 

Albinet, C., Whitehurst, A. S., Jewell, L. A., Bugbee, K., Laur, H., Murphy, K. J., Frommknecht, 557 

B., Scipal, K., Costa, G., Jai, B., Ramachandran, R., Lavalle, M., & Duncanson, L. 558 

(2019). A Joint ESA-NASA Multi-mission Algorithm and Analysis Platform (MAAP) 559 

for Biomass, NISAR, and GEDI. Surveys in Geophysics, 40(4), 1017–1027. 560 

https://doi.org/10.1007/s10712-019-09541-z 561 

Banks, S., White, L., Behnamian, A., Chen, Z., Montpetit, B., Brisco, B., Pasher, J., & Duffe, J. 562 

(2019). Wetland Classification with Multi-Angle/Temporal SAR Using Random Forests. 563 

Remote Sensing, 11(6), 670. https://doi.org/10.3390/rs11060670 564 

Bartsch, A., Wagner, W., Scipal, K., Pathe, C., Sabel, D., & Wolski, P. (2009). Global 565 

monitoring of wetlands – the value of ENVISAT ASAR Global mode. Journal of 566 

Environmental Management, 90(7), 2226–2233. 567 

https://doi.org/10.1016/j.jenvman.2007.06.023 568 

Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D. S., & Frankenberg, C. (2010). Large-scale 569 

controls of methanogenesis inferred from methane and gravity spaceborne data. Science 570 

(New York, N.Y.), 327(5963), 322–325. https://doi.org/10.1126/science.1175176 571 

Brisco, B., Murnaghan, K., Wdowinski, S., & Hong, S.-H. (2015). Evaluation of RADARSAT-2 572 

Acquisition Modes for Wetland Monitoring Applications. Canadian Journal of Remote 573 

Sensing, 41(5), 431–439. https://doi.org/10.1080/07038992.2015.1104636 574 

Brisco, B., Schmitt, A., Murnaghan, K., Kaya, S., & Roth, A. (2013). SAR polarimetric change 575 

detection for flooded vegetation. International Journal of Digital Earth, 6(2), 103–114. 576 

https://doi.org/10.1080/17538947.2011.608813 577 

Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B., & Trettin, C. (2006). The carbon 578 

balance of North American wetlands. Wetlands, 26(4), 28. https://doi.org/10.1672/0277-579 

5212(2006)26[889:TCBONA]2.0.CO;2 580 

Chapman, B., Siqueira, P., Saatchi, S., Simard, M., & Kellndorfer, J. (2019). Initial results from 581 

the 2019 NISAR Ecosystem Cal/Val Exercise in the SE USA. IGARSS 2019 - 2019 IEEE 582 

International Geoscience and Remote Sensing Symposium, 8641–8644. 583 

https://doi.org/10.1109/IGARSS.2019.8899227 584 

Chen, Y., He, X., Wang, J., & Xiao, R. (2014). The Influence of Polarimetric Parameters and an 585 

Object-Based Approach on Land Cover Classification in Coastal Wetlands. Remote 586 

Sensing, 6(12), 12575–12592. https://doi.org/10.3390/rs61212575 587 

Choi, H., & Jeong, J. (2019). Speckle Noise Reduction Technique for SAR Images Using 588 

Statistical Characteristics of Speckle Noise and Discrete Wavelet Transform. Remote 589 

Sensing, 11(10), 1184. https://doi.org/10.3390/rs11101184 590 

https://doi.org/10.1109/TGRS.2017.2757062
https://doi.org/10.1080/07038992.2015.1104636
https://doi.org/10.1672/0277-5212(2006)26%5b889:TCBONA%5d2.0.CO;2
https://doi.org/10.1672/0277-5212(2006)26%5b889:TCBONA%5d2.0.CO;2


AGU ADVANCING EARTH AND SPACE SCIENCE 

 

Chuang, C.-L., Shaffer, S., Niamsuwan, N., Li, S., Vines, K., & Yang, M.-W. (2016). NISAR L-591 

band digital electronics subsystem: A multichannel system with distributed processors for 592 

digital beam forming and mode dependent filtering. 2016 IEEE Radar Conference 593 

(RadarConf), 1–5. https://doi.org/10.1109/RADAR.2016.7485225 594 

Cloude, S. R., & Pottier, E. (1996). A review of target decomposition theorems in radar 595 

polarimetry. IEEE Transactions on Geoscience and Remote Sensing, 34(2), 498–518. 596 

https://doi.org/10.1109/36.485127 597 

Cloude, S. R., & Pottier, E. (1997). An entropy based classification scheme for land applications 598 

of polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing, 35(1), 68–599 

78. https://doi.org/10.1109/36.551935 600 

Corcoran, J. M., Knight, J. F., & Gallant, A. L. (2013). Influence of Multi-Source and Multi-601 

Temporal Remotely Sensed and Ancillary Data on the Accuracy of Random Forest 602 

Classification of Wetlands in Northern Minnesota. Remote Sensing, 5(7), 3212–3238. 603 

https://doi.org/10.3390/rs5073212 604 

Cowardin, L. M., Carter, V., Golet, F. C., & LaRoe, E. T. (1979). Classification of wetlands and 605 

deepwater habitats of the United States [Technical Report]. U.S. Department of the 606 

Interior, U.S. Fish and Wildlife Service. https://tamug-ir.tdl.org/handle/1969.3/20139 607 

Dahl, T. E., & Johnson, C. E. (1991). Wetlands, Status and Trends in the Conterminous United 608 

States, Mid-1970’s to Mid-1980’s: First Update of the National Wetlands Status Report. 609 

U.S. Department of the Interior, Fish and Wildlife Service. 610 

Dahl, T. E. (n.d.). Status and Trends of Wetlands in the Conterminous United States 2004 to 611 

2009. 112. 612 

Duncanson, L., Neuenschwander, A., Hancock, S., Thomas, N., Fatoyinbo, T., Simard, M., 613 

Silva, C. A., Armston, J., Luthcke, S. B., Hofton, M., Kellner, J. R., & Dubayah, R. 614 

(2020). Biomass estimation from simulated GEDI, ICESat-2 and NISAR across 615 

environmental gradients in Sonoma County, California. Remote Sensing of Environment, 616 

242, 111779. https://doi.org/10.1016/j.rse.2020.111779 617 

Evans, T. L., & Costa, M. (2013). Landcover classification of the Lower Nhecolândia subregion 618 

of the Brazilian Pantanal Wetlands using ALOS/PALSAR, RADARSAT-2 and 619 

ENVISAT/ASAR imagery. https://pubag.nal.usda.gov/catalog/876316 620 

Freeman, A., & Durden, S. L. (1998a). A three-component scattering model for polarimetric 621 

SAR data. IEEE Transactions on Geoscience and Remote Sensing, 36(3), 963–973. 622 

https://doi.org/10.1109/36.673687 623 

Freeman, A., & Durden, S. L. (1998b). A three-component scattering model for polarimetric 624 

SAR data. IEEE Transactions on Geoscience and Remote Sensing, 36(3), 963–973. 625 

https://doi.org/10.1109/36.673687 626 

Frohn, R. C., Autrey, B. C., Lane, C. R., & Reif, M. (2011). Segmentation and object-oriented 627 

classification of wetlands in a karst Florida landscape using multi-season Landsat-7 628 

ETM+ imagery. International Journal of Remote Sensing, 32(5), 1471–1489. 629 

https://doi.org/10.1080/01431160903559762 630 

Furtado, L. F. de A., Silva, T. S. F., & Novo, E. M. L. de M. (2016). Dual-season and full-631 

polarimetric C band SAR assessment for vegetation mapping in the Amazon várzea 632 

wetlands. Remote Sensing of Environment, 174, 212–222. 633 

https://doi.org/10.1016/j.rse.2015.12.013 634 

Gardner, R. C., & Davidson, N. (2011). The Ramsar Convention. Wetlands: Integrating 635 

Multidisciplinary Concepts, 189–203. 636 



AGU ADVANCING EARTH AND SPACE SCIENCE 

 

Hensley, S., Wheeler, K., Sadowy, G., Jones, C., Shaffer, S., Zebker, H., Miller, T., Heavey, B., 637 

Chuang, E., Chao, R., Vines, K., Nishimoto, K., Prater, J., Carrico, B., Chamberlain, N., 638 

Shimada, J., Simard, M., Chapman, B., Muellerschoen, R., … Smith, R. (2008). The 639 

UAVSAR instrument: Description and first results. 2008 IEEE Radar Conference, 1–6. 640 

https://doi.org/10.1109/RADAR.2008.4720722 641 

Hess, L. L., Melack, J. M., Affonso, A. G., Barbosa, C., Gastil-Buhl, M., & Novo, E. M. L. M. 642 

(2015). Wetlands of the Lowland Amazon Basin: Extent, Vegetative Cover, and Dual-643 

season Inundated Area as Mapped with JERS-1 Synthetic Aperture Radar. Wetlands, 644 

35(4), 745–756. https://doi.org/10.1007/s13157-015-0666-y 645 

Hoffman, J. P., Horst, S., & Ghaemi, H. (2015). Digital calibration system for the proposed 646 

NISAR (NASA/ISRO) mission. 2015 IEEE Aerospace Conference, 1–7. 647 

https://doi.org/10.1109/AERO.2015.7119151 648 

Hong, S.-H., & Wdowinski, S. (2014). Multitemporal Multitrack Monitoring of Wetland Water 649 

Levels in the Florida Everglades Using ALOS PALSAR Data With Interferometric 650 

Processing. IEEE Geoscience and Remote Sensing Letters, 11(8), 1355–1359. 651 

https://doi.org/10.1109/LGRS.2013.2293492 652 

Huang, Xiaodong, Michele Reba, Alisa Coffin, Benjamin R. K. Runkle, Yanbo Huang, Bruce 653 

Chapman, Beth Ziniti, et al. 2021. “Cropland Mapping with L-Band UAVSAR and 654 

Development of NISAR Products.” Remote Sensing of Environment 253 (February): 655 

112180. https://doi.org/10.1016/j.rse.2020.112180. 656 

Huynen, J. R. (1970). Phenomenological theory of radar targets. 657 

Jaramillo, F., Brown, I., Castellazzi, P., Espinosa, L., Guittard, A., Hong, S.-H., Rivera-Monroy, 658 

V. H., & Wdowinski, S. (2018). Assessment of hydrologic connectivity in an ungauged 659 

wetland with InSAR observations. Environmental Research Letters, 13(2), 024003. 660 

https://doi.org/10.1088/1748-9326/aa9d23 661 

Jong-Sen Lee, Jen-Hung Wen, Ainsworth, T. L., Kun-Shan Chen, & Chen, A. J. (2009). 662 

Improved Sigma Filter for Speckle Filtering of SAR Imagery. IEEE Transactions on 663 

Geoscience and Remote Sensing, 47(1), 202–213. 664 

https://doi.org/10.1109/TGRS.2008.2002881 665 

Koch, M., Schmid, T., Reyes, M., & Gumuzzio, J. (2012). Evaluating Full Polarimetric C- and 666 

L-Band Data for Mapping Wetland Conditions in a Semi-Arid Environment in Central 667 

Spain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote 668 

Sensing, 5(3), 1033–1044. https://doi.org/10.1109/JSTARS.2012.2202091 669 

Krogager, E. (1990). New decomposition of the radar target scattering matrix. Electronics 670 

Letters, 26(18), 1525–1527. https://doi.org/10.1049/el:19900979 671 

Li, D., & Zhang, Y. (2016). Unified Huynen Phenomenological Decomposition of Radar Targets 672 

and Its Classification Applications. IEEE Transactions on Geoscience and Remote 673 

Sensing, 54(2), 723–743. https://doi.org/10.1109/TGRS.2015.2464113 674 

Mahdianpari, M., Salehi, B., Mohammadimanesh, F., & Motagh, M. (2017). Random forest 675 

wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X 676 

imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 13–31. 677 

https://doi.org/10.1016/j.isprsjprs.2017.05.010 678 

Martins, S., Bernardo, N., Ogashawara, I., & Alcantara, E. (2016). Support Vector Machine 679 

algorithm optimal parameterization for change detection mapping in Funil Hydroelectric 680 

Reservoir (Rio de Janeiro State, Brazil). Modeling Earth Systems and Environment, 2(3), 681 

138. https://doi.org/10.1007/s40808-016-0190-y 682 

https://doi.org/10.1109/LGRS.2013.2293492
https://doi.org/10.1109/TGRS.2008.2002881


AGU ADVANCING EARTH AND SPACE SCIENCE 

 

Millard, K., & Richardson, M. (2015). On the Importance of Training Data Sample Selection in 683 

Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping. 684 

Remote Sensing, 7(7), 8489–8515. https://doi.org/10.3390/rs70708489 685 

Mitsch, W. J., Bernal, B., Nahlik, A. M., Mander, Ü., Zhang, L., Anderson, C. J., Jørgensen, S. 686 

E., & Brix, H. (2013). Wetlands, carbon, and climate change. Landscape Ecology, 28(4), 687 

583–597. https://doi.org/10.1007/s10980-012-9758-8 688 

Mohammadimanesh, F., Salehi, B., Mahdianpari, M., Brisco, B., & Gill, E. (2019). Full and 689 

Simulated Compact Polarimetry SAR Responses to Canadian Wetlands: Separability 690 

Analysis and Classification. Remote Sensing, 11(5), 516. 691 

https://doi.org/10.3390/rs11050516 692 

Mohammadimanesh, F., Salehi, B., Mahdianpari, M., Brisco, B., & Motagh, M. (2018). Multi-693 

temporal, multi-frequency, and multi-polarization coherence and SAR backscatter 694 

analysis of wetlands. ISPRS Journal of Photogrammetry and Remote Sensing, 142, 78–695 

93. https://doi.org/10.1016/j.isprsjprs.2018.05.009 696 

Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A 697 

review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259. 698 

https://doi.org/10.1016/j.isprsjprs.2010.11.001 699 

Pal, M. (2005). Random forest classifier for remote sensing classification. International Journal 700 

of Remote Sensing, 26(1), 217–222. https://doi.org/10.1080/01431160412331269698 701 

Simulated NISAR Products. (2020). https://uavsar.jpl.nasa.gov/science/documents/nisar-sample-702 

products.html 703 

Pistolesi, L. I., Ni-Meister, W., & McDonald, K. C. (2015). Mapping wetlands in the Hudson 704 

Highlands ecoregion with ALOS PALSAR: An effort to identify potential swamp forest 705 

habitat for golden-winged warblers. Wetlands Ecology and Management, 23(1), 95–112. 706 

https://doi.org/10.1007/s11273-014-9381-3 707 

Qi, Z., Yeh, A. G.-O., Li, X., & Lin, Z. (2012). A novel algorithm for land use and land cover 708 

classification using RADARSAT-2 polarimetric SAR data. Remote Sensing of 709 

Environment, 118, 21–39. https://doi.org/10.1016/j.rse.2011.11.001 710 

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. 711 

(2012). An assessment of the effectiveness of a random forest classifier for land-cover 712 

classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93–104. 713 

https://doi.org/10.1016/j.isprsjprs.2011.11.002 714 

Salehi, B., Daneshfar, B., & Davidson, A. M. (2017). Accurate crop-type classification using 715 

multi-temporal optical and multi-polarization SAR data in an object-based image analysis 716 

framework. International Journal of Remote Sensing, 38(14), 4130–4155. 717 

Salehi, Bahram, Mahdianpari, M., Amani, M., M.Manesh, F., Granger, J., Mahdavi, S., & 718 

Brisco, B. (2018). A Collection of Novel Algorithms for Wetland Classification with 719 

SAR and Optical Data. Wetlands Management - Assessing Risk and Sustainable 720 

Solutions. https://doi.org/10.5772/intechopen.80688 721 

Sheykhmousa, M., & Mahdianpari, M. (2020). Support Vector Machine vs. Random Forest for 722 

Remote Sensing Image Classification: A Meta-analysis and systematic review. IEEE 723 

Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 724 

https://doi.org/10.1109/JSTARS.2020.3026724 725 

Singh, G., Yamaguchi, Y., & Park, S.-E. (2013). General Four-Component Scattering Power 726 

Decomposition With Unitary Transformation of Coherency Matrix. IEEE Transactions 727 

https://doi.org/10.1007/s10980-012-9758-8
https://doi.org/10.1016/j.isprsjprs.2010.11.001
https://uavsar.jpl.nasa.gov/science/documents/nisar-sample-products.html
https://uavsar.jpl.nasa.gov/science/documents/nisar-sample-products.html


AGU ADVANCING EARTH AND SPACE SCIENCE 

 

on Geoscience and Remote Sensing, 51(5), 3014–3022. 728 

https://doi.org/10.1109/TGRS.2012.2212446 729 

Stedman, S.-M., & Dahl, T. E. (n.d.). Status and Trends of Wetlands in the Coastal Watersheds 730 

of the Eastern United States 1998 to 2004. 36. 731 

Tao, W., Jin, H., & Zhang, Y. (2007). Color Image Segmentation Based on Mean Shift and 732 

Normalized Cuts. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 733 

37(5), 1382–1389. https://doi.org/10.1109/TSMCB.2007.902249 734 

Thanh Noi, P., & Kappas, M. (2018). Comparison of Random Forest, k-Nearest Neighbor, and 735 

Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 736 

Imagery. Sensors, 18(1), 18. https://doi.org/10.3390/s18010018 737 

Tian, S., Zhang, X., Tian, J., & Sun, Q. (2016). Random Forest Classification of Wetland 738 

Landcovers from Multi-Sensor Data in the Arid Region of Xinjiang, China. Remote 739 

Sensing, 8(11), 954. https://doi.org/10.3390/rs8110954 740 

Tiner, R. W., Lang, M. W., Klemas, V. V., Lang, M. W., & Klemas, V. V. (2015). Remote 741 

Sensing of Wetlands: Applications and Advances. CRC Press. 742 

https://doi.org/10.1201/b18210 743 

Touzi, R. (2007). Target Scattering Decomposition in Terms of Roll-Invariant Target 744 

Parameters. IEEE Transactions on Geoscience and Remote Sensing, 45(1), 73–84. 745 

https://doi.org/10.1109/TGRS.2006.886176 746 

Touzi, R. (2010). INTERPRETATION OF THE TOUZI DECOMPOSITION FOR OPTIMUM 747 

WETLAND CHARACTERIZATION. 4. 748 

Tsyganskaya, V., Martinis, S., Marzahn, P., & Ludwig, R. (2018). SAR-based detection of 749 

flooded vegetation – a review of characteristics and approaches. International Journal of 750 

Remote Sensing, 39(8), 2255–2293. https://doi.org/10.1080/01431161.2017.1420938 751 

Wang, W., Tian, Z., Tian, B., & Zhang, J. (2020). Supervised Manifold-Learning Algorithm for 752 

Polsar Feature Extraction and Lulc Classification. The International Archives of 753 

Photogrammetry, Remote Sensing and Spatial Information Sciences; Gottingen, XLIII-754 

B3-2020, 345–350. http://dx.doi.org/10.5194/isprs-archives-XLIII-B3-2020-345-2020 755 

Wohlfart, C., Winkler, K., Wendleder, A., & Roth, A. (2018). TerraSAR-X and Wetlands: A 756 

Review. Remote Sensing, 10(6), 916. https://doi.org/10.3390/rs10060916 757 

Yu, Y., & Saatchi, S. (2016). Sensitivity of L-Band SAR Backscatter to Aboveground Biomass 758 

of Global Forests. Remote Sensing, 8(6), 522. https://doi.org/10.3390/rs8060522 759 

Yucatan Lake Topo Map in Tensas Parish, Louisiana. (n.d.). Retrieved July 21, 2020, from 760 

https://www.anyplaceamerica.com/directory/la/tensas-parish-22107/lakes/yucatan-lake-761 

556489/ 762 

Zhao, J., Niu, Y., Lu, Z., Yang, J., Li, P., & Liu, W. (2018). Applicability Assessment of Uavsar 763 

Data in Wetland Monitoring: A Case Study of Louisiana Wetland. ISPRS - International 764 

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42.3, 765 

2375–2378. https://doi.org/10.5194/isprs-archives-XLII-3-2375-2018 766 

Zhu, G., & Blumberg, D. G. (2002). Classification using ASTER data and SVM algorithms;: The 767 

case study of Beer Sheva, Israel. Remote Sensing of Environment, 80(2), 233–240. 768 

https://doi.org/10.1016/S0034-4257(01)00305-4 769 

 770 

https://doi.org/10.1109/TGRS.2012.2212446

