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Abstract

Continental-scale river hydrodynamic modeling is useful for understanding the global hydrological cycle, and model evaluation

is essential for robust calibration and assessing model performance. Although many models have been robustly evaluated using

several variables separately, methods for the integrated multivariable evaluation of models have yet to be established. Here,

we propose an evaluation method using the overall basin skill score (OSK), based on considering the spatial distribution of

different variables via a sub-basin approach. The OSK approach integrates multiple variables to overcome observation-related

limitations, such as the distinct temporal and spatial dimensions and unit of measurement unique to each variable, thus judging

model performance objectively at the sub-basin and basin scales. As a case study, the global river model, CaMa-Flood, was

evaluated using three variables¾discharge, water surface elevation, and flooded area¾for the Amazon Basin, focusing on the

impact of using different types of baseline topography data (SRTM and MERIT digital elevation models [DEMs]). CaMa-Flood

with the MERIT DEM performed robustly well over a wide range of river depth parameters with a maximum OSK of 0.51

against 0.46 for the SRTM DEM. Single-variable evaluation for all three variables proved inadequate due to low sensitivity for

river bathymetry, with good performance outcomes potentially arising for the wrong reasons. This study confirmed that model

evaluation using this method enables a balanced evaluation of different variables and a robust estimation of the best parameter

set. The proposed method proved useful for flexible, integrated multivariable model evaluation, with modifications allowed per

the user’s requirements.
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 15 

Abstract  16 

Continental-scale river hydrodynamic modeling is useful for understanding the global 17 

hydrological cycle, and model evaluation is essential for robust calibration and 18 

assessing model performance. Although many models have been robustly evaluated 19 

using several variables separately, methods for the integrated multivariable evaluation 20 

of models have yet to be established. Here, we propose an evaluation method using the 21 

overall basin skill score (OSK), based on considering the spatial distribution of different 22 

variables via a sub-basin approach. The OSK approach integrates multiple variables to 23 

overcome observation-related limitations, such as the distinct temporal and spatial 24 

dimensions and unit of measurement unique to each variable, thus judging model 25 
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performance objectively at the sub-basin and basin scales. As a case study, the global 26 

river model, CaMa-Flood, was evaluated using three variablesdischarge, water 27 

surface elevation, and flooded areafor the Amazon Basin, focusing on the impact of 28 

using different types of baseline topography data (SRTM and MERIT digital elevation 29 

models [DEMs]). CaMa-Flood with the MERIT DEM performed robustly well over a 30 

wide range of river depth parameters with a maximum OSK of 0.51 against 0.46 for the 31 

SRTM DEM. Single-variable evaluation for all three variables proved inadequate due to 32 

low sensitivity for river bathymetry, with good performance outcomes potentially 33 

arising for the wrong reasons. This study confirmed that model evaluation using this 34 

method enables a balanced evaluation of different variables and a robust estimation of 35 

the best parameter set. The proposed method proved useful for flexible, integrated 36 

multivariable model evaluation, with modifications allowed per the user’s requirements.  37 

Plain Language Summary 38 

The hydrodynamic model is an import tool to understand the many natural phenomena 39 

related to the water cycle. Its accuracy depends on the many input data, like runoff and 40 

topography. Accurate representation of the natural system using the hydrodynamic 41 

model can be judged based on the models' performance. The model's performance 42 

depends on the accurate estimation of variables and judged based on the evaluation 43 

metric's score. Earlier, many studies focused on either a single variable or multiple 44 

variables considering separately for model evaluation. Here we proposed a method, 45 

integrating multiple variables by combining each variable's performance into a single 46 

overall basin skill score for comparing two topography data. The proposed method is 47 

the first of its kind, integrating variables with different temporal and spatial dimensions 48 



and measurement units for performance evaluation. The method has a significant 49 

advantage of combining different variables for robust evaluation.  50 

 51 

1 Introduction 52 

Continental-scale river hydrodynamic modeling is essential for understanding the 53 

global hydrological cycle and supporting flood monitoring as well as water resource 54 

management with regard to water security and natural hazards (Siqueira et al., 2018). 55 

Hydrodynamic modeling processes depend on topographic data to replicate 56 

characteristics and processes within a landscape (Callow et al., 2007; Jarihani et al., 57 

2015). Data from a digital elevation model (DEM) representing topography comprise 58 

one of the critical datasets required in many types of studies, such as those of runoff 59 

generation, lake water storage changes, river routing, and flood inundation modeling 60 

(Hawker, Bates, et al., 2018; Jung & Jasinski, 2015; Sampson et al., 2016; Yamazaki et 61 

al., 2014, 2017). DEMs provide key data that govern the accuracy of hydrological and 62 

hydrodynamic models (Bates et al., 1998; Bates et al., 2005; Baugh et al., 2013; Jarihani 63 

et al., 2015; Sanders, 2007). Highly accurate DEMs are needed for the better 64 

representation of river hydrodynamics and flood modeling.  65 

Many regions of the world rely on spaceborne DEMs due to the lack of availability 66 

of highly accurate airborne DEMs. Advances in remote-sensing techniques helped with 67 

achieving more accurate spaceborne DEMs (Yamazaki et al., 2017). The Shuttle Radar 68 

Topography Mission (SRTM) DEM and Advance Spaceborne Thermal Emission and 69 

Reflection Radiometer Global DEM, which provide data covering the whole world, are 70 

examples of DEMs developed due to improvements in remote-sensing techniques (Jung 71 



& Jasinski, 2015; Yamazaki et al., 2017). Spaceborne DEMs contain various non-72 

negligible errors affecting vertical accuracy. Efforts have been made to correct these 73 

errors, such as the steps taken in producing the Multi-Error-Removed Improved-Terrain 74 

(MERIT) DEM (Yamazaki et al., 2017) and TanDEM-X 90 DEM (Rizzoli et al., 2017). 75 

The MERIT DEM is a highly accurate spaceborne DEM that removes major error 76 

components from existing DEMs. It was developed by removing the absolute bias, 77 

stripe noise, speckle noise, and tree height bias using multiple satellite datasets and 78 

filtering techniques (Yamazaki et al., 2017).  79 

Many studies have demonstrated the advantages of the MERIT DEM over the SRTM 80 

and other DEMs (Hawker, Bates, et al., 2018; Hawker, Rougier, et al., 2018; Hawker et 81 

al., 2019; Liu et al., 2019; Yamazaki et al., 2017). The comparisons were mostly 82 

restricted to vertical accuracy or spatial error assessment using reference altimetry data. 83 

There has been little research on evaluating the MERIT DEM using river hydrodynamic 84 

model simulations. A few studies have examined the effects of DEMs, including 85 

MERIT, in flood inundation modeling (Archer et al., 2018; Hawker, Bates, et al., 2018; 86 

Hawker, Rougier, et al., 2018), but the evaluations were limited to flood extent or the 87 

water surface elevation (WSE). The hydrodynamic performance can be affected by 88 

uncertainty in the runoff or other model parameters, such as Manning’s coefficient, river 89 

channel bathymetry, and channel width. In accordance with the theory of equifinality, 90 

models based on many parameter sets can perform acceptably well, but they “might be 91 

right for the wrong reasons” (Beven, 2006; Kirchner, 2006). The acceptable 92 

performance of a hydrodynamic model is more likely for single-variable rather than 93 

multivariable evaluation. In addition, evaluation based on fewer variables makes it 94 

difficult to trace errors (García-Díez et al., 2015). There are many possible solutions to 95 



improve the process representation and reduce uncertainty in model predictions (Meyer 96 

Oliveira et al., 2021). One of the easiest and most efficient solutions is the use of a 97 

complementary dataset to evaluate the model. Insight regarding the performance of 98 

different DEMs from considering multiple uncertainties while using river hydrodynamic 99 

models can help to reduce the errors for better prediction of flood events.  100 

The robustness and proper representation of the natural system can be confirmed by 101 

evaluating the model across various simulated hydrological variables (Stisen et al., 102 

2018). The availability of remote-sensing data with fair temporal and spatial resolution 103 

is advantageous for hydrodynamic model evaluation using multiple variables. Many 104 

studies (Meyer Oliveira et al., 2021; Paiva et al., 2013; Patro et al., 2009) performed 105 

robust evaluation of hydrological-hydrodynamic and hydrodynamic models using 106 

multiple variables. The techniques involved the use of many possible objective 107 

functions, including the root mean square error (RMSE), Nash-Sutcliffe efficiency 108 

coefficient (NSE), and coefficient of determination (R
2
). The use of multiple objective 109 

functions makes the evaluation cumbersome, and it is difficult to describe the overall 110 

combined performance due to all variables. Selection of the best model parameters 111 

using these techniques is complex, making objective model evaluation difficult. The 112 

integration of these metrics for evaluating river hydrodynamic models is impossible due 113 

to different measurement units and ranges. For example, the NSE is unitless and ranges 114 

from ∞ to 1, whereas the RMSE has the same unit as the variable of interest and 115 

ranges from 0 to ∞. In addition, the spatial dimension and measurement units of 116 

observed variables, such as discharge (Q), Water Surface Elevation (WSE), and flood 117 

extent, vary. Q and WSE are recorded as point observations with measurement units of 118 

m
3
/s and m, respectively, whereas flood extent involves two-dimensional observations 119 



with a measurement unit of m
2
. A methodology for evaluating river hydrodynamic 120 

models that includes integrating various observations with different temporal and spatial 121 

dimensions has not been established. 122 

This study proposes an integrated multivariable evaluation of river hydrodynamic 123 

models for subjective assessment. The proposed multivariable integrated evaluation 124 

technique was applied for catchment-based macro-scale floodplain (CaMa-Flood) river 125 

hydrodynamic model (Yamazaki et al., 2011) simulations considering two different 126 

DEMs, the MERIT DEM and SRTM DEM, as a case study. The evaluation was 127 

performed using a range of parameters to cover the various possible uncertainties and 128 

errors. An integrated metric approach considering observations of multiple variables (Q, 129 

WSE, and flooded area) at the sub-basin scale was adopted. The overall basin skill score 130 

(OSK) was calculated using the sub-basin skill score to represent the performance of 131 

CaMa-Flood with the two DEMs. The OSK helps to rank the simulations to compare 132 

the best set of parameters for the CaMa-Flood river hydrodynamic model considering 133 

multiple variables. The proposed evaluation technique will help with determining the 134 

improvement in predictions of river hydrodynamics by a representative model due to 135 

improvement of a DEM, e.g., the MERIT DEM. 136 

2 Methodology and Data Description 137 

2.1 Study Framework 138 

Simulations with a global river hydrodynamic model, CaMa-Flood, at a resolution of 139 

0.1° (~10 km at the equator) were performed using the SRTM DEM and MERIT DEM, 140 

and model performance for multiple variables was evaluated. The framework of the 141 

study is presented in Error! Reference source not found.. The CaMa-Flood model (see 142 



Section 2.3) used runoff forcing data (see Section 2.5) as the input for the simulations. 143 

Simulations were performed using two different DEMs, the SRTM DEM and MERIT 144 

DEM (see Section 2.4), for various parameters (see Section 2.7), and uncertainties were 145 

included. The sub-basin approach was adopted for skill score computation using three 146 

different variables. Q, WSE, and the flooded area (FA) (see Section 2.6) were taken as 147 

observations for each sub-basin for metric computation (see Section 2.8). The overall 148 

model performance was evaluated based on the OSK, which was calculated by 149 

averaging the sub-basin skill scores for a DEM that were estimated for a parameter 150 

using an evaluation metric. The best parameter set, as assessed by comparing the OSK, 151 

was used to compare the model performance of CaMa-Flood between the SRTM and 152 

MERIT DEMs (see Section 3). The integrated multivariable evaluation technique was 153 

applied to Amazon River Basin data to compare the performance of the CaMa-Flood 154 

river hydrodynamic model with two different DEMs. The average normalized NSE 155 

(NNSE) value was calculated for Q, WSE, and FA observations for each sub-basin, 156 

considering mainstream observations for Q and WSE and a 50-km buffer around the 157 

main stream for FA. The OSK was calculated by averaging the sub-basin skill scores, 158 

representing the performance of CaMa-Flood for a given DEM and river depth 159 

parameter. 160 



 161 

Figure 1: Study framework showing the flowchart of calculation of the OSK from sub-162 

basin skill scores calculated using the NNSE values associated with Q, WSE, and FA. 163 

2.2 Study Area 164 

The Amazon Basin (Figure 4Error! Reference source not found.) was selected as the 165 

study region to evaluate the MERIT and SRTM DEMs using CaMa-Flood. The Amazon 166 

Basin has the largest drainage basin in the world, covering an area of approximately 167 

7,050,000 km
2
, with the largest river discharge (annual average of 200,000 m

3
/s at the 168 

river mouth), and accounts for 20% (one-fifth) of the total runoff discharge into the 169 

world’s oceans (Richey et al., 1989). 170 



The Amazon region is characterized by complex river hydraulics. The low river slopes 171 

cause backwater effects to control part of the river (Meade et al., 1991; Paiva et al., 172 

2013). The vast floodplains along the Amazon main stem significantly impact the 173 

hydrodynamics of the middle and lower reaches. Seasonally flooded areas are found on 174 

the Amazon plains (Hess et al., 2003; Papa et al., 2010). The main river channel 175 

exchanges a 5%–30% annual discharge with the surrounding areas (Alsdorf et al., 2010; 176 

Richey et al., 1989). These characteristics make the Amazon Basin a good case study 177 

for hydrodynamic model evaluation.  178 

Quantification of hydrological model events for a large basin is often difficult due to a 179 

lack of adequate data (Chen et al., 2010). However, large numbers of observations are 180 

available for the Amazon region. Many in situ gauges are installed along the main stem 181 

and major tributaries (Yamazaki et al., 2012), and satellite observation data are useful 182 

for monitoring large-scale floods and droughts (Chen et al., 2010).  183 

2.3 Hydrodynamic Model 184 

In this study, we used CaMa-Flood (Yamazaki et al., 2011, 2012, 2013), which is a river 185 

routing model with a global distribution. It uses the one-dimensional St. Venant local 186 

inertial equation (Bates et al., 2010), making simulations of continental-scale river 187 

hydrodynamics computationally efficient. The model simulates river and floodplain 188 

hydrodynamics (e.g., river Q, WSE, inundated area, and surface water storage) by 189 

routing the input runoff generated by a land surface model to a predefined river network 190 

map. The river networks and sub-grid parameters were created by applying the FLOW 191 

upscaling method (Yamazaki et al., 2009) at 0.1° (~10 km) resolution, using a flow 192 

direction map and DEMs. The SRTM DEM combined with HydroSHEDS (Lehner et al., 193 



2008) flow directions and MERIT Hydro (Yamazaki et al., 2019) combined with a 194 

hydrologically adjusted version of the MERIT DEM were used as input to apply the 195 

FLOW upscaling method. River networks were discretized into unit catchments with 196 

sub-grid topographic parameters for river channels and floodplains. The water balance 197 

equation determines the water storage in each catchment as a prognostic variable, where 198 

the catchment is delineated by a DEM. The local inertial equation is used to calculate 199 

river Q, whereas the water level and FA are identified using water storage levels in each 200 

unit catchment based on sub-grid topographic information. 201 

2.4 Digital Elevation Models 202 

The DEM is one of the most important inputs for physical-based models. In this study, 203 

the SRTM and MERIT DEMs were compared using a river hydrodynamic model. 204 

SRTM is an international research effort in which DEMs are obtained on a near-global 205 

scale from 56°S to 60°N to generate the most complete high-resolution digital 206 

topographic database of the Earth. The SRTM DEM (Farr et al., 2007) uses synthetic 207 

aperture radar interferometry data to produce the highest resolution digital topographic 208 

map of the Earth. It has a resolution of 1 arc-second (i.e., 30 m at the equator) with 15 m 209 

of vertical accuracy.  210 

The MERIT DEM (Yamazaki et al., 2017) is a highly accurate global DEM with a 3 211 

arc-second resolution (~90 m). The SRTM3 DEM (Farr et al., 2007) and AW3D-30 m 212 

DEM (Tadono et al., 2015) were used as baseline DEMs to produce the MERIT DEM 213 

after the removal of multiple error components (absolute bias, stripe noise, speckle 214 

noise, and tree height bias) from existing spaceborne DEMs. Improved DEMs (without 215 

biases and errors) can represent the altitude and slope more accurately, as illustrated in 216 



Figure 2(b) and (c). For a river channel delineated using a DEM, any error in altitude in 217 

the DEM will directly affect the channel depth; hence, accurate WSE values may not be 218 

obtained even if Q can be estimated correctly. As shown in Figure 2, a biased DEM 219 

cannot provide accurate results, even if Q values are correct, and the WSE data will be 220 

affected due to errors in elevation and slope or vice versa. The MERIT DEM is 221 

expected to analyze multiple variables simultaneously in an improved manner, thus 222 

enhancing the overall performance of the river hydrodynamic model. 223 



 224 
Figure 2: Biased and corrected DEM showing the effects of trees bias on Q, WSE, and 225 

FA estimations. 226 

2.5 Runoff Forcing Data 227 

CaMa-Flood uses runoff as an input for simulations. We used eartH2Observe (Dutra et 228 

al., 2017) runoff data produced by the land surface hydrological model Hydrology Tiled 229 

ECMWF Scheme for Surface Exchanges over Land (HTESSEL) forced with the 230 



WATCH Forcing Data methodology applied to ERA-Interim dataset (WFDEI; Weedon 231 

et al., 2014) on weather boundary conditions (Balsamo et al., 2009). The combination of 232 

HTESSEL runoff data and CaMa-Flood produced better results (Zhou et al., 2020). The 233 

runoff data resolution is 0.25°, distributed to each unit catchment according to the areal 234 

proportion of the unit catchment in the corresponding grid. 235 

2.6 Observation Data 236 

2.6.1 Discharge 237 

Daily Q data for the observation locations shown in Figure 4 were used to evaluate the 238 

Q simulations. The Brazilian Agency for Water Resources (ANA), Peruvian and 239 

Bolivian National Meteorology and Hydrology Services (Servicio Nacional de 240 

Meteorología e Hidrología), and Hydrology, Biogeochemistry and Geodynamic of the 241 

Amazon Basin (HYBAM) program (http://www.ore-hybam.org) provided daily-scale 242 

data for the 1999–2009 period. The data for 2001–2009 were considered for integrated 243 

multivariable evaluation. 244 

2.6.2 Water Surface Elevation 245 

ENVISAT satellite altimetry data (Santos da Silva et al., 2010, http://hydroweb.theia-246 

land.fr/) were used to evaluate the WSE. The ENVISAT satellite has a 35-day repeat 247 

orbit and an intertrack distance of 80 km. Data from 2002 to 2010 were used for metric 248 

calculation. The ENVISAT altimetry data referenced EGM 2008. Preprocessing was 249 

performed using the program provided by the National Geospatial-Intelligence Agency 250 

(http://earth-info.nga.mil) to convert the data to EGM96 geoid format. The processed 251 

EGM96 geoid-referenced data were compared with the CaMa-Flood simulations. 252 

http://hydroweb.theia-land.fr/
http://hydroweb.theia-land.fr/


2.6.3 Flood Extent 253 

A multi-satellite monthly global inundation extent dataset with a spatial resolution of 254 

approximately 25 km × 25 km, available from 1993 to 2004 (Papa et al., 2010), was 255 

used for flood extent comparison. These data were derived from multiple satellite 256 

observations comprising passive (Special Sensor Microwave Imager) and active (ERS 257 

scatterometer) microwaves along with visible and near-infrared imagery (Advanced 258 

Very High-resolution Radiometer). Multi-satellite data can capture inundation under the 259 

vegetation canopy and were therefore used to evaluate CaMa-Flood simulations of the 260 

Amazon Basin. Data were provided for an equal-area grid of 0.25° × 0.25° at the 261 

equator, where each pixel has a surface area of 773 km
2
. They were converted into the 262 

Cartesian coordinate system for comparison with CaMa-Flood simulations. The data 263 

with the modified coordinate system were downscaled from 0.25° (~25 km) to 0.05° (~5 264 

km) by dividing the values equally over 25 pixels. Later, they were upscaled from 0.05° 265 

(~5 km) to 0.1° (~10 km) by summing the values over 2 × 2 pixels. The final 0.1° 266 

downscaled observation data were used for comparison with the CaMa-Flood 267 

simulations. 268 

2.7 Model Parameterization 269 

River hydrodynamic models have many sources of uncertainty. These model 270 

uncertainties were taken into consideration in the model evaluation by assessing a range 271 

of parameters. The CaMa-Flood model has three river channel parameters: channel 272 

width, channel depth, and Manning’s roughness coefficient. A constant value of 0.03 is 273 

given as Manning’s coefficient in the model. Channel width was derived using satellite 274 



data (Yamazaki et al., 2014), whereas river depth was estimated using the power law 275 

equation as follows: 276 

𝐻 = 𝑎𝑄𝑏 (1) 277 

Where 𝐻 is the river depth, 𝑄 is annual average discharge, 𝑎 is coefficient 𝑏 exponent 278 

of the power law given by constant value 279 

River depth is the most uncertain of the three parameters as the uncertainty in the 280 

Manning’s coefficient is small, with the usual range for rivers lying between 0.02 and 281 

0.04 (Brêda et al., 2019; Chow, 1959), whereas an empirical equation is used to 282 

calculate depth. Depth is perturbed to obtain a range of parameters for each simulation 283 

to encompass the model’s uncertainties. There are many possible ways to change river 284 

depth by changing the value of the constant in the power law equation. Here, the river 285 

depth was varied by varying the depth at the river mouth and changing the gradient 286 

across the basin, as illustrated in Figure 3. The exponent “b” varied from 0.35 to 0.85 287 

with an interval of 0.05 and the coefficient “a” of the power law equation to achieve a 288 

fixed depth value at the river mouth. 289 



 290 

Figure 3: River depth vs. Q plot representing the power law equation (H = aQ
b
). Lines 291 

were drawn considering the depth at the river mouth (the same color represents the same 292 

depth at the river mouth), and the gradient along the river was changed by adjusting the 293 

range of exponent “b” and coefficient “a” accordingly. 294 

2.8 Sub-basin Skill Evaluation 295 

The three variables used in the model evaluation study were Q, WSE, and FA. All three 296 

variables have different dimensions, i.e., Q and WSE are recorded as point observations, 297 

whereas FA is recorded as areal observations. In addition, these variables were not 298 

observed at the same location, as shown in Figure 4(a)-(b). The sub-basin approach was 299 

adopted to overcome the difficulties related to observation locations and dimensions. 300 



The basin was decomposed into similar sub-basins, and the skill score was calculated 301 

considering all three variables for each sub-basin. In this study, the Amazon Basin was 302 

decomposed into 25 sub-basins as shown in Figure 4Error! Reference source not found.(c). 303 

The sub-basins were produced using a sub-basin minimum area threshold value of 1.5 × 304 

10
11

 m
2
 and a minimum percentage of each sub-basin’s contribution to the confluence 305 

point of 1%. Tributaries with contribution areas to the main stream between two sub-306 

basins (i.e., interbasin) larger than a threshold value of 1.5 × 10
11

 m
2
 were also treated 307 

as separate sub-basins. River pixels having an upstream area larger than the input 308 

threshold of 1.5 × 10
11

 m
2 
treated as the main stream river for each subbasin. 309 



 310 

 311 



Figure 4: (a) Map of the Amazon Basin with Q, WSE, FA observation locations 312 

indicated (gray circles, triangles, and green shaded areas, respectively), (b) The 313 

zoomed-in area shows sub-basin 13, with red circles and yellow triangles indicating the 314 

considered observations of Q and WSE, respectively, along the sub-basin main river 315 

channel and the pink shaded area indicating the FA considered (50 km on each side of 316 

the main river). (c) Decomposed sub-basins with identification numbers. 317 

The skill score of each sub-basin was calculated considering the Q and WSE point 318 

observations for the main stream of the sub-basin to exclude impacts from minor 319 

streams and take large-scale hydrodynamics into consideration, as shown in Figure 4(b). 320 

For FA, permanent water bodies were excluded from the analysis by considering a 100-321 

km-wide buffer zone (50-km buffer on each side) along the main river channel (orange-322 

red thin line), as shown in Figure 4(a)-(b). The floodplain width of Amazon is 323 

approximately 30 times of main river channel width (Paiva et al., 2011), and hence 50-324 

km buffer on each side of the river channel selected to represent the farthest flood 325 

region influenced by the main river. The buffer region helps with determining the 326 

impacts of main stream parameters on flood extent while neglecting flooding from 327 

small streams and permanent water bodies in the model evaluation. 328 

Most model evaluations using multiple variables are performed with multiple objective 329 

functions, which usually have different scales and units. This makes multivariable 330 

evaluation burdensome and inappropriate for large basins. A simple model evaluation 331 

metric for measuring the quality of a simulation using multiple variables was developed, 332 

namely, performance was evaluated in terms of the OSK, a single value with no units. 333 



This metric was developed using the NNSE, as calculated in Eq. 2, and derived using 334 

the NSE (Nossent & Bauwens, 2012), as shown in Eq. 3.  335 

𝑁𝑁𝑆𝐸 =
1

2−𝑁𝑆𝐸
 (2) 336 

𝑁𝑆𝐸 = 1 −
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖 = 1

∑ (𝑂𝑖−�̅�)2𝑛

𝑖 = 1

 (3) 337 

where 𝑂𝑖 and 𝑃𝑖 are the observed and modeled values at time i, respectively, and �̅� is 338 

the mean of observations. 339 

As the model was evaluated for different variables with different dimensional units, the 340 

NNSE makes it easier to assess the overall performance across all variables. This 341 

evaluation method is not overly sensitive to a model consistently deviating from mean 342 

observation values, and the metric ranges from 0 to 1. The metric does not have any 343 

units and can be compared or combined for many different variables, as well as 344 

arithmetically averaged to obtain a unique value for spatially distributed values. The 345 

sub-basin skill score was calculated for the Amazon sub-basins for which observations 346 

were available for all three variables. A sub-basin without observations for any of the 347 

three variables, Q, WSE, and FA, was excluded from the calculation of OSK. The OSK 348 

was calculated as follows: 349 

𝐹𝑂𝑆𝐾 =
1

𝐾
∑ (𝑊𝑄 ×

1

𝑚
∑ 𝑁𝑁𝑆𝐸𝑄

𝑚
𝑗=1 + 𝑊𝑊𝑆𝐸 ×

1

𝑛
∑ 𝑁𝑁𝑆𝐸𝑊𝑆𝐸 + 𝑊𝐹𝐴 × 𝑁𝑁𝑆𝐸𝐹𝐴

𝑛
𝑗=1 ) 𝐾

𝑖=1350 

 (4) 351 

where m and n are the number of observations for Q and WSE, respectively, in each 352 

sub-basin for the main stream. WQ, WWSE, and WFA are the weights given to each 353 



variable, where WQ + WWSE + WFA = 1 and K is the number of sub-basins (here, it is 25) 354 

used in the OSK calculations. For the current assessment, we weighted each variable 355 

equally, i.e., WQ  = WWSE = WFA = 1/3.  356 

3 Results  357 

Integrated multivariable evaluation of Amazon Basin modeling was applied. Figure 5 358 

shows the contour plot of OSKs for different parameters defined using the coefficient “a” 359 

and exponent “b” from Eq. 1. The OSK (Figure 5) indicates the performance of the 360 

CaMa-Flood model for the respective parameter and DEMs with equal weighting for 361 

each variable for each sub-basin. As observed for most parameters, the CaMa-Flood 362 

hydrodynamic model performed better with the MERIT DEM than with the SRTM 363 

DEM. The maximum OSK values of 0.46 and 0.51 for the SRTM and MERIT DEMs 364 

indicated the best set of parameters for multivariable evaluation. Here, CaMa-Flood 365 

performed best with the SRTM DEM for a = 0.349 and b = 0.35, and with the MERIT 366 

DEM for a = 0.144 and b = 0.45. In the simulations performed with wide ranges of 367 

parameter values, the robust performance of CaMa-Flood was confirmed, and the model 368 

was more accurate with the MERIT DEM than with the SRTM DEM (Figure 5). 369 

 370 



Figure 5: OSK contour plot with equal weighting of all three variables (Q, WSE, and 371 

FA) for (a) the SRTM DEM and (b) the MERIT DEM. 372 

 373 

Figure 6: Sub-basin skill scores for (a) Q, (b) WSE, and (c) FA (or flood extent) with 374 

the SRTM DEM and for (d) Q, (e) WSE, and (f) FA with the MERIT DEM, and skill 375 

scores representing combined multiple variables with the (g) SRTM and (h) MERIT 376 

DEMs for the best set of parameters. 377 



The sub-basin skill scores for each variable are shown separately in Figure 6(a)–(f) for 378 

the SRTM DEM with a = 0.349 and b = 0.35, corresponding to a depth at the river 379 

mouth of 25 m, and for the MERIT DEM with a = 0.45 and b = 0.144, corresponding to 380 

a depth at the river mouth of 35 m. Here, a and b represent the coefficient and exponent 381 

of Eq. 1, respectively, and the parameters corresponding to the best OSK in Figure 5. 382 

The OSK for the Amazon Basin was obtained by taking the arithmetic average of the 383 

skill score of each sub-basin. Considerable improvement was observed for WSE 384 

predictions as it is directly affected by topography. The gray color (Figure 6) indicates 385 

sub-basins for which observations of the variables of interest were unavailable. Among 386 

the three variables, the FA predictive performance was poorer than that for the other 387 

two variables with both the MERIT and SRTM DEMs. This may be due to many 388 

reasons, including poor spatial (~25 km) and temporal resolution (monthly average) of 389 

the FA observation data, and the indirect estimations of flood extent (i.e., FA) in the 390 

Global Inundation Extent from Multi-Satellites dataset are associated with more 391 

uncertainty compared to the directly measured Q and WSE observations. The simplicity 392 

of the downscaling method adopted (see Section Error! Reference source not found.) may 393 

not represent the complexity of the true values, and uncertainties may be present. The 394 

sub-basin skill scores and OSKs for combined multiple variables are shown in Figure 395 

6(g)–(h). A significant improvement was observed with the MERIT DEM compared to 396 

the SRTM DEM. In addition, a major improvement occurred for upstream sub-basins 397 

with the MERIT DEM compared to the SRTM DEM. This suggests that the MERIT 398 

DEM can more accurately represent small streams and topography than can the SRTM 399 

DEM, especially for upstream basins. 400 



Plots of simulated and observed Q over time for sub-basin 18 and sub-basin 3 are shown 401 

in Figure 7(a) and (b) (see Figure 4(c)) for the best set of parameters. These sub-basins 402 

were selected to represent basins located at upstream and downstream, respectively, 403 

with good and poor predictive performance based on the sub-basin skill score value 404 

(calculated using the NNSE value for Q, WSE, and FA). Sub-basin 18 had sub-basin 405 

skill scores of 0.47 and 0.57, whereas sub-basin 3 has sub-basin skill scores of 0.21 and 406 

0.24 for the SRTM and MERIT DEM, respectively. As shown in Figure 7(a) andFigure 407 

7(b), which represent sub-basin 18 and sub-basin 3 (see Figure 4 (c)), respectively, Q was 408 

not sensitive to which DEM was used. The relative RMSEs (RRMSEs) for sub-basin 18 409 

were 13.07% and 13.59%, and those for sub-basin 3 were 149.86% and 145.17% for 410 

SRTM and MERIT, respectively, confirming that the model exhibited similar 411 

performance with both DEMs. Figure 7(c) and Figure 7(d) show the time-varying 412 

simulated and observed WSE (ENVISAT) for sub-basins 18 and 3 (see Figure 4(c)) for 413 

some of the virtual stations. The RRMSE values for sub-basin 18 observations were 414 

12.41% and 2.5%, and those for sub-basin 3 observations were 3.34% and 1.22% for 415 

SRTM and MERIT, respectively. These observations demonstrated significant 416 

improvement in the WSE simulations for MERIT compared to SRTM. This 417 

improvement was likely mainly due to the removal of tree biases (tree height) in the 418 

Amazon region, which decreases the WSE. Although SRTM performed better than 419 

MERIT (refer to Figure 7(e),(f)) in terms of predicting FA in sub-basin 18, with 420 

RRMSEs of 31.49% and 64.51% for SRTM and MERIT, respectively, the high peaks 421 

for sub-basin 3 were better represented by MERIT than by SRTM. RRMSE values of 422 

31.21% and 28.92% for SRTM and MERIT, respectively, showed that the MERIT 423 



simulated FA slightly better than SRTM for sub-basin 3, suggesting that the accuracy 424 

assessment may depend on the choice of evaluation metrics.  425 

 426 
Figure 7: Time-series plots of simulated and observed Q for (a) sub-basin 18 (see 427 

Figure 4(c)) and (b) sub-basin 3 (see Figure 4(c)), simulated and observed WSE for (c) 428 

sub-basin 18 (see Figure 4(c)) and (d) sub-basin 3 (see Figure 4(c)), and simulated and 429 

observed FA for (e) sub-basin 18 (see Figure 4(c)) and (f) sub-basin 3 (see Figure 4(c)). 430 

Figure 8 shows boxplots for the multivariable sub-basin skill score for all study 431 

parameters. The whiskers indicate the range of each sub-basin skill score. The mean of 432 

each boxplot as indicated by the black plus sign represents the OSK of CaMa-Flood for 433 

a particular DEM. The box bordered by red dashed lines contains boxplots of the 434 



maximum OSK, i.e., those for the best parameters based on the integrated multivariable 435 

evaluation of the CaMa-Flood river hydrodynamic model considering a particular DEM. 436 

The interquartile range for the best parameter set was small compared to most of the 437 

other parameters, suggesting that the best parameters performed almost equally well for 438 

most of the sub-basins. 439 

 440 

Figure 8: Sub-basin skill scores for the parameters considered by the SRTM and 441 

MERIT DEMs for depth at the river mouth of (a) 25 m, (b) 35 m, (c) 45 m, and (d) 55 442 

m. 443 

4 Discussion 444 

To confirm the robustness of integrated multivariable evaluation, we performed a 445 

comparison against single-variable evaluation. Here, we evaluated a model of interest 446 

using average NNSE values for Q, WSE, and FA separately. Figure 9 shows the contour 447 



plot of OSKs, i.e., average basin NNSE values considering Q, WSE, and FA 448 

individually, for the whole Amazon Basin regardless of location and without 449 

considering the sub-basin approach. The best parameter set could not be determined 450 

using single-variable evaluation. The maximum performance of the model was seen for 451 

a wide range of parameters when considered separately; e.g., there were no peaks 452 

observed in the Q contour (Figure 9(a),(b)). It is challenging to find the best set of 453 

parameters by evaluating only one variable for the SRTM and MERIT DEMs. 454 

Single-variable evaluation using Q, WSE, and FA for the CaMa-Flood river 455 

hydrodynamic model suggested that Q sensitivity is low and cannot be used for model 456 

calibration. Evaluation using WSE showed that the best parameter set obtained using 457 

only a single variable can lead to poor accuracy outcomes for the other variables, 458 

especially in the case of wrong/poor models (here, the SRTM DEM) (Figure 9(c)). 459 

Comparing the WSE contour plot (Figure 9(c),(d)) with the contour plots for other 460 

variables (Q and FA) (Figure 9(a),(b),(e),(f)), the best parameters (peaks in the 461 

contours) derived using WSE did not correspond to the best parameters (peaks in the 462 

contours) derived using the two other variables, and the model could perform well but 463 

for the wrong reasons. By contrast, the optimal value for FA could not be achieved, 464 

probably due to errors in the flood topography data, low spatial and temporal resolution 465 

of observation data, and low accuracy. 466 



 467 



Figure 9: Basin skill score (average NNSE for the whole basin) contour plot 468 

considering (a) Q for the SRTM DEM, (b) Q for the MERIT DEM, (c) WSE for SRTM, 469 

(d) WSE for MERIT, (e) FA for SRTM, and (f) FA for MERIT. 470 



The new multivariable evaluation technique is flexible, and the weights for each 471 

variable can be selected manually according to the user’s requirements. The method is 472 

flexible enough that the number of variables used for evaluation and averaging can be 473 

changed according to the user’s requirements. Figure 10 shows an example of metric 474 

calculation with different weighting of variables. The overall skill score was calculated 475 

by giving weights of 30%, 30%, and 40% to the Q, WSE, and FA observations, 476 

respectively. More weight was given to FA to allow optimization of the parameter 477 

location for better estimations of FA. 478 

The maximum value of 0.49 was obtained with a = 0.349 and b = 0.35, corresponding to 479 

a depth at the river mouth of 25 m for the MERIT DEM, for the given range of 480 

parameters. Figure 11(a)–(c) show the sub-basin skill scores (average NNSE values) of 481 

the individual basins for each variable separately. These scores correspond to the 482 

parameters Q, WSE, and FA with assigned weights of 30%, 30%, and 40%, respectively. 483 

As shown in Figure 11(d) and 11(f), FA predictive performance was enhanced for most 484 

of the sub-basins with increases in the weight of the FA variable, whereas the change in 485 

Q predictive performance was not significant. The downstream sub-basin performance 486 

improved, whereas the FA predictive performance for a few upstream sub-basins 487 

appeared to worsen. This may be because a decrease in depth at the mouth further 488 

decreases the river depth upstream, which may not represent the true situation. 489 

Figure 12 shows observation and simulated time-series plots of Q, WSE, and FA for the 490 

best set of parameters for the MERIT DEM with equal weights assigned to the three 491 

variables and with greater weighting of FA compared to the other two variables. The 492 

results showed significant improvement in FA predictive performance for sub-basin 3 493 



with a change in RRMSE value from 27.61% to 17.33%. A significant decline was not 494 

observed for sub-basin 18, but the RRMSE value changed from 64.55% to 86.23%. The 495 

predictive performance of the other two variables (Q and WSE) did not change 496 

significantly for both of these sub-basins. The RRMSE value changed from 13.59% to 497 

13.84% for sub-basin 18 Q observations and from 145.17% to 146.18% for sub-basin 3. 498 

The RRMSE changed from 2.5% to 3.15% for sub-basin 18 WSE observations and 499 

from 1.22% to 1.27% for sub-basin 3, when equal weights were assigned to the 500 

variables versus more weight assigned to FA. Our method can be used for the robust 501 

evaluation of river hydrodynamic models, and it is flexible enough to allow 502 

modification according to the user’s requirements global optimization considering 503 

multiple variables. 504 

 505 
Figure 10: OSK contour plot for (a) greater weight assigned to FA (40%) and for (b) 506 

differences in score between more heavily weighted FA and equal weights across 507 

variables. 508 



 509 

Figure 11: Sub-basin skill scores for (a) Q, (b) WSE, and (c) FA with the MERIT DEM, 510 

with weights of 30%, 30%, and 40% assigned to Q, WSE, and FA, respectively, and 511 

differences in sub-basin skill score between more heavily weighted FA and equal 512 

weighting of variables for (d) Q, (e) WSE, and (f) FA. 513 



 514 

Figure 12: Time-series plots of simulated and observed (a) Q, (c) WSE, and (e) FA for 515 

sub-basin 18 (Figure 4(c)) and simulated and observed (b) Q, (d) WSE, and (f) FA for 516 

sub-basin 3 (Figure 4(c)) with the MERIT DEM using the best parameter set with equal 517 

weighting of variables. 518 

Although we used the NNSE as the target metric, the method can be used with other 519 

metrics, e.g., flood extent can be evaluated using performance indices (Aronica et al., 520 

2002; Bates & De Roo, 2000) that measure the agreement between predicted and 521 

observed flood extent, especially with static data (Hess et al., 2003). The same method 522 



can also be applied using other metrics, such as the Kling-Gupta Efficiency (KGE) 523 

(Gupta et al., 2009) and NSE (Nash & Sutcliffe, 1970), among others. The current 524 

method can be modified such that different specific weights are assigned to the 525 

observations, e.g., assigning greater weight to main river channel observations or 526 

downstream sub-basin observations. 527 

5 Summary and Limitations 528 

We developed an integrated multivariable evaluation technique for the robust 529 

assessment of river hydrodynamic models and confirmed that the MERIT DEM 530 

performed better than the SRTM DEM. The developed multivariable evaluation method 531 

uses the NNSE as the evaluation metric for simplicity of calculation. A sub-basin skill 532 

score approach for calculating an integrated metric across multiple variables was 533 

adopted to ease the difficulty associated with the spatial distribution of observations. 534 

The results obtained showed that the model can be evaluated across multiple variables 535 

at the same time with the proposed technique. With this method, the prediction of 536 

multiple variables is shown to improve with a better model, and combining multiple 537 

variables in the evaluation produces a more balanced estimation of performance. 538 

The technique was applied to compare the performance of CaMa-Flood with two 539 

different DEMs, the SRTM and MERIT DEMs. As shown in Figure 5 and 6, the 540 

maximum value of the integrated metric for CaMa-Flood (OSK) with the MERIT DEM 541 

was 0.51, compared to the value of 0.46 with the SRTM DEM with equal weighting of 542 

each variable. The sub-basin skill scores for each variable (Figure 6(a)–(f)) separately 543 

showed significant improvement in WSE prediction as the DEMs (topography) directly 544 

affect the accuracy of WSE simulation. The results shown in Figure 6(g) and (h) 545 



indicate that with the MERIT DEM, the predictive performance for upstream sub-basins 546 

improved considerably. This improvement implied that the upstream sub-basins were 547 

affected to a greater extent due to tree biases in the SRTM DEM, whereas there was 548 

significant bias correction in the MERIT DEM. Single-variable evaluation (see Section 549 

4) confirmed that robust evaluation of a hydrodynamic model is challenging to achieve 550 

using a single variable at a time. Figure 9(a), 9(b), 9(e), and 9(f) show that Q and FA are 551 

not suitable for use in calibration as the sensitivities are low and the same skill score 552 

values were obtained for a wide range of parameters, whereas the peaks obtained for 553 

WSE (Figure 9(c),(d)) did not correspond to the peaks of the other two variables, and 554 

the best parameter may be obtained in an incorrect manner.  555 

This study had some limitations. Estimating the channel depth using the power law 556 

equation is not realistic, as each tributary or river segment can have local characteristics 557 

that cannot be explained by the power law equation. The river model error cannot be 558 

explained only by the channel depth parameter. There are many possible error sources, 559 

such as errors in input runoff and flood plain topography, limitations due to 560 

simplification of physics, and representation of the river as a rectangular channel. 561 

Although we did not account for the sizes of the sub-basins and corresponding river 562 

sizes when weights were assigned to the observations during the evaluation, the 563 

evaluation method can be easily altered to incorporate these variations. The developed 564 

method can be used for more robust and accurate evaluation after incorporating new 565 

schemes to overcome model limitations in future. 566 

The developed integrated multivariable evaluation technique can overcome limitations 567 

such as lower discharge sensitivity for calibration, by incorporating other variables into 568 



the evaluation. This method can reduce errors by considering the required data for 569 

evaluation and is flexible enough to be adapted according to the user’s requirements. 570 

The method can modified or use a combination of other metrics, such as the NSE, KGE, 571 

and flood performance indices. An evaluation can be performed even if observations for 572 

some variables are missing for a few sub-basins by eliminating these variables from the 573 

evaluation for those particular sub-basins. Future studies will define sub-basin-scale 574 

parameters and evaluate models at the basin scale by including other metrics in 575 

evaluation process. 576 
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