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Abstract

Low streamflows can increase vulnerability to warming, impacting coldwater fish. Water managers need tools to quantify these

impacts and predict future water temperatures. Contrary to most statistical models’ assumptions, many seasonally changing

factors (e.g., water sources and solar radiation) cause relationships between flow and water temperature to vary throughout the

year. Using 21 years of air temperature and flow data, we modeled daily water temperatures in California’s snowmelt-driven

Scott River where agricultural diversions consume most summer surface flows. We used generalized additive models to test

time-varying and nonlinear effects of flow on water temperatures. Models that represented seasonally varying flow effects with

intermediate complexity outperformed simpler models assuming constant relationships between water temperature and flow.

Cross-validation error of the selected model was [?]1.2 °C. Flow variation had stronger effects on water temperatures in April–

July than in other months. We applied the model to predict effects of instream flow scenarios proposed by regulatory agencies.

Relative to historic conditions, the higher instream flow scenario would reduce annual maximum temperature from 25.2 °C to

24.1 °C, reduce annual exceedances of 22 °C (a cumulative thermal stress metric) from 106 to 51 degree-days, and delay onset

of water temperatures >22 °C during some drought years. Testing the same modeling approach at nine additional sites showed

similar accuracy and flow effects. These methods can be applied to streams with long-term flow and water temperature records

to fill data gaps, identify periods of flow influence, and predict temperatures under flow management scenarios.
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Key Points: 11 

• In this snowmelt and groundwater-influenced river, water temperatures stayed cool later 12 
into summer in high-flow years than low-flow years 13 

• Statistical water temperature model predictions became more accurate when the influence 14 
of river flow was allowed to vary seasonally 15 

• These accessible models can be applied to other rivers or streams with daily, long-term 16 
flow and water temperature records  17 

 18 
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Abstract 21 

Low streamflows can increase vulnerability to warming, impacting coldwater fish. Water 22 
managers need tools to quantify these impacts and predict future water temperatures. Contrary to 23 
most statistical models’ assumptions, many seasonally changing factors (e.g., water sources and 24 
solar radiation) cause relationships between flow and water temperature to vary throughout the 25 
year. Using 21 years of air temperature and flow data, we modeled daily water temperatures in 26 
California’s snowmelt-driven Scott River where agricultural diversions consume most summer 27 
surface flows. We used generalized additive models to test time-varying and nonlinear effects of 28 
flow on water temperatures. Models that represented seasonally varying flow effects with 29 
intermediate complexity outperformed simpler models assuming constant relationships between 30 
water temperature and flow. Cross-validation error of the selected model was ≤1.2 °C. Flow 31 
variation had stronger effects on water temperatures in April–July than in other months. We 32 
applied the model to predict effects of instream flow scenarios proposed by regulatory agencies. 33 
Relative to historic conditions, the higher instream flow scenario would reduce annual maximum 34 
temperature from 25.2 °C to 24.1 °C, reduce annual exceedances of 22 °C (a cumulative thermal 35 
stress metric) from 106 to 51 degree-days, and delay onset of water temperatures >22 °C during 36 
some drought years. Testing the same modeling approach at nine additional sites showed similar 37 
accuracy and flow effects. These methods can be applied to streams with long-term flow and 38 
water temperature records to fill data gaps, identify periods of flow influence, and predict 39 
temperatures under flow management scenarios. 40 

 41 

Plain Language Summary 42 

Warm water temperatures threaten culturally and economically important salmon in Pacific 43 
Northwest rivers, causing chronic stress and direct mortality. Climate change and agricultural 44 
water use have reduced summer river flows in recent decades, intensifying water scarcity. Years 45 
with deep mountain snowpack and resulting high groundwater levels extend the high flow season 46 
and keep water temperatures cool through the end of July, whereas in drought years the river 47 
warms sooner. We used 21 years of river flow and air temperature data from the Scott River, 48 
California, to create computer models that simulate water temperatures. Our models allow the 49 
effect of flow on water temperatures to vary by season (i.e., stronger cooling effects in spring 50 
and summer), improving accuracy of the simulated temperatures. We used the Scott River model 51 
to simulate water temperatures under two alternative flow scenarios considered in local water 52 
management plans. Our simulations indicate that relative to current conditions, the higher flow 53 
scenario would lower the summers’ highest temperatures and decrease the number of days that 54 
river temperatures exceed a biological threshold. Testing the same modeling approach at nine 55 
additional Klamath Basin sites showed similar accuracy and flow effects. Our model is freely 56 
available for public use. 57 

 58 

1 Introduction 59 

Water temperature in rivers and streams drive physical, chemical, and biological processes 60 
(Ouellet et al., 2020). Stream temperatures determine species ranges, with alterations to natural 61 
temperature regimes causing deleterious effects to native species (Wenger et al., 2011). Stream 62 
temperatures are widely altered by human activities (Webb et al., 2008). Maintaining ecological 63 
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integrity is a major stream temperature management goal, yet models used to predict stream 64 
temperature response to management interventions either lack predictive power or are time-65 
consuming to develop.   66 

River flow rates (i.e., discharge) are a key driver of stream temperatures through multiple 67 
mechanisms. While stream temperatures are determined by surface and streambed energy fluxes 68 
and advected heat (Caissie, 2006; Moore et al., 2005), flows influence these factors and their 69 
effect on temperature. Higher flows generally increase water volume and thus a stream’s 70 
capacity to store heat, reducing daily temperature fluctuations (Brown, 1969; Folegot et al., 71 
2018; Meier et al., 2003; Sinokrot & Gulliver, 2000). Higher flows speed downstream transit of 72 
water, reducing the time that a parcel of water is exposed to ambient heating (or cooling) at a 73 
given location and increasing the influence of upstream conditions (Bartholow, 1991; Dymond 74 
J., 1984; Folegot et al., 2018). Channel geometry, including width/depth ratio, influences these 75 
effects (Dugdale et al., 2017). 76 

The relationship between water temperature and flow varies through time. Seasonal changes in 77 
precipitation phase (i.e., snow and rain) affect water temperatures (Yan et al., 2021). The 78 
geographical source of water can shift seasonally, and can include tributaries, point sources, 79 
hillslopes, and alluvial aquifers, with each source having different temperatures and heating or 80 
cooling trajectories while en route to stream channels (Dugdale et al., 2017; Steel et al., 2017). 81 
Groundwater-surface water interactions and hyporheic exchange also affect temperatures 82 
(Hannah et al., 2009; Kurylyk et al., 2015). Water management, including reservoir releases, 83 
water withdrawals, and irrigation runoff can further alter temperature dynamics (Alger et al., 84 
2021; Chandesris et al., 2019). Flow effects on water temperature are further mediated by 85 
seasonal changes to solar radiation received by the stream. Day length and solar angle, which 86 
affect topographic and riparian shading, remain consistent among years (Piotrowski & 87 
Napiorkowski, 2019; Yard et al., 2005). Other mediators of solar radiation including leaf out and 88 
leaf fall of deciduous riparian vegetation, cloud cover (Dugdale et al., 2017), water vapor, dust 89 
(Theurer et al., 1984), wildfire smoke (Asarian et al., 2020; David et al., 2018) and other aerosols 90 
follow seasonal trajectories that vary among years. Despite time-varying changes in how flow 91 
dynamics influence stream temperature, many stream temperature models do not account for 92 
these seasonal variations in the relationship between flow and stream temperatures. 93 

Given stream temperature’s importance and vulnerability to human alterations, water managers 94 
need tools to predict stream temperature changes associated with climate change and flow 95 
management (Gibeau & Palen, 2020; Null et al., 2017). While process-based (i.e., deterministic) 96 
models simulating stream energy budgets can have high predictive accuracy, their use is limited 97 
by extensive data input requirements (Brown, 1969; Caissie, 2006; Dugdale et al., 2017). 98 
Statistical models that use empirical relationships between stream temperature and 99 
environmental drivers require fewer input variables so are easier to implement, but for scenario 100 
prediction they are generally not considered as reliable as process-based models (Arismendi et 101 
al., 2014; Benyahya et al., 2007a; Caissie, 2006). However, statistical modeling methods have 102 
evolved, improving prediction accuracy and temporal resolution (i.e., daily) (Ouellet et al., 2020; 103 
Piotrowski & Napiorkowski, 2019). Year-round daily temperature models are especially valuable 104 
because they match the time scales used in detailed biological studies and water quality 105 
regulations (Imholt et al., 2010; Railsback et al., 2015; USEPA, 2003).  106 

Statistical stream temperature models have long relied on air temperature as the primary 107 
predictor (Mohseni et al., 1998), but year-round daily models should incorporate additional 108 
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mechanisms to improve accuracy and reflect physical processes (Letcher et al., 2016). Statistical 109 
stream temperature models use air temperature to represent net radiative flux (Caissie 2006). 110 
Time lags between air temperatures and water temperature reflect heat exchange processes 111 
(Koch & Grünewald, 2010; Soto, 2016; Webb et al., 2003), while temporal autocorrelation 112 
acknowledges that stream temperature on a given day is in part a result of stream temperature the 113 
previous day (Benyahya et al., 2007a, 2007b, 2008; Yang & Moyer, 2020). Inclusion of flow can 114 
improve model accuracy (Santiago et al., 2017; Sohrabi et al., 2017; van Vliet et al., 2011; Webb 115 
et al., 2003). The relationship between air and stream temperatures is nonlinear and differs 116 
among seasons (Arismendi et al., 2014, Caissie et al., 2001; Mohseni et al., 1998). Including 117 
time-varying effects could improve the predictive accuracy of stream temperature models across 118 
variable conditions. 119 

Several methods allow seasonal variation in the relationship between environmental covariates 120 
and stream temperatures. These methods not only improve model accuracy but also identify the 121 
times when effects are strongest. While time-varying covariate effects can be represented using 122 
separate models for each season (Mohseni et al., 1998; Sohrabi et al., 2017), this may cause 123 
unnatural, abrupt changes at seasonal transitions. Time-varying coefficients, including those used 124 
in generalized additive models (GAMs) (Pedersen et al., 2019; Wood, 2017) use continuous 125 
functions that avoid these abrupt changes (Li et al., 2014; Jackson et al., 2018; Siegel & Volk, 126 
2019). While GAMs have been used in daily stream temperature modeling for single-site 127 
prediction (Boudreault et al., 2019; Coleman et al., 2021; Glover et al., 2020; Laanaya et al., 128 
2017; Siegel et al., 2022), spatiotemporal prediction (Jackson et al., 2018; Siegel & Volk, 2019), 129 
identifying extreme events (Georges et al., 2021), and trend assessment (Yang & Moyer, 2020), 130 
few studies have used GAMs to model seasonally varying flow effects or identify when stream 131 
temperatures are most affected by flow variation (Glover et al., 2020; Yang & Moyer, 2020). 132 
With flexible model structures and easy implementation, GAMs could be a powerful tool for 133 
predicting stream temperatures under flow management scenarios, but to our knowledge these 134 
models have not been previously used for this purpose.  135 

Our objectives were to predict mean and maximum daily stream temperatures under management 136 
flow scenarios and new environmental conditions, and to identify periods when flow has the 137 
strongest influence on stream temperatures. We compared 11 GAM structures using flow, air 138 
temperature, and day of year as covariates that incorporated combinations of linear, nonlinear, 139 
and seasonally-varying effects. Our model selection and validation procedures included 140 
extrapolation tests evaluating predicted stream temperatures with flows and air temperatures 141 
outside the calibration range, designed to favor models that had enough complexity to represent 142 
the key patterns in the data, but not so complex that they overfit the data. We applied the top 143 
model to proposed management flow scenarios and extreme flow and air temperature conditions. 144 
The models are intended to be used as a tool to inform water management, making the relatively 145 
simple model structure and coding of GAMs our choice of modeling technique. We focused our 146 
analyses on the Scott River of Northern California, where low flows and high temperatures are 147 
limiting factors for coldwater fish and water managers are considering implementing regulations 148 
to protect instream flows. To demonstrate wider applicability, we evaluated similar models in 149 
nine additional sites in the Klamath River Basin.  150 

 151 
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2 Study Area 152 

Our study area is the lower Klamath River Basin, California, USA, focusing on one large 153 
tributary—the Scott River (Figure 1). The Scott River study site is located at the outlet of Scott 154 
Valley, with a drainage area of 1,714 km2. The other nine sites are near USGS gaging stations 155 
with drainage areas ranging from 58 km2 to 31,300 km2 (Figure 1, Table S1). The climate is 156 
Mediterranean with precipitation occurring primarily in winter and spring as rain at low 157 
elevations and snow at higher elevations (VanderKooi et al., 2011). The human population lives 158 
primarily on private land along watercourses including Scott Valley, where irrigated agriculture 159 
dominates land use, utilizing groundwater and surface water (Foglia et al., 2018). The Scott 160 
River has no major dams or reservoirs, but there are large dams on the Klamath River and two 161 
tributaries (Shasta and Trinity rivers), influencing some study sites.  162 

The Scott Valley aquifer fills during the high flows of winter rainstorms and spring snowmelt-163 
driven runoff. As runoff recedes through summer, most surface water is diverted for irrigation 164 
and river water at the Scott Valley outlet becomes increasingly composed of groundwater from 165 
valley alluvium. Minimum flows occur in early September before rising due to fall rains (Figure 166 
2b). In late summer of drought years, portions of the Scott River have no surface flow (Tolley et 167 
al., 2019). Summer and fall river flows have declined in recent decades (Kim and Jain, 2010; 168 
Asarian and Walker, 2016) due to a combination of climate change (Drake et al., 2000) and 169 
increased groundwater withdrawals, especially since 1977 (Van Kirk and Naman, 2008). Climate 170 
change is expected to further reduce flows by decreasing snowpack and increasing irrigation 171 
demand (Persad et al., 2020).  172 

Management flows have been proposed for the Scott River to protect Endangered Species Act-173 
listed coho salmon (Oncorhynchus kisutch) and other coldwater salmonid fishes. These fishes’ 174 
importance to local Native American tribes has led to contention over water management. River 175 
water temperatures in May–July are much cooler in high-flow years than low-flow years (Figure 176 
2), and water extraction has contributed to the Scott River being listed as impaired for water 177 
temperature under the Clean Water Act (NCRWQCB, 2005). The U.S. Forest Service has a first-178 
priority Schedule D water right for Scott River instream flow that varies by month and day from 179 
30–200 ft3/s (0.85–5.67 m3/s) (Superior Court of Siskiyou County, 1980) (Figure 3b), but does 180 
not exercise its legal authority to curtail lower-priority water uses when flows drop below these 181 
levels. The California Department of Fish and Wildlife (CDFW) proposed interim Scott River 182 
instream flow targets that vary by month and day from 62–362 ft3/s (10.3–1.75 m3/s) (CDFW, 183 
2017) (Figure 3b), but these have no legal force. 184 

 185 

3 Methods 186 

At each of the 10 sites, we developed GAMs to predict daily mean stream temperature (Tmean) 187 
and daily maximum stream temperature (Tmax) using flow, air temperature, and day of year as 188 
covariates. We compared models across a range of complexity, including those with seasonally 189 
varying flow effects, to models with a constant relationship between stream temperature and 190 
flow. We selected a final model based on the best overall performance averaged across the 10 191 
sites. We then applied that model to flow management scenarios at one site– the Scott River. 192 
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3.1 Data sources and preparation 193 

3.1.1 Water temperature and river flow 194 

We obtained water temperature data from six sources (Table S1). For the Scott River site, we 195 
used Quartz Valley Indian Reservation (QVIR) (QVIR, 2016; Asarian et al., 2020) data, 196 
supplemented by U.S. Forest Service (USFS) (KNF, 2010, 2011) and U.S. Bureau of 197 
Reclamation (USBR) (Smith et al., 2018) data. For the nine other sites, we used data from the 198 
U.S. Fish and Wildlife Service (USFWS) (Manhard et al., 2018; Romberger & Gwozdz, 2018), 199 
USFS (KNF, 2010, 2011), USBR, U.S. Geological Survey (USGS), and California Department 200 
of Water Resources (CDWR). Equipment calibration information is provided in Text S1. 201 
Following compilation, we reviewed the data and removed any suspicious values (e.g., when 202 
there were calibration issues or probes appear to have been exposed to air). We then calculated 203 
Tmean and Tmax. For days when data were available from multiple entities, we averaged values 204 
(Text S1). Data availability at each site ranged from 3,540–5,684 days and 16–21 years (1998–205 
2020), with at least five days of data for every julian day. We paired daily temperatures at each 206 
site with daily average streamflow data from nearby USGS gages (Figure 1, Table S1).  207 

3.1.2 Air temperature 208 

We retrieved daily mean air temperatures for each site from the 4-km resolution gridded PRISM 209 
dataset (Daly et al., 2008). Because stream temperatures are correlated with air temperature at 210 
multiple time scales, we initially explored many metrics (Piotrowski & Napiorkowski, 2019). In 211 
these initial explorations at Scott River, we found that two-day weighted air temperature (A2w) 212 
resulted in good model fits (Text S2), so we used A2w for all models except one that used a 213 
seven-day average (A7) to mimic Mohseni et al.’s (1998) widely-implemented model. A2w is 214 
calculated as follows, where A is mean air temperature on day i:   215 𝐴  =    .  × .          (1) 216 

 217 

To improve numerical stability, we standardized air temperature (°C) and flow (log10 m3/s) by 218 
centering and scaling (i.e., subtracting the mean, then dividing by the standard deviation). 219 

 220 

3.1.3 Flow and air temperature quantiles 221 

At each site, we used smooth additive quantile regression models (Cade and Noon, 2003; Fasiolo 222 
et al., 2020) to calculate the air temperature associated with three quantiles (0.1, 0.5, and 0.9, 223 
equivalent to 90%, 50%, 10% exceedance probabilities) for each day of the year (Figure 3a), 224 
using the qgam R package (Fasiolo et al., 2020) with a 12-knot cyclic cubic regression spline 225 
(“cc”). We refer to the 0.1, 0.5, and 0.9 air temperature quantiles as Coolest, Typical, and 226 
Hottest, respectively. We also derived three flow quantiles, with the 0.1 quantile representing 227 
Lowest flows, 0.5 quantile representing Typical flows, and the 0.9 quantile representing Highest 228 
flows (Figure 3b). These quantiles were used to generate model scenarios (Section 3.4). 229 

We used similar quantile regression models at each site to categorize each date into one of nine 230 
categories based on combinations of flow quantiles (High is >0.67 quantile, Moderate is 0.33–231 
0.67 quantile, Low is <0.33 quantile) and air temperature quantiles (Cool is <0.33 quantile, 232 
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Moderate is 0.33–0.67 quantile, Warm is > 0.67 quantile). These categories were used to define 233 
cross-validation blocks (Section 3.3). 234 

 235 

3.2 Model development and calibration 236 

At each of the 10 sites, we developed 11 models of Tmax and Tmean using combinations of river 237 
flow, air temperature, and day of year (D) as covariates, including interactions (Figure 4). 238 
Models are numbered according to effective degrees of freedom for fixed effects, from most 239 
complex (GAM1) to least complex (GAM11). GAMs were developed in the mgcv R package 240 
version 1.8-41 using the bam function (Wood, 2017), fit using fast restricted maximum 241 
likelihood (fREML). Model terms were either linear coefficients or smooth non-linear functions 242 
with wiggliness determined by a smoothing penalty (Pedersen et al., 2019; Wood, 2017). We 243 
used cyclic cubic regression splines (“cc”) as the smoother for D and thin plate regression splines 244 
(“tp”) as smoothers for other covariates. To improve prediction under new conditions and avoid 245 
overfitting (Jackson et al., 2018; Siegel & Volk, 2019), we limited smoothers for air temperature 246 
and flow to a maximum of three knots, except in the one-covariate model “GAM11” where air 247 
temperature was allowed six knots. D was allowed up to six knots, except in three-dimensional 248 
tensors where it was restricted to five knots. 249 

Some models included interactions between D and other covariates (i.e., flow or air temperature) 250 
to allow that covariate’s effect to vary seasonally. These interactions were either partially 251 
nonlinear or fully nonlinear. For partially nonlinear interactions, the linear slope of one variable 252 
(e.g., flow) varied as a smooth nonlinear function of D (Jackson et al., 2018, Siegel & Volk, 253 
2019). Fully nonlinear relationships between two or more variables were specified as tensor 254 
product smooths or tensor product interactions (Wood, 2017). 255 

All models except “GAM11”, the simplest model structure tested, included an AR-1 256 
autocorrelation error structure and a random effect for year. We initially fit each model without 257 
an autocorrelation term, then re-fit with an autocorrelation term, assigning a rho value based on 258 
the initial model’s lag-1 autocorrelation (Baayen et al., 2018; van Rij et al., 2019, 2020) (Text 259 
S3). 260 

Since Mohseni et al.’s (1998) nonlinear logistic regression of weekly air temperature and stream 261 
temperature has been widely applied and adapted (Piotrowski & Napiorkowski, 2019), we 262 
included a GAM equivalent of it as a benchmark for comparison. A7 is the only predictor in this 263 
“GAM11” model (i.e., no flow, autocorrelation, or random effects). 264 

We reviewed residual plots and autocorrelation function plots to verify assumptions. We 265 
evaluated each model’s concurvity using mgcv’s concurvity function. 266 

 267 

3.3 Model selection and validation 268 

We used cross-validation (CV) for model selection and validation because it is preferred over 269 
information theoretic approaches when prediction is paramount (Pedersen et al., 2019). We 270 
designed extrapolation CV tests to select models that performed well when applied to 271 
environmental conditions (i.e., flow and air temperature) outside the calibration range (Lute & 272 
Luce, 2017; Roberts et al., 2017). We split data into blocks based on quantiles of flow and air 273 
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temperature (Section 3.1.3), withheld one block, and fit the model using the remaining block 274 
(Figure 5). We compared predictions for the withheld blocks against the measured data using 275 
root mean squared error (RMSE). These dual-variable differential split-sample tests (Klemeš, 276 
1986) extrapolate not only into new combinations of flow and air temperature but also into new 277 
ranges of both individual variables.  278 

We selected the best model by ranking the 11 candidate models (GAM1–GAM11) based on their 279 
extrapolation test RMSE values for each site and each temperature response variable (10 sites, 2 280 
variables). We then calculated the mean of the 20 ranks for each candidate model, selecting the 281 
model with the lowest mean rank. We selected the same model structure for Tmax and Tmean 282 
(rather than optimizing separately) so predictions for both metrics could be used together. We 283 
present Bayesian information criterion (BIC) scores from models fit using maximum likelihood, 284 
to compare our extrapolation-based model selection to more commonly applied—and easier to 285 
implement—model selection methods. To facilitate comparisons to previous studies, we also use 286 
leave-one-year-out (LOYO) CV where data were split into annual blocks and then treated 287 
similarly to the extrapolation tests (i.e., steps repeated for each year: year withheld, model refit 288 
using remaining data, and predictions compared to withheld data). We assessed the relative 289 
importance of individual model terms by comparing performance among models with and 290 
without individual predictors and/or interactions. 291 

 292 

3.4 Model scenarios assessing management effects and timing of flow importance  293 

3.4.1 All sites 294 

To assess the seasonal response of stream temperatures to variation in flow and air temperatures, 295 
we applied our selected model to scenarios representing differing air temperatures and flows 296 
(Table 1, Figure 3). We ran nine “quantile air temperature” scenarios representing combinations 297 
of three air temperature inputs (0.1, 0.5, and 0.9 quantiles) and three flow inputs (0.1, 0.5, and 298 
0.9 quantiles) (Section 3.1.3) for each site. Replication is sparse for the co-occurrence of extreme 299 
quantiles of both air temperature and flow (e.g., mean 4.9 days of record per month and site with 300 
flow ≤0.1 quantile and air temperature ≥0.9 quantile); however, ample data are available in 301 
nearby quantiles (e.g., mean 19.1 days per month and site with flow ≤0.2 quantile and air 302 
temperature ≥0.8 quantile) (Figure S1).  303 

 304 

3.4.2 Scott River 305 

At Scott River only, six additional scenarios were run that paired the three quantile air 306 
temperatures with the USFS water right and CDFW flow criteria (Section 2) as flow inputs 307 
(Table 1, Figure 3). The CDFW and USFS flows are aligned with extreme drought conditions in 308 
April and May (0.1 quantile) and high flows in August and September (0.5 to 0.9 quantile). 309 

We also applied our selected model to “observed air temperature” scenarios that pair observed 310 
air temperatures for dates 1998–2020 with eight flow conditions for the Scott River: observed 311 
USGS flows, the five flows from the “quantile air temperature” scenarios (Lowest, Typical, 312 
Highest, USFS, and CDFW), and two additional scenarios in which the CDFW and USFS flows 313 
were replaced by observed USGS flows on dates when the observed flows were higher than the 314 
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management flows (Table 1). Using observed air temperatures instead of quantile air 315 
temperatures provides more realistic predictions because air temperatures fluctuate from day to 316 
day (Figure 2a), instead of remaining near the same quantile like flow does during May–317 
September recession. We summarized the results of each “observed air temperature” scenario by 318 
calculating: 1) annual maximum temperature, 2) first and last day each year in which water 319 
temperatures exceed 22 °C, and 3) the annual degree days exceedance of 22 °C, calculated by 320 
subtracting 22 from all Tmax and summing all positive values. We chose 22 °C as an indicator of 321 
biological effects on juvenile salmonids, based on geographically proximal studies (Brewitt and 322 
Danner, 2014; Sutton et al., 2007; Sutton & Soto, 2012) (Text S4). 323 
 324 
 325 

4 Results 326 

4.1 Model selection and validation 327 

GAM7 had the lowest mean rank RMSE in extrapolation CV (Table S2), so was selected as our 328 
final model. GAM7 had an all-site RMSE of 1.15 °C for Tmax and 1.01 °C for Tmean, and had the 329 
lowest RMSE at Scott River (Tmax 1.20 °C, Tmean 1.00 °C) (Figure 4). GAM7 features nonlinear 330 
smoothers for day of year (D), two-day weighted air temperature (A2w), and flow (Q); a 331 
nonlinear smoother of D interacted with linear Q (i.e., linear slope of Q varies by D); and a 332 
nonlinear smoother of D interacted with linear A2w (Figure S3, Figure 6). GAM7 had 333 
intermediate complexity, with 12.6 effective degrees of freedom for fixed effects for Scott River 334 
Tmax, compared to 23.6 for the most complex model (GAM1), and 5.8 for the least complex 335 
model (GAM11) (Figure S4). 336 

Extrapolation CV showed that at all sites, including Scott River, models with seasonally varying 337 
flow effects had much higher accuracy than models lacking that feature (Figure 4). For example, 338 
for Tmax, all-site RMSE was 1.15–1.19 °C for models with seasonally-varying flow effects 339 
(GAM1–GAM8) and 1.67 °C for GAM9 that lacked seasonally varying flow. Models lacking 340 
flow (i.e., containing only D or A2w) performed the worst, with all-site RMSE values of 1.74 °C 341 
and 2.25 °C for GAM10 and GAM11, respectively, for Tmax. GAM7’s combination of a 342 
nonlinear smoother for flow and a partially nonlinear interaction of flow and D represented flow 343 
effects well, given that the additional complexity of tensors (fully nonlinear interactions of flow 344 
and D) in GAM1–GAM5 did not substantially improve model performance at most sites. Models 345 
interacting flow and air temperature (i.e., GAM1 and GAM4) did not outperform GAM7 which 346 
lacked this interaction. BIC scores largely corroborate the extrapolation CV results identifying 347 
the importance of seasonally varying flow effects and top ranking of our extrapolation CV-348 
selected model GAM7 (Text S5, Figure S4). 349 

Scott River GAM7 LOYO CV predicted overall seasonal patterns in measured Tmax for dates 350 
stratified into combinations of differing quantiles of air temperatures and flows. RMSE was 351 
higher for dates with low (<0.33 quantile) flows (Figure S2c). Tmax Scott River GAM7 352 
extrapolation CV prediction accuracy was only slightly lower than LOYO CV prediction 353 
accuracy when averaged over the entire year (i.e., RMSE 1.20 °C vs. 1.18 °C, Figure 4), but 354 
were biased low during May and June during high (>0.67 quantile) flows, having only been 355 
calibrated with data from the low-flow and moderate-flow quantile (Figure S5). Complete time 356 
series of Scott River measured and LOYO CV Tmax and Tmean for all years are shown in Figures 357 
S6–S7. 358 
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 359 

4.2 Model scenarios assessing management effects and timing of flow importance 360 

Water temperature predictions under quantile air temperature scenarios on the Scott River using 361 
our selected model (GAM7) showed water temperatures responded to changes in flow across all 362 
quantiles of air temperature, consistent with measured data (Figure S2). Cooling effects of flow 363 
followed a seasonal pattern, rising in March to reach maximum effect size on 15 June (7.7 °C for 364 
Tmax and 5.5 °C for Tmean), then diminishing to near zero by early September (Figure 7). 365 
Consistent with measured data (Figure S2), modeled annual maximum water temperatures 366 
occurred later in the season in high-flow conditions (i.e., late July or early August) than in low-367 
flow conditions (i.e., early/mid-July) (Figure 7).  368 

Timing and magnitude of flow effects varied among the 10 Klamath Basin sites, but generally 369 
followed a similar seasonal trend of flow having the strongest cooling effects in April–July, less 370 
cooling effects in March and August, and warming effects in November through February 371 
(Figure 8). Cooling effects of flow were strongest at Scott River and weakest at Shasta River.  372 

The Scott River “observed air temperature” scenarios, which paired observed air temperatures 373 
with eight flow scenarios, demonstrated how flow variation influences stream temperature timing 374 
and magnitude. The lowest flow scenario (0.1 quantile) had annual maximum temperatures 3.3 375 
°C warmer than the highest flow scenario (0.9 quantile) (Figure 9a), and first reached 22 °C 48 376 
days earlier (Figure 9c). The last day with temperatures >22 °C differed by only 2 days (Figure 377 
9d). The observed scenario had the most interannual variation in annual maximum temperature 378 
(Figure 9a) and timing of exceedances of 22 °C (Figure 9c,d), because it included very low flows 379 
and very high flows. Predicted temperature responses to the CDFW and USFS flow scenarios are 380 
complex and depend on how the flows are implemented. If implemented as bypass flows, above 381 
which all additional water is diverted, then temperatures reached 22 °C earlier than the observed 382 
flow scenario by 4 days for the CDFW flows and 13 days for USFS flows (Figure 9c and Figure 383 
S8) because these management flows are lower than observed flows in May and June (Figure 3). 384 
However, in the scenarios where the CDFW and USFS flows were replaced by observed USGS 385 
flows on dates when the observed flows were higher than the management flows, then predicted 386 
temperatures reached 22 °C later than the observed scenario by 4 days with CDFW flows and 2 387 
days with USFS flows. In addition, the number of years with exceedances of 22 °C prior to 23 388 
June were reduced from 7 to 0 (Figure 9c) because CDFW flows were higher than observed 389 
flows in drought years. Due to higher July and August flows, annual maximum water 390 
temperatures were 1.0–1.1 °C cooler in the CDFW scenarios than the observed flow scenario 391 
(Figure 9a). Differences in annual degree-days exceedance of 22 °C between scenarios (Figure 392 
9b) were similar to annual maximum temperature. 393 

 394 

5 Discussion 395 

At all 10 sites, models with seasonally varying flow effects substantially outperformed models 396 
with a constant relationship between stream temperature and flow, indicating that the influence 397 
of flow changes throughout the year. Models containing only air temperature performed 398 
particularly poorly because they did not include flow as a covariate, while models with a linear 399 
effect of flow had intermediate accuracy. Flow had the strongest effect on water temperatures in 400 
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April–July. The highest Scott River management flow evaluated would substantially decrease 401 
exceedances of 22 °C and reduce annual water temperature maximums.   402 

5.1 Model selection and performance 403 

Model accuracy of our top model and similar model structures were high for both Tmax and Tmean. 404 
For Tmean, our selected model’s LOYO CV RMSE ranged from 0.80–1.17 °C at 10 sites (Figure 405 
4), better than the 0.75–1.75 °C RMSE in Mohseni-based models at 14 sites within our study 406 
area (Manhard et al., 2018). In additional to outperforming other models applied within our study 407 
area, our selected Tmean model also had better LOYO CV RMSE than most single-station year-408 
round daily statistical models from around the world (all-site average model validation RMSE 409 
for each analysis’s best performing class of models: Ahmadi-Nedushan et al. [2007] 0.51 °C, 410 
Boudreault et al. [2019] 1.45 °C, Coleman et al. [2021] 1.3 °C, Koch and Grünewald [2010] 1.25 411 
°C, Laanaya et al. [2017] 1.44 °C, Letcher et al. [2016] 1.16 °C, Siegel et al. [2022] 0.87 °C, 412 
Sohrabi et al. [2017] 1.25 °C, van Vliet et al. [2011] 1.8 °C, and Soto et al. [2016] 1.20 °C). Our 413 
high model accuracy was achieved despite using PRISM air temperatures instead of local 414 
measurements—favoring ease of replicability.  415 

GAMs were a useful modeling approach because they represented the nonlinear relationships 416 
and interactions between stream temperature and covariates. Our approach used >15-year 417 
calibration datasets spanning environmental conditions (i.e., hot and cool air temperatures and 418 
high and low flows). We prevented overfitting by restricting the number of knots in GAM 419 
smoothers (Section 3.2), basing model selection on extrapolation tests that evaluate prediction 420 
under expanded ranges of covariates (Section 3.3), and confirming that covariate responses and 421 
interactions matched scientific hypotheses regarding underlying physical processes (Section 5.3). 422 
Our selected model, GAM7, represented flow with two terms—a nonlinear smoother and a 423 
partially nonlinear interaction between flow and day of year—whose combined effects (Figure 6) 424 
provided enough flexibility for accurate predictions without overfitting. This two-term structure 425 
incrementally improves upon previous methods for representing flow effects, with GAM7’s all-426 
site extrapolation CV RMSE 0.04 °C better than GAM6, the model with a simpler flow effects 427 
structure nearly identical to Glover et al. (2020). Consistent with warnings from Siegel & Volk 428 
(2019), tensors (fully nonlinear interactions) were too flexible and did not perform as well as 429 
GAM7 when applied to conditions differing from the calibration dataset (i.e., extrapolation 430 
tests), although tensor models still outperformed models without seasonally varying flow effects. 431 

We used extrapolation CV for model selection, which required far more effort than BIC-based 432 
selection. Since BIC scores suggested selection of the same model, GAM7 (Text S5), from an 433 
ease-of-use perspective BIC-based model selection appears preferable for future applications. 434 
However, for applications requiring high confidence in model accuracy, the extrapolation tests 435 
effectively demonstrate the ability to predict under new conditions.  436 

 437 

5.2 Magnitude and timing of flow effects on water temperature 438 

Consistent with physical expectations, our results corroborate previous findings from northern 439 
temperate rivers that during seasons when air temperatures are typically high and flows are 440 
typically low (i.e., summer in our study area), lower flows are often temporally correlated with 441 
higher stream temperatures (Arora et al., 2016; Isaak et al., 2017; Luce et al., 2014; Neumann et 442 
al., 2003), and flow more strongly affects Tmax than Tmean (Asarian et al., 2020; Gu and Li, 2002; 443 
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Gu et al., 1998). In our study streams, high flows had a strong cooling effect on stream 444 
temperatures in April–July, but less influence during other months. Multiple linear regression 445 
(MLR) models using monthly flow and air temperature at 239 Northwestern USA sites not 446 
regulated by dams (Isaak et al., 2018) and spatial stream network models for eight regions of the 447 
Western USA (FitzGerald et al., 2021) showed monthly timing and direction of flow effects on 448 
stream temperatures (Figures S9–S10) similar to our results (Figure 8b), with the exception of 449 
similar cooling in April and August whereas our models show weaker cooling in August than in 450 
April. Monthly MLR modeling in 17 sites in Canada’s Frasier River Basin found flow-mediated 451 
cooling effects on summer water temperatures were stronger in July than August and weakest in 452 
September (Islam et al., 2019). In Poland, where inter-season flow differences are less 453 
pronounced than in our study area, high flows were correlated with cooler water temperatures in 454 
April–September, with the strongest relationships occurring in July–September at mountainous 455 
snowmelt-fed rivers (Wrzesiński and Graf, 2022). An Eastern USA river study using a daily 456 
year-round GAM found that water temperature decreased with increased flow from April 457 
through mid-October (Yang & Moyer, 2020). Previous studies evaluating year-round changes in 458 
the relationship between stream temperature and flow generally used monthly time steps. Our 459 
daily model provides a more nuanced understanding of seasonal dynamics by allowing this 460 
relationship to change smoothly at sub-monthly time scales, facilitating identification of changes 461 
within a month, as well as the rate of change. 462 

Flow-induced cooling in snowmelt-dominated rivers is common. Process-based modeling of a 463 
Sierra Nevada river indicated early summer stream temperatures up to 16 °C cooler in a record 464 
wet year relative to a dry year (Null et al., 2013). In steep Alaskan streams, average summer 465 
stream temperatures were 3–5 °C cooler in high-snowpack years than low-snowpack years (Cline 466 
et al., 2021). In the conterminous USA, including flow as a covariate improved daily stream 467 
temperature predictions over air temperature only models in April–August, but only in 468 
snowmelt-dominated streams (Sohrabi et al., 2017). Stronger flow effects occurred in inland 469 
regions than coastal regions of the Western USA (Figure S10) (FitzGerald et al., 2021), 470 
consistent with a greater percent of precipitation falling as snow (Klos et al., 2014). Climate 471 
change studies have not parsed the separate influences of hydrology and air temperature on 472 
stream temperature, but in snowmelt-dominated areas of western North America, predictions for 473 
disproportionate spring and summer stream temperature warming are nearly ubiquitous and 474 
attributed to snowpack declines causing lower flows in those seasons (Caldwell et al., 2013; 475 
Crozier et al., 2020; Ficklin et al., 2014; Leach & Moore, 2019; Lee et al., 2020; Luo et al., 2013; 476 
Null et al., 2013). 477 

 478 

5.3 Model correspondence to physical mechanisms 479 

We used air temperature and flow as the major predictors in our model, recognizing that these 480 
predictors represent many processes that collectively determine stream temperatures. Air 481 
temperature is not the most important component of stream heat budgets (Johnson, 2004; 482 
Dugdale et al., 2017), but it has high predictive power because it is correlated with net radiative 483 
flux, a key driver of stream heat budgets (Caissie 2006). Air temperature data resulted in high 484 
model accuracy in our study, and are widely attainable unlike radiative fluxes.   485 

The effects of flow on stream temperature vary throughout the year in response to the physical 486 
mechanisms affecting stream energy balances. High flows speed downstream transit of water and 487 
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provide increased thermal mass that resists heating (or cooling). While flow has strong effects on 488 
water temperature in April–July in our study area, its effects are substantially weaker—though 489 
still present—in August. High flow can exert a dominant influence on water temperature, but this 490 
influence wanes as flow recedes, leading to progressively greater influence of solar radiation and 491 
air temperature. The relationship between flow and water temperature in our top-preforming 492 
model is nonlinear and varies with day. Marginal effects of decreasing flow diminish as flow 493 
approaches 0 m3/s (Figure 6). At Scott River, August flows were much lower than July (Figure 2, 494 
Figure 6), and by 15 August were always below 2.6 m3/s (92 ft3/s). These low August flows have 495 
shallow water depth, low thermal mass, and slow transit times resulting in residence time 496 
sufficient for water to heat up to equilibrium temperature (Bogan et al., 2003; Nichols et al., 497 
2014; Tague et al., 2007). During hot, dry conditions such occurs in our study area during 498 
summer, evaporative cooling limits how high stream temperatures can rise even when flows are 499 
extremely low (Mohseni & Stefan, 1999; Mohseni et al., 1998; Shaw et al., 2017). Wildfire 500 
smoke could also reduce warming of August stream temperatures (David et al., 2018). 501 
Widespread fire is more likely during drought conditions (Westerling, 2016), suggesting 502 
potential for smoke to confound low flow effects on temperature by decreasing solar radiation. 503 
We did not include smoke in our models because the data are difficult to process and we wanted 504 
easily replicable methods, but smoke effects on stream temperatures peaked in August in our 505 
study area (Asarian et al., 2020). With less solar radiation and cooler air temperatures than earlier 506 
months, Tmax is almost always less than 22 °C at Scott River by early September regardless of 507 
flow (Figure 7). In October–November, a period of hydrologic transition when precipitation ends 508 
seasonal baseflow recession, flows had little influence over stream temperature (Figure 8), but 509 
Scott River and two other sites had weak, modal flow-temperature relationships (i.e., highest 510 
water temperatures at moderate flows) (Text S6).   511 

Groundwater contributes to the relationship between flow and stream temperature at our Scott 512 
River site, as it does in many rivers (Briggs et al., 2018; Isaak et al., 2017; Kelleher et al., 2012; 513 
Mayer, 2012; Nichols et al., 2014). Thermal infrared imagery, field measurements (NCRWQCB, 514 
2005), and a groundwater model (Tolley et al., 2019) confirm that the 10 km of river directly 515 
upstream of our study site are a gaining reach where valley constriction forces substantial 516 
groundwater into the Scott River, a common phenomenon at the outlet of alluvial valleys 517 
(Stanford and Ward, 1992). Scott River flows are driven by a mix of valley groundwater 518 
dynamics and snowmelt-driven mountain runoff (Foglia et al., 2013; Van Kirk and Naman, 519 
2008). As mountain runoff recedes and tributaries are almost fully diverted for irrigation, the 520 
relative contribution of groundwater to surface flow at the valley outlet increases over the 521 
summer and becomes dominant (NCRWQCB, 2005). Sediments underlying the river and its 522 
tributaries have high hydraulic conductivity, so groundwater and surface water are strongly 523 
connected (Tolley et al., 2019). During the May–September recession period when temperatures 524 
are of greatest biological concern, flows are related to aquifer levels, and the relative proportions 525 
of valley outlet flow derived from mountain runoff and groundwater are well-predicted by flow 526 
and day of year. Thus, even though these two sources have different temperatures and our model 527 
does not explicitly differentiate them, the model performs well because the interaction of flow 528 
and day of year implicitly characterizes these dynamics adequately. Scenarios from a short-term 529 
process-based surface water model predicted doubling groundwater-derived flow would cool 30 530 
July 2003 Scott River Tmax by 2 °C, and a 50% reduction of groundwater-derived flow would 531 
warm temperatures by 2 °C (NCRWQCB, 2005). For comparison, applying our model to 532 
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scenarios doubling or halving the 3.03 m3/s (107 ft3/s) gaged flow for that same date predicts 533 
Tmax 1.0 °C cooler or 0.7 °C warmer, respectively. 534 

Statistical models typically require many fewer variables as data inputs than process-based 535 
models do, so are often much simpler to develop (Caissie, 2006; Ouellet et al., 2020); however, 536 
this ease has tradeoffs. For example, our model does not differentiate between specific sources of 537 
inflows, which may have quite different temperature influences, nor how alternative 538 
management scenarios would spatially and temporally alter those inflows. If fundamental 539 
characteristics of valley hydrology (i.e., management or climate) changed dramatically, model 540 
accuracy could suffer. Similarly, applying the model to covariate combinations beyond those 541 
used in calibration will degrade predictive accuracy (Section 5.5). To avoid overly complex 542 
models that overfit calibration data, we used extrapolation tests to favor selection of simpler 543 
more generalizable models. Our model does not incorporate longer-term (e.g., annual to decadal) 544 
variation in air temperature that affects groundwater temperatures and precipitation phase (e.g., 545 
snow or rain), so may underestimate responses relative to predictions from integrated process-546 
based models (Leach & Moore 2019).  547 

 548 

5.4 Biological implications  549 

Higher Scott River flows extend the period when cool water habitat is available (Figure 9), 550 
giving juvenile salmonids additional time to migrate downstream and reduce thermal stress for 551 
fish that rear in the Scott River through the entire summer. Climate change will likely continue to 552 
reduce snowpack and summer flows (Persad et al., 2020), increasing duration of detrimentally 553 
warm temperatures. Mean diel range in June–August exceeds 5 °C, providing hours daily with 554 
temperatures <22 °C even when Tmax exceeds 22 °C. Salmonids can potentially persist by using 555 
thermal refugia where cool tributaries, groundwater, or hyporheic flow enters the river during 556 
hotter hours and then forage in the mainstem when temperatures are cooler (Brewitt and Danner, 557 
2014; Sutton et al., 2007; Sutton & Soto, 2012). However, substantial portions of the Scott River 558 
and tributaries lack surface flow during summer, especially in dry years, reducing habitat 559 
connectivity.  560 

 561 

5.5 Applications and management implications  562 

These models can be used not only to identify the seasonally varying influence of flow, but also 563 
to predict future stream temperatures based on managed flow recommendations and to impute 564 
missing data. Instream flow management frameworks are evolving (Mierau et al., 2017; Poff et 565 
al., 2017; Yarnell et al., 2020) and accurate stream temperature models provide a valuable tool to 566 
predict management outcomes.  567 

Our modeling approach could facilitate water managers’ ability to include stream temperature as 568 
a management target in areas that do not currently have operational process-based models. For 569 
example, Siskiyou County is developing a groundwater sustainability plan for the Scott Valley 570 
(Foglia et al., 2018). The current groundwater model does not simulate water temperatures 571 
(Tolley et al., 2019). Our model can be used to predict effects of flow on Scott River 572 
temperatures, including the CDFW and USFS flow thresholds under consideration, and could 573 
inform state agencies’ development of new flow objectives. The CDFW and USFS flows were 574 
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both predicted to cool maximum annual temperatures relative to current conditions, but 575 
improvements would be greater with the higher CDFW flows (Figure 9). We caution that while 576 
the CDFW and USFS flows are higher than typical observed flows in late summer and early fall, 577 
for March to early June they represent extreme drought conditions that could cause earlier 578 
exceedances of 22 °C (Figure 2b). Surface water diversions for in lieu recharge (switching 579 
irrigation source from groundwater to surface water) or managed aquifer recharge (Dahlke et al., 580 
2018; Foglia et al., 2013) should not use the CDFW and USFS flows to guide maximum 581 
diversion rates, but instead be tailored to reduce deleterious effects on instream habitat including 582 
temperatures, such as ceasing diversions by 1 June, the first date when measured (Figure 2) and 583 
modeled temperatures (Figure 9) reach 22 °C.  584 

As with any statistical model, prediction accuracy will degrade when applied to conditions more 585 
extreme than those present in the calibration dataset. Our selected model interacts day of year 586 
with flow and air temperature, so extrapolation caution applies not just to the range of individual 587 
variables but also their combined distributions. Our calibration dataset includes a wide range of 588 
hydrologic conditions, but no years without surface water diversions or groundwater pumping 589 
because those activities occur every year. Streamflow depletion from groundwater pumping is 590 
greater in dry years than wet years (Foglia et al., 2013). Simulated total valley-wide streamflow 591 
depletion peaks around 150,000 m3d-1 (60 ft3/s) in July–August (Foglia et al., 2013), exceeding 592 
streamflow in dry years. Our model should be suitable for modeling dry years for scenarios with 593 
reduced pumping and/or diversions, which would presumably have flows similar to existing wet 594 
years (and hence are within the range of calibration flows); however, in wet years such scenarios 595 
would likely exceed the range of calibration flows and therefore be subject to more uncertainty. 596 
Future application to scenarios with flows higher than observed should be interpreted with 597 
appropriate caveats. 598 

Flow records are typically less available than water temperature records, so may constrain where 599 
our modeling approach can be applied. However, if site-specific flows were not available, data 600 
from a nearby site could be used if they were likely to be highly correlated (i.e., similar 601 
watershed characteristics). We did not systematically explore that issue, but the one site (South 602 
Fork Trinity River) where we used flows from an upstream station had prediction accuracy 603 
similar to the other nine sites (Figure 4). In addition, although our modeling approach should 604 
work well with records shorter than the >15-year datasets we used, we recommend further 605 
research to determine the minimum required period of record.  606 

These models can also be used to fill gaps in stream temperature data records needed for other 607 
analyses (Glover et al., 2020). Their high accuracy suggests they would compare well with 608 
imputation methods used in recent daily year-round stream temperature analyses (Isaak et al., 609 
2020; Johnson et al., 2021).  610 

 611 

6 Conclusions 612 

Long-term daily stream temperature datasets enabled development of generalized additive 613 
models (GAMs) that include nonlinear and seasonally varying effects of flow and air 614 
temperature on stream temperature. Cross-validation indicated these models had higher accuracy 615 
than models that did not account for seasonally variable effects of flow, providing evidence that 616 
flow is important in controlling stream temperatures and that the influence of flow is variable 617 



manuscript submitted to Water Resources Research 

 

through time. Results from these models indicated that high river flow had a strong cooling 618 
effect on river temperatures during April through July at 10 sites in the Klamath Basin of 619 
California, corroborating similar findings from western North America.  620 

Results from extrapolation cross-validation tests show that our selected model is robust in 621 
estimating stream temperatures under environmental conditions moderately outside of the range 622 
of conditions used to train the model (although see cautions in Section 5.5). We applied the 623 
model to instream flow management scenarios proposed by regulatory agencies at our focal 624 
study site, the Scott River, finding that these scenarios would improve stream temperatures. 625 
Relative to historic conditions, the higher instream flow scenario would reduce annual maximum 626 
temperature from 25.2 °C to 24.1 °C, reduce annual exceedances of 22 °C (a cumulative thermal 627 
stress metric) from 106 to 51 degree-days, and delay onset of water temperatures >22 °C during 628 
some drought years.   629 

These models contribute to an emerging body of work demonstrating the use of GAMs for 630 
predicting daily river temperatures. Our models are easy to implement and improve prediction 631 
accuracy of stream temperature responses to flow changes over models without seasonally 632 
variable effects of flow, providing tools that managers can use to select flow solutions most 633 
likely to protect species and ecosystems. The models are implemented in the R software 634 
environment with publicly accessible code. Testing at 10 streams in our study region indicated 635 
that models with seasonally variable flow effects had high prediction accuracy across all streams, 636 
suggesting that these models have broad applicability over a range of stream types. Our selected 637 
model, GAM7, incrementally improves upon previous methods for representing flow effects. 638 
Model applications include those explored here (i.e., scenario prediction and identifying periods 639 
of flow importance), as well as filling gaps in temperature time series. We suggest that GAM7, 640 
as well as similar model structures (i.e., GAM6, GAM8) will perform well across a range of 641 
streams. Model validation procedures, including extrapolation-based methods when models are 642 
applied to new data, should be conducted to test model accuracy at new sites and for datasets of 643 
variable periods of record.  644 
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Figure 1. Klamath Basin study sites including the Scott River. Source map credits: Esri , NOAA, 1116 
and USGS. 1117 

 1118 

Figure 2. Time series of (a) daily mean air temperature, (b) daily mean flow, (c) daily maximum 1119 
stream temperature (Tmax), and (d) daily mean stream temperature (Tmean) at Scott River from 1120 
1998–2020. 1121 

 1122 

Figure 3. Inputs to Scott River “quantile air temperature” scenarios representing 15 1123 
combinations of (a) three air temperature inputs and (b) five flow inputs that vary by day. 1124 
Observed values for 1998–2020 are shown as gray lines. 1125 

 1126 

Figure 4. Model formulas and summary of RMSE from extrapolation and LOYO CV tests at 10 1127 
Klamath Basin sites applying Tmax (top panels) and Tmean (bottom panels) models to years 1128 
(LOYO) or flow and air temperature combinations (extrapolation) not used in model calibration. 1129 
Models are sorted by overall RMSE rank (i.e., mean rank of all 10 sites and both temperature 1130 
metrics, Table S2). Extrapolation test RMSE values for top eight models in individual site panels 1131 
are labeled, with asterisk marking lowest RMSE in each panel.  Formulas for Tmax and Tmean 1132 
models are identical, so are only listed once. Key to formulas: D = day of year from 1 (1 1133 
January) to 366 (31 December in leap year); Q = daily mean flow; see Section 3.1.2 for key to 1134 
‘A’ air temperature variables; ‘s()’ is a nonlinear function; ‘s(D, by = )’ is a linear interaction that 1135 
varies smoothly by D; ‘te()’ is a fully nonlinear tensor product smooth of two or three variable; 1136 
and ‘ti()’ is a tensor product interaction. Except GAM11, all models also include an AR1 1137 
autocorrelation structure and random effect of year. 1138 

 1139 

Figure 5. Configuration of data blocks used in extrapolation tests for model selection and 1140 
validation. 1141 

 1142 

Figure 6. Effects of flow (Q) and day of year (D) on predicted values of (a) Tmax and (b) Tmean in 1143 
Scott River GAM7. Colors and labeled contour lines show predicted temperatures (°C). 1144 
Underlying gray dots show calibration data. 1145 

 1146 

Figure 7. Modeled Scott River Tmax and Tmean under the 15 “quantile air temperature” scenarios 1147 
representing combinations of three air temperature inputs (arranged in columns) and three 1148 
quantile flow inputs and two management flow inputs (shown by color). Observed values for 1149 
1998–2020 are shown as gray lines. Selected data values are labeled on 15 June and the first day 1150 
of March–October. Horizontal dashed line is the salmonid temperature threshold. 1151 

 1152 

Figure 8. Modeled stream temperature differences between lowest flow (0.1 quantile) and 1153 
highest flow (0.9 quantile) scenarios throughout the year for (a) Tmax and (b) Tmean at 10 Klamath 1154 
Basin sites estimated using GAM7.  1155 
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 1156 

Figure 9. (a) Annual maximum stream temperature, (b) annual degree-days exceeding 22 °C, 1157 
and (c) first and (d) last day when Tmax exceeded 22 °C in Scott River model scenarios pairing 1158 
observed air temperatures with eight flow scenarios. Means of all years are shown with black 1159 
points and grey “x” show individual years, offset for clarity. 1160 
  1161 
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Table 1. Matrix showing model scenarios representing combinations of air temperature and flow 1162 
inputs, and organized into two scenario groups. The first group (15 scenarios) used “quantile air 1163 
temperature” inputs (6 were only run only at Scott River while 9 were run at all Klamath Basin 1164 
sites) and the second group (8 scenarios) were run only at Scott River and used “observed air 1165 
temperature” inputs. 1166 
 1167 
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Introduction  

The supporting text contains methodological details on quality control procedures and 
combining of stream temperature data from multiple entities (Text S1), choosing 
autocorrelation coefficients in the GAMs and why we included a random effect for year 
(Text S3, Figures S12, S13, S14), and additional discussion of the 22 °C salmonid 
temperature threshold (Text S4) that were excluded from the manuscript for the sake of 
brevity. A sensitivity analysis on the effects of using different methods for summarizing 
air temperatures is provided in Text S2 and Figure S11. Text S6 discusses the modal 
relationship between flow and stream temperature at some sites during the October–
November period. Supporting figures include additional outputs from the stream 
temperature models, including time series plots comparing modeled data to observed 
data (Figures S5, S6, and S7), a GAM smoother plot (Figure S3), Bayesian information 
criteria scores (Figure S4 and accompanying Text S5), daily outputs from model scenarios 
(Figure S8); and standardized flow coefficients from previous regional studies (Figure S9, 
S10). Table S1 provides site characteristics and data sources for stream temperature 
modeling sites. Table S2 lists mean ranks for each model.  



 
 
 

2 
 
 

Text S1. 
Primary quality control was conducted by the entities who collected the stream 
temperature data. These entities check probe calibration before and after every 
deployment, and data not meeting calibration criteria are discarded. In addition, we 
reviewed the data and removed any suspicious values (e.g., when there were calibration 
issues or probes appear to have been exposed to air). The Quartz Valley Indian 
Reservation (QVIR) Environmental Department uses YSI (Yellow Springs, Ohio) 6600 
multi-parameter datasondes to monitor Scott River water temperatures at the U.S. 
Geological Survey (USGS) gage 11519500 near the outlet of Scott Valley (QVIR, 2016; 
Asarian et al., 2020), recording temperature measurements every 30 minutes with a 
reported accuracy of ±0.15 °C. The YSI 6600 multi-parameter datasondes do not require 
calibration but are compared to a reference sonde every two weeks and serviced by the 
manufacturer annually (QVIR, 2016). KNF’s stream temperature monitoring equipment 
has changed over time, but calibration and deployment protocol has remained similar 
with pre- and post-deployment testing against a National Institute of Standards and 
Technology (NIST) traceable thermometer (KNF, 2010, 2011). Since 2010, KNF has used 
ONSET Pro v2 data logger u22-001 for all temperature monitoring (KNF, 2011). Prior to 
2010 KNF used a combination of ONSET Pro v2 u22-001, Optic StowAway, and other 
ONSET temperature logger models. USFWS protocols are described by Romberger & 
Gwozdz (2018). USBR data were subjected to a detailed quality control review by USGS 
prior to inclusion in the database from which we accessed them (Smith et al., 2018). 
  
For days on which Scott River daily stream temperatures were available from multiple 
entities, we averaged the values together. For the 1216 days with both QVIR and USFS 
records, root mean standard error (RMSE) was 0.31 °C and 0.18 °C for Tmax and Tmean, and 
respectively. Only one entity collected data at each of the other nine sites, so averaging 
values was unnecessary there. 
 

Text S2. 
At the beginning of this project, we only modeled stream temperatures at the Scott River 
site. Our final analyses at all 10 Klamath Basin sites use a 2-day weighted average air 
temperatures (A2w) from the gridded PRISM air temperature dataset (Daly et al., 2008); 
however, for the initial Scott River analyses, we used daily mean air temperature data 
from USFS’ Quartz Hill weather station (Global Historical Climatology Network - Daily 
[GHCND] station USR0000CQUA; Menne et al., 2012a, 2012b) located approximately 8 
km southeast of the stream temperature gage, with missing values infilled by linear 
regression with nearby weather stations or PRISM. In initial explorations of Scott River 
stream temperature models, we explored many air temperature metrics including multi-
day averages (Webb et al., 2003; Siegel et al. 2022), exponential weights (Koch & 
Grünewald, 2010; Piotrowski & Napiorkowski, 2019; Soto, 2016), and including the day of 
interest and preceding days separately (Siegel & Volk 2019). These explorations tested 
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five categories of air temperature metrics, where Ai is the mean air temperature on the 
day i, using Equations (1), (2), (3), (4), and (5):  

Single-day average A1: 

𝐴𝐴1  =  𝐴𝐴𝑖𝑖       (1) 

 

Multi-day averages A2 … A7: 

𝐴𝐴2  =  (𝐴𝐴𝑖𝑖 + 𝐴𝐴𝑖𝑖−1)
2

, … ,  𝐴𝐴7  =  (𝐴𝐴𝑖𝑖 + 𝐴𝐴𝑖𝑖−2 … 𝐴𝐴𝑖𝑖−6)
7

      (2) 

 

Multi-day weighted averages A2w and A3w, with preceding days discounted by 50% per 
day:  

𝐴𝐴2𝑤𝑤  =  𝐴𝐴𝑖𝑖 + (0.5 × 𝐴𝐴𝑖𝑖−1)
1.5

   and   𝐴𝐴3𝑤𝑤  =  (𝐴𝐴𝑖𝑖 + 0.5𝐴𝐴𝑖𝑖−1 + 0.25𝐴𝐴𝑖𝑖−2)
1.75

   (3) 

 

Lagged averages AL3 and AL5:   

𝐴𝐴𝐿𝐿3 =  (𝐴𝐴𝑖𝑖−1 + 𝐴𝐴𝑖𝑖−2 + 𝐴𝐴𝑖𝑖−3)
3

     and    𝐴𝐴𝐿𝐿5  =  (𝐴𝐴𝑖𝑖−1 + 𝐴𝐴𝑖𝑖−2 + 𝐴𝐴𝑖𝑖−3+ 𝐴𝐴𝑖𝑖−4+ 𝐴𝐴𝑖𝑖−5)
5

  (4) 

 

Differences between lagged average and day i:  

𝐴𝐴∆3  = (𝐴𝐴𝑖𝑖  −  𝐴𝐴𝐿𝐿3)     and    𝐴𝐴∆5  =  (𝐴𝐴𝑖𝑖  – 𝐴𝐴𝐿𝐿5)     (5) 
 
 
These initial Scott River explorations, using a model structure similar to GAM4 (tensors 
for Q-D and A2w-D), indicated that the 2-day weighted air temperature (A2w) had 
excellent performance for predicting both Tmax and Tmean, so we proceeded to use A2w for 
all subsequent stream temperature models except one that uses a seven-day average 
(A7) (Section 3.2).  
 
After completing our final modeling at all 10 sites using PRISM A2w (or A7) and selecting 
our final model GAM7, we did a sensitivity analysis comparing performance of variants of 
Scott River GAM7 using the same air temperature summaries that were initially tested, 
except this time using data from PRISM instead of the local GHCND weather station 
measurements. Interestingly, the results of this GAM7 PRISM sensitivity analysis (Figure 
S11) differed from the initial GAM4 GHCND sensitivity analysis (not shown here), with the 
single-day average A1 performing better (i.e., lower RMSE and BIC) than A2w. Surprised, 
we explored further (i.e., ran a similar sensitivity analysis on GAM4 PRISM, results not 
shown here) and determined that which air temperature summary worked the best (i.e., 
A1 or A2w) was not due to differences between the modeling structure of GAM4 and 
GAM7 (i.e., tensors or non-linear smoothers, etc.) but rather between the PRISM data and 
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GHCND data. We speculate, but did not confirm, that this may be due to differences in 
how days are defined between PRISM and GHCND. In summarizing daily stream 
temperatures, we defined days as midnight-to-midnight local time, but PRISM days are 
defined at 1200–1200 UTC (e.g., 0700–0700 EST) and stations with reporting times (i.e., 
day definition) within four hours are used as inputs to PRISM (Daly et al. 2021). We could 
not readily ascertain the reporting time for the GHCND station we used. 
 

Text S3. 
The bam in mgcv function cannot automatically derive the AR-1 coefficient (rho), so it 
must be manually assigned. Following Baayen et al. (2018) and van Rij et al. (2019, 2020), 
we initially fit each model without an autocorrelation term, and then re-ran the model 
with an autocorrelation term, assigning a rho value based on the lag 1 autocorrelation 
from the residuals of the initial model. Comparing models fit using fast restricted 
maximum likelihood (fREML) with a range of rho values, as recommended by Baayen et 
al. (2018), van Rij et al. (2019), and Wood (2017), confirmed these initial values were 
reasonable. These tests indicated that rho values that minimized fREML scores were 
0.02–0.16 higher than the initial rho values (Figure S12 shows example of Scott River 
GAM7, Figure S13 shows all models for all sites). However, autocorrelation function (ACF) 
plots indicated that these higher rho values often had the undesirable side effect of 
exacerbating the negative autocorrelation at lag 1 or lag 2 (e.g., Figure S14 shows 
example of Scott River GAM7), leading to our decision to use the initial rho values 
instead. BIC scores, included as a supplementary measure of model fit, show the same 
pattern as fREML scores regarding optimal rho values (Figure S12). Using BIC scores to 
assess optimal rho values in fREML-fit models is acceptable because the models 
compared had the same fixed effects and differed only in their rho values. 
 
A random effect for year was included to account for year-to-year variability in other 
factors not included in the models such as changes in channel morphology or riparian 
vegetation. From a statistical perspective, including a random effect for year is beneficial 
because it helps reduce temporal autocorrelation within years that arises from a 
combination of the natural hierarchical structure of both the physical system (i.e., see 
previous sentence) and how the data were collected. For example, some sites and years 
have data for summer only (or other periods that do not span across multiple years), so 
for those years the random effect would account for differences in the exact placement 
of the temperature probe and/or any bias in the probe itself. However, we acknowledge 
for those sites and years when data were collected year-round and the probes were 
visited multiple times per year, year would be less of a natural break. 
 

Text S4. 
We chose 22 °C as an indicator of biological effects on juvenile salmonids that rear in the 
mainstem Scott River or outmigrate downstream using the river as a migratory corridor. 
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Given the potential for local genetic adaptation to thermal regimes (Zillig et al., 2021), we 
prioritized geographically proximal studies in selecting thresholds. When the Klamath 
River exceeds 22–23 °C, juvenile salmonids move to tributary confluences (Brewitt & 
Danner, 2014; Sutton & Soto, 2012; Sutton et al., 2007). Similar behavior was observed in 
the Shasta River (Nichols et al., 2014) and 22 °C was also used by McGrath et al. (2017). 
In recognition of our study site’s location on a mainstem river where temperatures would 
naturally be higher than a small well-shaded or spring-fed tributary, we chose 22 °C over 
colder thresholds that would more fully protect coho salmon like Stenhouse et al.’s 
(2012) recommendation of 15.5 °C for spring-fed tributaries to the Shasta River or Welsh 
et al.’s (2001) 18 °C maximum weekly maximum temperature (MWMT) derived from 
coastal streams. In addition, juvenile coho salmon grew fast in experimental cages in the 
food-rich Shasta River with MWMT as high as 24.0 °C, although survival was higher at 
cooler sites (Lusardi et al., 2019). Our data and code are public, so future researchers 
could choose a different threshold. Recognizing the drawbacks of any single statistic or 
threshold (Steel et al., 2013), we also examine annual maximum temperature. 
 

Text S5. 
BIC scores (Figure S4) largely corroborate the extrapolation CV results identifying the 
importance of seasonally varying flow effects. Of eight models with seasonally varying 
flow effects, the most complex model (three-way tensor GAM1) had the worst overall 
(averaged across all sites) BIC rank, but intermediate extrapolation CV RMSE. Averaging 
BIC ranks across sites, our extrapolation CV-selected model, GAM7, had the best BIC 
ranks for both Tmax and Tmean (Figure S4); however, at many individual sites including 
Scott River, other models had better BIC scores (Figure S4). 
 

Text S6. 
At Scott River (Figure 6) and two other sites (Figure S15), the modeled flow-temperature 
relationship is modal (i.e., highest water temperatures at moderate flows) instead of 
monotonic in October–November, a period of hydrologic transition when precipitation 
ends seasonal baseflow recession, increases flow, and refills the valley aquifer (Figure 1). 
The reasons for this non-monotonic behavior are unclear, but could reflect processes 
such as groundwater-surface water dynamics, variation in timing of fall precipitation, or 
other seasonal variables; regardless, these departures from monotonic are of low 
consequence because they are <1 °C and occur when temperatures are not a biological 
concern.   
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Table S1. Site characteristics and data sources for stream temperature modeling sites. Drainage areas are from NHDPlus version 2.1 
(Moore & Dewald, 2016). Key to abbreviations: CDWR = California Department of Water Resources, QVIR = Quartz Valley Indian 
Reservation, USBR = U.S. Bureau of Reclamation, USFWS = U.S. Fish and Wildlife Service, USFS KNF = United States Forest Service 
Klamath National Forest, and USGS = U.S. Geological Survey.  
 
 Stream temperature data  
Site number and name of USGS flow 
gage 

Drainage 
area (km2) Data source Original site code 

N. of 
days 

N. of 
years Date range Latitude Longitude Notes 

11530500 Klamath R Nr Klamath CA 34550 USFWS KRTG2 5002 16 2004–2019 41.51118 -123.97844 
 

11523000 Klamath R A Orleans 25159 USFWS KROR1 4138 17 2001–2018 41.30358 -123.53439 
 

11520500 Klamath R Nr Seiad Valley CA 21171 USFWS KRSV1 5684 19 2001–2019 41.85409 -123.23147 
 

11528700 SF Trinity R Bl Hyampom 2414 USFWS SFTR1 4627 19 2001–2019 40.88943 -123.60221 Temperature 
monitoring site 
located at 
confluence with 
Trinity River, 42.5 
km downstream of 
the USGS gage 

11522500 Salmon R A Somes Bar CA 1946 CDWR F3410000 5200 18 2002–2019 41.37695 -123.47736 
 

11517500 Shasta R Nr Yreka CA 1934 USFWS SHKR1 5172 18 2001–2019 41.82476 -122.59392 
 

11519500 Scott R Nr Fort Jones CA 1716 QVIR SRGA 3180 13 2007–2020 41.64000 -123.01380 
 

  USFS KNF H2O_Temp_LOCID103 977 8 2006–2016   
 

  USFS KNF H2O_Temp_ScottNearFtJones 1048 3 2009–2011   
 

  USBR 11519500 682 3 1998–2000   
 

  USFS KNF Scott River at USGS Gage 341 3 2003–2019   
 

  USFS KNF H2O_Temp_LOCID224 118 1 2004–2004   
 

11521500 Indian C Nr Happy Camp 310 USFS KNF H2O_Temp_LOCID056 3540 17 2000–2016 41.83525 -123.38291 
 

11525670 Indian C Nr Douglas City CA 87 USFWS ICTR1 5197 18 2002–2019 40.65645 -122.91388 
 

11525530 Rush C Nr Lewiston CA 58 USBR/USGS RCL 5679 18 2001–2019 40.72500 -122.83400 
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Table S2. Overall model ranks from extrapolation cross-validation tests, each calculated 
as mean RMSE rank of all 10 sites and both temperature response variables (Tmax and 
Tmean). See Figure 4 for model formulas and a key to abbreviations. 
 

Model number and name Mean rank RMSE 
GAM7: vary Q & A2w (final) 3.60 
GAM2: tensors Q-D & A2w-D 3.65 
GAM4: tensors Q-D & A2w-Q 3.65 
GAM3: tensor Q-D & vary A2w 3.80 
GAM1: tensor Q-A2w-D 4.10 
GAM5: tensor Q-D no vary A2w 5.10 
GAM8: vary Q & no vary A2w 5.70 
GAM6: vary Q & A2w linear 6.55 
GAM10: A2w no Q or vary 9.40 
GAM9: A2w no vary 9.45 
GAM11: A7 only no AR1 11.00 
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Figure S1. Availability of measured water temperature data for days when extreme 
quantiles of air temperature and flow co-occur. Shading indicates the fraction of days for 
each site and month when air temperatures and flow were more extreme than the 
quantile threshold (≤0.1 and ≥0.9 for left panels, ≤0.2 and ≥0.8 for right panels). Data 
labels inside each square indicate the total number of days exceeding the quantile 
threshold. For example, in July at Scott River there were 16 days (2.8% of the 572 days 
when water temperature data were available for that site and month) when air 
temperatures were ≥0.9 quantile and flows were ≤0.1 quantile. 
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Figure S2. Measured (a) Tmax and (d) Tmean at Scott River for dates with combinations of 
cool, typical, or hot air temperatures (arranged in columns) and low, typical, or high flows 
(shown by color). (b,e) Modeled LOYO CV temperatures predicted by selected model 
GAM7 for the same dates, and (c,f) LOYO CV residuals, calculated as measured minus 
modeled. Lines are GAM smoothers fit to points, shown as visual aids.  
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Figure S3. GAM smooths (i.e., covariate responses and interactions) from Scott River 
model GAM7 for Tmax (top six panels) and Tmean (bottom six panels) showing partial 
effects of smooth functions of: (a,g) day of year D, (b,h) two-day air temperature A2w, 
(c,i) interaction of A2w and D (i.e, slope of A2w varying as non-linear function of D), (d,j) 
flow Q, and (e,k) interaction of Q and D. Dashed lines are 95% confidence intervals. (f,l) 
shows random effects for year. 
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Figure S4. Comparison of (a,c) delta BIC, and (b,d) effective degrees of freedom (edf) for 
models of (a,b) Tmax and (c,d) Tmean at 10 sites in the Klamath Basin. Symbols for models 
with lowest delta BIC are colored red. Models are sorted in same order as in Figure 4 (i.e., 
by overall RMSE rank). Average ranks in right column were calculated by first ranking 
model scores within each site (i.e., 1=best, 11=worst), then averaging those model ranks 
across sites. Model GAM11 was excluded from this figure because its model fit was so 
poor it would expand the axes making it difficult to see differences between the other 
models. 
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Figure S5. (a) Measured Tmax at Scott River for dates with combinations of cool, 
moderate, or hot air temperatures (arranged in columns) and low, moderate, or high 
flows (shown by color). (b) Modeled extrapolation CV temperatures predicted by the 
selected model ‘GAM7’ for the same dates, and (c) extrapolation CV residuals, calculated 
as measured minus modeled. Lines are GAM smoothers fit to the points, shown as visual 
aids.  
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Figure S6. Daily time series of measured (dots) and modeled (solid lines, from leave-
one-year-out [LOYO] cross-validation) Tmax in the Scott River at the USGS gage for the 
years 1998–2020 (no data 2001-2002). Horizontal dashed gray line at 22 °C indicates a 
temperature threshold for juvenile salmonids. Curved black dashed line is GAM 
smoother of all measured Tmax for all years 1998-2020, indicating typical conditions for 
each day of year.  
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Figure S7. Daily time series of measured (dots) and modeled (solid lines, from leave-
one-out [LOYO] cross-validation) Tmean in the Scott River at the USGS gage for the years 
1998–2020 (no data 2001-2002). Horizontal dashed gray line at 22 °C indicates a 
temperature threshold for juvenile salmonids. Curved black dashed line is GAM 
smoother of all measured Tmean for all years 1998-2020, indicating typical conditions for 
each day of year.  
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Figure S8. Scott River Tmax predicted with a statistical model under the group of 
scenarios that pair observed air temperatures for 1998–2020 with eight different flow 
conditions (Table 1): observed time series of USGS measured flows, three quantile flow 
scenarios, and four flow scenarios based on the CDFW interim instream flow criteria and 
USFS water right. Two scenarios use the exact flows (based on month and day) specified 
in the CDFW flow criteria and USFS water right, while in the other two the CDFW and 
USFS flows were replaced by observed USGS flows on dates when the observed flows 
were higher than the management flows (Table 1). Horizontal dashed gray line at 22 °C 
indicates a temperature threshold for juvenile salmonids.  
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Figure S9. Violin plot (i.e., combination of box plot and density plot) of standardized 
coefficients for flow (Q) from multiple regression models of monthly stream 
temperatures at 239 river sites in the Northwestern U.S. where flow is not regulated by 
dams, from Isaak et al.’s (2018) analysis. Within each month, horizontal lines are median 
values, gray points are coefficients for individual sites (jittered for legibility), and labels 
are the number of sites. Isaak et al. (2018) developed these models in the original units 
of m3/s. We obtained the coefficients from the study authors, converted the coefficients 
to standardized units by multiplying each coefficient by the standard deviation of Q for 
each month and site, and then created this figure. 

 

 
Figure S10. Standardized coefficients for flow (Q) from monthly spatial stream network 
models of stream temperature in eight Western U.S. regions, from FitzGerald et al.’s 
(2021) analysis. We created this figure using coefficients provided by the study authors. 
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Figure S11. Effect of choice of air temperature metric on model training statistics, 
comparing 11 models of Tmax (left panels) and Tmean (right panels). Models are alternative 
versions of the final model “GAM7”, differing only in the choice of the air temperature 
metric.  
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Figure S12. Plots comparing BIC (top panels), and fREML scores (bottom panels) for 
alternative versions of the Scott River final “GAM7” model for Tmax (left panels) and Tmean 
(right panels) that use different autocorrelation values (i.e., rho, on x-axis). The “initial” 
rho value is the lag 1 autocorrelation value of the residuals from an initial model without 
autocorrelation. “Other” rho values range from 0.1 below the initial value to 0.2 above 
the initial value, in 0.01 increments. 
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Figure S13. Comparison, for each site and model, of initial rho values and rho values 
that minimizes the fast restricted maximum likelihood (fREML) score for Tmax (top panels) 
and Tmean (bottom panels). The “initial” rho value is the lag 1 autocorrelation value of the 
residuals from an initial model without autocorrelation. GAM11 does not have an 
autocorrelation coefficient so is not included here. 
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Figure S14. Autocorrelation function (ACF) plots for alternative versions of the Scott 
River final “GAM7” models for Tmax and Tmean with (a,d) no autocorrelation structure, or 
autocorrelation values (i.e., rho) set as either (b,e) the lag 1 autocorrelation value of the 
residuals from an initial model without autocorrelation, or (c,f) the rho value that 
minimizes the fast restricted maximum likelihood (fREML) score (i.e., red triangle in 
Figure S12).  
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Figure S15. Effects of flow (Q) and day of year (D) on predicted values of (a) Tmax and (b) 
Tmean in selected model GAM7 at four example sites. Sites in top two rows have non-
monotonic relationships in Oct–Nov (Section 5.4) while sites in the bottom two rows do 
not). Colors and labeled contour lines show predicted temperatures (°C). Underlying gray 
dots show calibration data. Y-axis labels provide multiple units to facilitate interpretation. 

a  
Daily max. stream temp. (Tmax) 

b 
Daily mean stream temp. (Tmean) 
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